WorldWideScience

Sample records for chemical vapour process

  1. Aluminium nitride coatings preparation using a chemical vapour deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Armas, B.; Combescure, C.; Icaza Herrera, M. de; Sibieude, F. [Centre National de la Recherche Scientifique (CNRS), 66 - Font-Romeu (France). Inst. de Science et du Genie des Materiaux et des Procedes

    2000-07-01

    Aluminium nitride was obtained in a cold wall reactor using AlCl{sub 3} and NH{sub 3} as precursors and N{sub 2} as a carrier gas. AlCl{sub 3} was synthesized << in situ >> by means of an original method based on the reaction of SiCl{sub 4(g)} with Al{sub (S)}. The substrate used was a cylinder of graphite coated with SiC and heated by high frequency induction. The deposition rate was studied as a function of temperature in the range 900 - 1500 C, the total pressure varying from 2 to 180 hPa. At low temperatures an Arrhenius type representation of the kinetics for several pressures indicated a thermally activated process with an apparent activation energy of about 80 kJ.mol{sup -1}. At high deposition temperatures, the deposition rate was almost constant, indicating that the growth was controlled by a diffusion process. The influence of gas composition and total AlCl{sub 3} flow rate was also discussed. The different layers were characterised particularly by means of X-ray diffraction and SEM. The influence of temperature and total pressure on crystallization and morphology was studied. (orig.)

  2. Chemical vapour etching-based porous silicon and grooving: Application in silicon solar cells processing

    Science.gov (United States)

    Ben Rabha, M.; Boujmil, M. F.; Saadoun, M.; Bessaïs, B.

    2005-06-01

    Sponge like porous silicon (PS) was formed by a simple and low cost chemical vapour etching (CVE) method and applied in polycrystalline silicon (mc-Si) solar cells processing. The CVE method consists of exposing Si wafers to HNO3/HF vapours. It was shown that 8 min of HNO3/HF CVE (volume ratio = 1/7) is sufficient to form optimized PS layers on the emitter of mc-Si cells. The CVE-based PS can simultaneously passivate the Si surface and serves as an effective antireflection coating (ARC). As a result, the reflectivity decreases by about 60% of its initial value and the internal quantum efficiency is improved, particularly in the short wavelength region. For acid vapours rich in HNO3 (HNO3/HF >1/4), the CVE method favours the formation of a (NH4)2SiF6 powder, which is highly soluble in water. These findings let us achieve anisotropic grooving that enables to groove mc-Si wafers locally and in depth using an adequate anti-acid mask. The CVE - based grooving technique was used to form buried metallic contacts on the rear and frontal surface of the Si wafer in order to improve the current collection in mc-Si solar cells. No alteration of the spectral response in the long wavelength range was observed in mc-Si cells with rear-buried contacts. Adjustments of theoretical spectral responses to experimental ones show an increase in the effective electron diffusion length (Ln), which was attributed to Al gettering (passivation) at grain boundaries and to the reduction of the effective thickness of the base of the cells.

  3. Chemical vapour etching-based porous silicon and grooving: Application in silicon solar cells processing

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Boujmil, M.F.; Saadoun, M.; Bessais, B. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, BP 95, 2050 Hammam-Lif (Tunisia)

    2005-06-01

    Sponge like porous silicon (PS) was formed by a simple and low cost chemical vapour etching (CVE) method and applied in polycrystalline silicon (mc-Si) solar cells processing. The CVE method consists of exposing Si wafers to HNO{sub 3}/HF vapours. It was shown that 8 min of HNO{sub 3}/HF CVE (volume ratio = 1/7) is sufficient to form optimized PS layers on the emitter of mc-Si cells. The CVE-based PS can simultaneously passivate the Si surface and serves as an effective antireflection coating (ARC). As a result, the reflectivity decreases by about 60% of its initial value and the internal quantum efficiency is improved, particularly in the short wavelength region. For acid vapours rich in HNO{sub 3} (HNO{sub 3}/HF >1/4), the CVE method favours the formation of a (NH{sub 4}){sub 2}SiF{sub 6} powder, which is highly soluble in water. These findings let us achieve anisotropic grooving that enables to groove mc-Si wafers locally and in depth using an adequate anti-acid mask. The CVE - based grooving technique was used to form buried metallic contacts on the rear and frontal surface of the Si wafer in order to improve the current collection in mc-Si solar cells. No alteration of the spectral response in the long wavelength range was observed in mc-Si cells with rear-buried contacts. Adjustments of theoretical spectral responses to experimental ones show an increase in the effective electron diffusion length (Ln), which was attributed to Al gettering (passivation) at grain boundaries and to the reduction of the effective thickness of the base of the cells. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition

    Indian Academy of Sciences (India)

    Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt

    2013-06-01

    Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.

  5. Control of tin oxide film morphology by addition of hydrocarbons to the chemical vapour deposition process

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Remeš, Zdeněk; Vaněček, Milan

    2010-01-01

    Roč. 519, č. 4 (2010), s. 1334-1340. ISSN 0040-6090 EU Projects: European Commission(XE) 214134 - N2P; European Commission(XE) 38885 - SE-POWERFOIL Institutional research plan: CEZ:AV0Z10100521 Keywords : alcohol * chemical vapour deposition * morphology * tin oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  6. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  7. High temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis under varying process parameters

    Science.gov (United States)

    Ahmad, Md. Imteyaz; Fasel, Claudia; Mayer, Thomas; Bhattacharya, S. S.; Hahn, Horst

    2011-05-01

    Systematic variation in the high temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis (CVS) using titanium (IV) isopropoxide under varying flow rates of oxygen and helium was obtained by progressively shifting the decomposition product from C 3H 6 to CO 2. The as-synthesised powders were characterised by high temperature X-ray diffraction (HTXRD), simultaneous thermo-gravimetric analyses (STA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). It was observed that the anatase to rutile transformation temperature progressively increased for samples synthesised at higher O 2/He flow rate ratios. The improved anatase stability was attributed to the presence of incorporated carbon within the titania structure and confirmed by a high temperature carbon desorption peak.

  8. High temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis under varying process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Md. Imteyaz [Materials Testing Facility, Materials Forming Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Joint Research Laboratory Nanomaterials, Technische Universitaet Darmstadt and Forschungszentrum Karlsruhe, 64287 Darmstadt (Germany); Fasel, Claudia [Disperse Feststoffe, Institute of Materials Science, Darmstadt University of Technology, 64287 Darmstadt (Germany); Mayer, Thomas [Oberflaechenforschung, Institute of Materials Science, Darmstadt University of Technology, 64287 Darmstadt (Germany); Bhattacharya, S.S., E-mail: ssb@iitm.ac.in [Materials Testing Facility, Materials Forming Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Hahn, Horst [Joint Research Laboratory Nanomaterials, Technische Universitaet Darmstadt and Forschungszentrum Karlsruhe, 64287 Darmstadt (Germany)

    2011-05-15

    Systematic variation in the high temperature stability of nanocrystalline anatase powders prepared by chemical vapour synthesis (CVS) using titanium (IV) isopropoxide under varying flow rates of oxygen and helium was obtained by progressively shifting the decomposition product from C{sub 3}H{sub 6} to CO{sub 2}. The as-synthesised powders were characterised by high temperature X-ray diffraction (HTXRD), simultaneous thermo-gravimetric analyses (STA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). It was observed that the anatase to rutile transformation temperature progressively increased for samples synthesised at higher O{sub 2}/He flow rate ratios. The improved anatase stability was attributed to the presence of incorporated carbon within the titania structure and confirmed by a high temperature carbon desorption peak.

  9. Autonomous Chemical Vapour Detection by Micro UAV

    OpenAIRE

    Kent Rosser; Karl Pavey; Nicholas FitzGerald; Anselm Fatiaki; Daniel Neumann; David Carr; Brian Hanlon; Javaan Chahl

    2015-01-01

    The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS), as a model chemical vapour, into a micro unmanned aerial vehicle (UAV), and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm con...

  10. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  11. Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations

    OpenAIRE

    Kalered, Emil; Pedersen, Henrik; Janzén, Erik; Ojamäe, Lars

    2013-01-01

    The effect chlorine addition to the gas mixture has on the surface chemistry in the chemical vapour deposition (CVD) process for silicon carbide (SiC) epitaxial layers is studied by quantum-chemical calculations of the adsorption and diffusion of SiH2 and SiCl2 on the (000-1) 4H–SiC surface. SiH2 was found to bind more strongly to the surface than SiCl2 by approximately 100 kJ mol−1 and to have a 50 kJ mol−1 lower energy barrier for diffusion on the fully hydrogen-terminated surface. On a bar...

  12. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  13. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Cd1−xZnxS and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd1−xZnxS coatings were applied onto 15 × 15 cm2 float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd0.36Zn0.64S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd0.36Zn0.64S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd0.36Zn0.64S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells

  14. Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

    Science.gov (United States)

    Belmonte, T.; Gries, T.; Cardoso, R. P.; Arnoult, G.; Kosior, F.; Henrion, G.

    2011-04-01

    This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of μm h-1) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO2 nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O2 micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (~500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (~1 µm), and for relatively high content in HMDSO, SiO2 walls forming hexagonal cells are obtained.

  15. Biocompatibility of chemical-vapour-deposited diamond.

    Science.gov (United States)

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  16. Chemical vapour deposition of zeolitic imidazolate framework thin films

    Science.gov (United States)

    Stassen, Ivo; Styles, Mark; Grenci, Gianluca; Gorp, Hans Van; Vanderlinden, Willem; Feyter, Steven De; Falcaro, Paolo; Vos, Dirk De; Vereecken, Philippe; Ameloot, Rob

    2016-03-01

    Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

  17. CHEMICAL VAPOUR INFILTRATION (CVI) OF SILICON CARBIDE FIBRE PREFORMS

    OpenAIRE

    Lundberg, R.; Pejryd, L.; LÖÖf, G.

    1991-01-01

    An alternative fabrication technique is proposed for ceramic matrix / ceramic fibre composites involving filling a fibre fabric preform with a Si/Si3 N4 slurry and subsequently reaction bonding. For the first processing step in this process, chemical vapour infiltration (CVI) was evaluated as a means of both biding together and protecting the fibres. SiC (Nicalon) fibre preforms consisting of through-stitched 2D fabrics were infiltrated. The preform thickness was more than 4 mm and a 3 µm TiC...

  18. Vapour liquid equilibrium measurements for process design

    OpenAIRE

    Uusi-Kyyny, Petri

    2004-01-01

    In recent years it has become increasingly important to develop new oxygenate and isooctane technologies and processes that meet the continuously stricter environmental requirements. Some of the new process schemes use renewable raw materials in order to meet the European Union biofuel requirements. One of the most important requirements for the design of such separation processes includes the knowledge of vapour liquid equilibrium (VLE) behaviour. There are methods to estimate VLE but for th...

  19. SYNTHESIS OF CARBON NANOSTRUCTURES BY PLASMA ENHANCED CHEMICAL VAPOUR DEPOSITION AT ATMOSPHERIC PRESSURE

    OpenAIRE

    Jašek Ondřej; Synek Petr; Zajíčková Lenka; Eliáš Marek; Kudrle Vít

    2010-01-01

    Carbon nanostructures present leading field in nanotechnology research. Wide range of chemical and physical methods was used for carbon nanostructures synthesis including arc discharges, laser ablation and chemical vapour deposition. Plasma enhanced chemical vapour deposition (PECVD) with its application in modern microelectronics industry became soon target of research in carbon nanostructures synthesis. The selection of the ideal growth process depends on the application. Most of PECVD tech...

  20. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H2/TiCl4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author)

  1. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  2. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  3. Light-induced chemical vapour deposition painting with titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P

    2003-03-15

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  4. Chemical Vapour Deposition of Gas Sensitive Metal Oxides

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2016-03-01

    Full Text Available This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD, presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing performance. Thin films typically have poorer gas sensing performance compared to traditional screen printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with the sensor platform provides important process benefits compared to competing synthetic techniques. We conclude that these advantages are likely to drive increased interest in the use of CVD for gas sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter microstructure can help mitigate the potentially reduced performance in thin films, hence the current prospects for use of CVD in this field look excellent.

  5. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  6. Mechanism and efficiency of chemical vapour generation of silver

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš

    Budapešť, 2005. [European Winter Conference on Plasma Spectrochemistry . Budapest (HU), 30.01.2005-03.02.2005] R&D Projects: GA ČR(CZ) GA203/01/0453 Institutional research plan: CEZ:AV0Z40310501 Keywords : silver * chemical vapour generation * ICP-OES Subject RIV: CB - Analytical Chemistry, Separation

  7. IR Laser-induced Chemical Vapour Deposition of Polyselenocarbosilane Films

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Pola, Josef

    - : -, 2006, s. 1-2. [Reunión Nacional de Espectroscopia (RNE) y IV Congresso Ibérico de Espectroscopia (CIE) /20./. Ciúdad Real (ES), 10.09.2006-14.09.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical vapour deposition Subject RIV: CH - Nuclear ; Quantum Chemistry

  8. Chemical-Engineering Approach for Evaluation of Vapour Permeation Data.

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Morávková, Lenka; Vejražka, Jiří; Izák, Pavel

    Ozarow Mazowiecki: Nobell Compressing sp. z o.o, 2015 - (Kosinsky, K.; Urbanczyk, M.; Žerko, S.), E-026 ISBN N. [Euromembrane Conference 2015. Aachen (DE), 06.09.2015-10.09.2015] R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : organic vapour permeation * membrane separation * chemical-engineering model Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  9. Surface chemical studies of chemical vapour deposited diamond thin films

    International Nuclear Information System (INIS)

    Polycrystalime diamond grown by low pressure chemical vapour deposition (CVD) techniques has emerged in recent years as a new material with applications in such areas as optics, electronics, radiation detectors, chemical sensors and electrochemistry. A main aim of this thesis has been to advance current knowledge of the surface chemical properties of CVD diamond to underpin the development of our understanding of the properties and potential applications of this material. Cl2 is found to adsorb dissociatively on the clean, hydrogen-free diamond surface up to sub-monolayer coverage with a sticking probability of ∼1.2x10-3. Adsorption is a non-activated process, and the sticking probability and extent of coverage decreased with increasing temperature. This was shown to contrast with the behaviour found for the interaction of chlorine with the hydrogenated diamond surface where increased sticking probabilities and saturation surface coverages were observed, and where the reactivity also increased with temperature. Thermal desorption of atomic Cl occurred over a broad temperature range m both chemisorption systems, indicating the presence of more than one binding state. Atomic hydrogen was successful in efficiently etching the bound Cl from the surface. XeF2 was found to adsorb dissociatively onto the clean diamond surface to give up to monolayer coverages of F, which formed two distinct binding states. The first state, populated at low coverage, was predominantly covalent in character, while the second state, occurring at high surface coverages, had more ionic bonding character. Pre-hydrogenation of the diamond surface increased the reactive sticking probability observed, but decreased the extent of coverage by blocking reactive sites. The semi-ionic F was readily etched by atomic hydrogen, and underwent thermal desorption at temperatures as low as 300 deg C. The covalent form was more stable, being seemingly resistant to etching and persistent to high temperatures

  10. Chemical Vapour Deposition of Large Area Graphene

    OpenAIRE

    Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter; Booth, Tim; Jørgensen, Anders Michael

    2015-01-01

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, ...

  11. Chemical vapour deposition synthetic diamond: materials, technology and applications

    OpenAIRE

    Balmer, R. S.; Brandon, J R; Clewes, S L; Dhillon, H. K.; Dodson, J M; Friel, I.; Inglis, P. N.; Madgwick, T D; Markham, M. L.; Mollart, T P; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A J; Wilman, J J

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synt...

  12. Dry-transfer of chemical vapour deposited nanocarbon thin films

    OpenAIRE

    Cole, Matthew Thomas

    2012-01-01

    This thesis presents the development of chemical vapour deposited (CVD) graphene and multi-walled carbon nanotubes (MWCNTs) as enabling technologies for flexible transparent conductors offering enhanced functionality. The technologies developed could be employed as thin film field emission sources, optical sensors and substrate-free wideband optical polarisers. Detailed studies were performed on CVD Fe and Ni catalysed carbon nanotubes and nanofibres on indium tin oxide, alu...

  13. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    OpenAIRE

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comp...

  14. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  15. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  16. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  17. Componentry, constructive and process solutions of sodium vapour precipitation problem

    International Nuclear Information System (INIS)

    Sodium vapour trap for periodic operation (SVT) is installed to present of sodium vapour emissions after response of safety valve on tanks with sodium and to provide protection from sodium vapour during planned argon blowing from tanks. It is recommended that SVT be placed directly above tanks with sodium. But the main problem of BN-600 and BN-800 componentry (grouping) is the lack of premises. So, the recommended placement is impossible. The principal scheme of SVT piping BN-800. Argon purification from sodium vapor is carried out by air refrigerating. Refrigerating degree is regulated by control valve on the air delivery pipe to SVT. There is montejus tank in the scheme of SVT piping for liquid sodium drainage that is condensed in SVT. Sodium drainage pipe is combined with argon delivery pipe (line E). There are two main problems with the present construction of SVT based on operation experience of BN-600: 1. The horizontal pipeline 'Ar+Na' before the SVT entrance is a dangerous section of this piping. Electric heating of this pipeline is always 'on'. Inspite of this, sodium vapour condenses before SVT. It means that the pipeline becomes progressively clogged up. 2. Two substances (argon with sodium vapour and liquid sodium) are moving towards each other in one pipeline (line E). This is the most probable place of clogging by sodium, especially branch-pipe in the connection point of line E with SVT. Sodium cruds turn into solid state in the process of argon delivery pipe clogging.In most cases solid scrubs melting temperature exceeds 400-500C depending on chemical composition of crud (for example caustic soda - 1200C). It means that it is almost impossible to heat the pipeline to restore its passability. The only measure in this case is the change of pipe section during BN stop. The first problem can be solved by: - Increasing the diameter (which was DN40 in the project of BN-600, and is DN80 in BN-800); - Increasing the temperature of electric heating

  18. Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases

    International Nuclear Information System (INIS)

    Structural and optical properties of the amorphous silicon carbide (a-SiC:H) thin films deposited by radio frequency plasma enhanced chemical vapour deposition method from a mixture of silane (SiH4) and methane (CH4) diluted in argon (Ar) have been studied with variation of Ar dilution from 94% to 98.4%. It is observed that nanocrystalline silicon starts to form within the a-SiC:H matrix by increasing the dilution to 96%. With further increase in Ar dilution to 98% formation of the silicon nanocrystals (nc-Si) with variable size is enhanced. The optical band gap (Eg) of the a-SiC:H film decreases from 2.0 eV to 1.9 eV with increase in Ar dilution from 96% to 98% as the a-SiC:H films gradually become Si rich. On increasing the Ar dilution further to 98.4% leads to the appearance of crystalline silicon quantum dots (c-Si q-dots) of nearly uniform size of 3.5 nm. The quantum confinement effect is apparent from the sharp increase in the Eg value to 2.6 eV. The phase transformation phenomenon from nc-Si within the a-SiC:H films to Si q-dot were further studied by high resolution transmission electron microscopy and the grazing angle X-ray diffraction spectra. A relaxation in the lattice strain has been observed with the formation of Si q-dots.

  19. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  20. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F.; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-09-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer.

  1. Microscopic characterisation of suspended graphene grown by chemical vapour deposition.

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; De Hosson, Jeff Th M; Stöhr, Meike; Rudolf, Petra

    2013-10-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer. PMID:23945527

  2. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    International Nuclear Information System (INIS)

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used

  3. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  4. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition

    OpenAIRE

    Friel, I.; Clewes, S L; Dhillon, H. K.; Perkins, N.; Twitchen, D. J.; Scarsbrook, G. A.

    2009-01-01

    In order to improve the performance of existing technologies based on single crystal diamond grown by chemical vapour deposition (CVD), and to open up new technologies in fields such as quantum computing or solid state and semiconductor disc lasers, control over surface and bulk crystalline quality is of great importance. Inductively coupled plasma (ICP) etching using an Ar/Cl gas mixture is demonstrated to remove sub-surface damage of mechanically processed surfaces, whilst maintaining macro...

  5. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    Sung-Jin Chang; Moon Seop Hyun; Sung Myung; Min-A Kang; Jung Ho Yoo; Lee, Kyoung G.; Bong Gill Choi; Youngji Cho; Gaehang Lee; Tae Jung Park

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  6. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  7. Fundamental Studies of the Chemical Vapour Deposition of Graphene on Copper

    OpenAIRE

    Lewis, Amanda

    2014-01-01

    The chemical vapour deposition (CVD) of graphene is the most promising route for production of large-area graphene films. However there are still major challenges faced by the field, including control of the graphene coverage, quality, and the number of layers. These challenges can be overcome by developing a fundamental understanding of the graphene growth process. This thesis contributes to the growing body of work on graphene CVD by uniquely exploring the gas phas...

