WorldWideScience

Sample records for chemical vapour process

  1. Thermodynamic analysis of processes proceeding on (111) faces of diamond during chemical vapour deposition

    International Nuclear Information System (INIS)

    Piekarczyk, W.; Prawer, S.

    1992-01-01

    Chemically vapour deposited diamond is commonly synthesized from activated hydrogen-rich, carbon/hydrogen gas mixtures under conditions which should, from a thermodynamic equilibrium point of view, favour the production of graphite. Much remains to be understood about why diamond, and not graphite, forms under these conditions. However, it is well known that the presence of atomic hydrogen, is crucial to the success of diamond deposition. As part of an attempt to better understand the deposition process, a thermodynamic analysis of the process was performed on diamond (111) faces in hydrogen rich environments. It is shown that the key role of atomic hydrogen is to inhibit the reconstruction of the (111) face to an sp 2 -bonded structure, which would provide a template for graphite, rather than diamond formation. The model correctly predicts experimentally determined trends in growth rate and diamond film quality as a function of methane concentration in the stating gas mixture. 17 refs., 4 figs

  2. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    Katai, S.

    2001-01-01

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  3. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  4. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  5. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  6. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  7. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  8. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ledain, Olivier

    2014-01-01

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H 2 /TiCl 4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author) [fr

  9. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process

    Science.gov (United States)

    Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin

    2018-01-01

    Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.

  10. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  11. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  12. Chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-02-01

    Full Text Available , effective, more versatile and easily scalable to large substrate sizes. In this paper, we present a design of the hot-wire CVD system constructed at the CSIR for the deposition of CNTs. Additionally, we will report on the structure of CNTs deposited... exhibit exceptional chemical and physical properties related to toughness, chemical inertness, magnetism, and electrical and thermal conductivity. A variety of preparation methods to synthesise CNTs are known, e.g. carbon-arc discharge, laser ablation...

  13. CHEMICAL VAPOUR DEPOSITION FROM A RADIATION-SENSITIVE PRECURSOR

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates in one aspect to a method of depositing a thin film on a substrate by chemical vapour deposition (CVD) from a radiation-sensitive precursor substance. The method comprises the steps of: (i) placing the substrate in a reaction chamber of a CVD system; (ii) heating...... heating pulse followed by an idle period; (iii) during at least one of the idle periods, providing a pressure pulse of precursor substance inside the reaction chamber by feeding at least one precursor substance to the reaction chamber so as to establish a reaction partial pressure for thin film deposition...... is formed. According to a further aspect, the invention relates to a chemical vapour deposition (CVD) system for depositing a thin film onto a substrate using precursor substances containing at least one radiation sensitive species....

  14. Silicon nanowire arrays as learning chemical vapour classifiers

    International Nuclear Information System (INIS)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-01-01

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  15. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  16. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  17. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    Science.gov (United States)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  18. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Dabirian, Ali; Kuzminykh, Yury; Wagner, Estelle; Benvenuti, Giacomo; Rushworth, Simon; Hoffmann, Patrik

    2014-01-01

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb 2 (OEt) 10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt) 5 acts as an octahedral field completing entity and leads to Nb(OEt) 4 (dmae). We show that Nb(OEt) 4 (dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h −1 to values larger than 400 nm·h −1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt) 4 (dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt) 4 (dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process

  19. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  20. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  1. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  2. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  3. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  4. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  5. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  6. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  7. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    Unknown

    SiC fibre by chemical vapour deposition on tungsten filament ... CMCs), in defence and industrial applications. SiC has attractive ... porosity along with chemical purity. This is lacking .... reactor. Since mercury is very toxic it should be removed.

  8. Long distance spin communication in chemical vapour deposited graphene

    Science.gov (United States)

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-04-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ~6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.

  9. Chemical vapour deposition of vanadium oxide thermochromic thin films

    Science.gov (United States)

    Piccirillo, Clara

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films - both undoped and doped with tungsten, niobium and gold nanoparticles - which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.

  10. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  11. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    Science.gov (United States)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  12. Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shivayogimath, Abhay; Mackenzie, David; Luo, Birong

    2017-01-01

    The processes governing multilayer nucleation in the chemical vapour deposition (CVD) of graphene are important for obtaining high-quality monolayer sheets, but remain poorly understood. Here we show that higher-order carbon species in the gas-phase play a major role in multilayer nucleation...

  13. The atmospheric chemical vapour deposition of coatings on glass

    International Nuclear Information System (INIS)

    Sanderson, Kevin David

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In 2 O 3 films with a resistivity of 1.1 - 3x10 -3 Ω cm were obtained with ln(thd) 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstructure is discussed. Control over the preferred orientation growth of ITO has been achieved by the addition of acetate species during film growth. Insitu infra-red spectroscopy has been used to identify the gas phase species and identify the species responsible for the film modification. ITO films with a resistivities of 1.5 - 4x10 -4 Ω cm have been achieved. The deposition of titanium nitride by the APCVD of Ti(NMe 2 ) 4 and a mixture of Ti(NMe 2 ) 4 and ammonia is reported. Contamination of the films and pro-reaction between the precursors in the gas phase is discussed, and the synthesis of new precursors for the deposition of titanium nitride is reported. New precursors have been synthesised under anaerobic conditions and characterised by infra-red spectroscopy, 1 H and 13 C NMR, mass spectrometry, thermal gravemetric analysis and three by single crystal X-ray diffraction. Deposition of titanium nitride utilising two new precursors is reported. (author)

  14. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  15. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  16. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  17. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  18. ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols

    NARCIS (Netherlands)

    Protasova, L.N.; Rebrov, E.; Choy, K.L.; Pung, S.Y.; Engels, V.; Cabaj, M.; Wheatley, A.E.H.; Schouten, J.C.

    2011-01-01

    Vertically aligned ZnO nanowires (NWs) with a length of 1.5–10 µm and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution

  19. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  20. The effect of air permeability of chemical protective clothing material on clothing vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Vuister, R.; Wammes, L.

    1996-01-01

    One of the major problems associated with Chemical Warfare Protective Clothing (CW) is the additional heat load created by the garments. For CW-overgarments, research in the direction of reducing material thickness and thus heat and vapour resistance have not resulted in major improvements. The

  1. ArF Laser -Induced Chemical Vapour Deposition of Polythiene Films from Carbon Disulfide

    Czech Academy of Sciences Publication Activity Database

    Tomovska, R.; Bastl, Zdeněk; Vorlíček, Vladimír; Vacek, Karel; Šubrt, Jan; Plzák, Zbyněk; Pola, Josef

    2003-01-01

    Roč. 107, č. 36 (2003), s. 9793-9801 ISSN 1089-5647 R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : laser photolysis * ArF * chemical vapour deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  2. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve

  3. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  4. Chemical vapour deposition - a promising method for production of different kinds of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, A.; Ritschel, M.; Bartsch, K.; Graff, A.; Taeschner, C.; Fink, J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    2001-08-01

    Carbon nanostructures (fibres, multi and single walled tubes) have been synthesized by catalytic chemical vapour deposition. The catalyst material, deposition temperature and the used hydrocarbon are the main parameters responsible for the formation of the desired structure. In dependence on these parameters and by optimising the deposition process nanofibres with herringbone structure and tubular multiwalled nanotubes were deposited in large amounts and high purity. In the case of single wall nanotubes synthesis an aftertreatment and process is absolutely necessary to obtain material with high percentage of tubes. Layers of disordered and aligned multiwalled nanotubes were deposited on oxidised silicon substrates coated with thin sputtered metal layers (Co, permalloy) by using the micro-wave assisted plasma CVD process or the bias supported hot filament CVD method. The latter method allows relatively low deposition temperatures (550 - 750 C). The obtained carbon modifications were characterised by scanning and transmission electron microscopy. Furthermore, the electron field emission of the CNT's layers were investigated. (orig.)

  5. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    Science.gov (United States)

    2014-11-18

    cture heterogeneity in MoS2 atomiclayers grown by chemical vapour deposition 6. AUTHORS Zheng Liu, Matin Amani, Sina Najmaei, Quan Xu, Xiaolong Zou...deposition Zheng Liu1•2•3·*, Matin Amani4·*, Sina Najmaei5·*, Quan Xu6•7, Xiaolong Zou5, Wu Zhou8, Ting Yu9, Caiyu Qiu9, A Glen Birdwell4, Frank J. Crowne4

  6. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Zhu Huichao; Zhang Baolin; Li Xiangping; Dong Xin; Li Wancheng; Guan Hesong; Cui Yongguo; Xia Xiaochuan; Yang Tianpeng; Chang Yuchun; Du Guotong

    2007-01-01

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness

  7. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lunca Popa, P., E-mail: petru.luncapopa@list.lu; Crêpellière, J.; Leturcq, R.; Lenoble, D.

    2016-08-01

    We present electrical and optical properties of CuCrO{sub 2} thin films deposited by chemical vapour deposition, as well as the influence of depositions' parameters on these properties. Oxygen partial pressure and precursor's concentrations have the greatest influence on optical and electrical properties of the films. Values of conductivities ranging from 10{sup −4} to 10 S/cm were obtained using different deposition conditions. The conductivity is thermally activated with an activation energy ranging from 57 to 283 meV. Thermoelectric measurements confirm the p-type conduction, and demonstrate high carrier concentration typical for a degenerate semiconductor. The as-deposited films show a medium degree of crystallinity, a maximum optical transmission up to 80% in the visible range with a corresponding band gap around 3.2 eV. - Highlights: • CuCrO{sub 2} thin films deposited via a new innovative method - DLICVD. • Band gap and electrical conductivity can be tuned by controlling deposition parameters • Key process parameter is the metallic/oxygen atomic ratio involved in the process • Electrical conductivities values spanning 5 orders of magnitudes were obtained using different deposition parameters.

  8. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  9. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  10. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  11. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  12. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Borges, R.P.; Ferreira, P.; Saraiva, A.; Goncalves, R.; Rosa, M.A.; Goncalves, A.P.; Silva, R.C. da; Magalhaes, S.; Lourenco, M.J.V.; Santos, F.J.V.; Godinho, M.

    2009-01-01

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO 3 ) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  13. Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Vernardou, D.; Marathianou, I.; Katsarakis, N.; Koudoumas, E.; Kazadojev, I.I.; O’Brien, S.; Pemble, M.E.; Povey, I.M.

    2016-01-01

    The growth of silver doped vanadium pentoxide was performed by aerosol assisted chemical vapour deposition and found to be optimal at 450° C. Additionally, an increase in crystallinity and a change in preferred orientation of V 2 O 5 was observed upon increasing the silver content. Silver incorporation also resulted in morphological changes in the thin films from rod to pellet-like structures. For higher silver content films the amount of incorporated charge increased and reversibility and repeatability was demonstrated for 500 cycles. Electrochemical impedance spectroscopy determined that the transfer and diffusion of Li+ ions through the cathode-electrolyte interface was assisted by silver loading, hence, enhancing the capacitive performance.

  14. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  15. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  16. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  17. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  18. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  19. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Durrant, Steven F.; Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Trasferetti, B. Claudio; Davanzo, C.U.; Bica de Moraes, Mario A.

    2008-01-01

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V S ) and of the proportion of TEOS in the mixture (X T ) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V S and X T are presented

  20. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  1. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Shi, J; Lu, Y F; Wang, H; Yi, K J; Lin, Y S; Zhang, R; Liou, S H

    2006-01-01

    Suspended single-walled carbon nanotubes (SWNTs) have been synthesized on Si inverse-opal structures by laser-assisted chemical vapour deposition (LCVD). A CW CO 2 laser at 10.6 μm was used to directly irradiate the substrates during the LCVD process. At a laser power density of 14.3 MW m -2 , suspended SWNT networks were found predominantly rooted at the sharp edges in the Si inverse-opal structures. Raman spectroscopy indicated that the SWNT networks were composed of high-quality defect-free SWNTs with an average diameter of 1.3 nm. At a lower laser power density (6.4 MW m -2 ), multi-walled carbon nanotubes (MWNTs) were grown on the entire surface of the substrates. The preference for the synthesis of SWNTs or MWNTs was attributed to the difference in the catalyst sizes as well as the growth temperature in the LCVD process

  2. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  3. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects......Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function......, to be used in Intermediate Temperature Solid Oxide Fuel Cells. (C) 2004 Elsevier B.V. All rights reserved....

  4. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  5. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  6. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  7. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  8. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  10. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P R; Sautray, R R; Girard, B R [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence sur la decontamination. L'activite en

  11. Fe3−δO4/MgO/Co magnetic tunnel junctions synthesized by full in situ atomic layer and chemical vapour deposition

    International Nuclear Information System (INIS)

    Mantovan, R; Vangelista, S; Kutrzeba-Kotowska, B; Lamperti, A; Fanciulli, M; Manca, N; Pellegrino, L

    2014-01-01

    Fe 3−δ O 4 /MgO/Co magnetic tunnel junctions (MTJs) are synthesized on top of ∼1 inch Si/SiO 2 substrates by conducting a full in situ chemical vapour and atomic layer deposition process with no vacuum break. Tunnel magnetoresistance up to 6% is measured at room temperature, increasing to 12.5% at 120 K. Our results demonstrate the possibility of using full-chemical processes to synthesize functional MTJs, and this could provide a path towards the use of cost-effective methods to produce magnetic devices on a large scale. (fast track communication)

  12. The volatile pivalates of Y, Ba and Cu as prospective precursors for metal-organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iljina, E. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korjeva, A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kuzmina, N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Troyanov, S. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Dunaeva, K. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-04-15

    The volatile pivalates of Y, Ba and Cu were synthesized and characterized by chemical and thermogravimetric analysis, IR spectroscopy, X-ray diffraction and mass spectrometry. The volatilities of metal pivalates was studied; the vapour pressures, thermodynamic characteristics and rates of sublimation were investigated. The volatile pivalates of Y, Ba and Cu are new prospective accessible compounds. (orig.)

  13. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  14. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  15. Development of a new process for deposition of metallic vapours and ions

    International Nuclear Information System (INIS)

    Gabrielli, O. de.