  8. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  9. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb2(OEt)10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt)5 acts as an octahedral field completing entity and leads to Nb(OEt)4(dmae). We show that Nb(OEt)4(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h−1 to values larger than 400 nm·h−1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt)4(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt)4(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process indicating that HV

  10. Plasma assisted chemical vapour deposition for optical coatings

    International Nuclear Information System (INIS)

    Full text: Plasma assisted chemical vapour deposition (PECVD) is commonly used in semiconductor fabrication plants for depositing layers of dielectric materials. Reactive gasses are admitted to a chamber at low pressure and applying an electric field, usually a RF field, generates a plasma. The gasses react to form a solid material on the walls of the chamber and substrates. In this project we are exploring the possibility of applying this method to the growth of multilayer optical thin films. A small prototype system was constructed and optical multi layers of up to 24 layers were deposited over a diameter of 90 mm. The system uses 13.56 MHz RF to generate the plasma in a simple capacitive plate chamber. The gasses used were silane, oxygen and nitrogen. This allows SiO2 (RI 1.45) and Si3N4 (RI 1.93) to be deposited. Multilayer coatings were designed using these materials on TFCalc. The required thickness for the various layers were tabulated and fed into a computer controlling the gas flow during deposition. In this way the structures were deposited semi-automatically. The growing films were monitored using a spectrometer looking at light reflected from the growing film over a range from 400 - 800 nm simultaneously. This data was then used to reconstruct the deposition and analyze deviations from the design. An SEM micrograph of the cross-section of the multilayers was used to obtain relative thicknesses of the individual layers. Other structures deposited include rugate notch filters, coloured filters and broad band anti-reflection layers. Running the prototype has proved the concept and the project has moved to a scale up stage in which a larger version is being constructed at Avtronics Pty Ltd. This aims to coat uniformly over a diameter of 600 mm. Initially, the same materials will be used to produce coatings but fixture work will increase the refractive index range of materials which can be deposited and fully automate the coating process. (authors)

  11. Chemical vapour deposition synthetic diamond: materials, technology and applications

    Science.gov (United States)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  12. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  13. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  14. Physical properties of chemical vapour deposited nanostructured carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India)

    2011-02-03

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C{sub 10}H{sub 16})' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp{sup 3} bonds with diamond phase and less for SS shows graphitization effect with dominant sp{sup 2} bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  15. Laser diagnostics of chemical vapour deposition of diamond films

    International Nuclear Information System (INIS)

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH4 / H2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH3, NH and C2H2 in a hot filament (HF) activated gas mixture and CH, C2 and C2H2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (∼1013 molecules / cm3) sufficient for it to play an important role in the diamond film growth, with CH approximately equivalent in abundance. The average gas temperatures of both C2 and CH radicals in the DC arc jet are found to be 3200 ± 300 K in the free flowing plasma plume, as measured from Boltzmann plots and Doppler line widths. Both number densities and gas temperatures rise significantly within 5 mm of the substrate surface in what is termed the boundary layer. Temperatures rise to 4800 ± 400 K within 1 mm from the substrate surface where the average C2 and CH concentrations are a factor of approximately four greater than in the free flowing plume. The effects of changing process parameters such as methane fraction in the feed gas and activation input power on number densities and temperatures have also been investigated. In addition to these advances in our understanding of the diamond CVD process, a new spectroscopic technique, continuous wave cavity ring down spectroscopy (cw CRDS) using tuneable, continuous wave diode lasers, has

  16. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  17. Laser diagnostics of chemical vapour deposition of diamond films

    CERN Document Server

    Wills, J B

    2002-01-01

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH sub 4 / H sub 2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH sub 3 , NH and C sub 2 H sub 2 in a hot filament (HF) activated gas mixture and CH, C sub 2 and C sub 2 H sub 2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH sub 3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O sub 2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (approx 10 sup 1 sup 3 molecules / cm...

  18. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity.

    Science.gov (United States)

    Bérard, Ariane; Patience, Gregory S; Chouinard, Gérald; Tavares, Jason R

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  19. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  20. Chemical vapour deposition of diamond coatings onto molybdenum dental tools

    International Nuclear Information System (INIS)

    The growth of polycrystalline diamond films onto molybdenum rods and dental burrs by using a new hot filament chemical vapour deposition (CVD) system has been investigated. Negative dc bias voltage relative to the filament was applied to the molybdenum substrate prior to deposition. This led to much improved film adhesion and increased nucleation density. There was a factor of four improvement in the adhesive force from 20 to 80 N when a bias voltage of -300 V was employed to the substrate. The CVD coated molybdenum dental burr was found to give much improved performance and lifetime compared to the conventional sintered diamond burr. The CVD diamond burr showed no signs of deterioration even after 1000 operations whereas the conventional sintered diamond burrs were ineffective after between 30 and 60 operations. This represents a 30-fold improvement when CVD is applied. CVD diamond growth onto dental burrs has the potential for replacing exciting technology by achieving better performance and lifetime in a cost-effective manner

  1. Simplified Monte Carlo simulations of chemical vapour deposition diamond growth

    International Nuclear Information System (INIS)

    A simple one-dimensional Monte Carlo model has been developed to simulate the chemical vapour deposition (CVD) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation, and surface migration along and across the dimer rows. The top of a step-edge is considered to have an infinite Ehrlich-Schwoebel potential barrier, so that mobile surface species cannot migrate off the edge. The reaction probabilities are taken from experimental or calculated literature values for standard CVD diamond conditions. The criterion used for the critical nucleus needed to form a new layer is considered to be two surface carbon species bonded together, which forms an immobile, unetchable step on the surface. This nucleus can arise from two migrating species meeting, or from direct adsorption of a carbon species next to a migrating species. The analysis includes film growth rate, surface roughness, and the evolving film morphology as a function of varying reaction probabilities. Using standard CVD diamond parameters, the simulations reveal that a smooth film is produced with apparent step-edge growth, with growth rates (∼1 μm h-1) consistent with experiment. The β-scission reaction was incorporated into the model, but was found to have very little effect upon growth rates or film morphology. Renucleation events believed to be due to reactive adsorbates, such as C atoms or CN groups, were modelled by creating random surface defects which form another type of critical nucleus upon which to nucleate a new layer. These were found to increase the growth rate by a factor of ∼10 when the conditions were such that the rate-limiting step for growth was new layer formation. For other conditions these surface defects led to layered 'wedding cake' structures or to rough irregular surfaces resembling those seen experimentally during CVD of nanocrystalline diamond.

  2. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition

    OpenAIRE

    Jourdain, Vincent; Bichara, Christophe

    2013-01-01

    Due to its higher degree of control and its scalability, catalytic chemical vapour deposition is now the prevailing synthesis method of carbon nanotubes. Catalytic chemical vapour deposition implies the catalytic conversion of a gaseous precursor into a solid material at the surface of reactive particles or of a continuous catalyst film acting as a template for the growing material. Significant progress has been made in the field of nanotube synthesis by this method although nanotube samples ...

  3. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells; Findeisen, Eberhard; Feidenhans'l, Robert Krarup; Bindslev Hansen, J

    1994-01-01

    various flow rates of CH4. Their thickness, mass density and hydrogen content were determined by a combination of X-ray and neutron reflectivity measurements. Dissociation of the feed gas is determined relatively by monitoring the integrated peak intensity around the CH 431 nm band head as a function of...... the gas flow. Above a certain flow rate the intensity saturates, since the deposition process is limited by the power input. At low flow rates a large fraction of the feed gas is dissociated and the deposition is limited by the supply of feed gas. A relationship was found for the intensity of the CH....... During plasma cleaning, the emission from the OH radical at 306.4 nm indicated that H2O was initially present in the discharge. The OH signal typically vanished during the cleaning cycle, which indicates that it was due to adsorbed water on the inner surfaces of the vacuum chamber and not an impurity in...

  4. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti–Si—N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    International Nuclear Information System (INIS)

    Ti–Si–N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2 +SiH4 mixture atmosphere. With the increase of silane Bow rate, the content of silicon in the Ti–Si–N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti–Si–N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane Bow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the Bow rate of 14sccm. (gases, plasmas, and electric discharges)

  5. Effect of silane flow rate on structure and corrosion resistance of Ti-Si-N thin films deposited by a hybrid cathodic arc and chemical vapour process

    International Nuclear Information System (INIS)

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from 2.0 at.% to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm. (authors)

  6. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools

    International Nuclear Information System (INIS)

    Diamond coatings on Co cemented tungsten carbide (WC-Co) hard metal tools are widely used for cutting non-ferrous metals. It is difficult to deposit diamond onto cutting tools, which generally have a complex geometry, using a single step growth process. This paper focuses on the deposition of polycrystalline diamond films onto dental tools, which possess 3D complex or cylindrical shape, employing a novel single step chemical vapour deposition (CVD) growth process. The diamond deposition is carried out in a hot filament chemical vapour deposition (HFCVD) reactor with a modified filament arrangement. The filament is mounted vertically with the drill held concentrically in between the filament coils, as opposed to the commonly used horizontal arrangement. This is a simple and inexpensive filament arrangement. In addition, the problems associated with adhesion of diamond films on WC-Co substrates are amplified in dental tools due to the very sharp edges and unpredictable cutting forces. The presence of Co, used as a binder in hard metals, generally causes poor adhesion. The amount of metallic Co on the surface can be reduced using a two step pre-treatment employing Murakami etching followed by an acid treatment. Diamond films are examined in terms of their growth rate, morphology, adhesion and cutting efficiency. We found that in the diamond coated dental tool the wear rate was reduced by a factor of three as compared to the uncoated tool

  7. Chemically vapour deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance

    International Nuclear Information System (INIS)

    Chemical vapour deposition (CVD) of diamond films onto Co-cemented tungsten carbide (WC-Co) tools and wear parts presents several problems due to interfacial graphitization induced by the binder phase and thermal expansion mismatch of diamond and WC-Co. Methods used to improve diamond film adhesion include substrate-modification processes that create a three-dimensional compositionally graded interface. This paper reviews substrate pretreatments and adhesion issues of chemically vapour deposited diamond films on WC-Co. The combined effect of pretreatments and substrate microstructure on the adhesive toughness and wear rate of CVD diamond in dry machining of highly abrasive materials was analyzed. The role of diamond film surface morphology on chip evacuation in dry milling of ceramics was also investigated by comparing feed forces of coated and uncoated mills. The overall tribological performance of diamond coated mills depended on coating microstructure and smoothness. The use of smother films did allow to reduce cutting forces by facilitating chip evacuation

  8. High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films

    International Nuclear Information System (INIS)

    Silicon oxide barrier coatings fabricated by a plasma enhanced chemical vapour deposition roll-to-roll process on polyester film have demonstrated impressive properties as a barrier to water vapour permeation. This study highlights the influence of the substrate on these coatings as we find that heat stabilised poly(ethylene terephthalate) (PET), with or without an additional acrylate primer layer, and poly(ethylene naphthalate) (PEN) produce superior composites than untreated PET film in terms of gas barrier. The barrier layers on PET and filled PET substrates, for which the barrier performance is within the detectable range of our measurement, have an activation energy to water permeation that increases with the thickness of the silica. For the thickest silica this is an increase of 26 kJ mol-1 over that from the uncoated substrate. We attribute this to the creation of highly tortuous, size-hindered pathways and the decoupling of defects as the coating is deposited in multiple passes. Using a more sensitive detection technique we measure a water vapour transmission rate value as low as 2 x 10-4 g m-2 day-1 for 1 μm thick coatings on PEN. Such a good barrier is observed for these thick coatings due to the high degree of carbon detected in the films that makes them less brittle than pure SiO2 layers. Substrate surface roughness is found to influence the morphology of the SiOx films but does not seem to adversely affect the barrier performance of the composites

  9. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of indium tin oxide (ITO) by atmospheric pressure chemical vapour deposition (APCVD). This process is potentially scalable for high throughput, large area production. We utilised a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and monobutyltintrichloride, MBTC. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Monobutyltintrichloride (MBTC) is also easily handled and can be readily vaporised. It is compatible with the process conditions required for using [Me2In(acac)]. Cubic ITO was deposited at a substrate temperature of 550 °C with growth rates exceeding 15 nm/s and growth efficiencies of between 20 and 30%. Resistivity was 3.5 × 10−4 Ω cm and transmission for a 200 nm film was > 85% with less than 2% haze.

  10. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  11. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  12. Synthesis, characterization and sintering of nanocrystalline titania powders produced by chemical vapour synthesis

    International Nuclear Information System (INIS)

    The chemical vapour synthesis (CVS) route is a versatile process that can be used for the synthesis of nanocrystalline ceramics with very small crystallite sizes having a narrow particle size distribution. In this study, a CVS technique was used to prepare nanocrystalline titania from tetraisopropyl orthotitanate at a processing temperature of 1273 K (1000 deg, C). High resolution transmission electron microscopy, x-ray diffraction and nitrogen adsorption techniques were used for the characterization of the as-synthesized powders. Green bodies were produced by a combination of uniaxial and cold isostatic pressing, which were then sintered. A simple pressureless sintering route was established that led to the production of a dense titania ceramic with a uniform microstructure and an average grain size well in the nanophase regime

  13. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017. ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  14. Deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition (APCVD) using a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and trifluoroacetic acid (TFA). This process is potentially scalable for high throughput, large area production. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Cubic fluorine doped indium oxide (F.In2O3) was deposited at a substrate temperature of 550 °C with growth rates exceeding 8 nm/s. Resistivity was 8 × 10−4 Ω cm and transmission for a 200 nm film was > 80% with less than 1% haze.

  15. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  16. Molecular and collisional processes during three photon ionisation transitions in caesium and rubidium vapours

    International Nuclear Information System (INIS)

    Interesting molecular and collisional processes are evident during three photon ionisation transitions in caesium and rubidium vapours. In particular, for caesium vapour broad hybrid resonances (molecular plus atomic transitions) have been identified. In rubidium vapour three photon ionisation s-nd, s-ns transitions as well as forbidden s-np have been observed with the s-s transitions being more prominent than theory predicts. These observations have been explained in terms of collisional ionisation. (author)

  17. Nanocomposite Coatings Codeposited with Nanoparticles Using Aerosol-Assisted Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Xianghui Hou

    2013-01-01

    Full Text Available Incorporating nanoscale materials into suitable matrices is an effective route to produce nanocomposites with unique properties for practical applications. Due to the flexibility in precursor atomization and delivery, aerosol-assisted chemical vapour deposition (AACVD process is a promising way to synthesize desired nanocomposite coatings incorporating with preformed nanoscale materials. The presence of nanoscale materials in AACVD process would significantly influence deposition mechanism and thus affect microstructure and properties of the nanocomposites. In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2 has been codeposited with Cr2O3 coatings using AACVD. In order to understand the codeposition process for the nanocomposite coatings, chemical reactions of the precursor and the deposition mechanism have been studied. The correlation between microstructure of the nanocomposite coatings and the codeposition mechanism in the AACVD process has been investigated. The heterogeneous reaction on the surface of IF-WS2 nanoparticles, before reaching the substrate surface, is the key feature of the codeposition in the AACVD process. The agglomeration of nanoparticles in the nanocomposite coatings is also discussed.

  18. Thermoluminescence Characteristics of a New Production of Chemical Vapour Deposition Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Furetta, C.; Kitis, G.; Brambilla, A.; Jany, C.; Bergonzo, P.; Foulon, F

    1999-07-01

    The dosimetric properties are presented of a recent production of chemical vapour deposition diamond growth. Experimental data concerning the TL response as a function of dose, the energy response and fading behaviour are reported. Very preliminary results suggest that diamond can be used in TL mode as well as an activation detector. (author)

  19. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed. PMID:22097577

  20. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition

    OpenAIRE

    Zhu, Wenjuan; Low, Tony; Lee, Yi-Hsien; Wang, Han; Farmer, Damon B.; Kong, Jing; Xia, Fengnian; Avouris, Phaedon

    2013-01-01

    Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide (MoS2) grown by chemical vapour deposition (CVD). We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic pr...

  1. Development and characterization of Undoped Silicon Glass (USG using chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Jagadeesha T

    2011-02-01

    Full Text Available Sub atmospheric chemical vapour deposition (SACVD is a widely used technique in semiconductor integrated circuit (IC manufacturing, especially to form inter-metal silicon (IMD dioxide thin films. It was designed for commercially available tools in order to satisfy the gap filling requirements necessary for 0.18 and 0.15 lm technology ICs, but it has been successfully extended also for 0.13 lm technological node and over. SACVD technique has a potential impact on device electrical characteristics and metallurgy compatibility, according to process conditions, such as mass flow rate of TEOS, Gasflows, RF power. Present work focuses on development and characterisation of undoped silicate glass that can be used for Flash memory and Logic devices. It is shown that new process yield deposition rate improvement of 51% and throughput improvement of 13%.. Qualitative yield comparison and wafer map to map comparison work is also presented for various technology nodes. Device parameters comparison with the standard process is also included in the present work.

  2. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  3. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    International Nuclear Information System (INIS)

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 deg. C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs

  4. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition

    International Nuclear Information System (INIS)

    In this study the deposition of thin zinc oxide (ZnO) films under atmospheric pressure conditions was investigated. The deposition technique applied was combustion chemical vapour deposition (CCVD), at which a propane–air mixture was combusted in a burner. Dissolved zinc nitrate was used as precursor, which was guided as aerosol droplets by the processing gas flow directly into the reaction zone. Fundamental investigations were performed to form undoped ZnO. The structural properties of the films were analysed in dependence of the substrate temperature during the coating process. The presence of crystalline ZnO structures was proved and differences in film growth and crystallite sizes are revealed. Additionally, the particles generated by the CCVD-flame are characterised. The thin films showed a slight excess of Zn and several states of binding energy could be observed by fitting the core level spectra. Scanning and transmission electron microscopy also indicated ordered structures and additionally different orientations of crystallites were observed. - Highlights: • Columnar growth structures of ZnO by CCVD were observed. • The presence of polycrystalline ZnO with (002) as main orientation was confirmed. • Initial particles significantly differ from crystallite sizes of the resulting films. • The films show an excess of Zn with a Zn-to-O ratio of around 1.7

  5. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle; Hoffmann, Patrik

    2005-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  6. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle

    2003-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  7. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness

  8. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Huichao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Li Xiangping [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Dong Xin [State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116023 (China); Li Wancheng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Guan Hesong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Cui Yongguo [State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Department of Physics, Dalian University of Technology, Dalian 116023 (China); Xia Xiaochuan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Yang Tianpeng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Chang Yuchun [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Du Guotong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2007-09-07

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness.

  9. Remote Microwave Plasma Enhanced Chemical Vapour Deposition of SiO2 Films : Oxygen Plasma Diagnostic

    OpenAIRE

    Regnier, C.; Desmaison, J.; Tristant, P.; Merle, D.

    1995-01-01

    Silicon oxide is deposited by remote microwave plasma enhanced chemical vapour deposition (RMPECVD). The silica films are produced by exciting oxygen in a microwave discharge while a mixture of 5% of silane diluted in argon is introduced downstream. In the afterglow, double Langmuir probe measurements and rotational temperatures deduced from optical emission spectroscopy (OES), show that the electron energy is transferred to the gas when the pressure increases (19 - 26 Pa). Therefore the elec...

  10. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    S. Karamat; S. Sonuşen; Ü. Çelik; Y. Uysallı; E. Özgönül; A. Oral

    2015-01-01

    The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties;in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM) value of 30 cm ? 1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm ? 1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm ? 1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm ? 1 as compare to single layer graphene which showed its

  11. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  12. The heat recovery thermal vapour-compression desalting system: a comparison with other thermal desalination processes

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, M.A.; El-Dessouky, Hisham [Kuwait Univ., Coll. of Engineering and Petroleum, Safat (Kuwait)

    1996-03-01

    Technical factors affecting the choice of distillation system for desalting water are presented. In particular, the thermal vapour-compression process is compared with the predominant multi-stage flash (MSF) desalting system. It was shown that the conventional multi-effect (ME) system can produce desalted water at a lower cost than the MSF system when both are supplied with steam after its expansion in steam turbines. Mechanical or thermal vapour-compression desalting systems are more cost-effective when compared with directly boiler-operated MSF systems. Thermal analysis of the multi-effect thermo-vapour-compression system is presented with an example. (author)

  13. Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 0C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

  14. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  15. In-line silicon epitaxy for photovoltaics using a continous chemical vapour deposition reactor.

    Science.gov (United States)

    Keller, Martin; Reber, Stefan; Schillinger, Norbert; Pocza, David; Arnold, Martin

    2011-09-01

    Thin film solar cell techniques can effectively reduce the costs for photovoltaic solar power. However, most of these techniques still have the disadvantage of a comparatively low efficiency. One way to realize a thin film solar cell concept with high efficiency potential is the crystalline silicon thin-film (cSiTF) concept. Following the high-temperature approach, this concept is based on a silicon epitaxy process. This paper reports the current status of the development of a high throughput epitaxy tool at Fraunhofer ISE and presents first results. Also presented is the development of a simulation tool which is a virtual image of the real setup in order to forecast save deposition conditions. The presented epitaxy tool is the ConCVD (Continuous Chemical Vapour Deposition), in which an improved reactor setup has been installed, based on the experience gained so far. To provide insight into upcoming further advances, the industrial scale epitaxy tool ProConCVD is presented as well. PMID:22097523

  16. Experimental Investigation of Influence of Acoustic Wave on Vapour Precipitation Process

    OpenAIRE

    V. Vekteris; I. Tetsman; V. Moksin

    2013-01-01

    The measurement results of acoustic field parameters above electroplating bath, in presence of water vapour, are analyzed in this work. Suction was created by means of side exhausters. It is obtained that the sound field generator generated a sound level of 130–140 dB at frequency interval between 1 and 10 kHz. It is shown that aerosol coagulation and precipitation processes are intensified under the mentioned conditions. The concentration of vapour and other aerosols in removal air decreases...

  17. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    Science.gov (United States)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  18. The pyrolytic decomposition of ATSB during chemical vapour deposition of thin alumina films

    OpenAIRE

    Haanappel, V.A.C.; Corbach, van, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    The effect of the deposition temperature and the partial pressure of water on the thermal decomposition chemistry of aluminium-tri-sec-butoxide (ATSB) during metal organic chemical vapour deposition (MOCVD) is reported. The MOCVD experiments were performed in nitrogen at atmospheric pressure. The partial pressure of ATSB was 0.026 kPa (0.20 mmHg) and that of water was between 0 and 0.026 kPa (0–0.20 mmHg). The pyrolytic decomposition chemistry of ATSB was studied by mass spectrometry at tempe...

  19. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO3) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  20. Deposition of diamond and boron nitride films by plasma chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Gomez-Aleixandre, C. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Sanchez-Garrido, O. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Vazquez, L. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Martinez-Duart, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.

    1995-01-01

    The deposition problems of diamond and cubic boron nitride (c-BN) by chemical vapour deposition techniques are reviewed, with major emphasis on the nucleation and reaction mechanisms. A discussion is made of the main deposition parameters (i.e. gas mixture, substrate conditioning, plasma discharges etc.) which favour the formation of the cubic phase. Most of the work is devoted to diamond owing to the large progress attained in this material. In fact, the use of diamond as a hard protective coating is now on a commercial scale. By contrast, the preparation of c-BN layers with good characteristics still needs of further research. ((orig.))

  1. Fluidization and coating of very dense powders by fluidized bed chemical vapour deposition

    OpenAIRE

    Rodriguez, Philippe; Caussat, Brigitte; Ablitzer, Carine; Iltis, Xavière; Brothier, Méryl

    2013-01-01

    The hydrodynamic behaviour of a very dense tungsten powder, 75 µm in median diameter and 19,300 kg/m3 in grain density, has been studied in a fluidized bed at room temperature using nitrogen and argon as carrier gas. Even if fluidization was achieved, the small bed expansion indicated that it was imperfect. Then, the fluidization was studied at 400 °C in order to investigate the feasibility of coating this powder by Fluidized Bed Chemical Vapour Deposition (FBCVD). In particular, the influenc...

  2. Conductive zinc oxide thin film coatings by combustion chemical vapour deposition at atmospheric pressure

    International Nuclear Information System (INIS)

    We have established a combustion chemical vapour deposition (C-CVD) system for the deposition of zinc oxide (ZnO) at atmospheric pressure. This C-CVD process has the advantage of a short exposure of the substrates to the flame. It is also potentially applicable as an inline coating system. Fundamental studies were performed on undoped ZnO. The specific resistivity of these layers strongly depends on the film thickness and decreases with increasing thickness. As the lowest resistivities, values of about 2.0 · 10−1 Ωcm are achieved. Ultra-violet photoemission spectra show the valence band structure of the deposited ZnO. The work function and valence band edge were determined. UV–vis spectra were taken to investigate the transmission of the coated glass samples. From these spectra the band gap energy was obtained. Raman spectroscopy as well as infrared spectroscopy confirmed the presence of ordered ZnO crystallites. The X-ray diffraction verified this result and illustrates the hexagonal structure. In the mid-infrared range precursor deposits were detected for low substrate temperatures. - Highlights: ► Zinc oxide (ZnO) films are conductive in the range of 2.0 · 10−1 Ωcm. ► X-ray diffraction, Raman and infrared spectroscopy indicate crystalline ZnO films. ► Precursor deposits were proved within the films for low growing temperatures. ► Band gap energy changes are achieved due to different growing temperatures

  3. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (VS) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on VS and XT are presented

  4. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    International Nuclear Information System (INIS)

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties

  5. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anupriya J.T.; Bowman, Christopher; Panjwani, Naitik [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London WC1H 0HY (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-10-01

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties.

  6. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g−1) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm−2 (i.e., around 400 mA h g−1) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%

  7. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  8. Structural Evolution of SiC Films During Plasma-Assisted Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Evolution of chemical bonding configurations for the films deposited from hexamethyldisiloxane (HMDSO) diluted with H2 during plasma assisted chemical vapour deposition is investigated. In the experiment a small amount of CH4 was added to adjust the plasma environment and modify the structure of the deposited films. The measurements of Raman spectroscopy and X-ray diffraction (XRD) revealed the production of 6H-SiC embedded in the amorphous matrix without the input of CH4. As CH4 was introduced into the deposition reaction, the transition of 6H-SiC to cubic SiC in the films took place, and also the film surfaces changed from a structure of ellipsoids to cauliflower-like shapes. With a further increase of CH4 in the flow ratio, the obtained films varied from Si-C bonding dominant to a sp2/sp3 carbon-rich composition. (low temperature plasma)

  9. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  10. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Highlights: • Carbon nitride films were prepared by using radio frequency plasma enhanced chemical vapour deposition system by altering the electrode distance. • The effect of electrode distance on surface morphology, surface roughness, chemical bonding and hydrophobic behaviour has been studied. • Hydrophobic behaviour were studied by measuring contact angle and calculating surface energy. • CNx nanostructures show super-hydrophobic behaviour. • We report a tunable transition of hydrophilic to super-hydrophobic behaviour of film as electrode distance is reduced. - Abstract: Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films’ structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films’ surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of C=N to C=C and N−H to O−H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films’ characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface

  11. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  12. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  13. Electron behaviour in CH4/H2 gas mixture in electron-assisted chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dong Li-Fang; Ma Bo-Qin; Wang Zhi-Jun

    2004-01-01

    The behaviour of electrons in CH4/H2 gas mixture in electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron drift velocity in gas mixture is obtained over a wide range of E/P (the ratio of the electric field to gas pressure) from 1500 to 300000 (V/m kPa-1). The electron energy distribution and average energy under different gas pressure (0.1-20kPa) and CH4 concentration (0.5%-10.0%) are calculated. Their effects on the diamond growth are also discussed. It is believed that these results will be helpful to the selection of optimum experimental conditions for high quality diamond film deposition.

  14. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  15. Elaboration of Bi 2Se 3 by metalorganic chemical vapour deposition

    Science.gov (United States)

    Giani, A.; Al Bayaz, A.; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2002-03-01

    For the first time, Bi 2Se 3 thin films were elaborated by metalorganic chemical vapour deposition (MOCVD) using trimethylbismuth (TMBi) and diethylselenium (DESe) as metalorganic sources. The MOCVD elaboration of Bi 2Se 3 was carried out in a horizontal reactor for a substrate temperature ( Tg) varying from 450°C to 500°C, a total hydrogen flow rate DT=3 l min -1, RVI/V ratio >14 and TMBi partial pressure lower than 1.10 -4 atm. By X-ray diffraction and SEM observation, we noticed the polycrystalline structure of the layers typical preferential c-orientation and confirm the hexagonal structure. The microprobe data indicate that the best stoichiometry of Bi 2Se 3 was achieved. These films always displayed n-type conduction, and the maximum value of thermoelectric power α was found to be close to -120 μV/K.

  16. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  17. Synthesis of low leakage current chemical vapour deposited (CVD) diamond films for particle detection

    International Nuclear Information System (INIS)

    We report on synthesis of diamond films by direct current glow discharge chemical vapour deposition (CVD) prepared at different deposition conditions, for application in high energy physics. The synthesis apparatus is briefly described. Continuous undoped diamond samples have been grown onto Mo substrates with a deposition area up to 1 cm2 and an electrical resistivity as high as 1013 Ωcm. The deposition parameters are related to the material properties of the diamonds, investigated by optical spectroscopy, electron microscopy and diffraction analysis. Decreasing the linear growth rate results in good quality films with small remnants of graphite-like phases. The high crystalline quality and phase purity of the films are related to very low values of leakage currents. The particle induced conductivity of these samples is also studied and preliminary results on charge collection efficiency are presented. (orig.)

  18. Functional ZnO/polymer core-shell nanowires fabricated by oxidative chemical vapour deposition

    International Nuclear Information System (INIS)

    Functional ZnO-nanowire/polymer core-shell heterostructures were realized using oxidative chemical vapour deposition (oCVD). This dry and versatile technique allows uniform coating of semiconductor nanowires with polymers and simultaneous doping control of the shell. Here, 100 nm thick, p-doped shells of poly(3,4-ethylenedioxythiophene) (PEDOT) were deposited around n-conductive ZnO nanowires. Energy-dispersive x-ray spectroscopy confirms the incorporation of Br dopants into the PEDOT shell, and the resulting p-conductivity of the polymer shell is demonstrated by electrical measurements on nanowire arrays. Photoluminescence spectroscopy points to reactions of Br with the ZnO surface but proves that the nanowires show only little degradation of their optical properties. (paper)

  19. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pung, Swee-Yong; Choy, Kwang-Leong; Hou Xianghui; Dinsdale, Keith, E-mail: Kwang-leong.Choy@nottingham.ac.uk [Faculty of Engineering, Energy and Sustainability Research Division, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-08-27

    An in situ doping approach of producing Al-doped ZnO NWs was demonstrated using an aerosol-assisted chemical vapour deposition (AA-CVD) technique. In this technique, Zn precursor was kept in the middle of a horizontal tube furnace whereas the dopant solution was kept in an aerosol generator, which was located outside the furnace. The Al aerosol was flowed into the reactor during the growth of NWs in order to achieve in situ doping. Al-doped ZnO NWs were synthesized as verified by the combination of XRD, TEM/EDS and TOF-SIMS analysis. Highly (00.2) oriented ZnO seed layers were used to promote vertically aligned growth of Al-doped ZnO NWs. Lastly, a growth mechanism of vertically aligned Al-doped ZnO NWs was discussed.

  20. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  1. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  2. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    International Nuclear Information System (INIS)

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: ► Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. ► CVD diamonds have been prepared with magnetic and semiconductor properties. ► Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  3. Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition

    OpenAIRE

    Bhachu, D. S.; Scanlon, D. O.; Saban, E. J.; Bronstein, H.; Parkin, I. P.; Carmalt, C. J.; Palgrave, R. G.

    2015-01-01

    Methyl-ammonium lead iodide is the archetypal perovskite solar cell material. Phase pure, compositionally uniform methyl-ammonium lead iodide thin films on large glass substrates were deposited using ambient pressure aerosol assisted chemical vapour deposition. This opens up a route to efficient scale up of hybrid perovskite film growth towards industrial deployment.

  4. Synthesis of Tin Nitride Sn x N y Nanowires by Chemical Vapour Deposition

    Science.gov (United States)

    Zervos, Matthew; Othonos, Andreas

    2009-09-01

    Tin nitride (Sn x N y ) nanowires have been grown for the first time by chemical vapour deposition on n-type Si(111) and in particular by nitridation of Sn containing NH4Cl at 450 °C under a steady flow of NH3. The Sn x N y nanowires have an average diameter of 200 nm and lengths ≥5 μm and were grown on Si(111) coated with a few nm’s of Au. Nitridation of Sn alone, under a flow of NH3 is not effective and leads to the deposition of Sn droplets on the Au/Si(111) surface which impedes one-dimensional growth over a wide temperature range i.e. 300-800 °C. This was overcome by the addition of ammonium chloride (NH4Cl) which undergoes sublimation at 338 °C thereby releasing NH3 and HCl which act as dispersants thereby enhancing the vapour pressure of Sn and the one-dimensional growth of Sn x N y nanowires. In addition to the action of dispersion, Sn reacts with HCl giving SnCl2 which in turn reacts with NH3 leading to the formation of Sn x N y NWs. A first estimate of the band-gap of the Sn x N y nanowires grown on Si(111) was obtained from optical reflection measurements and found to be ≈2.6 eV. Finally, intricate assemblies of nanowires were also obtained at lower growth temperatures.

  5. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    OpenAIRE

    Ren, C; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-01-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixi...

  6. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

    Science.gov (United States)

    Su, Ren; Forde, Michael M; He, Qian; Shen, Yanbin; Wang, Xueqin; Dimitratos, Nikolaos; Wendt, Stefan; Huang, Yudong; Iversen, Bo B; Kiely, Christopher J; Besenbacher, Flemming; Hutchings, Graham J

    2014-10-28

    As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials. PMID:24970298

  7. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors

    International Nuclear Information System (INIS)

    We report the dc and rf performance of graphene rf field-effect transistors, where the graphene films are grown on copper by using the chemical vapour deposition (CVD) method and transferred to SiO2/Si substrates. Composite materials, benzocyclobutene and atomic layer deposition Al2O3 are used as the gate dielectrics. The observation of n- and p-type transitions verifies the ambipolar characteristics in the graphene layers. While the intrinsic carrier mobility of CVD graphene is extracted to be 1200 cm2/V·s, the parasitic series resistances are demonstrated to have a serious impact on device performance. With a gate length of 1 μm and an extrinsic transconductance of 72 mS/mm, a cutoff frequency of 6.6 GHz and a maximum oscillation frequency of 8.8 GHz are measured for the transistors, illustrating the potential of the CVD graphene for rf applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    Science.gov (United States)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  9. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  10. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  11. Controlled n-doping in chemical vapour deposition grown graphene by antimony

    International Nuclear Information System (INIS)

    We have studied the effects of antimony (Sb) doping on graphene grown by chemical vapour deposition without any significant change in its electrical properties. By increasing the metal thickness from 1 to 5 nm, we found a shift in the wave numbers of Raman G and two-dimensional (2D) peaks consistent with n-doping and a change in the Fermi level of the graphene into the conduction band. The relative intensity of the D peak to the G peak did not show a significant change and that of the 2D peak to the G peak remained at a large enough number as a function of metal thickness, implying little degradation by the metal dopants. Transport measurements also confirm the n-doping of graphene through a shift of Dirac point in the transfer characteristics and the quality preservation with little changes in mobility. We also report on the formation of a p–n junction by metal doping on selected areas of the graphene and their electrical properties with transfer characteristics and Hall measurements. (paper)

  12. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

    Science.gov (United States)

    Yu, Qingkai; Jauregui, Luis A.; Wu, Wei; Colby, Robert; Tian, Jifa; Su, Zhihua; Cao, Helin; Liu, Zhihong; Pandey, Deepak; Wei, Dongguang; Chung, Ting Fung; Peng, Peng; Guisinger, Nathan P.; Stach, Eric A.; Bao, Jiming; Pei, Shin-Shem; Chen, Yong P.

    2011-06-01

    The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene’s electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman ‘D’ peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

  13. Chemical vapour deposition of praseodymium oxide films on silicon: influence of temperature and oxygen pressure

    International Nuclear Information System (INIS)

    Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450-750 deg. C) and oxygen partial pressure (0.027-100 Pa or 0.2-750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40-100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 deg. C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films

  14. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm-1 becomes broader and the non-diamond carbon band around 1500 cm-1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm-1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  15. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  16. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 oC (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF2

  17. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiNX) and silicon dioxide (SiO2), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiNX buffer layer is wider than SiO2 and the maximum grain size slightly increased

  18. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong-Hyun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Sang-Myeon [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Park, Sang-Geun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Min-Koo [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Shin, Moon-Young [LTPS Team, AMLCD Business, Samsung Electronics Co., Giheung, Yongin City (Korea, Republic of)

    2006-09-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN{sub X}) and silicon dioxide (SiO{sub 2}), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,{lambda}=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN{sub X} buffer layer is wider than SiO{sub 2} and the maximum grain size slightly increased.

  19. Study of Metal Organic Chemical Vapour Deposition (MOCVD) semiconductors III-V hyperstructures with Secondary Ion Mass Spectrometry (SIMS)

    International Nuclear Information System (INIS)

    One of the most promising technologies in high efficiency solar cells is based on quaternary structures grown by epitaxial techniques as Metal Organic Chemical Vapour deposition (MOCVD). The semiconductors III-V structures are elaborated under tailored parameters, allowing the use of a broader area of the solar spectrum. Analytical techniques capable of providing accurate and precise information in cross sections about the composition and thickness of the layers are demanded. Secondary Ion Mass Spectrometry (SIMS) has been used for characterization of these structures due to its high depth resolution and sensitivity, stability and reproducibility. It was detected the diffusion process of Al and In across the cell interfaces and the layer diffusion over GaAs substrates. The Al diffusion was associated at incorrect incorporation of elements during growth process and the layer diffusion was associated at changes of manufacturing parameters. Such studies show the SIMS ability to diagnose of faults during the growth process, detection of impurities and incorrect diffusion of dopants that may affect the layer properties and the structure functionality

  20. Interface study between nanostructured tantalum nitride films and carbon nanotubes grown by chemical vapour deposition

    International Nuclear Information System (INIS)

    Highlights: • Our paper deals with the understanding of the carbon nanotubes growth parameters following the use of specific thin nitride buffer films. • For a large choice of buffer, we use ultra thin films elaborated by the very new method: high power pulsed magnetron sputtering; it allows a larger nitrogen incorporation in the films and lead to out of equilibrium phase formation. • Then by a multiscale investigation, developing a structural, a chemical and a morphology approach, we lead to some conclusion on the correlation between the phase transition for the buffer and morphology transition for the CNTs. • That is a new and deep approach. - Abstract: We present the role of nitrogen content in tantalum nitride ultra-thin buffers, on the carbon nanotubes (CNTs) growth by chemical vapour deposition at 850 °C, assisted by ferrocene as catalyst source. Tantalum nitride (TaNx) films with a very large range of concentration x = [0, 1.8] and various nanostructures, from amorphous Ta(N) to Ta3N5, were deposited by Highly Pulsed Plasma Magnetron Sputtering. The buffer films are characterized after heat treatment at 850 °C, and after the CNT growth, by wide angle X-ray scattering in grazing incidence and scanning electron microscopy. The CNT diameter explored by transition electron microscopy shows an all-out value for under stoichiometric thin films (Ta1-N1−δ, Ta3-N5−δ) and a minimum value just above the stoichiometric phases (Ta1-N1+δ, Ta3-N5+δ). Firstly one shows that the buffer films under the heat treatment present surface modification highly dependent on their initial state, which influences the catalyst particles diffusion. Secondly at the stoichiometric TaN phase we show that a specific ternary phase FeTa2O6 is formed at the interface CNT/buffer, not present in the other cases, leading to a special CNT growth condition

  1. Role of Duty Ratio in Diamond Growth by Pulsed DC-Bias Enhanced Hot Filament Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-dc biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond quality. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films

  2. Structural and Compositional Study of Graphene grown on SrTiO3 by Chemical Vapour Deposition

    Science.gov (United States)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    Graphene, a monolayer of sp2 bonded carbon atom, is considered as one of the most promising candidate materials for future electronics. The most critical step in graphene research is its transfer from the growth catalyst to the dielectric substrate, many unavoidable issues in the transfer process are: contamination from etchants, photoresist residues, wrinkles, and mechanical breakage. The direct growth of graphene on the substrates without using catalyst offer new opportunities in device fabrication without any transfer process. But till now, the field of direct graphene growth on dielectrics or insulating substrates is not mature like growth on metallic catalysts using CVD. We used chemical vapour deposition to grow graphene on SrTiO3 (110) substrates. The growth was carried out in presence of methane, argon and hydrogen. Raman Spectrum clearly showed the D and G peaks which were absent in bare substrate. XPS was used to get information about the presence of necessary elements, their bonding with STO substrates. AFM imaging clearly showed graphene island formation on substrates.

  3. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    OpenAIRE

    Blackman, C. S.; Piccirillo, C.; Binions, R.; Parkin, I. P.

    2009-01-01

    Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 degrees C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 degrees C to - 23 degrees C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spect...

  4. Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens

    OpenAIRE

    Varghese, Sajnu; ElFakhri, Souad O; Sheel, David W.; Sheel, Paul; Bolton, Frederick J Eric; Foster, Howard A

    2013-01-01

    There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of bacteria used for disinfectant testing and bacteria of current interest in HCAI. The structure of the coatings was ...

  5. Growth mechanisms of carbon nanotrees with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition

    OpenAIRE

    He, Zhanbing; Maurice, Jean-Luc; Lee, Chang Seok; Cojocaru, Costel Sorin; Pribat, D.

    2014-01-01

    Y- and comb-type carbon nanotrees formed from branched carbon nanofibres grown by plasma-enhanced chemical vapour deposition were studied by transmission electron microscopy. Different growth mechanisms are proposed for the two types of nanotrees based on the observed and reconstituted dynamic transformations of the catalyst particles during synthesis. However, the splitting of the larger catalyst particles is required for both kinds of nanotrees, whatever the involved growth mechanism. The c...

  6. PENGARUH KATALIS Co DAN Fe TERHADAP KARAKTERISTIK CARBON NANOTUBES DARI GAS ASETILENA DENGAN MENGGUNAKAN PROSES CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2013-11-01

    Full Text Available EFFECT OF Co AND Fe ON CARBON NANOTUBES CHARACTERISTICS FROM ACETYLENE USING CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD PROCESS. Carbon Nanotubes (CNTs is one of the most well known nano-technology applications which the most of attracting the attention of researchers, because it has more advantages than other materials. The application of the CNT has extended into various aspects, such as electronics, materials, biology and chemistry. This research uses a system of Catalytic Chemical Vapour Deposition (CCVD, which aims to determine the influence of Co and Fe as a catalyst and zeolite 4A as a support catalyst with acetylene gas (C2H2 as carbon source in the synthesis of Carbon Nanotubes (CNTs. In this experiment, used the ratio of acetylene gas and flow rate of N2 gas is 1:1 by weight of the catalyst Co/Zeolite and Fe/Zeolite amounted to 0.5 grams at the operating temperature of 700oC for 20 minutes. N2 gas serves to minimize the occurrence of oxidation reaction (explosion when operating. From analysis result by Scanning Electron Microscopy (SEM shows the CNTs formed a type of MWNT with different of diameter size and product weight, depending on the size of the active component concentration on the catalyst. The larger of active components produced CNTs with larger diameter, whereas product weight syntheses result smaller. Use of the catalyst Fe/Zeolite produce CNTs with a diameter larger than the catalyst Co/Zeolite.  Carbon Nanotubes (CNTs merupakan salah satu aplikasi nanoteknologi yang paling terkenal dan banyak menarik perhatian para peneliti, karena memiliki beberapa kelebihan daripada material lainnya. Aplikasi dari CNT telah merambah ke berbagai aspek, seperti bidang elektronika, material, biologi dan kimia. Penelitian ini menggunakan sistem Catalytic Chemical Vapour Deposition (CCVD yang bertujuan untuk mengetahui pengaruh variasi Cobalt (Co dan Ferrum (Fe sebagai katalis dan zeolit tipe 4A sebagai penyangga katalis dengan gas

  7. Synthesis of nanocrystalline silicon thin films using the increase of the deposition pressure in the hot-wire chemical vapour deposition technique

    Directory of Open Access Journals (Sweden)

    J.K. Rath

    2010-01-01

    Full Text Available Nanostructured thin silicon-based films have been deposited using the hot-wire chemical vapour deposition (HWCVD technique at the University of the Western Cape. A variety of techniques including optical and infrared spectroscopy, Raman scattering spectroscopy, X-rays diffraction (XRD and transmission electron microscopy (TEM have been used for characterisation of the films. The electrical measurements show that the films have good values of photoresponse, and the photocurrent remains stable after several hours of light soaking. This contribution will discuss the characteristics of the hydrogenated nanocrystalline silicon thin films deposited using increased process chamber pressure at a fixed hydrogen dilution ratio in monosilane gas.