    1989-01-01

    Surface treatment processes by deposition, enabling surface properties to be altered without altering the volume, are making rapid progress in industry. The description of these processes has led us to consider the role and the importance of methods using plasmas. The new plasma source we have developed is the subject of this experimental research: it is the basis of the deposition process (metallic ion and vapour deposition). The specifications and preliminary results enable us to compare this process with others in use. Fast deposition rates and excellent adhesion are the two main characteristics of this process [fr

  16. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  18. Fabrication of nanostructured clay-carbon nanotube hybrid nanofiller by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Dhanagopal, E-mail: dmani_cat@yahoo.co.in [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Mangalaraja, Ramalinga Viswanathan, E-mail: mangal@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Siddheswaran, Rajendran [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Avila, Ricardo E. [Personal Dosimetry Section, Chilean Nuclear Energy Commission, Santiago (Chile); Ananthakumar, Solaiappan [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala (India)

    2012-03-01

    Growth of multiwalled carbon nanotube (CNT) assemblies by chemical vapour decomposition (CVD) technique was achieved through decomposition of acetylene using iron impregnated montmorillonite (MM) catalysts. Various amounts of iron loaded montmorillonite catalysts were prepared by wet impregnation method and calcined at 450 Degree-Sign C. The catalysts were subjected to X-ray diffraction (XRD) and surface area analyses. Acetylene decomposition at a feed ratio of N{sub 2}:H{sub 2}:C{sub 2}H{sub 2} = 1:1:0.18 was conducted in the presence of iron impregnated montmorillonite catalysts in the CVD reactor for the growth of CNT structures. The role of Fe-activated clay catalyst on the formation of CNT structures has been systematically examined at various temperatures and correlated with the morphological features of CNTs. Catalyst assisted acetylene decomposition results the formation of different carbon nanostructures such as nanotubes, nanofibres and nanoflakes. These clay-CNT products were characterised for their morphological, thermal, qualitative and quantitative analyses. The morphological variations of CNT assemblies reveal Fe-montmorillonite catalysts have high selectivity at given reaction conditions. Thermogravimetric and Raman spectral analyses prove that the CNTs contain a good crystallanity and less structural defects.

  19. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  20. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    Tang, C J; Neves, A J; Carmo, M C

    2005-01-01

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm -1 becomes broader and the non-diamond carbon band around 1500 cm -1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm -1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  1. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao; Wei Jiashen; Pang, A.J.

    2008-01-01

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 o C (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF 2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF 2

  2. Fabrication of nanostructured clay-carbon nanotube hybrid nanofiller by chemical vapour deposition

    International Nuclear Information System (INIS)

    Manikandan, Dhanagopal; Mangalaraja, Ramalinga Viswanathan; Siddheswaran, Rajendran; Avila, Ricardo E.; Ananthakumar, Solaiappan

    2012-01-01

    Growth of multiwalled carbon nanotube (CNT) assemblies by chemical vapour decomposition (CVD) technique was achieved through decomposition of acetylene using iron impregnated montmorillonite (MM) catalysts. Various amounts of iron loaded montmorillonite catalysts were prepared by wet impregnation method and calcined at 450 °C. The catalysts were subjected to X-ray diffraction (XRD) and surface area analyses. Acetylene decomposition at a feed ratio of N 2 :H 2 :C 2 H 2 = 1:1:0.18 was conducted in the presence of iron impregnated montmorillonite catalysts in the CVD reactor for the growth of CNT structures. The role of Fe-activated clay catalyst on the formation of CNT structures has been systematically examined at various temperatures and correlated with the morphological features of CNTs. Catalyst assisted acetylene decomposition results the formation of different carbon nanostructures such as nanotubes, nanofibres and nanoflakes. These clay-CNT products were characterised for their morphological, thermal, qualitative and quantitative analyses. The morphological variations of CNT assemblies reveal Fe-montmorillonite catalysts have high selectivity at given reaction conditions. Thermogravimetric and Raman spectral analyses prove that the CNTs contain a good crystallanity and less structural defects.

  3. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    Science.gov (United States)

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  4. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  5. Physical and optical characterisation of carbon-silicon layers produced by rapid thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    McBride, G.M.

    1994-04-01

    The Quplas II reactor is a novel chemical vapour deposition (CVD) system, which was recently designed and built at The Queen's University of Belfast. The system was intended to produce layers of Silicon (Si) for application in advanced bipolar transistor manufacture. It became clear that the system was capable of depositing novel materials such as Silicon-Carbon (Si-C) films which could have application as the emitter material in heterojunction bipolar transistors (HBT's) formed on silicon substrates. This work focuses mainly on the development of analytical techniques to allow characterisation of the deposited layers of Si-C and permit optimisation of both the process conditions and the deposition system. The techniques that were developed to characterise the Si-C films in terms of their physical and optical properties included: Secondary Ion Mass Spectroscopy (SIMS), X-Ray Diffractometry (XRD), Transmission and Scanning Electron Microscopy (TEM and SEM), Near Infrared (NIR) and Ultraviolet/Visible/Near Infrared (UV/VIS/NIR) Spectroscopy. From assessing the data obtained from the analysis of the samples using the techniques mentioned above, it was possible to characterise the Si-C films in terms of: stoichiometry, crystallinity, degree of oxygen contamination, thickness, optical roughness of the film/air and film/substrate interfaces, and energy bandgap. In the fabrication of Si-C films it was found to be necessary to use low process pressures in order to ensure that the film deposition was slow enough to allow for a more ordered growth process. This led to the formation of polycrystalline Si-C films which had greatly reduced levels of oxygen compared to earlier amorphous films. In addition the polycrystalline Si-C films tended to have optically rough film/air and film/substrate interfaces. For most samples it was possible to obtain the thickness of their Si-C films from their SIMS profiles. Based on the method of interferometry, the thickness of the Si-C films

  6. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  7. Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition

    Science.gov (United States)

    Karamat, S.; Çelik, K.; Shah Zaman, S.; Oral, A.

    2018-06-01

    High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment of other dielectrics with graphene needs more exploration. A potential dielectric material is required which could be used to grow graphene with all these qualities. Direct growth of graphene on magnesium oxide (MgO) substrates is an interesting idea and will be a new addition in the library of 2D materials. The present work is about the direct growth of graphene on MgO substrates by an ambient pressure chemical vapour deposition (CVD) method. We address the surface instability issue of the polar oxides which is the most challenging factor in MgO. Atomic force microscopy (AFM) measurements showed the topographical features of the graphene coated on MgO. X-ray photoelectron spectroscopy (XPS) study is carried out to extract information regarding the presence of necessary elements, their bonding with substrates and to confirm the sp-2 hybridization of carbon, which is a characteristic feature of graphene film. The chemical shift is due to the surface reconstruction of MgO in the prepared samples. For graphene-MgO interface, valence band offset (VBO) and conduction band offset (CBO) extracted from valence band spectra reported. Further, we predicted the energy band diagram for single layer and thin film of graphene. By using the room-temperature energy band gap values of MgO and graphene, the CBO is calculated to be 6.85 eV for single layer and 5.66 eV for few layer (1-3) of graphene layers.

  8. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films

    International Nuclear Information System (INIS)

    Garnier, Jerome; Bouteville, Anne; Hamilton, Jeff; Pemble, Martyn E.; Povey, Ian M.

    2009-01-01

    Two different methods of spray chemical vapour deposition have been used to grow ZnO thin films on glass substrates from zinc acetate solution over the temperature range 400 o C to 550 o C. The first of these is named InfraRed Assisted Spray Chemical Vapour Deposition (IRAS-CVD). This method uses intense IR radiation to heat not only the substrate but also the gaseous species entering the reactor. The second method is a more conventional approach known simply as ultrasonic spray CVD, which utilises IR lamps to heat the substrate only. By way of comparing these two approaches we present data obtained from contact angle measurements, crystallinity and mean crystallite size, photoluminescence, electrical and optical properties. Additionally we have examined the role of annealing within the IRAS-CVD reactor environment.

  9. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  10. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  11. The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    Ohashi, Fumitaka; Chen, Guan Yow; Stolojan, Vlad; Silva, S Ravi P

    2008-01-01

    In this paper, we investigate the several roles that hydrogen plays in the catalytic growth of carbon nanotubes from the point of view of gas species, catalyst activation and subsequent interaction with the carbon nanotubes. Carbon nanotubes and nanofibres were grown by thermal chemical vapour deposition, using methane and a mixture of hydrogen and helium, for a range of growth temperatures and pre-treatment procedures. Long, straight carbon nanotubes were obtained at 900 deg. C, and although the growth yield increases with the growth temperature, the growth shifts from nanotubes to nanofibres. By introducing a helium purge as part of the pre-treatment procedure, we change the gas chemistry by altering the hydrogen concentration in the initial reaction stage. This simple change in the process resulted in a clear difference in the yield and the structure of the carbon nanofibres produced. We find that the hydrogen concentration in the initial reaction stage significantly affects the morphology of carbon fibres. Although hydrogen keeps the catalyst activated and increases the yield, it prevents the formation of graphitic nanotubes.

  12. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  13. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  14. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  15. Chemical radwaste solidification processes

    International Nuclear Information System (INIS)

    Malloy, C.W.

    1979-01-01

    Some of these processes and their problems are briefly reviewed: early cement systems; urea-formaldehyde; Dow solidification process; low-viscosity chemical agents (POLYPAC); and water-extensible polyester. 9 refs

  16. Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2003-01-01

    Roč. 18, č. 5 (2003), s. 487-494 ISSN 0267-9477 Institutional research plan: CEZ:AV0Z4031919 Keywords : vapour generation * ICP-OES * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.200, year: 2003

  17. Rewetting of semi-dried ink patterns by vapour annealing for developing a reflow process in reverse offset printing

    International Nuclear Information System (INIS)

    Kusaka, Yasuyuki; Ushijima, Hirobumi; Sugihara, Kazuyoshi; Koutake, Masayoshi

    2017-01-01

    A process for reflowing patterned materials for reverse offset printing was developed, with the aim of mitigating the step-coverage problem in multilayered devices. The proposed reflow process involves a single step of vapour annealing at moderate temperatures ranging from 60 to 70 °C. This step successfully changes the height profile of semi-dried ink patterns formed on a silicone blanket, from an initially rectangular shape to a rounded shape. A systematic investigation on the effects of various vapour species and vapour temperatures on the reflow process revealed that the miscibility between the vapour and the ink, and a low boiling point of the respective solvent (high vapour pressure) are the prerequisites for successful reflows of semi-dried ink layers patterned on a silicone blanket. The results suggested that the rewetting of previously semi-dried patterns is the main mechanism in the reflow process, which led to a change in the height profile. Furthermore, the reflowed patterns demonstrated almost identical peak-height thicknesses, irrespective of the width of the patterns. This is a unique property that is unattainable by other printing methods, including gravure offset printing and microcontact printing, wherein printed patterns have rounded shapes without a reflow process, but their thickness inevitably depends on the pattern sizes. (technical note)

  18. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  19. LiF enhanced nucleation of the low temperature microcrystalline silicon prepared by plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Jiří; Ledinský, Martin; Honda, Shinya; Drbohlav, Ivo; Mates, Tomáš; Fejfar, Antonín; Hruška, Karel; Stuchlíková, The-Ha; Kočka, Jan

    2009-01-01

    Roč. 517, č. 24 (2009), s. 6829-6832 ISSN 0040-6090 R&D Projects: GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous hydrogenated silicon * atomic force microscopy * plasma-enhanced chemical vapour deposition, * nucleation * Raman scattering * lithium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.727, year: 2009

  20. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  1. Review of analytical techniques to determine the chemical forms of vapours and aerosols released from overheated fuel

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Nichols, A.L.

    1989-12-01

    A comprehensive review has been undertaken of appropriate analytical techniques to monitor and measure the chemical effects that occur in large-scale tests designed to study severe reactor accidents. Various methods have been developed to determine the chemical forms of the vapours, aerosols and deposits generated during and after such integral experiments. Other specific techniques have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Such in-situ and post-test methods of analysis have been also assessed in terms of their applicability to the analysis of samples from the Phebus-FP tests. The recommended in-situ methods of analysis are gamma-ray spectroscopy, potentiometry, mass spectrometry, and Raman/UV-visible absorption spectroscopy. Vapour/aerosol and deposition samples should also be obtained at well-defined time intervals during each experiment for subsequent post-test analysis. No single technique can provide all the necessary chemical data from these samples, and the most appropriate method of analysis involves a complementary combination of autoradiography, AES, IR, MRS, SEMS/EDS, SIMS/LMIS, XPS and XRD

  2. Microstructural and chemical variation of TiO{sub 2} electrodes in DSSCs after ethanol vapour treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanhui [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Zhang, Hongzhou, E-mail: hongzhou.zhang@tcd.ie [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Fox, Daniel [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Faulkner, Colm C. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Jeng, David; Bari, Mazhar [SolarPrint Ltd, Dublin 18 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer A simple ethanol vapour post-treatment was applied to the TiO{sub 2} electrode in a DSSC. Black-Right-Pointing-Pointer A stable efficiency improvement was evident after this post-treatment. Black-Right-Pointing-Pointer Structural and chemical modifications of the treatment were systematically investigated using advanced electron microscopy. Black-Right-Pointing-Pointer Morphology changes in favour of the efficiency improvement were identified (increased porosity and reduced TiO{sub 2} particle size). Black-Right-Pointing-Pointer EELS study confirmed that stronger coupling formed between the dye and the treated TiO{sub 2}. - Abstract: TiO{sub 2} based dye-sensitized solar cells (DSSCs) have great potential to solve many energy challenges, however, their low energy conversion rate is still a barrier for further applications. Ethanol vapour post-treatment can improve the DSSC's conversion efficiency without changing its architecture, and a stable 2-3% improvement was found in our experiments. Microstructural and chemical factors were investigated using scanning electron microscopy and analytical electron microscopy on treated and untreated electrodes. The vapour treatment improved the porosity and surface-to-volume ratio of the TiO{sub 2} particles, decreased electron transport loss between TiO{sub 2} and fluorine doped tin oxide, and increased hydroxyl sites on the TiO{sub 2} particle's surface. The modification therefore enhanced the dye uptake and dye-TiO{sub 2} coupling, and it reduced the energy loss during the carrier transfer.

  3. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  4. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  5. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  6. Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection

    Czech Academy of Sciences Publication Activity Database

    Abdelghani, A.; Chovelon, J. M.; Jaffrezic-Renault, N.; Lacroix, M.; Gagnaire, H.; Veillas, C.; Berková, Daniela; Chomát, Miroslav; Matějec, Vlastimil

    B44, l/3 (1997), s. 495-498 ISSN 0925-4005 R&D Projects: GA ČR GA102/95/0871; GA ČR GA102/96/0939 Grant - others:EU COPERNICUS(XE) CIPA-CT94-0140 Keywords : nonelectric sensing devices * optical fibres * chemical sensors * sol-gel processing Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.858, year: 1997

  7. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    Science.gov (United States)

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. Copyright © 2014 John Wiley & Sons, Ltd.

  8. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S.

    2005-01-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950 o C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling [it

  9. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  10. Effect of growth interruptions on TiO{sub 2} films deposited by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dyli@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127 (China); Goullet, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Carette, M. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré, 59652, Villeneuve d' Ascq (France); Granier, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Landesman, J.P. [Institut de Physique de Rennes, UMR CNRS 6251, 263 av. Général Leclerc, 35042, Rennes (France)

    2016-10-01

    TiO{sub 2} films of ∼300 nm were deposited at low temperature (<140 °C) and pressure (0.4 Pa) using plasma enhanced chemical vapour deposition at the floating potential (V{sub f}) or the substrate self-bias voltage (V{sub b}) of −50 V. The impact of growth interruptions on the morphology, microstructure and optical properties of the films was investigated. The interruptions were carried out by stopping the plasma generation and gas injection once the increase of the layer thickness during each deposition step was about ∼100 nm. In one case of V{sub f}, the films of ∼300 nm exhibit a columnar morphology consisting of a bottom dense layer, an intermediate gradient layer and a top roughness layer. But the growth interruptions result in an increase of the dense layer thickness and a decrease of surface roughness. The film inhomogeneity has been identified by the in-situ real-time evolution of the kinetic ellipsometry (KE) parameters and the modeling process of spectroscopic ellipsometry (SE). The discrepancy of the refractive index measured by SE between bottom and upper layers can be reduced by growth interruptions. In the other case of V{sub b} = −50 V, the films exhibit a more compact arrangement which is homogeneous along the growth direction as confirmed by KE and SE. Both of Fourier transform infrared spectra and X-ray diffraction illustrate a phase transformation from anatase to rutile with the bias of −50 V, and also evidenced on the evolution of the refractive index dispersion curves. And a greatly increase of the refractive indice in the transparent range can be identified. However, the growth interruptions seem to have no influence on the morphology and optical properties in this case. - Highlights: • TiO{sub 2} films deposited by plasma processes at low temperature and pressure. • Influence of growth interruptions on structural and optical properties. • In-situ real-time ellipsometry measurements on film properties. • Structural and

  11. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  12. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  13. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    Science.gov (United States)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  14. Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    International Nuclear Information System (INIS)

    Sobczyk-Guzenda, A.; Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J.; Wojciechowski, P.; Halamus, T.; Tracz, A.

    2009-01-01

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 o C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  15. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  16. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Jones, B J; Nelson, N

    2016-01-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp 2 /sp 3 ratio (graphitic/diamond-like bonding ratio) and sp 2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions. (paper)

  17. Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Park, Wanjun

    2009-01-01

    The transport properties of randomly networked single walled carbon nanotube (SWNT) transistors with different channel lengths of L c = 2-10 μm were investigated. Randomly networked SWNTs were directly grown for the two different densities of ρ ∼ 25 μm -2 and ρ ∼ 50 μm -2 by water plasma enhanced chemical vapour deposition. The field effect transport is governed mainly by formation of the current paths that is related to the nanotube density. On the other hand, the off-state conductivity deviates from linear dependence for both nanotube density and channel length. The field effect mobility of holes is estimated as 4-13 cm 2 V -1 s -1 for the nanotube transistors based on the simple MOS theory. The mobility is increased for the higher density without meaningful dependence on the channel lengths.

  18. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  19. Lasers in chemical processing

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-01-01

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  20. Enhancing oil rate in solvent vapour extraction processes through tee-well pattern

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, F.; Knorr, K.D.; Wilton, R.R. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Saskatchewan Research Council, Saskatoon, SK (Canada)

    2008-10-15

    In order for the vapour extraction (VAPEX) process to be considered commercially viable, the production flow rate in classical VAPEX must be increased. The low flow rate can be attributed to the fact that the classical VAPEX process uses forces of buoyancy to distribute the solvent and gravity to drain the diluted oil to the producer. This paper presented a new well pattern, referred to as the tee-SVX process, that may enhance the oil flow rate two to ten times over the classical approach. Additional horizontal injectors, perpendicular to the injector and the producer in classical VAPEX were placed in the top-most region of the reservoir in the new well pattern. The paper described the model development which involved conducting a series of simulation runs in order to evaluate the performance of the new well pattern. The paper also presented a comparison of the performance of the tee-SVX and the classical VAPEX and lateral-SVX. A sensitivity analysis was also performed to further evaluate the performance of tee-SVX and provide the boundaries of the application of the process. Two types of factors affecting the performance of tee-SVX were outlined, notably design factors; and formation and fluid uncertainties. The performance of tee-SVX in thinner reservoirs and in reservoirs with a gas cap were also examined. It was concluded that compared with the lateral-SVX process, the tee-SVX process could significantly reduce the time to solvent breakthrough. 12 refs., 2 tabs., 30 figs.

  1. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  2. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Conde, O.

    2011-01-01

    Chromia (Cr 2 O 3 ) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr 2 O 3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr 2 O 3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO) 6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm -2 and a partial pressure ratio of O 2 to Cr(CO) 6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s -1 and mean particle sizes of 1.85 μm were measured for these films.

  3. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  4. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  5. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  6. Optimization of solar cell performance using atmospheric pressure chemical vapour deposition deposited TCOs

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Hodgkinson, J.L.; Sheel, P.; Dagkaldiran, U.; Gordijn, A.; Finger, F.; Remeš, Zdeněk; Vaněček, Milan

    2009-01-01

    Roč. 25, č. 8 (2009), s. 789-796 ISSN 1938-5862. [International Chemical Vapor Deposition Symposium (CVD-XVII) /17./. Wien, 04.10.2009-09.10.2009] Grant - others:European Community(XE) Project (STREP) of the 6. FP Institutional research plan: CEZ:AV0Z10100521 Keywords : solar cells * TCO * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Roro, K T; Dangbegnon, J K; Sivaraya, S; Westraadt, J E; Neethling, J H; Leitch, A W R; Botha, J R; Kassier, G H

    2008-01-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3–4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18–300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm 2 V −1 s −1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33–41 meV range and concentration of the order of 10 17 cm −3 , as well as a total acceptor concentration of mid-10 15 cm −3 . Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered

  8. Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts

    International Nuclear Information System (INIS)

    Mooste, Marek; Kibena, Elo; Kozlova, Jekaterina; Marandi, Margus; Matisen, Leonard; Niilisk, Ahti; Sammelselg, Väino; Tammeveski, Kaido

    2015-01-01

    Highlights: • CVD-grown graphene sheets were electrografted with various aryldiazonium salts • Redox grafting was applied to form thick nitrophenyl films • The reduction of the released radicals was in evidence during the redox grafting • Multilayer formation on CVD graphene was confirmed by XPS and AFM measurements • Thickness of different aryl layers on CVD graphene varied from few to 30 nm - Abstract: This work focuses on investigating the electrografting of chemical vapour deposition (CVD) graphene electrodes grown onto Ni foil (Ni/Gra) with different diazonium salts (including azobenzene diazonium tetrafluoroborate, Fast Garnet GBC sulphate salt, Fast Black K salt, 4-bromobenzene diazonium tetrafluoroborate and 4-nitrobenzenediazonium tetrafluoroborate). Various grafting conditions (e.g. “normal” electrografting in the narrow potential range and redox grafting in the wider potential range) were used. The electrochemical grafting behaviour was similar for all diazonium compounds used, except for the 4-nitrobenzenediazonium tetrafluoroborate when redox grafting was applied. The X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy results confirmed the presence of the corresponding aryl layers on Ni/Gra surfaces. The formation of multilayers on Ni/Gra substrates was in evidence since the thickness of different aryl layers varied from few to 30 nm depending on the modification procedures as well as the diazonium compounds used and the XPS analysis revealed a peak at about 400 eV for all aryl-modified Ni/Gra samples suggesting the multilayer formation also through azo linkages

  9. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  10. Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes

    Science.gov (United States)

    Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.

    2016-12-01

    High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.

  11. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Science.gov (United States)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry-differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 → Cu reaction occurs at ∼250-310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100-400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5-1 μm and fiber diameter of 100-200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  12. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  13. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  14. Origin of the near-band-edge photoluminescence in ZnO nanorods realised by vapour phase epitaxy and aqueous chemical growth

    Energy Technology Data Exchange (ETDEWEB)

    Bekeny, C.; Hilker, B.; Wischmeier, L.; Voss, T. [IFP, University of Bremen, P.O Box 330440, 28334 Bremen (Germany); Postels, B.; Mofor, A.; Bakin, Andrey; Waag, A. [IHT, TU Braunschweig, P.O Box 3329, 38023 Braunschweig (Germany)

    2007-07-01

    Well established high temperature growth techniques like the vapourliquid-solid (VLS: 1100 C) and vapour-phase-epitaxy (VPE: 800 C) have been successfully optimized while the low-temperature aqueous chemical growth (ACG: 90 C) is being extended to yield large-scale high quality ZnO nanorods. Here, a detailed and systematic photoluminescence (PL) study is presented to understand the microscopic processes responsible for the near-band-edge (NBE) emission in nanorods obtained from these processes. For the ACG samples, the as-grown nanorods show relatively broad NBE emission (15 meV) attributed to the presence of large donor densities. After annealing in various atmospheres at {proportional_to}800 C, a significant reduction of the linewidth ({proportional_to}4 meV) and even the appearance of relatively sharp excitonic transitions is explained by the drastic reduction of the donor density. In contrast, the as-grown VPE and VLS samples exhibit well-resolved and sharp peaks resulting from exciton-related transitions. There is a shift in the room-temperature PL peak for VLS and VPE samples and is shown to result from contributions of the free exciton peak, its first and second order phonon replicas and not due to quantum confinement and or laser heating as assumed in literature.

  15. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2008-01-01

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m 3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  16. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yongzhong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Chen, Jian, E-mail: wuhangzs@163.com [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Fu, Qingshan [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Li, Binghong [China Rubber Group Carbon Black Industry Research and Design Institute, 643000 Zigong, Sichuan (China); Zhang, Huazhi; Gong, Yong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China)

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C{sub 4}H{sub 4}CuO{sub 6} → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  17. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    International Nuclear Information System (INIS)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C 4 H 4 CuO 6 → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system

  18. Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens.

    Science.gov (United States)

    Varghese, Sajnu; Elfakhri, Souad O; Sheel, David W; Sheel, Paul; Bolton, Frederick J Eric; Foster, Howard A

    2013-09-05

    There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of bacteria used for disinfectant testing and bacteria of current interest in HCAI. The structure of the coatings was determined using Scanning Electron Microscopy and their hardness and adhesion to the substrate determined. Antimicrobial activity was tested using a method based on BS ISO 22196:2007. The coatings had a pale green-brown colour and had a similar hardness to steel. SEM showed nano-structured aggregates of Cu within a silica matrix. A log10 reduction in viability of >5 could be obtained within 4 h for the disinfectant test strains and within 6 h for producing Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia. Activity against the other hospital isolates was slower but still gave log10 reduction factors of >5 for extended spectrum β-lactamase producing Escherichia coli and >3 for vancomycin resistant Enterococcus faecium, methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa within 24 h. The results demonstrate the importance of testing antimicrobial materials destined for healthcare use against isolates of current interest in hospitals as well as standard test strains. The coatings used here can also be applied to substrates such as metals and ceramics and have potential applications where reduction of microbial environmental contamination is desirable.

  19. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    Science.gov (United States)

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  20. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    International Nuclear Information System (INIS)

    Saroj, R K; Dhar, S

    2014-01-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  1. Reduced Pressure-Chemical Vapour Deposition of Si/SiGe heterostructures for nanoelectronics

    International Nuclear Information System (INIS)

    Hartmann, J.M.; Andrieu, F.; Lafond, D.; Ernst, T.; Bogumilowicz, Y.; Delaye, V.; Weber, O.; Rouchon, D.; Papon, A.M.; Cherkashin, N.