  8. Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical Vapour Deposition at low temperature (<150 ºC)

    OpenAIRE

    Villar, Fernando; Antony, Aldrin; Escarré i Palou, Jordi; Ibarz, D.; Roldán, Rubén; Stella, Marco; Muñoz Ramos, David; Asensi López, José Miguel; Bertomeu i Balagueró, Joan

    2009-01-01

    Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the...

  9. Low-pressure Chemical Vapour Deposition of Silicon Nanoparticles:Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2008-07-01

    Full Text Available emiconductor nanostructures such as quantum wells, quantum wires or quantum dots exhibit superior properties in comparison to their bulk forms. Quantum dots are described aszero-dimensional electron gas system, as carriers are confined in all the three directions. Densityof states is discrete function of energy. Allowed energy spectrum is discrete like in an atom.Energy band gap is broadened due to carriers confinement. Semiconductor quantum dots exhibittypical coulomb blockade characteristic which is exploited for development of new generationof nanoelectronic devices namely single-electron transistor, memories, etc, whose operationdepends on quantum mechanical tunneling of carriers through energy barriers. Thesesemiconductor nanostructures emit light in visible range upon excitation by optical means. Inrecent years,  research  has been focused on different nano-scale materials; metals (Au, Ag, Fe,Mn, Ni, metal oxides (SnO2, ZnO2, compound semiconductors (GaAs, GaAlAs, CdSe, CdS,GaN, and elemental semiconductors (silicon and germanium. As silicon is the most favouredmaterial in the established integrated circuits manufacturing technology, research is being donefor controlled synthesis and characterisation of Si nanoparticles. The Si nanoparticles havebeen synthesised on oxide and nitride layers over  Si substrate by IC technology compatiblelow-pressure chemical vapour deposition technique. Atomic force microscopy (AFMcharacterisation has been extensively carried out on the samples. It is shown that the tip radiusand shape of tip lead to less accurate estimate of the actual size. The AFM images have been evaluated based on the real surface topography and shape of the tip. Photolumine scence (PL studies have been performed to characterise the samples. The PL measurements showed visiblelight emission from synthesised silicon nanoparticles.Defence Science Journal, 2008, 58(4, pp.550-558, DOI:http://dx.doi.org/10.14429/dsj.58.1676

  10. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    Science.gov (United States)

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics. PMID:27165783

  11. Surface and Compositional Study of Graphene grown on Lithium Niobate (LiNbO3) substrates by Chemical Vapour Deposition

    Science.gov (United States)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    The diversity required in the designing of electronic devices motivated the community to always attempt for new functional materials and device structures. Graphene is considered as one of the most promising candidate materials for future electronics and carbon based devices. It is very exciting to combine graphene with new dielectric materials which exhibit multifunctional properties. Lithium Niobate exhibits ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as strong photorefractive and photovoltaic effects which made it one of the most extensively studied materials over the last 50 years. We used ambient pressure chemical vapour deposition to grow graphene on LiNbO3 substrates without any catalyst. The growth was carried out in presence of methane, argon and hydrogen. AFM imaging showed very unique structures on the surface which contains triangular domains. X-ray photoelectron spectroscopy (XPS) was used to get information about the presence of necessary elements, their bonding with LiNbO3 substrates. Detailed characterization is under process which will be presented later.

  12. Influence of hydrogen on chemical vapour synthesis of different carbon nanostructures using propane as precursor and nickel as catalyst

    Indian Academy of Sciences (India)

    R K Sahoo; H Mamgain; C Jacob

    2014-10-01

    The role of hydrogen in the catalytic chemical vapour deposition of carbon nanotubes using sputtered nickel thin film as a catalyst is explained in this work. The growth of different carbon nanostructures with the variation in the precursor gas content was studied by keeping all other process parameters constant and using sputtered Ni thin film as a catalyst. The catalyst granule size, its external morphology and the resulting products were analysed. Carbon nanotubes (CNTs), carbon nanofibres (CNFs) and carbon nanoribbons (CNRs) were observed under different growth conditions. The different conditions of growth leading to form tubes, fibres or ribbons were analysed by varying the flow ratio of propane and hydrogen gas during the high temperature growth. Scanning and transmission electron microscopies confirmed the above structures under different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  13. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch4/H2 and C2H2/H2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C2→C1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH3/CH4/H2 and N2/CH4/H2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH3, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H2/CH4/N2 gas mixture. Spatially resolved species emission intensity maps were obtained for C2(d→a), CN(B→X) and Hβ from Abel-inverted datasets. The C2(d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C2(a) in a DC-arcjet reactor operating on an Ar/H2/CH4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C2(v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C2(d→a) transition. (author)

  14. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  15. Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2003-01-01

    Roč. 18, č. 5 (2003), s. 487-494. ISSN 0267-9477 Institutional research plan: CEZ:AV0Z4031919 Keywords : vapour generation * ICP-OES * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.200, year: 2003

  16. Diagnostics of microwave activated novel gas mixtures for diamond chemical vapour deposition

    International Nuclear Information System (INIS)

    Microwave plasma enhanced Chemical Vapour Deposition (CVD) has been used to grow diamond films at substrate temperatures as low as 435 deg C using CO2/CH4 gas mixtures. Molecular beam mass spectrometry (MBMS) has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for a wide range of plasma gas mixtures (0 - 80% CH4, balance CO2). The CHEMKIN computer package has also been used to simulate the experimental results in order to gain insight into the major reactions occurring within the microwave plasma. The calculated trends for all species agree well with the experimental observations. Using these data, the model for the gas phase chemistry can be reduced to just four overall reactions. Our findings suggest that CH3 radicals are likely to be the key growth species when using CO2/CH4 plasmas and provide a qualitative explanation for the observation that diamond growth occurs within a very narrow concentration window. Diamond films have also been deposited; using both 1% CH4/H2 and 51%CH4/49%CO2 gas mixtures with various levels of H2S addition (100-5000 ppm). The former gas mixture was investigated using both microwave (MW) and hot filament (HF) activation and it was found that these two deposition techniques yield very different results. For both 1% CH4/H2 and 51%CH4/49%CO2 MW activated gas mixtures, scanning electron microscopy (SEM) observations show that the crystal quality of these films reduces with increasing H2S addition. Laser Raman and four point probe measurements showed a corresponding fall in the quality and resistivity of deposited diamond films, respectively. MBMS measurements for these S containing gas mixtures revealed significant concentrations of CS2 and CS in all of the MW plasmas that yield S-doped diamond films, whereas CS was not detected in the gas phase during HF growth. This suggests that CS may be an important intermediary facilitating S incorporation into diamond. All of these

  17. Investigation of optical and electronic properties of hafnium aluminate films deposited by Metal-Organic Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Alloying elemental high-k metal oxides (such as HfO2) with other metals is seen as an effective method of controlling the properties of the dielectric based on the concentration of cations in the mixture; in particular, mixing HfO2 with Al2O3, and forming hafnium aluminate layers which will still have a relatively high dielectric constant (typically k ∼ 15) and remain amorphous up to high processing temperatures. This paper summarizes the results of physical and electrical characterisation of hafnium aluminate (HfAl xO y) films prepared by Metal-Organic Chemical Vapour Deposition. We show how, using ultraviolet-visible, single angle ellipsometry, the thickness and composition of the deposited and of the transition/interfacial layers can be extracted, and further used for the estimation of the relative dielectric constant. Moreover, a methodology for extracting the band gap of these materials and its dependence on the aluminium concentration is presented. This has been achieved by using a simple parameterization model (Wemple-Di Domenico) to account for the optical dispersion of the films. Preparing thin films with a relatively high dielectric constant and with an amorphous structure even at high processing temperatures, are not the only requirements to be achieved when such layers are to be used as gate dielectrics. The electrical characteristics - such as leakage current, density of interface states, fixed charge in the oxide - are extremely important. The results obtained through capacitance-voltage and current-voltage measurements show the possibility of adjusting the relative dielectric constant of the layers in a wide range (9-16), when the aluminium concentration varies between 4% and 38%. The minimum leakage current occurs for Al concentrations up to 9%. The thinner films show Fowler-Nordheim conduction even at higher concentrations of Al into the film, while thicker films show a higher hysteresis due to an increased number of slow trapping centres in the

  18. Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

    Indian Academy of Sciences (India)

    D Sen; K Dasgupta; J Bahadur; S Mazumder; D Sathiyamoorthy

    2008-11-01

    Small angle neutron scattering (SANS) has been utilized to study the morphology of the multi-walled carbon nanotubes prepared by chemical vapour deposition of acetylene. The effects of various synthesis parameters like temperature, catalyst concentration and catalyst support on the size distribution of the nanotubes are investigated. Distribution of nanotube radii in two length scales has been observed. The number density of the smaller diameter tubes was found more in number compared to the bigger one for all the cases studied. No prominent scaling of the structure factor was observed for the different synthesis conditions.

  19. Thin-Film Deposition of Metal Oxides by Aerosol-Assisted Chemical Vapour Deposition: Evaluation of Film Crystallinity

    Science.gov (United States)

    Takeuchi, Masahiro; Maki, Kunisuke

    2007-12-01

    Sn-doped In2O3 (ITO) thin films are deposited on glass substrates using 0.2 M aqueous and methanol solutions of InCl3(4H2O) with 5 mol % SnCl2(2H2O) by aerosol-assisted chemical vapour deposition under positive and negative temperature gradient conditions. The film crystallinity is evaluated by determining the film thickness dependence of X-ray diffraction peak height. When using aqueous solution, the ITO films grow with the same crystallinity during the deposition, but when using methanol solution, the preferred orientation of ITO changes during the deposition.

  20. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser

    Institute of Scientific and Technical Information of China (English)

    N. A. Poklonski; N. M. Lapchuk; A. V. Khomich; LU Fan-Xiu; TANG Wei-Zhong; V. G. Ralchenko; I. I. Vlasov; M. V. Chukichev; Sambuu Munkhtsetseg

    2007-01-01

    Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 1018 cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.

  1. Inkjet printing of catalyst-Inks on Si wafers and the subsequent synthesis of carbon nanotubes by chemical vapour deposition

    International Nuclear Information System (INIS)

    The production of substrates coated with carbon nano tubes (CNTs) in well-defined patterns is desirable for sensor applications. In the present work, nickel based catalytic inks were prepared and printed on silicon substrates using ink jet delivery. Subsequently, the substrates were subjected to calcination and chemical vapour deposition for the growth of aligned CNTs. Scanning electron microscopy, transmission electron microscopy and Raman spectroscopy were used to characterize the CNTs. Various concentrations and formulations of ink preparations were studied to investigate the effect of these parameters on the growth and structure of the CNTs. (author)

  2. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  3. Review of analytical techniques to determine the chemical forms of vapours and aerosols released from overheated fuel

    International Nuclear Information System (INIS)

    A comprehensive review has been undertaken of appropriate analytical techniques to monitor and measure the chemical effects that occur in large-scale tests designed to study severe reactor accidents. Various methods have been developed to determine the chemical forms of the vapours, aerosols and deposits generated during and after such integral experiments. Other specific techniques have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Such in-situ and post-test methods of analysis have been also assessed in terms of their applicability to the analysis of samples from the Phebus-FP tests. The recommended in-situ methods of analysis are gamma-ray spectroscopy, potentiometry, mass spectrometry, and Raman/UV-visible absorption spectroscopy. Vapour/aerosol and deposition samples should also be obtained at well-defined time intervals during each experiment for subsequent post-test analysis. No single technique can provide all the necessary chemical data from these samples, and the most appropriate method of analysis involves a complementary combination of autoradiography, AES, IR, MRS, SEMS/EDS, SIMS/LMIS, XPS and XRD

  4. Inline atmospheric pressure metal-organic chemical vapour deposition for thin film CdTe solar cells

    International Nuclear Information System (INIS)

    A detailed study has been undertaken to assess the deposition of CdTe for thin film devices via an inline atmospheric pressure metal-organic chemical vapour deposition (AP-MOCVD) reactor. The precursors for CdTe synthesis were released from a showerhead assembly normal to a transparent conductive oxide (TCO)/glass substrate, previously coated with a CdZnS window layer using a conventional batch AP-MOCVD reactor with horizontal flow delivery. Under a simulated illumination with air mass coefficient 1.5 (AM1.5), the initial best cell conversion efficiency (11.2%) for such hybrid cells was comparable to a reference device efficiency (∼ 13%), grown entirely in the AP-MOCVD batch reactor. The performance and structure of the hybrid and conventional devices are compared for spectral response, CdTe grain morphology and crystal structure. These preliminary results reported on the transfer from a batch to an inline AP-MOCVD reactor which holds a good potential for the large-scale production of thin film photovoltaics devices and related materials. - Highlights: • Inline metal-organic chemical vapour deposition (MOCVD) used to grow CdTe films • Desired dopant profiles in CdTe:As achieved with inline MOCVD reactor • Initial conversion efficiency of 11.2% was comparable to batch devices (∼ 13%). • Inline MOCVD holds a good potential for large-scale thin film photovoltaics production

  5. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950oC or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling

  6. Lasers in chemical processing

    International Nuclear Information System (INIS)

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  7. Chemical vapour etching of silicon and porous silicon: silicon solar cells and micromachining applications

    Energy Technology Data Exchange (ETDEWEB)

    Ben Jaballah, A.; Hassen, M.; Hajji, M.; Saadoun, M.; Bessais, B.; Ezzaouia, H. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Materiaux Semiconducteurs, PB 95 2050 Hammam lif (Tunisia)

    2005-06-01

    In this work, we used HNO{sub 3}/HF Vapour Etching (VE) of silicon (Si) wafers for the formation of different porous structures. Depending on the volume ratio of the HNO{sub 3}/HF acid mixture, we can obtain Porous Silicon (PS) layers or a (NH{sub 4}){sub 2}SiF{sub 6} like powder phase. These two kind of porous structures may be used in silicon solar cells and in micromachining applications. The VE technique allows producing thick porous layers (>100 {mu}m) in short times. Simple masking films enable to selectively groove Si wafers, leading to the formation of holes and channels of different sizes suitable for their application in micromachining. The various grooving profiles were investigated by Scanning electron microscopy (SEM). (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Grafting 4f and 3d metal complexes into mesoporous MCM-41 silica by wet impregnation and by chemical vapour infiltration

    International Nuclear Information System (INIS)

    Hybrid organic/inorganic materials have been prepared by reacting mesoporous MCM-41 silica with transition metal β-diketonates, either by wet impregnation (WI) or by chemical vapour infiltration (CVI). Compounds obtained from Eu(III) or Gd(III) β-diketonates, both by wet impregnation and by CVI, contain chemisorbed metalorganic species with strong Si-O-Ln bonding. Compounds prepared (by CVI only) from Cu(II) or Mn(III) β-diketonates show a more complex absorption process than the lanthanides, since upon heating under dynamic vacuum they release part of the absorbed metal complex. Eu(thd)3 was more specifically used to prepare luminescent materials. It was used either alone, or with phenanthroline as an additional ligand in order to promote the so called 'antenna effect'

  9. Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study

    Science.gov (United States)

    Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera

    2016-04-01

    A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http

  10. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  11. a Study of Volatile Precursors for the Growth of Cadmium Sulphide and Cadmium Selenide by Metal Organic Chemical Vapour Deposition.

    Science.gov (United States)

    Beer, Michael P.

    Available from UMI in association with The British Library. The wide-band-gap semiconductors, cadmium sulphide and cadmium selenide, may be grown by Metal Organic Chemical Vapour Deposition (MOCVD). This method typically involves the reaction of gaseous streams of Me_2 Cd and H_2Y (Y = S, Se) over a heated substrate (usually gallium arsenide) on which the desired compound is grown as an epitaxial layer. Unfortunately, the precursors start to react in the cold zone of the reactor, that is before they reach the heated substrate. This problem is known as prereaction. The problem of prereaction is partially reduced by the use of adducts of dimethyl cadmium in place of the free dialkyl compound although the mechanism by which such adducts block prereaction is unknown. Accordingly, a study of adducts of dimethyl cadmium was undertaken with a view to determining their properties in all phases. The adduct of Me_2Cd with 2,2^ '-bipyridyl was found to be monomeric in the solid state while that with 1,4-dioxane, a volatile compound used for prereaction reduction, was found to be polymeric. A study of adducts in the gas phase using mass spectrometry and gas phase Fourier transform infrared spectroscopy gave no evidence to suggest there is any gas phase association between 1,4-dioxane and dimethyl cadmium. With the 2,2 ^'-bipyridyl adduct some evidence for partial retention of coordinate bonds upon sublimation was obtained. The solid adduct of Me _2Cd with N,N,N^' ,N^'-tetramethylethylenediamine (TMEDA) was prepared as it was hoped that the flexibility of the aliphatic Lewis base would permit the formation of an adduct containing strong co-ordinate bonds which would remain intact upon sublimation. Using gas phase electron diffraction, the structure of the adduct of Me_2Cd and TMEDA was determined. It was shown to exist in the gas phase purely as the associated monomeric species. The adduct was then employed for the growth of CdS and CdSe in an industrial MOCVD apparatus. The

  12. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  13. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges

    Science.gov (United States)

    Tallaire, Alexandre; Achard, Jocelyn; Silva, François; Brinza, Ovidiu; Gicquel, Alix

    2013-02-01

    Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.

  14. Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    International Nuclear Information System (INIS)

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 oC disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  15. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LIU Guo-Jun; WANG Xiao-Hua; LI Mei; LI Zhan-Guo; WAN Chun-Ming

    2008-01-01

    The serf-assembled InAs quantum dots (QDs) on GaAs substrates with low density (5×108cm-2) are achieved using relatively higher growth temperature and low InAs coverage by low-pressure metal-organic chemical vapour deposition.The macro-PL spectra exhibit three emission peaks at 1361,1280 and 1204nm,corresponding to the ground level (GS),the first excited state (ES1) and the second excited state (ES2) of the QDs,respectively,which are obtained when the GaAs capping layer/s grown using triethylgallium and tertiallybutylarsine.As a result of micro-PL,only a few peaks from individual dots have been observed.The exciton-biexciton behaviour was clearly observed at low temperature.

  16. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 oC lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 oC to - 23 oC. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.

  17. Monte Carlo simulation of the behaviour of electrons during electron-assisted chemical vapour deposition of diamond

    Institute of Scientific and Technical Information of China (English)

    董丽芳; 陈俊英; 董国义; 尚勇

    2002-01-01

    The behaviour of electrons during electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron energy distribution and velocity distribution are obtained over a wide range of reduced field E/N (the ratio of the electric field to gas molecule density) from 100 to 2000 in units of 1Td=10-17Vcm2.Their effects on the diamond growth are also discussed. Themain results obtained are as follows. (1) The velocity profile is asymmetric for the component parallel to the field.Ihe velocity distribution has a peak shift in the field direction. Most electrons possess non-zero velocity parallel to the substrate. (2) The number of atomic H is a function of E/N. (3) High-quality diamond can be obtained under the condition of E/N from 50 to 800Td due to sufficient atomic H and electron bombardment.

  18. Aerosol assisted chemical vapour deposition of germanium thin films using organogermanium carboxylates as precursors and formation of germania films

    Indian Academy of Sciences (India)

    Alpa Y Shah; Amey Wadawale; Vijaykumar S Sagoria; Vimal K Jain; C A Betty; S Bhattacharya

    2012-06-01

    Diethyl germanium bis-picolinate, [Et2Ge(O2CC5H4N)2], and trimethyl germanium quinaldate, [Me3Ge(O2CC9H6N)], have been used as precursors for deposition of thin films of germanium by aerosol assisted chemical vapour deposition (AACVD). The thermogravimetric analysis revealed complete volatilization of complexes under nitrogen atmosphere. Germanium thin films were deposited on silicon wafers at 700°C employing AACVD method. These films on oxidation under an oxygen atmosphere at 600°C yield GeO2. Both Ge and GeO2 films were characterized by XRD, SEM and EDS measurements. Their electrical properties were assessed by current–voltage (–) characterization.

  19. Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dou Xin-Yuan; Luo Shu-Dong; Zhang Zeng-Xing; Liu Dong-Fang; Wang Jian-Xiong; Gao Yan; Zhou Wei-Ya; Wang Gang; Zhou Zhen-Ping; Tan Ping-Heng; Zhou Jian-Jun; Song Li; Sun Lian-Feng; Jiang Peng; Liu Li-Feng; Zhao Xiao-Wei

    2005-01-01

    Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280℃). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

  20. Structural and Luminescent Properties of ZnO Thin Films Deposited by Atmospheric Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Liang; LIN Bi-Xia; HONG Liang; MENG Xiang-Dong; FU Zhu-Xi

    2004-01-01

    ZnO thin films were successfully deposited on Si (100) substrates by chemical vapour deposition (CVD) at atmospheric pressure (1 atm). The only solid source used here is zinc acetate, (CHsCOO)2Zn, and the carrier gas is nitrogen. The sample, which was prepared at 550℃ during growth and then annealed in air at 900℃ , has only a ZnO (002) diffraction peak at 34.6° with its FWHM of 0.23° in the XRD pattern. The room-temperature PL spectrum shows a strong ultraviolet emission with the peak centred at 380nm. We analysed the effects of many factors, such as the source, substrates, growth and annealing temperatures, and annealing ambience, on the structural and optical properties of our prepared ZnO films.

  1. Atmospheric pressure chemical vapour deposition of NbSe2-TiSe2 composite thin films

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapour deposition of titanium tetrachloride and niobium pentachloride with di-tert-butyl selenide at 550 deg. C was investigated for different precursors' flow rates. Scanning electron microscopy of the films showed that they were composed of two different kinds of plate-like crystallites. Point wavelength dispersive X-ray (WDX) analyses of the crystallites revealed that they either had the NbSe2 or the TiSe2 composition. The presence of the two phases was confirmed by X-ray diffraction (XRD) and the calculated cell parameters indicate that niobium or titanium was not incorporated into each others' lattice. WDX and XRD analyses highlighted how the NbSe2:TiSe2 ratio in the composite films could be controlled by precursor flow rate.

  2. Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Nitrogen-doped single-walled carbon nanotubes (N-SWNTs) are directly grown on SiO2/Si substrates at 450 deg. C with methane and ammonia gases by water-plasma chemical vapour deposition. The strongest radial breathing mode peak in Raman spectra of the grown N-SWNTs, probed with a 633 nm laser excitation, was assigned to (7, 5) semiconducting nanotubes with a diameter of 0.83 nm. As the doped nitrogen content increases, the D-band to G-band ratio in Raman spectra, indicating the imperfection of nanotubes, gradually increases and saturates at around 4%. X-ray photoelectron spectroscopy shows that nitrogen atoms are doped with a pyridine-like configuration in the N-SWNTs

  3. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  4. Properties of MgB2 films grown at various temperatures by hybrid physical chemical vapour deposition

    Science.gov (United States)

    Chen, Ke; Veldhorst, Menno; Lee, Che-Hui; Lamborn, Daniel R.; DeFrain, Raymond; Redwing, Joan M.; Li, Qi; Xi, X. X.

    2008-09-01

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 thin films at temperatures as low as 350 °C with a Tc0 of 35.5 K. MgB2 films up to 4 µm in thickness grown at 550 °C have Jc over 106 A cm-2 at 5 K and zero applied field. The low deposition temperature of MgB2 films is desirable for all-MgB2 tunnel junctions and MgB2 thick films are important for applications in coated conductors.

  5. Properties of MgB{sub 2} films grown at various temperatures by hybrid physical-chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Veldhorst, Menno; Li, Qi; Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lee, Che-Hui; Lamborn, Daniel R; DeFrain, Raymond; Redwing, Joan M [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-09-15

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB{sub 2} thin films and thick films at various temperatures. We are able to grow superconducting MgB{sub 2} thin films at temperatures as low as 350 deg. C with a T{sub c0} of 35.5 K. MgB{sub 2} films up to 4 {mu}m in thickness grown at 550 deg. C have J{sub c} over 10{sup 6} A cm{sup -2} at 5 K and zero applied field. The low deposition temperature of MgB{sub 2} films is desirable for all-MgB{sub 2} tunnel junctions and MgB{sub 2} thick films are important for applications in coated conductors.

  6. Properties of MgB2 films grown at various temperatures by hybrid physical-chemical vapour deposition

    International Nuclear Information System (INIS)

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 thin films at temperatures as low as 350 deg. C with a Tc0 of 35.5 K. MgB2 films up to 4 μm in thickness grown at 550 deg. C have Jc over 106 A cm-2 at 5 K and zero applied field. The low deposition temperature of MgB2 films is desirable for all-MgB2 tunnel junctions and MgB2 thick films are important for applications in coated conductors

  7. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  8. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  9. The properties of GaMnN films grown by metalorganic chemical vapour deposition using Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Xing Hai-Ying; Niu Ping-Juan; Xie Yu-Xin

    2012-01-01

    An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values.New bands around 300 and 669 cm-1,that are not observed in undoped GaN,are found.They are assigned to disorder-activated mode and local vibration mode (LVM),respectively.After annealing,the intensity ratio between the LVM and E2(high) mode,i.e.,ILVM/IE2(high),increases.The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN,and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN.The ferromagnetic character and the carrier density of our GaMnN sample are discussed.

  10. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL2O3. Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al2O3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  11. Low-pressure chemical vapour deposition growth of high-quality ZnO films on epi-GaN/α-Al2O3

    International Nuclear Information System (INIS)

    We present the first results on (0001) ZnO/(0001) epi-GaN/(0001) α-Al2O3 heterostructure fabrication combining metal-organic vapour phase epitaxy and low-pressure chemical vapour deposition methods. The surface morphologies of the films were studied, and x-ray and reflection high-energy electron diffraction measurements were made, which showed a high degree of structural perfection of the ZnO films, with crystallite misorientation as low as 21'. The measured photoluminescence spectra of the films featured prevailingly emission within the excitonic region. (author). Letter-to-the-editor

  12. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract

  13. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Taraneh [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada); Laurent, Sophie; Stanicki, Dimitri [University of Mons, Laboratory of NMR and Molecular Imaging (Belgium); Raphael, Wendell; Tavares, Jason Robert, E-mail: jason.tavares@polymtl.ca [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada)

    2015-12-15

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract.

  14. XMCD studies of Co{sub x}Pt{sub 100-x} nanoparticles prepared by vapour deposition and chemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Imperia, P. [Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); ANSTO, Institute of Materials and Engineering, New Illawarra Road, Lucas Heights, Sydney, NSW (Australia); Glaser, L.; Martins, M.; Wurth, W. [Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Andreazza, P.; Penuelas, J.; Andreazza-Vignolle, C. [Centre de Recherce sur la Matiere Divisee, UMR6619, CNRS-University of Orleans, 1B rue de la Ferollerie, 45071 Orleans Cedex 2 (France); Alessandrovic, V.; Weller, H. [Universitaet Hamburg, Institut fuer Physikalische Chemie, Grindelallee 117, 20146 Hamburg (Germany)

    2008-05-15

    An almost linear relation between the Pt amount and the orbital to spin moment ratio ({mu}{sub l}/{mu}{sub s}) has been found in Co{sub x}Pt{sub 100-x} nanoparticles prepared by vapour deposition and possessing a well defined chemically disordered crystallographic structure. X-ray magnetic circular dichroism (XMCD) measurements done at the L{sub 2,3}Co edges show that a 4.0 nm, x=100 Co reference sample has a ratio {mu}{sub l}/{mu}{sub s}=0.097, comparable to values found for Co thin layers. An increase of the amount of Pt increases the {mu}{sub l}/{mu}{sub s} value: {mu}{sub l}/{mu}{sub s}=0.11 for x=78, {mu}{sub l}/{mu}{sub s}=0.12 when x=74 and finally, for x=38 it becomes {mu}{sub l}/{mu}{sub s}=0.140. Nanoparticles prepared by chemical synthesis with size proportional to changes of the stoichiometric ratio, from Co{sub 25}Pt{sub 75} to Co{sub 50}Pt{sub 50}, show values of the orbital to spin moment ratio compatible with the trend found for the former ones. The samples prepared by chemical synthesis in a diameter range from 4 nm to 8 nm are characterized by a sharp size distribution of 10%. In contrast to the in situ prepared nanoparticles that are oxide free, however, they show a varying degree of surface oxidation depending on the ambient conditions they are exposed to. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  16. Metal organic chemical vapour deposition of SrRuO3 thin films on SrTiO3

    International Nuclear Information System (INIS)

    SrRuO3 with pseudo-cubic crystalline structure (a=0.393 nm) appears to be one of the most suitable conductive oxides to be used as bottom electrode for the oxide-based electronic devices, due to its high conductivity and low lattice misfit with many functional perovskite transition metal oxides. Furthermore, this electrode has a lower density of defects (oxygen vacancies, dislocations, dead layer) compared with metal electrodes (Pt,Ru,Ir). A vertical liquid-delivery metal-organic chemical vapour deposition (MO-CVD) reactor was used to deposit (100)-oriented SrRuO3 films on vicinal SrTiO3(100) substrates. In order to grow epitaxial thin films with low defect density and high electrical conductivity and to optimise the deposition parameters, the influence of deposition temperature (500-700 C), argon/oxygen ratio (1.6-3.3), total gas flow (4875-8125 sccm) and reactor pressure (12 mbar-40 mbar) was investigated. Composition of the films was identified by GDOES technique. Raman and XRD were used to determine film orientation and the surface morphology and roughness was analysed by AFM and SEM microscopy

  17. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    International Nuclear Information System (INIS)

    In this study, 4 x 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  18. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Science.gov (United States)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A.; Bisaro, R.; Servet, B.; Garry, G.; Barjon, J.

    2012-03-01

    In this study, 4 × 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  19. Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Min; Blackman, Chris [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-07-15

    Aerosol assisted chemical vapour deposition (AACVD) is used to deposit tungsten oxide thin films from tungsten hexacarbonyl (W(CO){sub 6}) at 339 to 358 C on quartz substrate. The morphologies of as-deposited thin films, which are comprised of two phases (W{sub 25}O{sub 73} and W{sub 17}O{sub 47}), vary from planar to nanorod (NR) structures as the distance from the inlet towards the outlet of the reactor is traversed. This is related to variation of the actual temperature on the substrate surface (ΔT = 19 C), which result in a change in growth mode due to competition between growth rate (perpendicular to substrate) and nucleation rate (parallel to substrate). When the ratio of perpendicular growth rate to growth rate contributed by nucleation is higher than 7.1, the as-deposited tungsten oxide thin film forms as NR. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, Christopher S., E-mail: c.blackman@ucl.ac.u [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Piccirillo, C.; Binions, R.; Parkin, Ivan P. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom)

    2009-06-30

    Atmospheric pressure chemical vapour deposition of VCl{sub 4}, WCl{sub 6} and water at 550 {sup o}C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 {sup o}C to - 23 {sup o}C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.

  1. InGa1−N fibres grown on Au/SiO2 by chemical vapour deposition

    Indian Academy of Sciences (India)

    A Ramos-Carrazco; R García; M Barboza-Flores; R Rangel

    2014-12-01

    The growth of InGa1−N films ( = 0.1 and = 0.2) on a thin gold layer (Au/SiO2) by chemical vapour deposition (CVD) at 650 °C is reported. As a novelty, the use of a Ga–In metallic alloy to improve the indium incorporation in the InGa1−N is proposed. The results of high quality InGa1−N films with a thickness of three micrometres and the formation of microfibres on the surface are presented. A morphological comparison between the InGa1−N and GaN films is shown as a function of the indium incorporation. The highest crystalline InGa1−N films structure was obtained with an indium composition of = 0.20. Also, the preferential growth on the (002) plane over In0.2Ga0.8N was observed by means of X-ray diffraction. The thermoluminescence (TL) of the InGa1−N films after beta radiation exposure was measured indicating the presence of charge trapping levels responsible for a broad TL glow curve with a maximum intensity around 150 °C. The TL intensity was found to depend on composition being higher for = 0.1 and increases as radiation dose increases.

  2. Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Liang Song; Wang Wei; Zhu Hong-Liang; Pan Jiao-Qing; Zhao Ling-Juan; Wang Lu-Feng; Zhou Fan; Shu Hui-Yun; Bian Jing; An Xin

    2008-01-01

    Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied.PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample.During rapid thermal annealing,however,the low growth rate sample shows a greater blueshift of PL peak wavelength.This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample.A growth technique including growth interruption and in-situ annealing,named indium flush method,is used during the growth of GaAs cap layer,which can flatten the GaAs surface effectively.Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width,it is essential for the fabrication of room temperature working QD lasers.

  3. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    Indian Academy of Sciences (India)

    Kaushik Patel; Jagdish Prajapati; Rajiv Vaidya; S G Patel

    2005-08-01

    Single crystals of the lamellar compound, ZrSe3, were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700–1450 nm. The indirect as well as direct band gap of ZrSe3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303–423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail.

  4. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3–4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18–300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm2 V−1 s−1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33–41 meV range and concentration of the order of 1017 cm−3, as well as a total acceptor concentration of mid-1015 cm−3. Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered

  5. Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides

    International Nuclear Information System (INIS)

    In this study, silicon nanocrystal (Si-nc) growth is studied in a relatively long thermal budget regime, 3 h at 1100-1200 deg. C, to examine large diameter nanocrystals (i.e. average diameters greater than 5 nm). Morphology, defects within the nanocrystals and size dependence as a function of thickness in the oxide are exaggerated in this regime and are more readily characterized in the longer diffusion length regime. In particular, nearby surfaces, the silicon substrate and oxide surface, appear to deplete the excess silicon in the oxide, leading to a strong nanocrystal size dependence with position in the oxide. To pursue this work, silicon naocrystals were formed through a combination of high density plasma enhanced chemical vapour deposition (HDP-CVD) of silicon rich oxides (SRO) followed by phase separation of the SRO into Si-ncs and stoichiometric oxide (SiO2). Details of the characterization of the as-grown HDP-CVD SROs are included, and differences in the Si-O-Si stretch mode peak position dependence on [O] between HDP-CVD and previously reported plasma enhanced CVD are discussed

  6. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  7. In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition

    Indian Academy of Sciences (India)

    Preetam Singh; Ashvani Kumar; Ajay Kaushal; Davinder Kaur; Ashish Pandey; R N Goyal

    2008-06-01

    Ultrasonic mist chemical vapour deposition (UM–CVD) system has been developed to prepare ZnO nanopowder. This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using transmission electron microscopy (TEM) and field emission electron microscope (FESEM). The optical properties are observed using UV-visible spectrophotometer. The influence of high temperature vacuum annealing on XRD pattern is systematically studied. Results of high temperature XRD showed prominent 100, 002 and 101 reflections among which 101 is of highest intensity. With increase in temperature, a systematic shift in peak positions towards lower 2 values has been observed, which may be due to change in lattice parameters. Temperature dependence of lattice constants under vacuum shows linear increase in their values. Diffraction patterns obtained from TEM are also in agreement with the XRD data. The synthesized powder exhibited the estimated direct bandgap (g) of 3.43 eV. The optical bandgap calculated from Tauc’s relation and the bandgap calculated from the particle size inferred from XRD were in agreement with each other.

  8. Structural and optical properties of hydrogenated amorphous silicon carbide films by helicon wave plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films with different carbon concentrations have been deposited using the helicon wave plasma-enhanced chemical vapour deposition technique under the condition of strong hydrogen dilution. The a-Si1-xCx:H films with carbon content x up to 0.64 have been deposited. Their structural and optical properties are investigated using Fourier transform infrared spectroscopy, Raman scattering, ultraviolet-visible transmittance spectroscopy and x-ray photoelectron spectroscopy. The deposition rate, optical band gap and B factor related to structural disorder are found to monotonically change in the investigated range with methane-silane gas flow ratios. It is found that the deposited films exist with the structure of Si-like clusters and Si-C networks when silicon content is high, while they consist mainly of C-like clusters and Si-C networks for carbon-rich samples. A large optical band gap is obtained in high carbon concentration samples, which is attributed to the high density characteristic of helicon wave plasmas and the strong hydrogen dilution condition

  9. Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor

    Directory of Open Access Journals (Sweden)

    Oyedotun K.O.

    2015-12-01

    Full Text Available Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS, UV-Vis spectrophotometry, X-ray diffraction (XRD spectroscopy, atomic force microscopy (AFM and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2 and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.

  10. Titania Coated Mica via Chemical Vapour Deposition, Post N-doped by Liquid Ammonia Treatment

    Science.gov (United States)

    Powell, Michael J.; Parkin, Ivan P.

    TiO2 films were successfully grown on synthetic mica powders via Chemical Vapor Deposition (CVD). The CVD rig is a cold-walled design that allows surface coverage of a powder to be successfully achieved. The TiO2 was produced by the reaction between TiCl4 and Ethyl Acetate. The powder produced could be successfully N-doped using post liquid ammonia treatment. The TiO2 powder produced could have potential applications in self-cleaning surfaces or antimicrobial paints.

  11. Nanofabrication using home-made RF plasma coupled chemical vapour deposition system

    International Nuclear Information System (INIS)

    Zinc oxide, ZnO, a popular semiconductor material with a wide band gap (3.37 eV) and high binding energy of the exciton (60 meV), has numerous applications such as in optoelectronics, chemical/biological sensors, and drug delivery. This project aims to (i) optimize the operating conditions for growth of ZnO nanostructures using the chemical vapor deposition (CVD) method, and (ii) investigate the effects of coupling radiofrequency (RF) plasma to the CVD method on the quality of ZnO nanostructures. First, ZnO nanowires were synthesized using a home-made reaction setup on gold-coated and non-coated Si (100) substrates at 950 °C. XRD, SEM, EDX, and PL measurements were used for characterizations and it was found that a deposition duration of 10 minutes produced the most well-defined ZnO nanowires. SEM analysis revealed that the nanowires had diameters ranging from 30-100 mm and lengths ranging from 1-4 µm. In addition, PL analysis showed strong UV emission at 380 nm, making it suitable for UV lasing. Next, RF plasma was introduced for 30 minutes. Both remote and in situ RF plasma produced less satisfactory ZnO nanostructures with poorer crystalline structure, surface morphology, and optical properties due to etching effect of energetic ions produced from plasma. However, a reduction in plasma discharge duration to 10 minutes produced thicker and shorter ZnO nanostructures. Based on experimentation conducted, it is insufficient to conclude that RF plasma cannot aid in producing well-defined ZnO nanostructures. It can be deduced that the etching effect of energetic ions outweighed the increased oxygen radical production in RF plasma nanofabrication. (author)

  12. Chemical processing of lunar materials

    Science.gov (United States)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  13. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  14. Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

    OpenAIRE

    Jones, Benjamin; Ojeda, J. J.

    2012-01-01

    Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp2/sp3 ratios were calculated both by the deconvolut...

  15. Fabrication and gas sensing properties of pure and au-functionalised W03 nanoneedle-like structures, synthesised via aerosol assisted chemical vapour deposition method

    OpenAIRE

    Stoycheva, Toni

    2011-01-01

    In this doctoral thesis, it has been investigated and developed the Aerosol Assisted Chemical Vapour Deposition (AACVD) method for direct in-situ growth of intrinsic and Au-functionalised nanostructured WO3, as well as SnO2-based devices for gas sensing applications. The nanostructured material synthesis, device fabrication and their gas sensing properties have been studied. AACVD method was used for synthesis and direct deposition of sensing films onto classical alumina and microhotplat...

  16. Chemical vapour deposition of very thin coatings on carbon fibre bundles

    OpenAIRE

    Stumm, T.; Fitzer, E.; Wahl, G

    1992-01-01

    The continuous deposition of thin coatings of refractory materials on carbon fibre rovings is considered as the impregnation of a endless cylinder with slit-like pores in the direction parallel with the cylinder axis. From such a model, the limits of process parameters for the simultaneous coating of all individual monofilaments are derived. In detail a correlation between the deposition parameters and the resulting layer thickness is discussed for a deposition with high and low conversion re...

  17. Investigation of the growth process of Si nanowires using the vapour-liquid-solid mechanism

    Institute of Scientific and Technical Information of China (English)

    邢英杰; 俞大鹏; 奚中和; 薛增泉

    2002-01-01

    Silicon nanowires have been grown by the thermal decomposition of silane via the vapour-liquid-solid (VLS)mechanism. Three different stages of VLS growth (eutectic alloy formation, crystal nucleation and unidirectional growth)were studied separately using a scanning electron microscope and a high-resolution transmission electron microscope.Very short silicon nanowires prepared under particular conditions provide direct evidence of the VLS mechanism on a nanometre scale. Our results will be very helpful for the controllable synthesis of Si nanowires.

  18. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system

  19. Growth of AlGaSb Compound Semiconductors on GaAs Substrate by Metalorganic Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    A. H. Ramelan

    2010-01-01

    Full Text Available Epitaxial AlxGa1-xSb layers on GaAs substrate have been grown by atmospheric pressure metalorganic chemical vapour deposition using TMAl, TMGa, and TMSb. We report the effect of V/III flux ratio and growth temperature on growth rate, surface morphology, electrical properties, and composition analysis. A growth rate activation energy of 0.73 eV was found. For layers grown on GaAs at 580∘C and 600∘C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580∘C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology and its hole mobility and carrier concentration are equal to 237 cm2/V.s and 4.6 × 1017 cm-3, respectively, at 77 K. The net hole concentration of unintentionally doped AlGaSb was found to be significantly decreased with the increased of aluminium concentration. All samples investigated show oxide layers (Al2O3, Sb2O3, and Ga2O5 on their surfaces. In particular the percentage of aluminium-oxide was very high compared with a small percentage of AlSb. Carbon content on the surface was also very high.

  20. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yongzhong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Chen, Jian, E-mail: wuhangzs@163.com [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Fu, Qingshan [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Li, Binghong [China Rubber Group Carbon Black Industry Research and Design Institute, 643000 Zigong, Sichuan (China); Zhang, Huazhi; Gong, Yong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China)

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C{sub 4}H{sub 4}CuO{sub 6} → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  1. Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens.

    Science.gov (United States)

    Varghese, Sajnu; Elfakhri, Souad O; Sheel, David W; Sheel, Paul; Bolton, Frederick J Eric; Foster, Howard A

    2013-01-01

    There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of bacteria used for disinfectant testing and bacteria of current interest in HCAI. The structure of the coatings was determined using Scanning Electron Microscopy and their hardness and adhesion to the substrate determined. Antimicrobial activity was tested using a method based on BS ISO 22196:2007. The coatings had a pale green-brown colour and had a similar hardness to steel. SEM showed nano-structured aggregates of Cu within a silica matrix. A log10 reduction in viability of >5 could be obtained within 4 h for the disinfectant test strains and within 6 h for producing Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia. Activity against the other hospital isolates was slower but still gave log10 reduction factors of >5 for extended spectrum β-lactamase producing Escherichia coli and >3 for vancomycin resistant Enterococcus faecium, methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa within 24 h. The results demonstrate the importance of testing antimicrobial materials destined for healthcare use against isolates of current interest in hospitals as well as standard test strains. The coatings used here can also be applied to substrates such as metals and ceramics and have potential applications where reduction of microbial environmental contamination is desirable. PMID:24007899

  2. Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure

    International Nuclear Information System (INIS)

    Silicon nitride films were deposited using an atmospheric pressure plasma source. The discharge was produced by flowing nitrogen and helium through two perforated metal electrodes that were driven by 13.56 MHz radio frequency power. Deposition occurred by mixing the plasma effluent with silane and directing the flow onto a rotating silicon wafer heated to between 100 deg. C and 500 deg. C. Film growth rates ranged from 90±10 to 1300±130 A min-1. Varying the N2/SiH4 feed ratio from 55.0 to 5.5 caused the film stoichiometry to shift from SiN1.45 to SiN1.2. Minimum impurity concentrations of 0.04% carbon, 3.6% oxygen and 13.6% hydrogen were achieved at 500 deg. C, and an N2/SiH4 feed ratio of 22.0. The growth rate increased with increasing silane and nitrogen partial pressures, but was invariant with respect to substrate temperature and rotational speed. The deposition rate also decreased sharply with distance from the plasma. These results combined with emission spectra taken of the afterglow suggest that gas-phase reactions between nitrogen atoms and silane play an important role in this process

  3. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    R V Krishnarao; J Subrahmanyam; S Subbarao

    2001-06-01

    A CVD system for the production of continuous SiC fibre was set up. The process of SiC coating on 19 m diameter tungsten substrate was studied. Methyl trichloro silane (CH3SiCl3) and hydrogen reactants were used. Effect of substrate temperature (1300–1500°C) and concentration of reactants on the formation of SiC coating were studied. SiC coatings of negligible thickness were formed at very low flow rates of hydrogen (5 × 10–5 m3/min) and CH3SiCl3 (1.0 × 10–4 m3/min of Ar). Uneven coatings and brittle fibres were formed at very high concentrations of CH3SiCl3 (6 × 10–4 m3/min of Ar). The flow rates of CH3SiCl3 and hydrogen were adjusted to get SiC fibre with smooth surface. The structure and morphology of SiC fibres were evaluated.