    2008-01-01

    We have first of all quantified the impact of pressure on Si and SiGe growth kinetics. Definite growth rate and Ge concentration increases with the pressure have been evidenced at low temperatures (650-750 deg. C). By contrast, the high temperature (950-1050 deg. C) Si growth rate either increases or decreases with pressure (gaseous precursor depending). We have then described the selective epitaxial growth process we use to form Si or Si 0.7 Ge 0.3 :B raised sources and drains on ultra-thin patterned Silicon-On-Insulator (SOI) substrates. We have afterwards presented the specifics of SiGe virtual substrates and of the tensile-strained Si layers grown on top (used as templates for the elaboration of tensily strained-SOI wafers). The tensile strain, which can be tailored from 1.3 up to 3 GPa, leads to an electron mobility gain by a factor of 2 in n-Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) built on top. High Ge content SiGe virtual substrates can also be used for the elaboration of compressively strained Ge channels, with impressive hole mobility gains (x9) compared to bulk Si. After that, we have described the main structural features of thick Ge layers grown directly on Si (that can be used as donor wafers for the elaboration of GeOI wafers or as the active medium of near infrared photo-detectors). Finally, we have shown how Si/SiGe multilayers can be used for the formation of high performance 3D devices such as multi-bridge channel or nano-beam gate-all-around FETs, the SiGe sacrificial layers being removed thanks to plasma dry etching, wet etching or in situ gaseous HCl etching

  2. Predicting Vapour Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOCDirective and Risk Assessment in General

    Directory of Open Access Journals (Sweden)

    Frands Nielsen

    2001-03-01

    Full Text Available The use of organic compounds in the European Union will in the future be regulated in accordance with the Council Directive 1999/13/EC of 11 March 1999 [1]. In this directive, any organic compound is considered to be a volatile organic compound (VOC if it has a vapour pressure of 10 Pa or more at 20oC, or has a corresponding volatility under the particular condition of use. Introduction of such a limit will sometimes create problems, because vapour pressures cannot be determined with an infinite accuracy. Published data on vapour pressures for a true VOC will sometimes be found to be below 10 Pa and vice versa. When the same limit was introduced in the USA, a considerable amount of time and money were spent in vain on comparing incommensurable data [2]. In this paper, a model is presented for prediction of the vapour pressures of VOCs at 20oC from their chemical (UNIFAC structure. The model is implemented in a computer program, named P_PREDICT, which has larger prediction power close to 10 Pa at 20oC than the other models tested. The main advantage of the model, however, is that no experimental data, which will introduce uncertainty in the predictions, is needed. Classification using P_PREDICT, which only predicts one value for a given UNIFAC structure, is proposed. Organic compounds, which can be described by the UNIFAC groups in the present version of P_PREDICT, therefore, can be classified unambiguously as either VOCs or non-VOCs. Most people, including the present authors, feel uneasy about prioritising precision above accuracy. Modelling vapour pressures, however, could save a lot of money and the errors introduced are not large enough to have any substantial adverse effects for neither human beings nor the environment. A method for calculating vapour pressures at other temperatures than 20oC is tested with a dubious result. This method is used for EU risk assessment of new and existing chemicals.

  3. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  4. Modeling of the Process of Three-Isotope (H, D, T) Exchange Between Hydrogen Gas and Water Vapour on Pt-SDBC Catalyst over a Wide Range of Deuterium Concentration

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Tchijov, A.S.; Uborsky, V.V.

    2005-01-01

    The large scale studies of Combined Electrolysis and Catalytic Exchange (CECE) process in Petersburg Nuclear Physics Institute showed a complicated influence of various factors on the process caused by the presence of two simultaneous isotope exchange sub processes: counter-current phase exchange (between liquid water and water vapour) and co-current catalytic exchange (between hydrogen gas and water vapour). A laboratory scale set-up of glass made apparatuses was established in such a way that it allows us to study phase and catalytic exchange apart. A computer model of the set-up has been developed.The catalytic isotope exchange model formulation is presented. A collection of reversible chemical reactions is accompanied by diffusion of the gaseous reactants and reaction products in the pores of catalyst carrier. This has some interesting features that are demonstrated. Thus it was noted that the flow rates ratio (gas to vapour - λ = G/V) as well as the concentrations of reactants exert influence on the process efficiency

  5. Modelling and optimization of seawater desalination process using mechanical vapour compression

    Directory of Open Access Journals (Sweden)

    V.P. Kravchenko

    2016-09-01

    Full Text Available In the conditions of global climate changes shortage of fresh water becomes an urgent problem for an increasing number of the countries. One of the most perspective technologies of a desalting of sea water is the mechanical vapour compression (MVC providing low energy consumption due to the principle of a heat pump. Aim: The aim of this research is to identify the reserves of efficiency increasing of the desalination systems based on mechanical vapour compression by optimization of the scheme and parameters of installations with MVC. Materials and Methods: The new type of desalination installation is offered which main element is the heat exchanger of the latent heat. Sea water after preliminary heating in heat exchangers comes to the evaporator-condenser where receives the main amount of heat from the condensed steam. A part of sea water evaporates, and the strong solution of salt (brine goes out of the evaporator, and after cooling is dumped back in the sea. The formed steam is compressed by the compressor and comes to the condenser. An essential singularity of this scheme is that condensation happens at higher temperature, than evaporation. Thanks to this the heat, which is comes out at devaporation, is used for evaporation of sea water. Thereby, in this class of desalination installations the principle of a heat pump is implemented. Results: For achievement of a goal the following tasks were solved: the mathematical model of installations with MVC is modified and supplemented; the scheme of heat exchangers switching is modified; influence of design data of desalination installation on the cost of an inventory and the electric power is investigated. The detailed analysis of the main schemes of installation and mathematical model allowed defining ways of decrease in energy consumption and the possible merit value. Influence of two key parameters - a specific power of the compressor and a specific surface area of the evaporator-condenser - on a

  6. Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma-enhanced chemical vapour deposition system

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Ashcheulov, Petr; Čada, Martin; Fekete, Ladislav; Hubík, Pavel; Klimša, Ladislav; Olejníček, Jiří; Remeš, Zdeněk; Jirka, Ivan; Janíček, P.; Bedel-Pereira, E.; Kopeček, Jaromír; Mistrík, J.; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), s. 2418-2423 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * electrical conductivity * nanocrystalline materials * optical emission spectroscopy * plasma enhanced chemical vapour deposition * SiC Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  7. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Jany, Ch.

    1998-01-01

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp 2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  8. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  9. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    International Nuclear Information System (INIS)

    Taurino, A; Signore, M A

    2015-01-01

    In this work, the concurrent growth of InSe and In 2 O 3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In 2 O 3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained. (paper)

  10. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    Science.gov (United States)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  11. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thomas, Tegan; Blackman, Christopher S.; Parkin, Ivan P.; Carmalt, Claire J.

    2013-01-01

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl 4 or VOCl 3 with t BuAsH 2 . Using the vanadium precursor VCl 4 , films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl 3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl 4 , were silver in appearance. The films deposited using VOCl 3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl 4 or VOCl 3 and t BuAsH 2 . • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl 3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  12. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P.R.; Sautray, R.R.; Girard, B.R. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence

  13. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Perez, Arllene M; Renero, Francisco J; Zuniga, Carlos; Torres, Alfonso; Santiago, Cesar

    2005-01-01

    Optical, structural and electric properties of (a-(Si 90 Ge 10 ) 1-y B y :H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10 -3 to 10 1 Ω -1 cm -1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV

  14. Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: Effect of annealing time on characteristics and corrosion stability of graphene coatings

    International Nuclear Information System (INIS)

    Naghdi, Samira; Jevremović, Ivana; Mišković-Stanković, Vesna; Rhee, Kyong Yop

    2016-01-01

    Highlights: • Atmospheric pressure chemical vapor deposition of graphene on molybdenum foils. • Quality and domain size of graphene layers increased with longer annealing times. • The number of graphene layers decreased with longer annealing times. • Graphene coatings on molybdenum foils exhibited corrosion inhibitive properties. - Abstract: In this work, the effect of pre-annealing of Mo substrate on the quality of graphene layers grown by chemical vapour deposition was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, different electrochemical techniques were employed to investigate the corrosion stability of the graphene coated Mo in 0.1 M NaCl. Longer annealing time resulted in less defective graphene coatings with fewer layers. Graphene coating on the annealed Mo provided better protection against corrosion during the initial exposure times, while after prolonged exposure times, both graphene coatings on annealed and non-annealed Mo exhibited nearly the same corrosion inhibitive properties.

  15. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  16. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A.

    2017-01-01

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.

  17. Plasma diagnostics and device properties of AlGaN/GaN HEMT passivated with SiN deposited by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M F; Sanz, M M; Munoz, E [ISOM-Universidad Politecnica de Madrid (UPM). ETSIT, Madrid (Spain); Tanarro, I [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Jimenez, A, E-mail: itanarro@iem.cfmac.csic.e [Departamento Electronica, Escuela Politecnica Superior, Universidad de Alcala, Alcala de Henares, Madrid (Spain)

    2010-12-15

    In this work, silicon nitride thin films have been deposited by plasma enhanced chemical vapour deposition on both silicon samples and AlGaN/GaN high electron mobility transistors (HEMT) grown on sapphire substrates. Commercial parallel-plate RF plasma equipment has been used. During depositions, the dissociation rates of SiH{sub 4} and NH{sub 3} precursors and the formation of H{sub 2} and N{sub 2} have been analysed by mass spectrometry as a function of the NH{sub 3}/SiH{sub 4} flow ratio and the RF power applied to the plasma reactor. Afterwards, the properties of the films and the HEMT electrical characteristics have been studied. Plasma composition has been correlated with the SiN deposition rate, refractive index, H content and the final electric characteristics of the passivated transistors.

  18. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  19. Physical-chemical and technological aspects of the preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O by method of metal organic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Stejskal, J.; Nevriva, M.; Leitner, J.

    1995-01-01

    The method of metal organic vapour phase epitaxy (MO VPE) was used for preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O. The suitable chemical precursors (β-diketonates) on the literature data and of the own thermodynamic calculations were selected. The optimal thermodynamic data and thermodynamic stability of the prepared samples were determined

  20. Morphological transformation of soot: investigation of microphysical processes during the condensation of sulphuric acid and limonene ozonolysis products vapours

    Science.gov (United States)

    Pathak, R. K. P.; Pei, X.; Hallquist, M.; Pagels, J. H.

    2017-12-01

    Morphological transformation of soot particle by condensation of low volatility materials on it is a dominant atmospheric process with serious implications for its optical and hygroscopic properties, and atmospheric lifetime. In this study, the morphological transformation of soot agglomerate under the influence of condensation of vapours of sulphuric acid, and/or limonene ozonolysis products were investigated systematically using a Differential Mobility Analyser-Aerosol Particle Mass Analyser (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot in general was a sequence of two-step process, i.e. (i) filling of void space within soot agglomerate; (ii) growth of particle diameter. These two steps followed and complimented each other. In the very beginning the filling was the dominant process followed by growth until it led to the accumulation of enough material that in turn exerted surface forces that eventually facilitated the further filling. The filling of void space was constrained by the initial morphology of fresh soot and the nature and amount of the material condensed. This process continued in several sequential steps until all void space within the soot agglomerate was filled completely and then growth of a spherical particle continued as long as mass was condensed on it. In this study, we developed a framework to quantify the microphysical transformation of soot upon the condensation of various materials. The framework utilized experimental data and hypothesis of ideal sphere growth and filling of voids to quantify the distribution of condensed materials in these two processes complimenting each other. Using this framework, we have quantified the percentage of material that went into processes of particle growth and void filling at each step. Using the same framework, we further estimated the fraction of internal voids and open voids and used this information to derive

  1. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  2. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization

    NARCIS (Netherlands)

    Leemann, M.; Leemann, M.; Eigenberger, G.; Strathmann, H.

    1996-01-01

    Vapour permeation is a potentially suitable technology for the recovery of organic solvents from waste air streams. New solvent stable capillary membrane modules that are currently emerging on the market provide large membrane areas for an acceptable price and enhance the competitiveness of this

  3. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  4. Cr{sub 2}O{sub 3} thin films grown at room temperature by low pressure laser chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, P.M. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal); Silvestre, A.J., E-mail: asilvestre@deq.isel.ipl.p [Instituto Superior de Engenharia de Lisboa and ICEMS, R. Conselheiro Emidio Navarro 1, 1959-007 Lisboa (Portugal); Conde, O. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal)

    2011-03-31

    Chromia (Cr{sub 2}O{sub 3}) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr{sub 2}O{sub 3} films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr{sub 2}O{sub 3} onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO){sub 6} as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm{sup -2} and a partial pressure ratio of O{sub 2} to Cr(CO){sub 6} of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s{sup -1} and mean particle sizes of 1.85 {mu}m were measured for these films.

  5. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  6. Thermodynamic and chemical engineering problems arising with hybride processes

    International Nuclear Information System (INIS)

    Hunsaenger, K.

    1981-01-01

    Marginal parameters and definitions are set up for the NaK-NaKH cyclic process, the vapour-phase electrolysis on the basis of carbonates, high-temperature electrolysis using borax, the HCl/NaLiNO 3 cyclic process and the methane/methanol cyclic process. Such parameters and definitions are to create uniform conditions for the process design. (DG) [de

  7. IR Laser Decomposition of 1,3-Disilacyclobutane in Presence of Carbon Disulfide: Chemical Vapour Deposition of Polythiacarbosilane

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pola, Josef

    2004-01-01

    Roč. 689, č. 16 (2004), s. 2697-2701 ISSN 0022-328X R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4072921 Keywords : laser * polythiacarbosilane * chemical vapor deposition Subject RIV: CC - Organic Chemistry Impact factor: 1.905, year: 2004

  8. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  9. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  10. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  11. Pengaruh Temperatur, Massa Zink, Substrat Dan Waktu Tahan Terhadap Struktur Dan Morfologi Zno Hasil Sintesis Dengan Metode Chemical Vapour Transport (CVT

    Directory of Open Access Journals (Sweden)

    Arisela Distyawan

    2013-09-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Material Zink Oksida (ZnO telah berhasil disintesis menggunakan metode Chemical Vapour Transport dengan bahan dasar prekursor berupa serbuk Zn yang dipanaskan hingga mencapai temperatur uap dalam furnace horisontal. Adapun variasi yang diberikan dalam penelitian adalah berupa temperatur pemanasan (850, 900, dan 950oC, massa prekursor Zn (0,15, 0,25, dan 0,35g, lama waktu sputtering substrat (90 dan 180 detik, dan waktu tahan khusus untuk mengetahui initial growth ZnO (10, 20, 30, 40, 50, dan 60 menit. Pembentukan Zink Oksida (ZnO dikonfirmasi melalui data X-RD, dimana telah terbentuk material ZnO dengan struktur hexagonal wurtzite. Berdarsarkan data XRD juga diketahui ukuran kristal pada sampel sputtering 90 detik mengalami penurunan bersamaan penambahan massa Zn. Dari hasil pengamatan SEM didapatkan bahwa morfologi permukaan lapisan tipis ZnO terdiri dari berbagai macam bentuk berupa nanoparticle, nanowires, nanorods, dan nanotetrapod. Lapisan Zno paling tebal sebesar ±350 nm pada sampel 950oC-0,15g sputter 90 detik. Semakin tinggi temperatur operasi berdampak peningkatan ukuran partikel. Pengujian FTIR turut menguatkan terbentuknya lapisan tipis di permukaan substrat Alumina. Hal ini didasarkan terjadinya penyerapan vibrasi yang membentuk lekukan pada kisaran area 509 cm-1 dari masing-masing sampel.