  4. Metalorganic chemical vapour deposition of junction isolated GaAlAs/GaAs LED structures

    Science.gov (United States)

    Bradley, R. R.; Ash, R. M.; Forbes, N. W.; Griffiths, R. J. M.; Jebb, D. P.

    1986-09-01

    A low-cost high-radiance Ga(1-x)Al(x)As/GaAs LED has been developed using p-n junction isolation to achieve current confinement in an inverted Burrus LED structure. Using this structure devices with a high internal quantum efficiency of 87 percent which launch up to 1.5 mW into 200-micron, 0.3 nA fiber at 150 mA and have rise and fall times of less than 5 ns, have been fabricated. The LED structure involved a two-stage growth process in which initially an n-type isolation layer was grown on a p-type substrate, followed by infill growth, through contact holes, of the inverted LED structure. This paper will describe in detail the growth and preparation of the optimized junction isolated LED structure, including growth rate and composition control, layer uniformity and deliberate interface grading. Exploration of the use of magnesium doping and triethylaluminum for precise control of active layer doping and composition will be discussed, and finally details of device characteristics and performance are presented.

  5. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.

    Science.gov (United States)

    Poinern, Gérrard E J; Ng, Yan-Jing; Fawcett, Derek

    2010-12-15

    The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW's were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications. PMID:20887996

  6. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    International Nuclear Information System (INIS)

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  7. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    Science.gov (United States)

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed. PMID:19928267

  8. Ionic Liquids: Green Solvents for Chemical Processing

    OpenAIRE

    Antonia Pérez de los Ríos; Angel Irabien; Frank Hollmann; Francisco José Hernández Fernández

    2013-01-01

    Ionic liquids are organic salts, usually consisting of an organic cation and a polyatomic inorganic anion, which are liquid under 100∘ C. The most relevant properties of ionic liquids are their almost negligible vapour pressure. Furthermore, their physical and chemical properties can be fine-tuned by the adequate selection of the cation and anion constituents. Ionic liquids have been recognized as environmental benign alternative to volatile organic solvents. Applicati...

  9. Physical and tribological properties of a-Si1-xCx:H coatings prepared by r.f. plama-assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    A-Si1-xCx:H films deposited by r.f. plasma-assisted chemical vapour deposition were studied as a function of their composition. The friction and wear properties were investigated with the help of a conventional ball-on-disc apparatus. These results are correlated with chemical (Si/C atomic ratio) and structural (Raman and infrared spectroscopy) properties. The friction coefficient in a humid ambient atmosphere changes markedly with the carbon fraction and reaches a value as low as 0.05 for coatings with 70 to 90 at.% C. The carbon-rich films consist of diamond-like carbon with silicon. (orig.)

  10. Effect of surfactants on the morphology of FeSe films fabricated from a single source precursor by aerosol assisted chemical vapour deposition

    Indian Academy of Sciences (India)

    Raja Azadar Hussain; Amin Badshah; Naghma Haider; Malik Dilshad Khan; Bhajan Lal

    2015-03-01

    This article presents the fabrication of FeSe thin films from a single source precursor namely (1-(2-fluorobenzoyl)-3-(4-ferrocenyl-3-methylphenyl)selenourea (MeP2F)) by aerosol assisted chemical vapour deposition (AACVD). All the films were prepared via similar experimental conditions (temperature, flow rate, concentration, solvent system and reactor type) except the use of three different concentrations of two different surfactants i.e., triton and span. Seven thin films were characterized with PXRD, SEM, AFM, EDS and EDS mapping. The mechanism of the interaction of surfactant with MeP2F was determined with cyclic voltammetry (CV) and UV-Vis spectroscopy.

  11. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment

    Institute of Scientific and Technical Information of China (English)

    HAO Xiao-Peng; WANG Bao-Yi; Yu Run-Sheng; WEI Long; WANG Hui; ZHAO De-Gang; HAO Wei-Chang

    2008-01-01

    @@ We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution.The photoluminescence property is observed in the as-deposited and annealed samples.[-SiO3]2- defects are the luminescence centres of the ultraviolet photoluminescence(PL)from the Fourier transform infrared spectroscopy and PL measurements.[-SiO3]2- is observed by positron annihilation spectroscopy,and this defect can make the S parameters increase.After 1000℃ annealing,[-SiO3]2- defects still exist in the films.

  12. Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma-enhanced chemical vapour deposition system

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Ashcheulov, Petr; Čada, Martin; Fekete, Ladislav; Hubík, Pavel; Klimša, Ladislav; Olejníček, Jiří; Remeš, Zdeněk; Jirka, Ivan; Janíček, P.; Bedel-Pereira, E.; Kopeček, Jaromír; Mistrík, J.; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), s. 2418-2423. ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk LO1409 Grant ostatní: FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * electrical conductivity * nanocrystalline materials * optical emission spectroscopy * plasma enhanced chemical vapour deposition * SiC Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.616, year: 2014

  13. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  14. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P.R.; Sautray, R.R.; Girard, B.R. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence

  15. Growth and electro-optical properties of Ga-doped ZnO films prepared by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Transparent conductive Ga-doped ZnO thin films were deposited onto glass substrates by a low-cost aerosol assisted chemical vapour deposition technique and the effect of gallium content on the ZnO film growth behaviour and opto-electronic properties was systematically investigated. It is found that, upon increasing Ga addition, the ZnO film crystallinity exhibits a continuous reduction in quality associated with the preferential orientation transformed from (002) to (102). The (002) oriented samples had a microstructure of parallel columnar grains while the (102) oriented coating was thickened by overlapping particles. The ZnO:Ga coatings exhibit high carrier concentration (up to 4.1 × 1020 cm−3) but low carrier mobility (up to 0.8 cm2 V−1 s−1), resulting in a minimum resistivity value of 2.3 × 10−2 Ω cm. The inferior carrier mobility performance could result from a profound ionized and neutral impurity scattering effect. Good visible transmittance (≈ 70–80%) is observed in these ZnO:Ga films and samples with higher carrier density present better infrared reflection performance (up to 37.2% at 2500 nm). - Highlights: • Aerosol assisted chemical vapour deposition of doped zinc oxide thin films • Gallium doping and opto-electronic properties systemically investigated • Growth mechanism changed by % gallium incorporation

  16. Growth and electro-optical properties of Ga-doped ZnO films prepared by aerosol assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuqun [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Carraro, Giorgio [Department of Chemistry and INSTM, Padova University, Padova 35131 (Italy); Barreca, Davide [CNR-IENI and INSTM, Department of Chemistry, Padova University, Padova 35131 (Italy); Binions, Russell [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-06-01

    Transparent conductive Ga-doped ZnO thin films were deposited onto glass substrates by a low-cost aerosol assisted chemical vapour deposition technique and the effect of gallium content on the ZnO film growth behaviour and opto-electronic properties was systematically investigated. It is found that, upon increasing Ga addition, the ZnO film crystallinity exhibits a continuous reduction in quality associated with the preferential orientation transformed from (002) to (102). The (002) oriented samples had a microstructure of parallel columnar grains while the (102) oriented coating was thickened by overlapping particles. The ZnO:Ga coatings exhibit high carrier concentration (up to 4.1 × 10{sup 20} cm{sup −3}) but low carrier mobility (up to 0.8 cm{sup 2} V{sup −1} s{sup −1}), resulting in a minimum resistivity value of 2.3 × 10{sup −2} Ω cm. The inferior carrier mobility performance could result from a profound ionized and neutral impurity scattering effect. Good visible transmittance (≈ 70–80%) is observed in these ZnO:Ga films and samples with higher carrier density present better infrared reflection performance (up to 37.2% at 2500 nm). - Highlights: • Aerosol assisted chemical vapour deposition of doped zinc oxide thin films • Gallium doping and opto-electronic properties systemically investigated • Growth mechanism changed by % gallium incorporation.

  17. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl4 or VOCl3 with tBuAsH2. Using the vanadium precursor VCl4, films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl4, were silver in appearance. The films deposited using VOCl3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl4 or VOCl3 and tBuAsH2. • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  18. On titanium dioxide thin films growth from the direct current electric field assisted chemical vapour deposition of titanium (IV) chloride in toluene

    International Nuclear Information System (INIS)

    Titanium dioxide thin films were deposited from the aerosol assisted chemical vapour deposition reaction of titanium tetrachloride in toluene (1 M) at 600 °C and 5 L min−1. Direct current electric fields were applied and increased in a range of 0 to 30 V during the reaction. Changes in particle size, agglomeration and particle shape were observed. Raman spectroscopy analysis revealed different composition of anatase and rutile and crystal phase depending on the field strength applied. The photocatalytic activity was calculated from the half-life or time needed by the films to degrade 50% Resazurin dye-ink initial concentration. High photocatalytic performance with high anatase content (98.3%) was observed with half-life values of 3.9 min. Deposited films with pure content in rutile showed better photocatalytic performance than films with mix of crystal phases with anatase content below 40%. - Highlights: • Electric field assisted chemical vapour deposition used to synthesis titania thin films. • Significant alterations to crystallographic orientation and microstructure observed • Order of magnitude reduction in half life of dye degradation obtainable

  19. Vapour Treatment Method Against Other Pyro- and Hydrometallurgical Processes Applied to Recover Platinum From Used Auto Catalytic Converters

    Institute of Scientific and Technical Information of China (English)

    Agnieszka FORNALCZYK; Mariola SATERNUS

    2013-01-01

    Today more and more cars are produced every year.All of them have to be equipped with catalytic converters,the main role of which is to obtain substances harmless to the environment instead of exhausted gases.Catalytic converters contain platinum group metals (PGM) especially platinum,palladium and rhodium.The price of these metals and their increasing demand are the reasons why today it is necessary to recycle used auto catalytic converters.There are many available methods of recovering PGM metals from them,especially platinum.These methods used mainly hydrometallurgical processes; however pyrometallurgical ones become more and more popular.The article presents results of the research mainly concerning pyrometallurgical processes.Two groups of research were carried out.In the first one different metals such as lead,magnesium and copper were used as a metal collector.During the tests,platinum went to those metals forming an alloy.In other research metal vapours were blown through catalytic converter carrier (grinded or whole).In the tests metals such as calcium,magnesium,cadmium and zinc were applied.As a result white or grey powder (metal plus platinum) was obtained.The tables present results of the research.Processing parameters and conclusions are also shown.To compare efficiency of pyrometallurgical and hydrometallurgical methods catalytic converter carrier and samples of copper with platinum obtained from pyrometallurgical method were solved in aqua regia,mixture of aqua regia and fluoric acid.

  20. Idaho Chemical Processing Plant Process Efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  1. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  2. Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells. Temperature-induced morphological changes

    Energy Technology Data Exchange (ETDEWEB)

    Fay, S.; Kroll, U.; Bucher, C.; Vallat-Sauvain, E.; Shah, A. [Institut de Microtechnique IMT, Thin-film Silicon and Photovoltaics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)

    2005-03-31

    Zinc oxide (ZnO) is now often used as a transparent conductive oxide for contacts in thin-film silicon solar cells. This paper presents a study of ZnO material deposited by the low-pressure chemical vapour deposition technique, in a pressure range below the pressures usually applied for the deposition of this kind of material. A temperature series has been deposited, showing a morphological transition around 150{sup o}C. ZnO samples deposited with temperatures just higher than this transition are constituted of large grains highly oriented along a single crystallographic orientation. These 'monocrystals' lead to low resistivity values, showing a clear correlation between the size of the surface grains and the electrical performance of corresponding films. Additionally, these large grains also yield ZnO layers with high transparency and high light-scattering power, specially suitable for solar cell technology based on thin-film silicon.

  3. Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Yu; Hao Yue; Zhang Jin-Cheng; Zhou Hao; Li Xiao-Gang; Meng Fan-Na; Zhang Lin-Xia; Ai Shan; Xu Sheng-Rui; Zhao Yi

    2012-01-01

    In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double AlN buffer layers.The buffer layer consists of a low-temperature (LT) AlN layer and a high-temperature (HT) AlN layer that are grown at 600 ℃ and 1000 ℃,respectively.It is observed that the thickness of the LT-AlN layer drastically influences the quality of GaN thin film,and that the optimized 4.25-min-LT-AlN layer minimizes the dislocation density of GaN thin film.The reason for the improved properties is discussed in this paper.

  4. Ellipsometric and Rutherford Back scattering Spectrometry studies of SiO(X)N(Y) films elaborated by plasma-enhanced chemical vapour deposition technique.

    Science.gov (United States)

    Mahamdi, R; Boulesbaa, M; Saci, L; Mansour, F; Molliet, C; Collet, M; Temple-Boyer, P

    2011-10-01

    Silicon oxynitride (SiO(X)N(Y)) thin films were deposited by plasma-enhanced chemical vapour deposition technique (PECVD) from silane (SiH4), nitrous oxide (N2O), ammonia (NH3) and nitrogen (N2) mixture. Spectroscopic ellipsometry (SE), in the range of wavelengths 450-900 nm, was used to define the film thickness and therefore the deposition rate, as well as the refractive index as a function of the N2O gaseous flow. While considering the (Si3N4, SiO2, H2 or void) heterogeneous mixture, Maxwell Garnett (MG) theory allows to fit the SE measurements and to define the volume fraction of the different phases. Finally, Rutherford Backscattering Spectrometry (RBS) results showed that x = O/Si ratio increases gradually with increasing the N2O flow, allowing the correlation of the SiO(X)N(Y) films main parameters. PMID:22400311

  5. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors

    Science.gov (United States)

    Kevin, Punarja; Lewis, David J.; Raftery, James; Azad Malik, M.; O'Brien, Paul

    2015-04-01

    The synthesis of the asymmetric dithiocarbamates of tin(II) with the formula [Sn(S2CNRR')2] (where R=Et, R'=n-Bu (1); R=Me, R'=n-Bu (2); R=R'=Et (3)) and their use for the deposition of SnS thin films by aerosol-assisted chemical vapour deposition (AACVD) is described. The effects of temperature and the concentration of the precursors on deposition were investigated. The stoichiometry of SnS was best at higher concentrations of precursors (250 mM) and at 450 °C. The direct electronic band gap of the SnS produced by this method was estimated from optical absorbance measurements as 1.2 eV. The composition of films was confirmed by powder X-ray diffraction (p-XRD) and energy dispersive analysis of X-rays (EDAX) spectroscopy.

  6. An investigation into the optimum thickness of titanium dioxide thin films synthesized by using atmospheric pressure chemical vapour deposition for use in photocatalytic water oxidation.

    Science.gov (United States)

    Hyett, Geoffrey; Darr, Jawwad A; Mills, Andrew; Parkin, Ivan P

    2010-09-10

    Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 °C were used for all depositions, with varying deposition times of 5-60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo-oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was ≈200 nm, and that a platinum coating on the reverse of such samples leads to a five-fold increase in the observed rate of water oxidation. PMID:20645333

  7. Preparation of high-quality hydrogenated amorphous silicon film with a new microwave electron cyclotron resonance chemical vapour deposition system assisted with hot wire

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Yin Sheng-Yi; Rong Yan-Dong; Zhang Wen-Li; Hu Yue-Hui

    2005-01-01

    The preparation of high-quality hydrogenated amorphous silicon (a-Si:H) film with a new microwave electron cyclotron resonance-chemical vapour deposition (MWECR-CVD) system assisted with hot wire is presented. In this system the hot wire plays an important role in perfecting the microstructure as well as improving the stability and the optoelectronic properties of the a-Si:H film. The experimental results indicate that in the microstructure of the a-Si:H film, the concentration of dihydride is decreased and a trace of microcrystalline occurs, which is useful to improve its stability, and that in the optoelectronic properties of the a-Si:H film, the deposition rate reaches above 2.0nm/s and the photosensitivity increases up to 4.71× 105.

  8. Growth of beta barium borate (β-BaB2O4) thin films by injection metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Thin films containing beta barium borate (β-BaB2O4 so called β-BBO) were grown on silicon (100) substrates by injection metal organic chemical vapour deposition for different deposition temperatures. The films were characterized by optical microscopy, micro-Raman spectroscopy and X-ray photoelectron Spectroscopy (XPS). The micro-Raman spectra show an intense peak at 637 cm-1 that is the fingerprint of β-BBO. Our XPS analysis permits the measurement of the Ba, B and O core levels, which are reported here for the first time for β-BBO thin films. The formation of a new spectral component appearing with lower growth temperatures has been observed as well

  9. Effect of Al Doping in the InGaN/GaN Multiple Quantum Well Light Emitting Diodes Grown by Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Yu; YANG Zhi-Jian; PAN Yao-Bo; XU Ke; HU Xiao-Dong; ZHANG Bei; ZHANG Guo-Yi

    2006-01-01

    The effect of Al doping in the GaN layer of InGaN/GaN multiple quantum-well light emitting diodes (LEDs) grown by metalorganic chemical vapour deposition is investigated by using photoluminescence (PL) and high-resolution x-ray diffraction. The full width at half maximum of PL of Al doped LEDs is measured to be about 12nm. The band edge photoluminescence emission intensity is enhanced significantly. In addition, the in-plane compressive strain in the Al-doped LEDs is improved significantly and measured by reciprocal space map. The output power of Al-doped LEDs is 130mW in the case of the induced current of 200mA.

  10. The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells

    International Nuclear Information System (INIS)

    Designing plasma-enhanced chemical vapour deposition (PECVD) reactors to coat large-area glass plates (∼1 m2) for flat panel display or solar cell manufacturing raises challenging issues in physics and chemistry as well as mechanical, thermal, and electrical engineering, and material science. In such reactive glow discharge plasma slabs, excited at RF frequency (from 13.56 MHz up to ∼100 MHz), the thin-film deposition uniformity is determined by the gas flow distribution, as well as the RF voltage distribution along the electrodes, and by local plasma perturbations at the reactor boundaries. All these aspects can be approached by analytical and numerical modelling. Moreover, the film properties are largely determined by the plasma chemistry involving the neutral radicals contributing to film growth, the effect of ion bombardment, and the formation and trapping of dust triggered by homogeneous nucleation. This paper will review progress in this field, with particular emphasis on modelling developments. (author)

  11. The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Jerome [Unaxis-Balzers A.G., Central R and D, PO Box 1000, FL-9496 Balzers (Liechtenstein); Schmitt, Jacques [Unaxis-France S.A., Display Technology, 5 rue Leon Blum, F-91120, Palaiseau (France); Hollenstein, Christoph; Howling, Alan; Sansonnens, Laurent [Centre de Recherche en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, PPH Ecublens, CH - 1015 Lausanne (Switzerland)

    2000-12-01

    Designing plasma-enhanced chemical vapour deposition (PECVD) reactors to coat large-area glass plates ({approx}1 m{sup 2}) for flat panel display or solar cell manufacturing raises challenging issues in physics and chemistry as well as mechanical, thermal, and electrical engineering, and material science. In such reactive glow discharge plasma slabs, excited at RF frequency (from 13.56 MHz up to {approx}100 MHz), the thin-film deposition uniformity is determined by the gas flow distribution, as well as the RF voltage distribution along the electrodes, and by local plasma perturbations at the reactor boundaries. All these aspects can be approached by analytical and numerical modelling. Moreover, the film properties are largely determined by the plasma chemistry involving the neutral radicals contributing to film growth, the effect of ion bombardment, and the formation and trapping of dust triggered by homogeneous nucleation. This paper will review progress in this field, with particular emphasis on modelling developments. (author)

  12. Synthesis, structural characterization and optical properties of multilayered Yttria-stabilized ZrO2 thin films obtained by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Multilayered Yttria-stabilized zirconium (YSZ) oxide thin films were synthesized by aerosol assisted chemical vapour deposition onto borosilicate glass substrate. The film consisted of a periodic stack of several YSZ layer pairs. Each pair was composed of layers, a few nanometers thick, of the same composition but different density. Optically the multilayered microstructure correspond to alternating layers of high (dense layer) and low (porous layer) refraction index. The microstructure was analysed by electron and atomic force microscopy. Optical properties were evaluated by reflectance spectroscopy, and associated with the cross sectional microstructure of the films. The measured effective refractive index of the films deviates from bulk value. The discrepancy can be explained by the multilayered structure of the film

  13. Modification of electrical properties induced by annealing of ZnO:B thin films deposited by chemical vapour deposition: Kinetic investigation of evolution

    Energy Technology Data Exchange (ETDEWEB)

    David, C., E-mail: Clement.david@univ-poitiers.fr [Inventux Technologies AG, Wolfener Straße 23, 12681 Berlin (Germany); Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France); Paumier, F. [Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France); Tinkham, B.P. [Inventux Technologies AG, Wolfener Straße 23, 12681 Berlin (Germany); Eyidi, D.; Marteau, M.; Guérin, P.; Girardeau, T. [Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France)

    2013-05-15

    In this study temperature dependent Hall effect measurements combined with Fourier Transformed Infra-Red (FTIR) spectroscopy measurements is used to determine the evolution of the scattering mechanisms ascribable to in-grain and grain boundaries on Boron doped ZnO thin films deposited by Low Pressure Chemical Vapour Deposition (LPCVD). Through Hall effect measurements during in situ isothermal annealing, changes in electrical characteristics of zinc oxide could be followed in real time. Whereas only degradation is observed in air, an improvement of layer conductivity could be achieved at low temperatures by annealing under argon atmosphere. A study of the conductivity during isothermal annealing offers the possibility to extract activation energies, which have been compared to migration energies of the different intrinsic defects in ZnO.

  14. Modification of electrical properties induced by annealing of ZnO:B thin films deposited by chemical vapour deposition: Kinetic investigation of evolution

    International Nuclear Information System (INIS)

    In this study temperature dependent Hall effect measurements combined with Fourier Transformed Infra-Red (FTIR) spectroscopy measurements is used to determine the evolution of the scattering mechanisms ascribable to in-grain and grain boundaries on Boron doped ZnO thin films deposited by Low Pressure Chemical Vapour Deposition (LPCVD). Through Hall effect measurements during in situ isothermal annealing, changes in electrical characteristics of zinc oxide could be followed in real time. Whereas only degradation is observed in air, an improvement of layer conductivity could be achieved at low temperatures by annealing under argon atmosphere. A study of the conductivity during isothermal annealing offers the possibility to extract activation energies, which have been compared to migration energies of the different intrinsic defects in ZnO

  15. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  16. Growth of MgB2 Thin Films by Chemical Vapour Deposition Using B2H6 as a boron Source

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 朱亚彬; 刘震; 周岳亮; 张芹; 陈正豪; 吕惠宾; 杨国桢

    2003-01-01

    Superconducting MgB2 thin films were grown on single crystal Al2O3 (0001) by chemical vapour deposition using B2H6 as a boron source. MgB2 film was then accomplished by annealing the boron precursor films in the presence of high-purity magnesium bulk at 890℃ in vacuum. The as-grown MgB2 films are smooth and c-axis-oriented.The films exhibit a zero-resistance transition of about 38K with a narrow transition width of 0.2 K. Magnetic hysteresis measurements yield the critical current density of 1.9 × 107 A/cm2 at 10 K in zero field.

  17. Characterization of thin TiO{sub 2} films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: asobczyk@p.lodz.p [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J. [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Wojciechowski, P.; Halamus, T. [Department of Molecular Physics, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Tracz, A. [Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland)

    2009-07-31

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 {sup o}C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  18. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    OpenAIRE

    Ren, C; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-01-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the...

  19. Vapour-liquid equilibrium in the monoethylene glycol - methane system at elevated pressures

    OpenAIRE

    Bersås, Anita

    2012-01-01

    A range of different chemicals are used in natural gas processing. The systems operate in closed loops, but a small amount of the chemicals are lost due to the solubility of the chemical in the gas phase. This leads to increased operational costs, it may cause HSE related problems, and it can lead to operational difficulties and contamination of downstream processes and products. A limited number of vapour-liquid equilibrium, VLE, data for processing chemicals in methane are available in...

  20. Personal Simulator of Chemical Process

    Institute of Scientific and Technical Information of China (English)

    吴重光

    2002-01-01

    The Personal Simulator of chemical process (PS) means that fully simulationsoftware can be run on one personal computer. This paper describes the kinds of PSprograms, its features, the graphic functions and three examples. PS programs are allbased on one object-oriented and real-time simulation software environment. Authordevelops this simulation software environment. An example of the batch reaction kineticsmodel is also described. Up to now a lot of students in technical schools and universitieshave trained on PS. The training results are very successful.

  1. Behavioural Change according to the Si/Al Ratio of Successive Na-Mordenites Observed through Their Dielectric Relaxation during Water Vapour Adsorption Process

    OpenAIRE

    Sekou Diaby

    2016-01-01

    The experimental study of water vapour adsorption phenomenon on a zeolite, by dielectric relaxation measurement, makes it possible to determine the variations in the exchangeable cation hopping activation energy, on the surface of the solid, in relation to the number of adsorbed molecules. The present work shows that it is possible to explain the change observed in the energy, by means of simple assumptions based, on the one hand, on the models used in order to simulate the adsorption process...

  2. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition

    International Nuclear Information System (INIS)

    The deposition of carbon has been studied at high temperature on polycrystalline nickel by hot filaments activated chemical vapor deposition (HFCVD). The sequences of carbon deposition are studied by surface analyses: Auger electron spectroscopy (AES), electron loss spectroscopy (ELS), X-ray photoelectron spectroscopy (XPS) in a chamber directly connected to the growth chamber. A general scale law of the (C/Ni) intensity lines is obtained with a reduced time. Both, shape analysis of the AES C KVV line and the C1s relative intensity suggest a three-step process: first formation of graphene and a highly graphitic layer, then multiphase formation with graphitic, carbidic and diamond-like carbon and finally at a critical temperature that strongly depends on the pretreatment of the polycrystalline nickel surface, a rapid transition to diamond island formation. Whatever the substrate diamond is always the final product and some graphene layers the initial product. Moreover it is possible to stabilize a few graphene layers at the initial sequences of carbon deposition. The duration of this stabilization step is strongly depending however on the pre-treatment of the Ni surface.

  3. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  4. Radiation Chemical and Plasma Chemical Processes for Hydrogen Production from Water

    International Nuclear Information System (INIS)

    Hydrogen is considered to be the fuel of the future. The simplest way to produce hydrogen is by water decomposition. The usual, non-electrical method of producing this reaction is either by direct thermal water splitting or by making use of some catalytic process in a batch or flow reactor. The aim of the present work, which is part of the DEMO studies, is to investigate two further, little used methods for hydrogen production. I. Radiation Chemical Process Both fission and fusion reactors produce radioactive material, the radiation energy of which is wasted. By examining the water decomposition yields observed under different conditions we conclude that the radiolysis of high temperature water vapour in contact with oxide catalysts can produce sizable amounts of hydrogen. II. Plasma Chemical Process One of the most serious problems with thermal water decomposition lies with the high reaction temperature which, apart from other associated problems, demands highly corrosion resistant materials. Plasma chemical splitting removes this obstacle, but a mixture of O2 and H2 is formed and the separation of these products is quite difficult. Having investigated a number of high temperature processes where product separation might be easier, we conclude that the thermodynamic conditions of the reaction N2 + H2O = N2O + H2 appear attractive, additionally, N2O is easy to separate from H2. More detailed thermodynamic studies and relating kinetic investigations of this and analogous processes must follow in order to assess the practical use of plasma chemical methods. Energy carriers other than hydrogen, e.g. methane, methanol, formic acid, will also be considered, as these can also be synthesised in chemical plasmas by making use of fusion energy. The paper will report the results of the studies on both these processes for the production of hydrogen from fusion energy. (author)

  5. Advantages and limitations of employment of high resolution continuum source AAS as detector of chemical generated metallic vapours

    International Nuclear Information System (INIS)

    Complete text of publication follows. A method was developed to determine metals after vapour generation, atomization in a heated quartz tube and detection using High Resolution Continuum Source AAS (ContrAA 300R equipment, Analytic Jena, Germany). High resolution continuum source AAS allows sequential analysis of elements with detection limits a factor of five better than those of Line Source AAS. This fact is due to the combined use of higher radiation intensity xenon continuum source, a high resolution monochromator and a CCD array detector. Moreover, important advantages of this technique were relatively low cost, possibility to visualize molecular absorption lines (mainly diatomic species). Modifications on the HS60 (Analytic Jena, Germany) vapor generation system were performed. The system includes three peristaltic pumps, a three channel and a one channel, controlled by software and a external peristaltic pump. Flow rates were selected from the three permitted velocities, in order to provide maximum sensitivity and an adequate operation in the gas-liquid separator. A home-made glass hydrostatic gas-liquid separator was used. A 140 cm length PTFE tube and a small piece of PharmedR tube were included to transfer vapors from the gas-liquid separator to the quartz cell. Regarding the Ar carrier flow, it must be pointed out that ContrAA 300R equipment only has three options for this parameter (6, 25, and 31 L h-1), and this is a difficulty to study possible effects on the liberation of vapors from the aqueous phase or their concentration in the quartz tube. Optimum conditions for the sequential determination of Ag, Cd, Cu, Co, Ni and Zn were obtained and technical limitations of the system are examined. Calibration curves were lineal (r = 0.995 or higher). Method is precise (RSD <10%) and with LODs lower than 20 g/L for studied elements except for Ni and Co. The authors kindly acknowledge the financial support from Xunta de Galicia (ref. PGIDIT07PXIB209034PR).

  6. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  7. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  8. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  9. ZT thin films produced by metal organic-chemical vapour deposition to be used as high-k dielectrics

    International Nuclear Information System (INIS)

    In this work the synthesis and characterisation of ZrxTi1-xO2 (ZT) grown via a non conventional MOCVD apparatus on both silicon and platinum coated substrates are described. The samples have been chemically, morphologically and structurally characterised by AFM, XRD, SEM + FEG and XPS. Also high and low frequencies electrical characterisation has been performed to evaluate a possible application of such materials as high-k dielectrics

  10. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  11. Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

    Science.gov (United States)

    Li, Hai-Ou; Huang, Wei; Tang Chak, Wah; Deng, Xiao-Fang; Lau Kei, May

    2011-06-01

    The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω-mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.

  12. Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω-mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device. (interdisciplinary physics and related areas of science and technology)

  13. Effect of Postdeposition Heat Treatment on the Crystallinity, Size, and Photocatalytic Activity of TiO2 Nanoparticles Produced via Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2010-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles were produced using chemical vapour deposition (CVD at different deposition temperatures (300–700°C. All the samples were heat treated at their respective deposition temperatures and at a fixed temperature of 400°C. A scanning electron microscope (SEM, a transmission electron microscope (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles in terms of size and crystallinity. The photocatalytic activity was investigated via degradation of methylene blue under UV light. The effects of post deposition heat treatment are discussed in terms of crystallinity, nanoparticle size as well as photocatalytic activity. Crystallinity was found to have a much larger impact on photocatalytic activity compared to nanoparticle size. Samples having a higher degree of crystallinity were more photocatalytically active despite being relatively larger in size. Surprisingly, the photocatalytic activity of the samples reduced when heat treated at temperatures lower than the deposition temperature despite showing an improvement in crystallinity.

  14. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Wen-Juan; XIE Fen-Yan; CHEN Qiang; WENG Jing

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  15. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    FAN Hai-Bo; YANG Shao-Yan; ZHANG Pan-Feng; WEI Hong-Yuan; LIU Xiang-Lin; JIAO Chun-Mei; ZHU Qin-Sheng; CHEN Yong-Hai; WANG Zhan-Guo

    2008-01-01

    @@ Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 20 locations of ZnO (002) face in the XRD patterns and the E2 (high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopyresults show all the samples have a sharp ultraviolet luminescent band without any defects-related emission.Upon the experiments a possible growth mechanism is proposed.

  16. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  17. Pengaruh Temperatur, Massa Zink, Substrat Dan Waktu Tahan Terhadap Struktur Dan Morfologi Zno Hasil Sintesis Dengan Metode Chemical Vapour Transport (CVT

    Directory of Open Access Journals (Sweden)

    Arisela Distyawan

    2013-09-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Material Zink Oksida (ZnO telah berhasil disintesis menggunakan metode Chemical Vapour Transport dengan bahan dasar prekursor berupa serbuk Zn yang dipanaskan hingga mencapai temperatur uap dalam furnace horisontal. Adapun variasi yang diberikan dalam penelitian adalah berupa temperatur pemanasan (850, 900, dan 950oC, massa prekursor Zn (0,15, 0,25, dan 0,35g, lama waktu sputtering substrat (90 dan 180 detik, dan waktu tahan khusus untuk mengetahui initial growth ZnO (10, 20, 30, 40, 50, dan 60 menit. Pembentukan Zink Oksida (ZnO dikonfirmasi melalui data X-RD, dimana telah terbentuk material ZnO dengan struktur hexagonal wurtzite. Berdarsarkan data XRD juga diketahui ukuran kristal pada sampel sputtering 90 detik mengalami penurunan bersamaan penambahan massa Zn. Dari hasil pengamatan SEM didapatkan bahwa morfologi permukaan lapisan tipis ZnO terdiri dari berbagai macam bentuk berupa nanoparticle, nanowires, nanorods, dan nanotetrapod. Lapisan Zno paling tebal sebesar ±350 nm pada sampel 950oC-0,15g sputter 90 detik. Semakin tinggi temperatur operasi berdampak peningkatan ukuran partikel. Pengujian FTIR turut menguatkan terbentuknya lapisan tipis di permukaan substrat Alumina. Hal ini didasarkan terjadinya penyerapan vibrasi yang membentuk lekukan pada kisaran area 509 cm-1 dari masing-masing sampel.

  18. Structural and optical investigation of nonpolar a-plane GaN grown by metal-organic chemical vapour deposition on r-plane sapphire by neutron irradiation

    Institute of Scientific and Technical Information of China (English)

    Xu Sheng-Rui; Zhang Jin-Feng; Gu Wen-Ping; Hao Yue; Zhang Jin-Cheng; Zhou Xiao-Wei; Lin Zhi-Yu; Mao Wei

    2012-01-01

    Nonpolar (11(2)0) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1(1)02) sapphire.The samples are irradiated with neutrons under a dose of 1 × 1015 cm-2.The surface morphology,the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM),high resolution X-ray diffraction (HRXRD) and photoluminescence (PL).The AFM result shows deteriorated sample surface after the irradiation.Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction.Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample,indicating that more point defects appear in the irradiated sample.The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results.The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.

  19. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  20. Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Li Hai-Ou; Huang Wei; Tang Chak Wah; Deng Xiao-Fang; Lau Kei May

    2011-01-01

    The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported.By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω-mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD.The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.

  1. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  2. A chemical assessment of the suitability of allyl- iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy

    Science.gov (United States)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William; Foster, Douglas F.; Ellis, David

    2001-04-01

    The chemical studies, which led to the testing of allyl- iso-propyltelluride (allylTePr i) as a Te precursor in metal organic vapour phase epitaxy are presented. The pyrolysis in hydrogen of allylTePr i gave products including 1,5-hexadiene, propane and propene. Co-pyrolysis of dimethylcadmium (Me 2Cd) and allylTePr i gave the hydrocarbons expected from the pyrolysis of the individual precursors plus additional hydrocarbons including 2-methylpropane and 1-butene. Plots of percentage decomposition versus temperature, which proved extremely useful in determining the likely growth temperatures for both CdTe and HgTe, showed that allylTePr i is less stable than both Pr 2iTe (di- iso-propyltelluride) and Me 2Cd. The possible role of Hg in the growth of CdTe is also discussed. The chemistry of allylTePr i is well suited for use as an efficient precursor for epitaxial growth of tellurium containing semiconductors since there is very little formation of other organotellurium compounds on pyrolysis.

  3. Heterocyclic dithiocarbamato-iron(III) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films.

    Science.gov (United States)

    Mlowe, Sixberth; Lewis, David J; Malik, Mohammad Azad; Raftery, James; Mubofu, Egid B; O'Brien, Paul; Revaprasadu, Neerish

    2016-02-14

    Tris-(piperidinedithiocarbamato)iron(III) (1) and tris-(tetrahydroquinolinedithiocarbamato)iron(iii) (2) complexes have been synthesized and their single-crystal X-ray structures were determined. Thermogravimetric analysis (TGA) of the complexes showed decomposition to iron sulfide. Both complexes were then used as single-source precursors for the deposition of iron sulfide thin films by aerosol-assisted chemical vapour deposition (AACVD). Energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of iron sulfide films. The addition of tert-butyl thiol almost doubled the sulfur content in the deposited films. Scanning electron microscopy (SEM) images of the iron sulfide films from both complexes showed flakes/leaves/sheets, spherical granules and nanofibres. The sizes and shapes of these crystallites depended on the nature of the precursor, temperature, solvent and the amount of tert-butyl thiol used. The observed optical properties are dependent upon the variation of reaction parameters such as temperature and solvent. Powder X-ray diffraction (p-XRD) studies revealed that pyrrhotite, hexagonal (Fe0.975S), marcasite and smythite (Fe3S4) phases were differently deposited. PMID:26732865

  4. Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications

    Indian Academy of Sciences (India)

    Bhubesh Chander Joshi; Manish Mathew; B C Joshi; D Kumar; C Dhanavantri

    2010-01-01

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016 /cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.

  5. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  6. Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by r.f.-plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper reports on the properties and corrosion resistance of amorphous hydrogenated carbon and amorphous hydrogenated SiC films deposited by r.f.-plasma-enhanced chemical vapour deposition at low temperatures (below 200 C). SiC coatings were prepared from SiH4-CH4 gas mixtures. Hydrogenated diamond-like coatings were deposited from classical CH4-H2 mixtures. The influence of various deposition parameters was investigated. Microstructural and mechanical properties of the films were studied (density, hydrogen content, nanohardness, internal stress, critical load and friction coefficient). Two examples of corrosion resistance are given: (1) the corrosion resistance and biocompatibility of SiC and diamond-like coatings deposited on metal implants (Ti alloy) (the corrosion resistance is evaluated through potentiodynamic polarization tests in biological media; the biocompatibility of coated and uncoated metals is compared using differentiated human cell cultures); and (2) the corrosion resistance of SiC-coated magnesium in chloride-containing boric borate buffer at pH = 9.3 evaluated from anodic polarization curves and scanning electron microscopy studies. (orig.)

  7. Broadband antireflection for a high-index substrate using SiNx/SiO2 by inductively coupled plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper presents the development of broadband antireflection coating for a high-index substrate such as Si using SiNx/SiO2 by inductively coupled plasma chemical vapour deposition (ICP-CVD). The thin-film design employs a simulated annealing method for a minimal average reflectance over the wavelength range and incidence angles involved, which gives the optimized refractive index and thickness of each layer of the thin-film stack under different layer numbers. Using ICP-CVD, the SiNx material system is optimized by tuning the SiH4/N2 gas ratio. The corresponding thin-film characterization shows the precise refractive index/film thickness control in deposition, and the deposited film also has a low absorption coefficient and smooth surface. The double-layer SiNx/SiO2 coating with the optimized refractive index and thickness for broadband antireflection is demonstrated experimentally. The average reflectance of the Si surface is reduced from ∼32% to ∼3.17% at normal incidence for a wavelength range from 400 to 1100 nm. (paper)

  8. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  9. The Status of GNSS Data Processing Systems to Estimate Integrated Water Vapour for Use in Numerical Weather Prediction Models

    OpenAIRE

    Ahmed, Furqan; Teferle, Felix Norman; Bingley, Richard; Laurichesse, Denis

    2015-01-01

    Modern Numerical Weather Prediction (NWP) models make use of the GNSS-derived Zenith Total Delay (ZTD) or Integrated Water Vapour (IWV) estimates to enhance the quality of their forecasts. Usually, the ZTD is assimilated into the NWP models on 3-hourly to 6-hourly intervals but with the advancement of NWP models towards higher update rates e.g. 1-hourly cycling in the Rapid Update Cycle (RUC) NWP, it has become of high interest to estimate ZTD on sub-hourly intervals. In turn, this imposes...

  10. Hot wire chemical vapour deposition (HWCVD) of boron carbide thin films from ortho-carborane for neutron detection application

    International Nuclear Information System (INIS)

    Detection of neutrons is possible if suitable converters such as Li, LiF or 10B in the form of thin films are used along with the semiconductor device. The use of boron (10B) in some host matrix as a neutron detector is attractive due to its large neutron capture cross-section. Boron carbide (BC) films are deposited on silicon substrates by HWCVD technique using solid ortho-carborane (o-C2B10H12) precursor with argon as carrier gas. The films contain 10B required for neutron detection as confirmed by the Secondary Ion Mass Spectroscopy. Variations in its structure as well as the chemical bonding configurations using Fourier Transform Infra-Red, Raman and X-ray diffraction spectroscopy have been studied.

  11. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  12. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    OpenAIRE

    Malik Anushree; Tyagi Amit K

    2010-01-01

    Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils ...

  13. Chemical Processing Department monthly report, January 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-02-21

    This report, from the Chemical Processing Department at HAPO for January 1961, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; and special separation processing and auxiliaries operation.

  14. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  15. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer

  16. Determination of the optical parameters of a-Si:H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only

    Indian Academy of Sciences (India)

    Nabeel A Bakr; A M Funde; V S Waman; M M Kamble; R R Hawaldar; D P Amalnerkar; S W Gosavi; S R Jadkar

    2011-03-01

    Three demonstration samples of intrinsic hydrogenated amorphous silicon (a-Si:H) films were deposited using hot wire–chemical vapour deposition (HW–CVD) technique. The optical parameters and the thickness were determined from the extremes of the interference fringes of transmission spectrum in the range of 400–2500 nm using the envelope method. The calculated values of the refractive index () were fitted using the two-term Cauchy dispersion relation and the static refractive index values (0) obtained were 2.799, 2.629 and 3.043 which were in the range of the reported values. The calculated thicknesses for all samples were cross-checked with Taly-Step profilometer and found to be almost equal. Detailed analysis was carried out to obtain the optical band gap (g) using Tauc’s method and the estimated values were 1.99, 2.01 and 1.75 eV. The optical band gap values were correlated with the hydrogen content (H) in the samples calculated from Fourier transform infrared (FTIR) analysis. An attempt was made to apply Wemple–DiDomenico single-effective oscillator model to the a-Si:H samples to calculate the optical parameters. The optical band gap obtained by Tauc’s method and the static refractive index calculated from Cauchy fitting are in good agreement with those obtained by the single-effective oscillator model. The real and the imaginary parts of dielectric constant (r, ), and the optical conductivity () were also calculated.