  12. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  13. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  14. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    International Nuclear Information System (INIS)

    Wen-Juan, Hu; Fen-Yan, Xie; Qiang, Chen; Jing, Weng

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films

  15. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  16. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  17. Raman Spectroscopic Study of Carbon Nano tubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition Syazwan

    International Nuclear Information System (INIS)

    Zobir, A.M.; Abdullah, S.; Rusop, M.; Abdullah, S.; Abu Bakar, S.; Zainal, Z.; Sarijo, S.H.; Rusop, M.

    2012-01-01

    Multi walled carbon nano tubes (MWCNTs) were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD) method at 800-1000 degree C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO), ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G' bands were observed at 1336-1364, 1559-1680, and 2667-2682 cm -1 , respectively. Carbon nano tubes (CNTs) with the highest degree of crystallinity were obtained at around 8000 degree C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000 degree C.

  18. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  19. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    Somerville, R.B.; Fan, L.T.

    1989-01-01

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  20. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  1. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  2. Conceptual Chemical Process Design for Sustainability.

    Science.gov (United States)

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  3. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  4. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  5. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  6. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  7. Mechanical characteristics of ultra-long horizontal nanocantilevers grown by real-time feedback control on focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Guo, Dengji; Warisawa, Shin’ichi; Ishihara, Sunao; Kometani, Reo

    2015-01-01

    Focused-ion-beam chemical vapour deposition (FIB-CVD) has been repeatedly proved to be a useful tool for the growth of three-dimensional (3D) micro- and nano-structures. The strategy of real-time feedback control on FIB-CVD was previously proposed and experimentally demonstrated to be effective for growing ultra-long horizontal nanocantilevers. To fabricate various nanoelectromechanical systems that consist of such types of nanocantilever structures, the mechanical characteristics of ultra-long horizontal nanocantilevers should be investigated. In this study, nanocantilevers with an overhang length of up to 35 μm were grown by using a 30 kV Ga + FIB, a beam current of 0.50 pA and phenanthrene (C 14 H 10 ) as the gas source to deposit a diamond-like carbon structure. The Young’s modulus of each nanocantilever was measured by bending the nanocantilever with a nanopillar whose Young’s modulus was known. The average density of each nanocantilever was calculated from the Young’s modulus and the measured resonant frequency. We found that the mechanical characteristics of each nanocantilever depended on the length of the nanocantilever if the strategy of real-time feedback control was applied in fabrication. The Young’s moduli and the averaged densities of the nanocantilevers with a length of 11 to 34 μm were found to be 86 to 254 GPa and 1950 to 5750 kg m −3 , respectively. With the increase of the overhang length, the Young’s modulus and the average density were found to gradually increase. (paper)

  8. CATALYSIS OF CHEMICAL PROCESSES: PARTICULAR ...

    African Journals Online (AJOL)

    IICBA01

    secondary/high schools and universities, the inhibition of the chemical reactions is frequently ... As a result, the lesson catalysis is frequently included in chemistry education curricula at ... Misinterpretations in teaching and perception of catalysis ... profile is shown as a dependence of energy on reaction progress, without ...

  9. Surface polish of PLA parts in FDM using dichloromethane vapour

    Directory of Open Access Journals (Sweden)

    Jin Yifan

    2017-01-01

    Full Text Available Fused deposition modelling has become one of the most diffused rapid prototyping techniques, which is widely used to fabricate prototypes. However, further application of this technology is severely limited by poor surface roughness. Thus it is necessary to adopt some operations to improve surface quality. Chemical finishing is typically employed to finish parts in fused deposition modelling (FDM. The purpose of this paper is to decrease the surface roughness for polylactic acid (PLA parts in FDM. The chemical reaction mechanism during the treating process is analysed. Then NaOH solution and dichloromethane vapour are used to treat FDM specimens respectively. A 3D laser microscope has been applied to assess the effects in terms of surface topography and roughness. The experimental results show that treatment using dichloromethane vapour performs much better than NaOH solution. Compared with the untreated group, surface roughness obtained through vapour treatment decreases by 88 per cent. This research has been conducted to provide a better method to treat PLA parts using chemical reagents.

  10. Modular Chemical Process Intensification: A Review.

    Science.gov (United States)

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  11. Photoluminescence of nc-Si:Er thin films obtained by physical and chemical vapour deposition techniques: The effects of microstructure and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F., E-mail: fcerqueira@fisica.uminho.p [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, Via Orabona n.4-70126 Bari (Italy); Stepikhova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation); Alpuim, P.; Andres, G. [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Kozanecki, A. [Polish Academy of Sciences, Institute of Physics, PL-02668, Warsaw (Poland); Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Campus de Santiago, 3700 Aveiro (Portugal)

    2009-08-31

    Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The structure and chemical composition of films obtained by the two approaches were studied by micro-Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of deposition parameters was used to deposit films with different crystalline fraction and crystallite size. Photoluminescence measurements revealed a correlation between film microstructure and the Er{sup 3+} photoluminescence efficiency.

  12. Chemical process control using Mat lab

    International Nuclear Information System (INIS)

    Kang, Sin Chun; Kim, Raeh Yeon; Kim, Yang Su; Oh, Min; Yeo, Yeong Gu; Jung, Yeon Su

    2001-07-01

    This book is about chemical process control, which includes the basis of process control with conception, function, composition of system and summary, change of laplace and linearization, modeling of chemical process, transfer function and block diagram, the first dynamic property of process, the second dynamic property of process, the dynamic property of combined process, control structure of feedback on component of control system, the dynamic property of feedback control loop, stability of closed loop control structure, expression of process, modification and composition of controller, analysis of vibration response and adjustment controller using vibration response.

  13. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  14. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH 2 Cl 2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH 3 /SiH 2 Cl 2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  15. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  16. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  17. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  18. Chemical Processing Division monthly report, November 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-12-21

    This report, from the Chemical Processing Department at HAPO for November 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  19. Chemical Processing Department monthly report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-21

    This report for March 1961, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  20. Chemical Processing Division monthly report, January 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-02-21

    This report, from the Chemical Processing Department at HAPO for January 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  1. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  2. EPLD/CPLD based solution for sodium vapour leak detection processing instrumentation - ECIL's development, design, manufacturing and commissioning for implementation of DDCS at SGTF, IGCAR

    International Nuclear Information System (INIS)

    Rajasekhara Rao, K.S.; Mitra, S.G.; Kannaiah, B.

    2004-01-01

    For the Complex Process and Instrumentation needs of Sodium System of SGTF (Steam Generator Test Facility) of IGCAR, ECIL has developed the State of the Art EPLD / CPLD based solutions for Sodium Vapour Leak Detection Processing with Distributed I/O Intelligence for the task of Acquiring the Data, Analog to Digital Conversion, Data Interpretation as Sodium Leak, Healthy, Sensor /Cable Open/Short, Annunciation and Data Communication with DDCS. The System is flexible on a programmable chip for each group of 32 Sensors Data Processing and the Processing is Software Controlled rather than traditional hardware based. The System is adaptable to process requirement changes with simple Software updation/tuning rather than cumbersome and time-consuming hardware changes. Since the design is Software based, there is no drift and it is calibration free. The implementation is based on conceptual Design, Schematic Capture, VHDL Coding and Compilation, EPLD/CPLD Programming using J-Tag, Prefabrication Simulation Testing with Test Bench, Thermal-EMI-EMC Analysis, Fabrication, Assembly and Testing. The Leak Detection Processing is Integrated as part of 'DDCS - Developed, Designed, Manufactured and Commissioned at SGTF, IGCAR' consisting of Dual Redundant Multi Loop PID Controllers/PLCs, DAS and net worked HMI. The System is well established and, operational at IGCAR. (author)

  3. Study of three dimensional germanium islands and ultrathin Si{sub x}Ge{sub 1-x} films grown by chemical vapour deposition on Si(111)-(7 x 7)

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Selvi

    2005-07-15

    This work probed at the atomic level, processes that occur during the Ge three dimensional island formation and on ultrathin Si{sub x}Ge{sub 1-x} epitaxial growth by chemical vapour deposition on the Si(111)-(7 x 7) substrate with the aid of surface probe techniques such as STM and AFM, XPS, as well as TEM imaging of any 3D island formation. This work could essentially be divided into two parts. The first part studied the growth of the strained Ge on Si system with emphasis on the characterisation of the CVD grown three dimensional germanium islands on a standard Si(111)-(7 x 7) substrate as well as on a surface modified Si(111)-(7 x 7) substrate. The characterisation was carried out using a combination of techniques. XPS was used to calculate the effective coverages of deposited germanium, the STM was used to image the top most layers whenever possible and AFM, cross-sectional TEM and HRTEM to image the three dimensional islands. The possible causes of the surface modification were also examined. In the second part of this work the growth morphologies ultrathin Si{sub x}Ge{sub 1-x} layers grown on the Si(111)-(7 x 7) substrate at 750 K where the hydrogen desorption rate from the Si(111) surface is low and at 850 K which was the temperature at which the rate of hydrogen desorption from the Si(111) surface was a maximum were investigated. In addition modelling of ultrathin layer growth was carried out using two existing growth models. (orig.)

  4. Process Security in Chemical Engineering Education

    Science.gov (United States)

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  5. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  6. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  7. Chemical Processing Department monthly report, September 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-10-22

    The September, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.

  8. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  9. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  10. First Zenith Total Delay and Integrated Water Vapour Estimates from the Near Real-Time GNSS Data Processing Systems at the University of Luxembourg

    Science.gov (United States)

    Ahmed, F.; Teferle, F. N.; Bingley, R. M.

    2012-04-01

    Since September 2011 the University of Luxembourg in collaboration with the University of Nottingham has been setting up two near real-time processing systems for ground-based GNSS data for the provision of zenith total delay (ZTD) and integrated water vapour (IWV) estimates. Both systems are based on Bernese v5.0, use the double-differenced network processing strategy and operate with a 1-hour (NRT1h) and 15-minutes (NRT15m) update cycle. Furthermore, the systems follow the approach of the E-GVAP METO and IES2 systems in that the normal equations for the latest data are combined with those from the previous four updates during the estimation of the ZTDs. NRT1h currently takes the hourly data from over 130 GNSS stations in Europe whereas NRT15m is primarily using the real-time streams of EUREF-IP. Both networks include additional GNSS stations in Luxembourg, Belgium and France. The a priori station coordinates for all of these stem from a moving average computed over the last 20 to 50 days and are based on the precise point positioning processing strategy. In this study we present the first ZTD and IWV estimates obtained from the NRT1h and NRT15m systems in development at the University of Luxembourg. In a preliminary evaluation we compare their performance to the IES2 system at the University of Nottingham and find the IWV estimates to agree at the sub-millimetre level.

  11. Consistent vapour-liquid equilibrium data containing lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, it was observed a lack of experimental data for pure compounds and also...... for their mixtures in open literature, what makes necessary the development of reliable predictive models based on limited data. To contribute to the missing data, measurements of isobaric vapour-liquid equilibrium (VLE) data of three binary mixtures at two different pressures were performed at State University...

  12. Environmentally benign chemical synthesis and processing

    International Nuclear Information System (INIS)

    Hancock, K.G.

    1992-01-01

    A new era of university-industry-government partnership is required to address the intertwined problems of industrial economic competitiveness and environmental quality. Chemicals that go up the stacks and down the drains are simultaneously a serious detriment to the environment, a waste of natural resources, and a threat to industrial profitability. Recently, the NSF Divisions of Chemistry and chemical and Thermal Systems have joined with the Council for Chemical research in a new grant program to reduce pollution at the source by underwriting research aimed at environmentally benign chemical synthesis and processing. Part of a broader NSF initiative on environmental science research, this new program serves as a model for university-industry-government joint action and technology transfer. Other features of this program and related activities will be described in this paper

  13. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Historical events of the Chemical Processing Department

    Energy Technology Data Exchange (ETDEWEB)

    Lane, W.A.

    1965-11-12

    The purpose of this report is to summarize and document the significant historical events pertinent to the operation of the Chemical Processing facilities at Hanford. The report covers, in chronological order, the major construction activities and historical events from 1944 to September, 1965. Also included are the production records achieved and a history of the department`s unit cost performance.

  15. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  16. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  17. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  18. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  19. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  20. Intelligent Controller Design for a Chemical Process

    OpenAIRE

    Mr. Glan Devadhas G; Dr.Pushpakumar S.

    2010-01-01

    Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system) tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based ...

  1. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  2. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  3. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  4. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  5. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    Energy Technology Data Exchange (ETDEWEB)

    Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1988-10-15

    A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)

  6. Outline of the Chemical Processing Facility (CPF)

    International Nuclear Information System (INIS)

    Arita, Katsuhiko

    1978-01-01

    Concerning the Chemical Processing Facility (CPF), a high level radioactive material research facility, to be installed in Tokai Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), the detailed design and the governmental safety inspection were finished. The construction has been already started, and it will be completed in 1980. Under the national policy of establishing a nuclear fuel cycle, PNC is now carrying out the development of its downstream technology. The objects of the Chemical Processing Facility are the researches of the treatment techniques of high level radioactive liquid wastes from fuel reprocessing and of the reprocessing of fast reactor fuel. The following matters are described: purpose of the CPF, i.e. fast reactor fuel reprocessing and high-level liquid waste treatment; construction of the CPF, i.e. buildings, cells and an exhaust stack; test systems, i.e. fuel reprocessing and liquid waste vitrification; and facility safety. (Mori, K.)

  7. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  8. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  9. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  10. Modelling and analysis of CVD processes for ceramic membrane preparation

    NARCIS (Netherlands)

    Brinkman, H.W.; Cao, G.Z.; Meijerink, J.; de Vries, Karel Jan; Burggraaf, Anthonie

    1993-01-01

    A mathematical model is presented that describes the modified chemical vapour deposition (CVD) process (which takes place in advance of the electrochemical vapour deposition (EVD) process) to deposit ZrO2 inside porous media for the preparation and modification of ceramic membranes. The isobaric

  11. Chemical processes in neutron capture therapy

    International Nuclear Information System (INIS)

    Brown, B.J.

    1975-01-01

    Research into the radiation chemical effects of neutron capture therapy are described. In the use of neutron capture therapy for the treatment of brain tumours, compounds containing an activatable nuclide are selectively concentrated within tumour tissue and irradiated with neutrons. Target compounds for use in therapy must accumulate selectively in high concentrations in the tumour and must be non toxic to the patient. The most suitable of these are the boron hydrides. Radiation dosages, resulting from neutron capture in normal tissue constituents are tabulated. As part of the program to study the radiation-induced chemical processes undergone by boron target compounds, the radiolytic degredation of boron hydride and phenyl boric acid system was investigated. No direct dependence between the yield of the transient radiolytic species and the concentration of the B-compound was observed. (author)

  12. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  13. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-Line FID Detection Method.

    Czech Academy of Sciences Publication Activity Database

    Petrusová, Zuzana; Morávková, Lenka; Vejražka, Jiří; Vajglová, Zuzana; Jansen, J.C.; Izák, Pavel

    2017-01-01

    Roč. 31, č. 2 (2017), s. 145-160 ISSN 0352-9568. [International Congress of Chemical and Process Engineering CHISA 2016 /22./. Prague, 27.08.2016-31.08.2016] R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : gas/vapour separation * low-density polyethylene * thin-film-composite membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.923, year: 2016

  14. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  15. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  16. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  17. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  18. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  19. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  20. Low-pressure chemical vapour deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    The feasibility of volatile precursor low-pressure chemical vapor deposition (LPCVD) for the production of LiCoO2 cathodes for all solid-state microbatteries was examined. To test this feasibility, and gain insight into the deposition behavior, the influence of the deposition parameters on the

  1. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives......, biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can...

  2. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  3. Speleothems as Examples of Chemical Equilibrium Processes.

    Science.gov (United States)

    Wilson, James R.

    1984-01-01

    The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…

  4. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  5. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  6. Tritium separation factors in distillation and chemical exchange processes

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The vapour pressures of different isotopic hydrogen, water and ammonia molecules have been calculated. These vapour pressures can be used to evaluate relative volatilities of different species for separation of tritium isotopes by distillation. The equilibrium constants for various exchange reactions involving different deuterated and tritiated species of hydrogen, water and ammonia molecules have also been calculated for different temperatures. (author)

  7. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Chemical vapour deposition of graphene on Nk(111) and Co(0001) and intercalation with Au to study Dirac Cone Formation and Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J.; Vescovo, E.; Varykhalov, A.; Scholz, M.R.; Rader, O.; Marchenko, D.; Rybkin, A.

    2010-01-01

    We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapor deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene {pi}-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the {pi}-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect.

  9. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  10. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C G; Newland, M S [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  11. Interactions of fission product vapours with aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Newland, M.S.

    1996-01-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350 o C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs

  12. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  13. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  14. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  15. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  16. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  17. Chemical process engineering in the transuranium processing plant

    International Nuclear Information System (INIS)

    Collins, E.D.; Bigelow, J.E.

    1976-01-01

    Since operation of the Transuranium Processing Plant began, process changes have been made to counteract problems caused by equipment corrosion, to satisfy new processing requirements, and to utilize improved processes. The new processes, equipment, and techniques have been incorporated into a sequence of steps which satisfies all required processing functions

  18. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  19. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  20. Radiation induced vapour phase grafting of styrene onto fluorinated substrates

    International Nuclear Information System (INIS)

    Dargaville, T.; Hill, D.; George, G.; Cardona, F.

    2000-01-01

    Full text: Polytetrafluoroethylene (PTFE) is well known for being inert towards heat, solvents and harsh chemicals. However, in contrast, PTFE is extremely sensitive to radiation suffering from a dramatic decrease in mechanical strength even when exposed to low doses. In this study we have used a copolymer of PTFE, poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA). The effect of the ether comonomer is to render the polymer melt processable, lower the crystallinity and increase the radical yield when compared with PTFE. When grafting styrene to PFA using a radiation initiated process, the resulting polymer has the desirable chemical and thermal resistance of the PFA substrate combined with the functionality of the styrene, however, due to the incidental degradative effect of radiation on the PFA substrate it is important to find conditions where the best graft is achieved without exposing the substrate to extraneous levels of radiation. We have successfully grafted styrene to PFA by simultaneously exposing PFA to styrene vapour and gamma radiation. This process was found to be independent of dose rate at low dose rates suggesting a diffusion controlled mechanism. The penetration of the graft into the PFA substrate was measured by mapping a cross-section using micro-probe Raman spectroscopy

  1. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  2. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    Wittchow, F.

    1979-01-01

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li + + K, Na + + K, K + + K, and Rb + + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG) [de

  3. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    . In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...

  4. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  5. Development of chemical process for synthesis of polyunsaturated esters

    OpenAIRE

    Vera LÃcia Viana do Nascimento

    2014-01-01

    This work aimed to develop refining processes, chemical alcoholysis followed by separation of fatty acids using the complexation with urea technique for the synthesis of poly-unsaturated esters from waste of fish oils. The special crude fish oil was purchased from Company Campestre - SÃo Paulo. Initially this oil has undergone a process of physical and chemical refining. From the refined oil, an alcoholysis process was carried out to obtain the mixture of free fatty acids. From the hydrolyzed...

  6. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  7. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  8. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  9. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  10. Vapour recompression by ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Krejci, S; Komurka, J; Gemza, E; Kaspar, J; Wergner, F

    1985-01-01

    Thermodynamic analyses using the concept of exergy are considered very important in analysing the energy balances of processes. The way in which such a technique can be applied to ejectors is discussed. (author).

  11. DESIGN of MICRO CANTILEVER BEAM for VAPOUR DETECTION USING COMSOL MULTI PHYSICS SOFTWARE

    OpenAIRE

    Sivacoumar R; Parvathy JM; Pratishtha Deep

    2015-01-01

    This paper gives an overview of micro cantilever beam of various shapes and materials for vapour detection. The design of micro cantilever beam, analysis and simulation is done for each shape. The simulation is done using COMSOL Multi physics software using structural mechanics and chemical module. The simulation results of applied force and resulting Eigen frequencies will be analyzed for different beam structures. The vapour analysis is done using flow cell that consists of chemical pill...

  12. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  13. Modelling of chemical reactions in metallurgical processes

    OpenAIRE

    Kinaci, M. Efe; Lichtenegger, Thomas; Schneiderbauer, Simon

    2017-01-01

    Iron-ore reduction has attracted much interest in the last three decades since it can be considered as a core process in steel industry. The iron-ore is reduced to iron with the use of blast furnace and fluidized bed technologies. To investigate the harsh conditions inside fluidized bed reactors, computational tools can be utilized. One such tool is the CFD-DEM method, in which the gas phase reactions and governing equations are calculated in the Eulerian (CFD) side, whereas the particle reac...

  14. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.

    1957-08-22

    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  15. Chemical Processing Department monthly report for December 1958

    Energy Technology Data Exchange (ETDEWEB)

    1959-01-21

    This report for December 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  16. Chemical Processing Department monthly report for February 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-03-21

    This report from the Chemical Processing Department at HAPO, discusses the following: Production operation, purex operation, redox operation, finished products operation, power and general maintenance operation, financial operation, facilities engineering operation, research and engineering operation, and employee relations operation.

  17. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  18. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  19. Chemical Processing Department monthly report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-22

    Record highs were set for Pu output in separations plants and for amount of U processed in Purex. UO{sub 3} production and shipments exceeded schedules. Fabrication of 200 and 250 Model assemblies is reported. Unfabricated Pu production was 8.5% short. Nitric acid recovery in Purex and Redox is reported. Prototype anion exchange system for Pu was tested in Purex. Hinged agitator arms with shear pin feature was installed in UO{sub 3} plant H calciner. Operation of continuous type Task I, II facility improved. DBBP is considered for Recuplex. Methods for Pu in product solutions agreed to within 0. 10%. Purex recycle dock shelter is complete. Other projects are reported.

  20. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  1. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  2. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  3. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    Chemical process synthesis-design involve the identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste and emission...... to the surrounding and many more. Different methods (knowledge-based [1], mathematical programming [2], hybrid, etc.) have been proposed and are also currently employed to solve these synthesis-design problems. D’ Anterroches [3] proposed a group contribution based approach to solve the synthesis-design problem...... of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join...

  4. Textual and chemical information processing: different domains but similar algorithms

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2000-01-01

    Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.

  5. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  6. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  7. Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2010-01-01

    Full Text Available In this work, a TPR (Temperature Programmed Reduction system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition, The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.

  8. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  9. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  10. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  11. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  12. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  13. The new risk paradigm for chemical process security and safety.

    Science.gov (United States)

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  14. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  15. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  16. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  17. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  18. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul

    2016-01-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  19. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  20. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  1. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.

    1988-12-01

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  2. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX) process

    OpenAIRE

    Mehdi Mohammadpoor; Farshid Torabi

    2015-01-01

    The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was ...

  3. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  4. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    Science.gov (United States)

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  5. Influence of chemical processing on the imaging properties of microlenses

    International Nuclear Information System (INIS)

    Vasiljevic, Darko; Muric, Branka; Pantelic, Dejan; Panic, Bratimir

    2009-01-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  6. Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process

    Directory of Open Access Journals (Sweden)

    J. Curtius

    2010-08-01

    Full Text Available Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene for adjusting the OH radical concentration and resulting OH levels in the range (4–300 ×105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing an upper limit. Addition of 1.2×1011 molecule cm−3 or 1.2×1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions, i.e. a rise of the particle number by 1–2 orders of magnitude at RH = 13% and only by a factor of 2–5 at RH = 47% (NH3 addition: 1.2×1012 molecule cm−3. Using the amine tert-butylamine instead of NH3, the enhancing impact of the base for nucleation and particle growth appears to be stronger. Tert-butylamine addition of about 1010 molecule cm−3 at RH = 13% enhances particle formation by about two orders of magnitude, while for NH3 only a small or negligible

  7. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  8. Quality Assessment of Film Processing Chemicals in Dentistry

    International Nuclear Information System (INIS)

    Han, Mi Ra; Kang, Byung Chul

    1999-01-01

    The purpose of this study was to compare the qualities of the four different processing chemicals (solutions). With EP 21 films (Ektaspeed plus film, Kodak Co., USA), nine unexposed and nine exposed films of a step wedge were processed utilizing automatic film processor (XR 24, Durr Co., Germany) for 5 days. During 5 days, the total number of processed films including out-patient's intraoral films were about 400-500 for each brand. Base plus fog density, film density, contrast of processed films were measured with densitometer (model 07-443 digital densitometer, Victoreen Co., USA). These measurements were analyzed for comparison. The results were as follows,1. For the base plus fog density, there was significant difference among the four chemicals (p<0.05). The sequence of the base plus fog densities was in ascending order by Kodak, X-dol 90, Agfa and Konica. 2. For the film density, all chemicals showed useful range of photographic densities (0.25-2.5). The sequence of the film densities was in ascending order by Kodak, X-dol 90, Konica and Agfa. But there was no statistically significant difference of film density between X-dol and Kodak (p<0.05). 3. The sequence of the contrasts was in ascending order by Konica, X-dol 90, Kodak and Agfa. But there was no statistically significant difference of contrast between X-dol and Konica (p<0.05). These results indicated that the four processing chemicals had the clinically useful film density and contrast, but only Kodak processing chemical had useful base plus fog density.

  9. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  10. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  11. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  12. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...

  13. Application of the chemical properties of ruthenium to decontamination processes

    International Nuclear Information System (INIS)

    Fontaine, A.; Berger, D.

    1965-01-01

    The chemical properties of ruthenium in the form of an aqueous solution of the nitrate and of organic tributylphosphate solution are reviewed. From this data, some known examples are given: they demonstrate the processes of separation or of elimination of ruthenium from radioactive waste. (authors) [fr

  14. Effect of maturity stage and processing on chemical composition, in ...

    African Journals Online (AJOL)

    Effect of maturity stage and processing on chemical composition, in vitro gas production and preference of Panicum maximum and Pennisetum purpureum. ... It is concluded that in order to optimize DM intake farmers should consider the type of grasses and their age at harvest particularly for Muturu. Pelleting improves ...

  15. Physico-chemical, functional and processing attributes of some ...

    African Journals Online (AJOL)

    A study was generated from six commercial potato varieties and studied for their physical, chemical, functional and processing attributes. Lady Rosetta followed by Hermes was the most appreciable varieties concerning their physical attributes. A positive correlation (R = 0.765) existed between tuber firmness and specific ...

  16. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.

    1984-01-01

    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  17. Near miss reporting in the chemical process industry: an overview

    NARCIS (Netherlands)

    Schaaf, van der T.W.

    1995-01-01

    The research programme described in this paper focuses on the human component of system failure in general, and more specifically on the design and implementation of information systems for registration and analysis of so called near misses (or: near accidents) in the chemical process industry. Its

  18. Secondary cleanup of Idaho Chemical Processing Plant solvent

    International Nuclear Information System (INIS)

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate

  19. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  20. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  1. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX process

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammadpoor

    2015-09-01

    Full Text Available The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was studied by conducting series of experiments in two large-scale 2D VAPEX models of 24.5 cm and 47.5 cm heights. Both models were packed with low permeability Ottawa sand (#530 and saturated with a heavy oil sample from Saskatchewan heavy oil reservoirs with viscosity of 5650 mPa s. Propane, butane, methane, carbon dioxide, propane/carbon dioxide (70%/30% and propane/methane (70%/30% were considered as respective solvents for the experiments, and a total of twelve VAPEX tests were carried out. Moreover, separate experiments were carried out at the end of each VAPEX experiment to measure the asphaltene precipitation at various locations of the VAPEX models. It was found that injecting propane would result in the highest drainage rate and oil recovery factor. Further analysis of results showed stabilized drainage rate significantly increased in the larger physical model.

  2. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Science.gov (United States)

    Dütsch, Marina; Pfahl, Stephan; Meyer, Miro; Wernli, Heini

    2018-02-01

    Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air

  3. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Directory of Open Access Journals (Sweden)

    M. Dütsch

    2018-02-01

    Full Text Available Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso. The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso. Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP, which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing

  4. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  5. DYNSIR; A dynamic simulator for the chemical process

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Yoo, Jae Hyung; Byeon, Kee Hoh; Park, Jeong Hwa; Park, Seong Won

    1990-03-01

    A program code for dynamic simulation of arbitrary chemical process, called DYNSIR, is developed. The code can simulate rather arbitrary arrangements of individual chemical processing units whose models are described by ordinary differential equations. The code structure to handle input/output, memory and data management, numerical interactive or predetermined changes in parameter values during the simulation. Individual model is easy to maintain since the modular approach is used. The integration routine is highly effective because of the development of algorithm for modular integration method using the cubic spline. DYNSIR's data structures are not the index but the pointer structure. This pointer structure allows the dynamic memory allocation for the memory management. The dynamic memory allocation methods is to minimize the amount of memories and to overcome the limitation of the number of variables to be used. Finally, it includes various functions, such as the input preprocessor, the effective error processing, and plotting and reporting routines. (author)

  6. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  7. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  8. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  9. Sustainability assessment of novel chemical processes at early stage: application to biobased processes

    NARCIS (Netherlands)

    Patel, A.D.; Meesters, K.; Uil, H. den; Jong, E. de; Blok, K.; Patel, M.K.

    2012-01-01

    Chemical conversions have been a cornerstone of industrial revolution and societal progress. Continuing this progress in a resource constrained world poses a critical challenge which demands the development of innovative chemical processes to meet our energy and material needs in a sustainable way.

  10. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  11. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  12. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  13. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  14. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    Energy Technology Data Exchange (ETDEWEB)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (INDIA) Fax: +91-172-2783336; Tel.:+91-172-2544362 (India)

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  15. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...... is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis of organic chemicals......, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property...

  16. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  17. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  18. Chemical process measurements in PWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Glaeser, E.

    1978-01-01

    In order to achieve high levels of availability of nuclear power plants equipped with pressurized water reactors, strict standards have to be applied to the purity of coolant and of other media. Chemical process measurements can meet these requirements only if programmes are established giving maximum information with minimum expenditure and if these programmes are realized with effective analytical methods. Analysis programmes known from literature are proved for their usefulness, and hints are given for establishing rational programmes. Analytical techniques are compared with each other taking into consideration both methods which have already been introduced into nuclear power plant practice and methods not yet generally used in practice, such as atomic absorption spectrophotometry, gas chromatography, etc. Finally, based on the state of the art of chemical process measurements in nuclear power plants, the trends of future development are pointed out. (author)

  19. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  20. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  1. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  2. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  3. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  4. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  5. The Eco Logic gas-phase chemical reduction process

    International Nuclear Information System (INIS)

    Hallett, D.J.; Campbell, K.R.

    1994-01-01

    Since 1986, Eco Logic has conducted research with the aim of developing a new technology for destroying aqueous organic wastes, such as contaminated harbor sediments, landfill soil and leachates, and lagoon sludges. The goal was a commercially-viable chemical process that could deal with these watery wastes and also process stored wastes. The process described in this paper was developed with a view to avoiding the expense and technical drawbacks of incinerators, while still providing high destruction efficiencies and waste volume capabilities. A lab-scale process unit was constructed in 1988 and tested extensively. Based on the results of these tests, it was decided to construct a mobile pilot-scale unit that could be used for further testing and ultimately for small commercial waste processing operations. It was taken through a preliminary round of tests at Hamilton Harbour, Ontario, where the waste processed was coal-tar-contaminated harbor sediment. In 1992, the same unit was taken through a second round of tests in Bay City, Michigan. In this test program, the pilot-scale unit processed PCBs in aqueous, organic and soil matrices. This paper describes the process reactions and the pilot-scale process unit, and presents the results of pilot-scale testing thus far

  6. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  7. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  8. RDF gasification with water vapour: influence of process temperature on yield and products composition; Gassificazione con vapore del CDR: influenza della temperatura di processo su rese e composizione dei prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S. [C. R. ENEA Trisaglia, Rotondella (Italy). PROT-STP

    2005-08-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950{sup o}C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling. [Italian] La possibilita' di usare il CDR (combustibile derivato dai rifiuti) per produrre gas combustibile, sembra particolarmente promettente e particolare attenzione si sta rivolgendo a tecnologie alternative di trattamento termico, quali la pirolisi e la gassificazione. In questo ambito, il presente lavoro riporta le prove sperimentali e i risultati ottenuti in una campagna di prove di gassificazione di CDR con vapor d'acqua, effettuate su scala banco in un forno a tamburo rotante a temperatura di processo variabile, utilizzando tecniche di analisi termogravimetrica (TG) e di spettrometria infrarossa in trasformata di Fourier (FTIR), per la caratterizzazione del materiale di ingresso, e analisi gascromatografiche on

  9. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  10. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    International Nuclear Information System (INIS)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H.

    2004-01-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 μm wide and 430 μm deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 μm thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices

  11. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  12. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  13. Catechol-Based Hydrogel for Chemical Information Processing

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2017-07-01

    Full Text Available Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins to neurotransmission (e.g., dopamine, and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine. It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.

  14. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  15. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  16. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  17. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  18. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  19. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  20. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  1. Designing new nuclear chemical processing plants for safeguards accountability

    International Nuclear Information System (INIS)

    Sprouse, K.M.

    1987-01-01

    New nuclear chemical processing plants will be required to develop material accountability control limits from measurement error propagation analysis rather than historical inventory difference data as performed in the past. In order for measurement error propagation methods to be viable alternatives, process designers must ensure that two nondimensional accountability parameters are maintained below 0.1. These parameters are ratios between the material holdup increase and the variance in inventory difference measurement uncertainty. Measurement uncertainty data for use in error propagation analysis is generally available in the open literature or readily derived from instrument calibration data. However, nuclear material holdup data has not been adequately developed for use in the material accountability design process. Long duration development testing on isolated unit operations is required to generate this necessary information

  2. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  3. Chemical elements dynamic in the fermentation process of ethanol producing

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Nadai Fernandes, E.A. de; Bacchi, M.A.

    1994-01-01

    This paper provides useful information about the dynamics of chemical elements analysed by instrumental neutron activation analysis (INAA) and, found in the various segments of the fermentation process of producing ethanol from sugar cane. For this, a mass balance of Ce, Co, Cs, Eu, Fe, Hf, La, Sc, Sm, and Th, terrigenous elements, as well as Br, K, Rb, and Zn, sugar cane plant elements, has been demonstrated for the fermentation vats in industrial conditions of ethanol production. (author). 10 refs, 4 figs, 1 tab

  4. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  5. An integrated biotechnology platform for developing sustainable chemical processes.

    Science.gov (United States)

    Barton, Nelson R; Burgard, Anthony P; Burk, Mark J; Crater, Jason S; Osterhout, Robin E; Pharkya, Priti; Steer, Brian A; Sun, Jun; Trawick, John D; Van Dien, Stephen J; Yang, Tae Hoon; Yim, Harry

    2015-03-01

    Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

  6. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  7. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  8. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  9. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  10. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  11. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Kilpinen, P [Aabo Akademi, Turku (Finland)

    1997-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  12. Combined Noncyclic Scheduling and Advanced Control for Continuous Chemical Processes

    Directory of Open Access Journals (Sweden)

    Damon Petersen

    2017-12-01

    Full Text Available A novel formulation for combined scheduling and control of multi-product, continuous chemical processes is introduced in which nonlinear model predictive control (NMPC and noncyclic continuous-time scheduling are efficiently combined. A decomposition into nonlinear programming (NLP dynamic optimization problems and mixed-integer linear programming (MILP problems, without iterative alternation, allows for computationally light solution. An iterative method is introduced to determine the number of production slots for a noncyclic schedule during a prediction horizon. A filter method is introduced to reduce the number of MILP problems required. The formulation’s closed-loop performance with both process disturbances and updated market conditions is demonstrated through multiple scenarios on a benchmark continuously stirred tank reactor (CSTR application with fluctuations in market demand and price for multiple products. Economic performance surpasses cyclic scheduling in all scenarios presented. Computational performance is sufficiently light to enable online operation in a dual-loop feedback structure.

  13. DYNSYL: a general-purpose dynamic simulator for chemical processes

    International Nuclear Information System (INIS)

    Patterson, G.K.; Rozsa, R.B.

    1978-01-01

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing

  14. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  15. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  16. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  17. Numerical analysis of the interaction between high-pressure resin spray and wood chips in a vapour stream

    Directory of Open Access Journals (Sweden)

    Massimo Milani

    2016-04-01

    Full Text Available This article investigates the interaction between the resin spray and the wood chips in a vapour stream using a multi-phase multi-component computational fluid dynamics approach. The interaction between the spray and the chips is one of the main issues in the industrial process for manufacturing medium density fibre boards. Thus, the optimization of this process can lead to important benefits, such as the reduction in the emission of formaldehyde-based toxic chemicals, the reduction in energy consumption in the blending process and energy saving in the fibreboard drying process. First step of the study is the numerical analysis of the resin injector in order to extend the experimental measurements carried out with water to the resin spray. The effects of the injector’s geometrical features on the spray formation are highlighted under different injection pressure values and needle displacements. Afterwards, the results obtained in the analysis of the single injector are used for the complete simulation of multi-injector rail where the mixing of the resin spray and wood chips takes place. The influence of the main operating conditions, such as the vapour and the wood chip flow rates, on the resin distribution is addressed in order to optimize the resination process.

  18. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  19. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  20. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  1. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    During the growth of a-C:H thin films for tribological applications, the characteristic optical emission from a CH4 plasma was used to estimate growth conditions such as the degree of dissociation of the feed gas, the deposition rate and the presence of impurities. Films were fabricated with vari...

  2. Vapour galvanizing (Sherardizing) of copper with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  3. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  4. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  5. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    Science.gov (United States)

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  6. The vapour pressure of americium(III) chloride

    International Nuclear Information System (INIS)

    Schuster, W.

    1983-01-01

    Based on the method described by Fischer, an ultramicro-size appratus was developed for static determination of the saturation vapour pressure of highly radioactive materials. The apparatus was tested with MgCl 2 , MnCl 2 , HoCl 3 and ScF 3 . The vapour pressure curves of MgCl 2 and MnCl 2 were in good agreement with other publications and thus proved the efficiency of the apparatus in spite of its difficulties of handling. The values measured for HoCl 3 and ScF 3 differed from those of earlier publications. However, these deviations have been observed before and may be the result of the different measuring principles of static and dynamic methods. For AmCl 3 , the following vapour pressure equation was established: log psub(Torr)=-(11826/T)+10.7. The thermodynamic parameters of the evaporation process were calculated on this basis, and the values for AmBr 3 and PnCl 3 were determined by extrapolation. (orig.) [de

  7. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  8. Chemical and radiolytical solvent degradation in the Purex process

    International Nuclear Information System (INIS)

    Stieglitz, L.; Becker, R.

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H 2 MBP->H 3 PO 4 values are given for the individual constants in a temperature range from 23 to 90 0 C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H 2 MBP as 2 mg/Wh, and for H 3 PO 4 as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10 -5 mol/l. (orig.) [de

  9. Chemical and radiolytical solvent degradation in the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, L; Becker, R

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H/sub 2/MBP->H/sub 3/PO/sub 4/ values are given for the individual constants in a temperature range from 23 to 90/sup 0/C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H/sub 2/MBP as 2 mg/Wh, and for H/sub 3/PO/sub 4/ as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10/sup -5/ mol/l.

  10. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  11. ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988

    International Nuclear Information System (INIS)

    Krivanek, K.R.

    1989-08-01

    Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs

  12. Radon: Chemical and physical processes associated with its distribution

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering

  13. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  14. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  15. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  16. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  17. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  18. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    Jachmarian, I.; Dobroyan, M.; Veira, J.; Vieitez, I.; Mottini, M.; Segura, N.; Grompone, M.

    2009-01-01

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  19. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  20. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  1. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  2. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  3. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  4. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  5. Process Analysis in Chemical Plant by Means of Radioactive Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, T.; Hamada, K.; Osada, K. [Showa Denko K.K., Tokyo (Japan)

    1967-06-15

    Following the movement of solids and fluids is important in chemical processes to determine mixing efficiency and residence time. Since it is necessary to follow many complex substances such as raw materials, intermediates and reactants in plant investigations, it is often necessary to ascertain whether the behaviour of the radioisotope tracer and the substance to be traced are identical. The most difficult problem is to determine the best method of labelling, a factor which is a substantial key to the success of an experiment. Usually, there are three labelling techniques: radioisotope labelling, pre-.activation of the material and post-activation of the material. This paper deals with practical examples of the double-tracer technique, a combination of conventional radioisotope labelling and post-activation methods by means of activation analysis. In process analysis by means of tracers, a practical measurement method should also be devised and developed for each experiment. Phosphorus-32 and gold (non-radioactive) were used to measure retention time in a carbon-black plant. The radioisotope was pumped into a feed-stock pipe positioned before the reactor and samples were taken from each process of the plant, including the bag filter, mixer and product tank. After sampling from each step of the process, {sup 32}P in a semi-infinite powder sample was measured in situ by beta counting, and the gold was measured by gamma counting after activating the sample in a reactor. The experiment showed that both tracers had the same residence time, which was shorter than expected. Useful data were also obtained from the dispersion pattern of the material flow for future operation controls, including the time required to change from one grade of product to another. Practical tracer techniques to measure mixing characteristics in high-speed gas flows using {sup 85}Kr have been developed. A study of the measurement method was conducted by calculating the differential values of

  6. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  7. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  8. Heat and water mass transfer in unsaturated swelling clay based buffer: discussion on the effect of the thermal gradient and on the diffusion of water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2005-07-01

    The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion

  9. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  10. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2010-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  11. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2011-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  12. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  13. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  14. ARTIST process. A novel chemical process for treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    2001-10-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock all actinides (Ans) as two groups, uranium (U) and a mixture of transuranics (TRU), to preserve their resource value and to dispose solely fission products (FPs). The process is composed of two main steps, an U exclusive isolation and a total recovery of TRU; which copes with the nuclear non-proliferation measures, and additionally of Pu separation process and soft N-donor process if requested, and optionally of processes for separation of long-lived FPs. These An products: U-product and TRU-product, are to be solidified by calcination and allowed to the interim stockpile for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the performance of both the branched alkyl monoamides in extracting U and suppressing the extraction of tetravalent Ans due to the steric effect and the diglycolic amide (TODGA) in thorough extraction of all TRU by tridentate fashion. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator - Driven System (ADS) for transmutation, Pu (Np) or Am-Cm (Np) are to be extracted from the TRU-product. (author)

  15. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  16. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  17. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    Science.gov (United States)

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  18. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  19. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  20. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  1. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    Directory of Open Access Journals (Sweden)

    H. Herbin

    2007-07-01

    Full Text Available The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205–1228 cm−1; 2004–2032 cm−1 and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM. Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4–5 km, and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability

  2. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  3. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  4. A survey of process control computers at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Dahl, C.A.

    1989-01-01

    The Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory is charged with the safe processing of spent nuclear fuel elements for the United States Department of Energy. The ICPP was originally constructed in the late 1950s and used state-of-the-art technology for process control at that time. The state of process control instrumentation at the ICPP has steadily improved to keep pace with emerging technology. Today, the ICPP is a college of emerging computer technology in process control with some systems as simple as standalone measurement computers while others are state-of-the-art distributed control systems controlling the operations in an entire facility within the plant. The ICPP has made maximal use of process computer technology aimed at increasing surety, safety, and efficiency of the process operations. Many benefits have been derived from the use of the computers for minimal costs, including decreased misoperations in the facility, and more benefits are expected in the future

  5. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  6. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  7. Institute of Chemical Process Fundamentals of the ASCR: Expectation

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav

    2013-01-01

    Roč. 62, 5-6 (2013), s. 214-215 ISSN 0022-9830 Institutional support: RVO:67985858 Keywords : laboratory investigation * large-scale applications * novel instrumentation and technology . Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  9. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  10. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  11. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  12. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  13. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  14. Selective-area vapour-liquid-solid growth of InP nanowires

    International Nuclear Information System (INIS)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J

    2009-01-01

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO 2 mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO 2 mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  15. Selective-area vapour-liquid-solid growth of InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J, E-mail: dan.dalacu@nrc-cnrc.gc.c [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6 (Canada)

    2009-09-30

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO{sub 2} mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO{sub 2} mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  16. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  17. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  18. Bibliography on vapour pressure isotope effects

    International Nuclear Information System (INIS)

    Illy, H.; Jancso, G.

    1976-03-01

    The bibliography of research on vapour pressure isotope effects from 1919 to December 1975 is presented in chronological order. Within each year the references are listed alphabetically according to the name of the first author of each work. The bibliography is followed by a Compound Index containing the names o compounds, but the type of isotopic substituation is not shown. The Author Index includes all authors of the papers. (Sz.N.Z.)

  19. Chemical engineering aspect of solvent extraction in mineral processing

    International Nuclear Information System (INIS)

    Dara, S.S.; Jakkikar, M.S.

    1975-01-01

    Solvent extraction process, types of solvents used, types of extraction, distribution isotherm and McCabe-Thiele diagram for process design, equipment for the process, operating parameters and applications are described. (M.G.B.)

  20. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  1. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  2. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  3. Effects of the oxygen fraction and substrate bias power on the electrical and optical properties of silicon oxide films by plasma enhanced chemical vapour deposition using TMOS/O2 gas

    International Nuclear Information System (INIS)

    Bang, S B; Chung, T H; Kim, Y; Kang, M S; Kim, J K

    2004-01-01

    Thin oxide films are deposited from tetramethoxysilane in an inductively coupled oxygen glow discharge supplied with radio frequency power. The chemical bonding states of deposited films are analysed by Fourier transform infrared spectroscopy. The deposition rate and optical properties are determined from spectroscopic ellipsometry. Capacitance-voltage measurements are performed in MOS capacitors to obtain the electrical properties of the deposited films. With these tools, the effects of the substrate bias power and the oxygen mole fraction in the gas on the properties of the film are investigated. The refractive index first decreases with an increase in the oxygen mole fraction, and then increases again, showing a behaviour opposite to that of the deposition rate. The deposition rate increases with increasing substrate bias power and then saturates, while the refractive index increases slightly with an increase in the substrate bias power. The fixed oxide charge density decreases with increasing oxygen fraction and with increasing substrate bias power, while the interface trap density increases with increasing oxygen fraction and with increasing substrate bias power

  4. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  5. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  6. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Science.gov (United States)

    2010-06-25

    ... have large industrial uses. Regulated chemical mixtures are not items having common household uses... and others from exposure to the toxic chemicals left behind. Executive Order 12988 This regulation... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process...

  7. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  8. Female reproductive health in two lamp factories: effects of exposure to inorganic mercury vapour and stress factors.

    OpenAIRE

    De Rosis, F; Anastasio, S P; Selvaggi, L; Beltrame, A; Moriani, G

    1985-01-01

    To evaluate the possible influence of mercury vapour on female reproduction, 153 women working in a mercury vapour lamp factory have been compared with 193 women employed in another factory of the same company, where mercury was not used. Both groups of subjects were exposed to stress factors (noise, rhythms of production, and shift work). The production process has been analysed by inspection of the plants and by collective discussions with "homogeneous groups" of workers; a retrospective in...

  9. Evaporation of a volatile organic compound in a hygroscopic soil - influence of the airflow and its VOC vapour saturation

    OpenAIRE

    Naon , Bétaboalé; Benet , Jean-Claude; Cousin , Bruno; Cherblanc , Fabien; Chammari , Ali

    2013-01-01

    International audience; This article presents an experimental and theoretical study of VOC volatilization in soil during a decontamination process by vapour extraction or venting. A phase change law is proposed in the case of a sandy-silty soil when the convective gaseous phase is vapour-charged. A simple experimental method for analyzing the phase change is presented. Finally, an efficiency coefficient is introduced to quantify the contribution of airflow velocity on venting.

  10. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  11. Evolution of polarization in an atomic vapour with negative refractive index

    International Nuclear Information System (INIS)

    Zhuang Fei; Shen Jianqi

    2006-01-01

    A three-level Lambda-configuration atomic vapour may exhibit simultaneously negative permittivity and permeability in the optical frequency band, and an isotropic left-handed vapour medium could therefore be realized within the framework of quantum optics. One of the most remarkable features of the present scheme is that both the refractive index and the photon helicity reversal inside the vapour can be controllably manipulated by an external coupling light field. The phenomenological Hamiltonian that describes the process of helicity reversal is constructed and the time-dependent Schroedinger equation governing the time evolution of the polarization states of the lightwave is solved by means of the Lewis-Riesenfeld invariant theory. The transition between the polarization states (and hence the accompanied photon helicity reversal), which is exactly analogous to the transition operation between bits in digital circuit, may be valuable for the development of new techniques in quantum optics and would have potential applications in information technology

  12. Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Biederman, R.R. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Sisson, R.D. Jr. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States))

    1994-10-01

    The effects of processing parameters of physical vapour deposition on the microstructure of partially stabilized zirconia (PSZ) thermal barrier coatings have been experimentally investigated. Emphasis has been placed on the crystallographic texture of the PSZ coatings and the microstructure of the top surface of the PSZ coatings as well as the metal-ceramic interface. The variations in the deposition chamber temperature, substrate thickness, substrate rotation and vapour incidence angle resulted in the observation of significant differences in the crystallographic texture and microstructure of the PSZ coatings. ((orig.))

  13. SPATIO-TEMPORAL ESTIMATION OF INTEGRATED WATER VAPOUR OVER THE MALAYSIAN PENINSULA DURING MONSOON SEASON

    Directory of Open Access Journals (Sweden)

    S. Salihin

    2017-10-01

    Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.

  14. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  15. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  16. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    Science.gov (United States)

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter.

  17. Development of Chemical Process Design and Control for Sustainability

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  18. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  19. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  20. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  1. Nonlinear processes in laser heating of chemically active media

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F V; Kirichenko, N A; Luk' yanchuk, B S

    1984-08-01

    After it had been discovered and in due measure physically comprehended that numerous nontrivial phenomena observed during laser heating of chemically active media are caused primarily by self-stress of laser radiation due to the chemical intertial nonlinearity of the medium, an approach was found for solving problems of laser thermochemistry that is most adequate from the mathematical (and physical) standpoint: the approach of the theory of nonlinear oscillations in point systems and distributed systems. This approach has provided a uniform viewpoint for examination of a variety of phenomena of spatiotemporal self-organization of chemically active media under the effect of laser radiation, qualitative, and in some cases quantitative description of such phenomena as the onset of thermochemical instability, self-oscillations, various spatial structures and the like. Evidently it can be rightly considered that at this juncture a definite stage has been completed in the development of laser thermochemistry marked by the creation of an ideology, method and overall approach to interpretation of the most diverse phenomena under conditions of actual physical experiments. References to the numerous studies that make up the content of this stage of development of laser thermochemistry are to be found in survey papers. 48 references, 10 figures.

  2. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  3. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    Science.gov (United States)

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  4. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  5. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    Science.gov (United States)

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  6. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  7. Range-energy relations and stopping powers of organic liquids and vapours for alpha particles

    International Nuclear Information System (INIS)

    Akhavan-Rezayat, A.; Palmer, R.B.J.

    1980-01-01

    Experimental range-energy relations are presented for alpha particles in methyl alcohol, propyl alcohol, dichloromethane, chloroform and carbon tetrachloride in both the liquid and vapour phases. Stopping power values for these materials and for oxygen gas over the energy range 1.0-8.0 MeV are also given. From these results stopping powers have been derived for the -CH 2 -group and for -Cl occurring in chemical combination in the liquid and vapour phases. The molecular stopping power in the vapour phase is shown to exceed that in the liquid phase by 2-6% below 2 MeV, reducing to negligible differences at about 5 MeV for the materials directly investigated and for the -Cl atom. No significant phase effect is observed for the -CH 2 -group, but it is noted that the uncertainties in the values of the derived stopping powers are much greater in this case. Comparison of the experimental molecular stopping powers with values calculated from elemental values using the Bragg additivity rule shows agreement for vapours but not for liquids. (author)

  8. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  9. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  10. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  11. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  12. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  13. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  14. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  15. Sustainable Chemical Process Development through an Integrated Framework

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Anantpinijwatna, Amata

    2016-01-01

    This paper describes the development and the application of a general integrated framework based on systematic model-based methods and computer-aided tools with the objective to achieve more sustainable process designs and to improve the process understanding. The developed framework can be appli...... studies involve multiphase reaction systems for the synthesis of active pharmaceutical ingredients....

  16. Rapid Neutron Capture Process in Supernovae and Chemical ...

    Indian Academy of Sciences (India)

    A ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. ... mass type II supernovae being the r-process sites. In the usual picture the r- .... critically on the ambient neutron flux. λn > λβ(τn < τβ). (1).

  17. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  18. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  19. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  20. Copper vapour laser development for Silva

    International Nuclear Information System (INIS)

    Bettinger, A.; Neu, M.; Chatelet, J.

    1993-01-01

    The recent developments of the components for high power Copper Vapour Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watts amplifier; the present step concerns development of a 400 Watts class amplifier

  1. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J; Ovarlez, H [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1998-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  2. Experiments on a vapour absorption heat transformer

    Energy Technology Data Exchange (ETDEWEB)

    George, J M; Murthy, S S [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1993-03-01

    Tests were conducted on a 3 kW heating capacity R21-DMF vapour absorption heat transformer to study the influence of operating temperature on its performance. Heat source temperature and condensing temperature were varied in the ranges 50-75[sup o]C and 20-40[sup o]C, respectively. Heat delivery temperatures up to 85[sup o]C and temperature lifts up to 20[sup o]C were achieved. Actual coefficients of performance (COPs) ranged from 0.2 to 0.35, whereas exergetic efficiencies of 0.3-0.4 could be obtained. (Author)

  3. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  4. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li

    2016-07-01

    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  5. Development of Chemical Process Design and Control for ...

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  6. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  7. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented.

  8. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    International Nuclear Information System (INIS)

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented

  9. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    Schneider, A.

    1987-02-01

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl 2 -EuCl 3 . The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U 4+ - U 6 and U 3+ - Y 4+ systems. The separation of the ionic species was done by precipitation of the Eu 2+ ions or by extraction of the Eu 3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  10. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  11. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  12. Novel Chemical Process for Producing Chrome Coated Metal

    Directory of Open Access Journals (Sweden)

    Christopher Pelar

    2018-01-01

    Full Text Available This work demonstrates that a version of the Reduction Expansion Synthesis (RES process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM. SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  13. Novel Chemical Process for Producing Chrome Coated Metal.

    Science.gov (United States)

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  14. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  15. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  16. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  17. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    ... different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  18. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  19. Polymer-based nucleation for chemical vapour deposition of diamond

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander; Varga, Marián

    2016-01-01

    Roč. 133, č. 29 (2016), 1-7, č. článku 43688. ISSN 0021-8995 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : copolymers * composites * diamond * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.860, year: 2016

  20. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    Administrator

    The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its ..... Chae S J, Güneş F, Kim K K, Kim E S, Han G H, Kim S M,. Shin H-J, Yoon ... Xiong Y G, Suda Y, Wang D Z, Huang Y J and Ren Z F 2005. Nanotechnology ...