  17. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Science.gov (United States)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  18. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  19. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.)

  20. Surface morphological and photoelectrochemical studies of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Peiris, T.A. Nirmal; Wijayantha, K.G. Upul [Department of Chemistry, Loughborough University, Loughborough, LE11 3TU (United Kingdom); Khaledi, Hamid [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Ming, Huang Nay [Faculty of Science, Department of Physics, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Misran, Misni; Arifin, Zainudin [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-07-01

    Zinc sulphide (ZnS) thin films have been deposited on fluorine-doped tin oxide-coated conducting glass substrates at 375, 425 and 475 °C temperatures from single source adduct precursors [Zn(S{sub 2}CNCy{sub 2}){sub 2}(py)] (1) [where, Cy = cyclohexyl, py = pyridine] and [Zn{S_2CN(CH_2Ph)(Me)}{sub 2}(py)] (2) [where, Ph = Phenyl, Me = Methyl] using aerosol assisted chemical vapour deposition (AACVD). The precursor complexes have been characterized by microanalysis, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray single crystal and thermogravimetric analysis. Thermal analysis showed that both precursors (1) and (2) undergo thermal decomposition at 375 °C to produce ZnS residues. The deposited ZnS films have been characterized by X-ray diffraction and energy dispersive X-ray spectroscopy. Scanning electron microscopic studies indicated that the surface morphology of ZnS films strongly depends on the nature of the precursor and the deposition temperature, regardless of marginal variation in thermal stability of the precursors. Direct band gap energies of 3.36 and 3.40 eV have been estimated from the ultraviolet–visible spectroscopy for the ZnS films fabricated from precursors (1) and (2), respectively. The current–voltage characteristics recorded under air mass 1.5 illumination confirmed that the deposited ZnS thin films are photoactive under anodic bias conditions. Furthermore, the photoelectrochemical (PEC) results indicate that these synthesised single source precursors are suitable for obtaining ZnS thin films by AACVD method. The ZnS thin film electrode prepared in this study are very promising for solar energy conversion and optoelectronic applications. The PEC properties of ZnS electrodes prepared from (2) are superior to that of the ZnS electrode prepared from precursor (1). - Highlights: • Synthesis and characterization of zinc dithiocarbamate pyridine adducts. • ZnS photo electrodes have been fabricated using aerosol

  1. Surface morphological and photoelectrochemical studies of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Zinc sulphide (ZnS) thin films have been deposited on fluorine-doped tin oxide-coated conducting glass substrates at 375, 425 and 475 °C temperatures from single source adduct precursors [Zn(S2CNCy2)2(py)] (1) [where, Cy = cyclohexyl, py = pyridine] and [Zn{S2CN(CH2Ph)(Me)}2(py)] (2) [where, Ph = Phenyl, Me = Methyl] using aerosol assisted chemical vapour deposition (AACVD). The precursor complexes have been characterized by microanalysis, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray single crystal and thermogravimetric analysis. Thermal analysis showed that both precursors (1) and (2) undergo thermal decomposition at 375 °C to produce ZnS residues. The deposited ZnS films have been characterized by X-ray diffraction and energy dispersive X-ray spectroscopy. Scanning electron microscopic studies indicated that the surface morphology of ZnS films strongly depends on the nature of the precursor and the deposition temperature, regardless of marginal variation in thermal stability of the precursors. Direct band gap energies of 3.36 and 3.40 eV have been estimated from the ultraviolet–visible spectroscopy for the ZnS films fabricated from precursors (1) and (2), respectively. The current–voltage characteristics recorded under air mass 1.5 illumination confirmed that the deposited ZnS thin films are photoactive under anodic bias conditions. Furthermore, the photoelectrochemical (PEC) results indicate that these synthesised single source precursors are suitable for obtaining ZnS thin films by AACVD method. The ZnS thin film electrode prepared in this study are very promising for solar energy conversion and optoelectronic applications. The PEC properties of ZnS electrodes prepared from (2) are superior to that of the ZnS electrode prepared from precursor (1). - Highlights: • Synthesis and characterization of zinc dithiocarbamate pyridine adducts. • ZnS photo electrodes have been fabricated using aerosol-assisted chemical vapor

  2. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  3. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  4. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  5. Molecular Thermodynamics for Chemical Process Design

    Science.gov (United States)

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  6. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  7. Chemical Processing Department monthly report, October 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-21

    This report, from the Chemical Processing Department at HAPO, for October, 1962 discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

  8. Chemical Processing Department monthly report, February 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-03-21

    This report, for February 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  9. Chemical Processing Department monthly report, October 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-11-22

    This report, from the Chemical Processing Department at HAPO, discusses the following: production operation; purex and redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; and employee relations.

  10. Chemical Processing Department monthly report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    The November 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed was the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  11. Chemical Processing Department monthly report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-20

    The May, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  12. Chemical Processing Department monthly report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-22

    The July, 1958 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  13. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  14. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  15. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    Science.gov (United States)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  16. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  17. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  18. Study of three dimensional germanium islands and ultrathin Si{sub x}Ge{sub 1-x} films grown by chemical vapour deposition on Si(111)-(7 x 7)

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Selvi

    2005-07-15

    This work probed at the atomic level, processes that occur during the Ge three dimensional island formation and on ultrathin Si{sub x}Ge{sub 1-x} epitaxial growth by chemical vapour deposition on the Si(111)-(7 x 7) substrate with the aid of surface probe techniques such as STM and AFM, XPS, as well as TEM imaging of any 3D island formation. This work could essentially be divided into two parts. The first part studied the growth of the strained Ge on Si system with emphasis on the characterisation of the CVD grown three dimensional germanium islands on a standard Si(111)-(7 x 7) substrate as well as on a surface modified Si(111)-(7 x 7) substrate. The characterisation was carried out using a combination of techniques. XPS was used to calculate the effective coverages of deposited germanium, the STM was used to image the top most layers whenever possible and AFM, cross-sectional TEM and HRTEM to image the three dimensional islands. The possible causes of the surface modification were also examined. In the second part of this work the growth morphologies ultrathin Si{sub x}Ge{sub 1-x} layers grown on the Si(111)-(7 x 7) substrate at 750 K where the hydrogen desorption rate from the Si(111) surface is low and at 850 K which was the temperature at which the rate of hydrogen desorption from the Si(111) surface was a maximum were investigated. In addition modelling of ultrathin layer growth was carried out using two existing growth models. (orig.)

  19. Experimental Data of Vapour Permeation Obtained from New Apparatus

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Sedláková, Zuzana; Vejražka, Jiří; Izák, Pavel

    Bratislava : Slovak Society of Chemical Engineering, 2015 - (Markoš, J.), s. 71 ISBN 978-80-89475-14-8. [International Conference of Slovak Society of Chemical Engineering /42./. Tatranské Matliare (SK), 25.05.2015-29.05.2015] R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : vapour permeation * evaluation of experimental data * organic vapour removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  20. Experimental Data of Vapour Permeation Obtained from New Apparatus

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Sedláková, Zuzana; Vejražka, Jiří; Izák, Pavel

    Bratislava: Slovak Society of Chemical Engineering, 2015 - (Markoš, J.), s. 71 ISBN 978-80-89475-14-8. [International Conference of Slovak Society of Chemical Engineering /42./. Tatranské Matliare (SK), 25.05.2015-29.05.2015] R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : vapour permeation * evaluation of experimental data * organic vapour removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  1. Process for the removal of iodine and iodine compounds from gases and vapours and sorption agents impregrated with silver nitrate to carry out the process

    International Nuclear Information System (INIS)

    The gases and vapours containing the radioactive fission product iodine - in elementary form or as an organic compound, e.g. CH3I, are led through a loosely packed bed of granulated metal. The granulated metal may be molded into porous plates or cylinders. The granulates consist mainly of amorphous silica gel impregnated with silver nitrate, with a volume porosity of 50 to 70% and a specific surface of 70 to 250 m2/g according to BET. The silica gel may contain fractions of Al2O3 and/or oxides of alkaline earth metals. (DG) 891 HP/DG 892 MBE

  2. Chemical Processes in Astrophysical Radiation Fields

    International Nuclear Information System (INIS)

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented

  3. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  4. A Novel Chemical Nitrate Destruction Process

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  5. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  6. Synthesis and optimization of integrated chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Paul I.; Evans, Lawrence B.

    2002-04-26

    This is the final technical report for the project titled ''Synthesis and optimization of integrated chemical processes''. Progress is reported on novel algorithms for the computation of all heteroazeotropic compositions present in complex liquid mixtures; the design of novel flexible azeotropic separation processes using middle vessel batch distillation columns; and theory and algorithms for sensitivity analysis and numerical optimization of hybrid discrete/continuous dynamic systems.

  7. Loading conditions of nuclear power plant structures by vapour cloud explosions in consideration of nuclear process heat supply

    International Nuclear Information System (INIS)

    During the last decades there were great explosion accidents in the chemical industry. The analyses of the damage isn't exactly correct neither with a constant nor a variable TNT-equivalent. Another explanation of the damages are the excessive pressure mechanisms such as partial confinement, turbulence acceleration and pressure - sustained combustion which produce a higher pressure maximum than mere combustion. (orig./HP)

  8. Modeling of vapour generator for clean-up separator module

    International Nuclear Information System (INIS)

    233U clean-up process plays an important role in the thorium fuel cycle. This process is based on laser isotope separation (LIS) using atomic vapour, where the impure 233U (containing 232U) is evaporated in high vacuum environment. The vapour is interacted with laser beam to selectively ionize 232U, which is removed by electrostatic means

  9. Chemical computing with reaction-diffusion processes.

    Science.gov (United States)

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  10. Idaho Chemical Processing Plant product denitrator upgrade

    International Nuclear Information System (INIS)

    The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation

  11. Supporting chemical process design under uncertainty

    Directory of Open Access Journals (Sweden)

    A. Wechsung

    2010-09-01

    Full Text Available A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enhance comparisons among different designs is presented. To facilitate automation, a novel relaxation-based heuristic to differentiate between numerical and physical infeasibility when simulations do not converge is introduced. It is shown how this methodology yields more details about limitations of a studied process design.

  12. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.W.; Yoon, K.S.; Cho, B.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)] [and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  13. Numerical simulation of complete liquid-vapour phase change process inside porous media using smoothing of diffusion coefficient

    International Nuclear Information System (INIS)

    The present paper deals with numerical simulations of complete phase change process inside porous media, based on the two-phase mixture model, using finite volume method for discretization. The investigation proposes a successful remedy in order to eliminate the occurrence of 'jump' in predicted properties, by introducing an efficient smoothing algorithm for the effective diffusion coefficient. A thorough parametric study also indicates that the adoption of proposed remedy does not alter the true or expected solution. All tested cases, covering applicable ranges of parametric variations, could be physically interpreted. The methodology is, therefore, recommended for future simulations of complete phase change processes within porous media. (authors)

  14. Chemical cleaning processes - present and future

    International Nuclear Information System (INIS)

    Corrosion products and impurities can accumulate in the secondary side of steam generators causing accelerated corrosion, steam flow disruption and heat transfer loss. Traditionally, chemical cleaning processes have been performed using multi-step processes that employ relatively concentrated reagents (e.g. EPRI-SGOG, 10-20 wt.%), that are applied at elevated temperatures. The use of such reagents dictates the use of large and relatively complex reagent handling systems for both reagent preparation and disposal. The significant duration and cost of each chemical clean has dictated that these cleaning processes are only applied on a remedial basis. An assessment of existing technology was carried out and improvements to the EPRI-SGOG processes are being developed. Results of these assessments are reported. Advanced processes are being developed by Atomic Energy of Canada Limited that use lower concentrations of reagents, require shorter application times and generate lower amounts of waste. This technology can be used on a preventive basis to keep steam generators clean. Included are: A dilute regenerative process that is applied during shutdown. The dilute reagent is continuously recirculated and regenerated during the cleaning process, resulting in shorter application times using modular and portable equipment. The low reagent concentration results in a significantly reduced waste volume. For deposits containing both magnetite and copper a pseudo one-step process (using the same base electrolyte and pH) is used with alternate addition of oxidizing or reducing agents; A dilute on-line process that can be used while the reactor is operating. Such a process would be used on a periodic basis and dislodged oxides removed by blowdown or by mechanical means; Additives that can be used to keep steam generators clean. A demonstration of this technology is currently being planned. Details of these technologies will be described. (author)

  15. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  16. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  17. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only. PMID:19501963

  18. Catalysis questions in chemical processing of coal

    Energy Technology Data Exchange (ETDEWEB)

    Paal, Z.

    1980-01-01

    A brief review is given of the literature in the field of catalytic problems related to the chemical processing of coal. As is known, these processes have become especially significant due to the energy crisis. Existing problems can be divided into two groups: one group is connected with catalytic processing of liquid products of coal destructive hydrogenation (for example, by hydrogenation of coal at high pressures, or by extraction); the other groups is connected with catalytic reactions occurring during the destructive hydrogenation or gasification of coal. Extensive basic research is required in both fields, since certain basic properties of the systems examined are still unknown. The article also gives a brief review of certain new results obtained when studying Fisher-Tropsh reactions and MeOH synthesis.

  19. Intelligent Controller Design for a Chemical Process

    Directory of Open Access Journals (Sweden)

    Mr. Glan Devadhas G

    2010-12-01

    Full Text Available Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based on a Mamdani type and Sugeno type fuzzy system constructed to model the dynamics of the process. The fuzzy system model can take advantage of both a priori linguistic human knowledge through parameter initialization, and process measurements through on* line parameter adjustment. The ANFIS, which is a fuzzy inference system, is implemented in the framework of adaptive networks. The proposed ANFIS can construct an input*output mapping based on both human knowledge (in the form of fuzzy if*then rules and stipulated input*output data pairs. In this method, a novel approach based on tuning of fuzzy logic control as well as ANFIS for a CSTR process, capable of providing an optimal performance over the entire operating range of process are given. Here Fuzzy logic control as well as ANFIS for obtaining the optimal design of the CSTR process is explained. In this approach, the development of rule based and the formation of the membership function are evolved simultaneously. The performance of the algorithm in obtaining the optimal tuning values has been analyzed in CSTR process through computer simulation.

  20. Need for Vapour-Liquid Equilibrium Data Generation of Systems Involving Green Solvents

    OpenAIRE

    V. M. Parsana; S. P. Parikh

    2015-01-01

    Much has been said and written over the years regarding green chemistry concept and use of green solvents. The green solvents can potentially replace the traditional or classical solvents in order to reduce the environment footprint or their harmful impact on human being and/or environment. Vapour-liquid equilibrium data is indispensable for the design of distillation columns for separation processes which account for a large percentage of total costs in a typical chemical plant. ...

  1. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  2. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  3. Idaho Chemical Processing Plant failure rate database

    International Nuclear Information System (INIS)

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included

  4. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  5. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes — A transition regime between bioventing and soil vapour extraction

    OpenAIRE

    Magalhães, S.M.C.; Jorge, R.M. Ferreira; Castro, P. M. L.

    2009-01-01

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the mostcommonsources of soil pollution. However, themajor drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, ...

  6. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pesticide chemicals in processed foods. 570.19... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use...

  7. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pesticide chemicals in processed foods. 170.19... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use...

  8. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time

  9. Studying chemical vapor deposition processes with theoretical chemistry

    OpenAIRE

    Pedersen, Henrik; Elliott, Simon D.

    2014-01-01

    In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. These chemical reactions take place on the surface and in many cases also in the gas phase. To fully understand the chemistry in the process and thereby also have the best starting point for optimizing the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale...

  10. Generation and spectroscopic investigation of an atmospheric pressure water vapour plasma jet

    International Nuclear Information System (INIS)

    Water vapour plasma technologies could be used for the conversion of biomass to hydrogen rich synthetic gas and for the neutralization and utilization of hazardous wastes. Formation of water vapour plasma has been investigated using a linear direct current plasma torch with stair stepped anode. A new device with a unique structure, operating at atmospheric pressure has been designed and tested at Lithuanian Energy Institute, Plasma Processing Laboratory for the innovative and environmental friendly plasma treatment of organic materials. The main operating conditions of plasma torch and main parameters of water vapour plasma jet were investigated. The power of plasma torch was 25–45kW; arc current was 140–180 A, the arc voltage was 172–231 V, the efficiency was 0.5–0.78. The average temperature of water vapour plasma jet in exhaust nozzle was 2600–3500 K, and the plasma jet velocity was 200–310 m/s. Emission lines, registered by the optical emission spectrometer AOS4-1, are analysed to observe the chemical composition of water vapour plasma jet. The optical emission spectrum measurement shows that the water molecule in the plasma is decomposed into H, OH and O radicals. Hydrogen is very desirable in the formation of high caloric synthetic gas (CO+H2) during thermal plasma gasification of organic materials. The summarized results can help to calculate and design gasification systems of biomass, to establish optimal parameters for stable operation of plasma generator and regulate the process parameters. (author)

  11. Isothermal Vapour-Liquid Equilibrium with Chemical Reaction in the Quaternary Water + Methanol + Acetic Acid + Methyl Acetate System, and in Five Binary Subsystems.

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Aim, Karel; Wichterle, Ivan

    2006-01-01

    Roč. 247, 1-2 (2006) , s. 96-101. ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA203/03/1588 Institutional research plan: CEZ:AV0Z40720504 Keywords : esterification * chemical equilibria * phase equilibria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.680, year: 2006

  12. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  13. Variability of winter-time middle atmospheric water vapour over the Arctic as observed with a ground-based microwave radiometer

    Science.gov (United States)

    Tschanz, Brigitte; Kivi, Rigel; Rüfenacht, Rolf; Kämpfer, Niklaus

    2014-05-01

    Middle atmospheric water vapour has a long chemical lifetime and can therefore be used as a tracer for dynamics. The ground-based microwave radiometer MIAWARA-C is designed for the use on campaigns and measures profiles of water vapour in the upper stratosphere and mesosphere and thus provides valuable data for the investigation of atmospheric processes. It has been operational for five years and has successfully participated in measurement campaigns under various climatic conditions in Germany, Switzerland, California, Finland and on la Réunion. The temporal resolution of the obtained water vapour profiles approximately 2 hours depending on tropospheric conditions. During two campaigns from January to June 2010 and from July 2011 to April 2013 in Sodankylä, Finland, MIAWARA-C monitored time series of polar middle atmospheric water vapour for three winters with three Sudden Stratospheric Warmings (SSW) occurring in early 2010, 2012 and 2013. The obtained time series are used to study the effects of the three SSWs on middle-atmospheric water vapour. During an SSW, humid mid- to low-latitude air is transported towards the polar region resulting in a fast increase in water vapour. The descent of water vapour after the SSW allows the estimation of the descent rate over the polar region as the normal wintertime circulation reforms. Results from the three SSWs are compared. The ground-based water vapour data is combined with sonde data of the Finnish Meteorological Institute and ground-based microwave wind measurements for one winter in order to obtain a more complete picture of the dynamics in the polar winter atmosphere.

  14. Tritium separation factors in distillation and chemical exchange processes

    International Nuclear Information System (INIS)

    The vapour pressures of different isotopic hydrogen, water and ammonia molecules have been calculated. These vapour pressures can be used to evaluate relative volatilities of different species for separation of tritium isotopes by distillation. The equilibrium constants for various exchange reactions involving different deuterated and tritiated species of hydrogen, water and ammonia molecules have also been calculated for different temperatures. (author)

  15. A catalyst-free synthesis of germanium nanowires obtained by combined X-ray chemical vapour deposition of GeH$_4$ and low-temperature thermal treatment techniques

    Indian Academy of Sciences (India)

    CHIARA DEMARIA; ALDO ARRAIS; PAOLA BENZI; ENRICO BOCCALERI; PAOLA ANTONIOTTI; ROBERTO RABEZZANA; LORENZA OPERTI

    2016-04-01

    A catalyst-free innovative synthesis, by combined X-ray chemical vapour deposition and lowtemperature thermal treatments, which has not been applied since so far to the growth of germanium nanowires (Ge-NWs), produced high yields of the nanoproducts with theGeH4 reactant gas. Nanowires were grown on both surfaces of a conventional deposition quartz substrate. They were featured with high purity and very large aspect ratios (ranging from 100 to 500). Products were characterized by scanning electron microscopy with energy-dispersiveatomic X-ray fluorescence and transmission electron microscopies, X-ray powder diffraction diffractometry, thermogravimetric analysis with differential scanning calorimetry, vibrational infrared and Raman and ultraviolet–visible–near infrared spectroscopies. A quantitative nanowire bundles formation was observed in the lower surface of the quartz substrate positioned over a heating support, whilst spots of nanoflowers constituted by Ge-NWs emerged from a bulk amorphous germanium film matter, deposited on the upper surface of the substrate. Thenanoproducts were characterized by crystalline core morphology, providing semiconductive features and optical band gap of about 0.67 eV. The possible interpretative base-growth mechanisms of the nanowires, stimulated bythe concomitant application of radiant and thermal conditions with no specific added metal catalyst, are hereafter investigated and presented.

  16. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    赵佰军; 杨洪军; 杜国同; 缪国庆; 杨天鹏; 张源涛; 高仲民; 王金忠; 方秀军; 刘大力; 李万成; 马燕; 杨晓天; 刘博阳

    2003-01-01

    ZnO films were deposited by low-pressure metal organic chemical vapour deposition on epi-GaN/Al2O3 films and c-Al2O3 substrates.The structure and optical properties of the ZnO/GaN/Al2O3 and ZnO/Al2O3 films have been investigated to determine the differences between the two substrates.ZnO films on GaN/Al2O3 show very strong emission features associated with exciton transitions,just as ZnO films on Al2O3,while the crystalline structural qualities for ZnO films on GaN/Al2O3 are much better than those for ZnO films directly grown on Al2O3 substrates.Zn and O elements in the deposited ZnO/GaN/Al2O3 and ZnO/Al2O3 films are investigated and compared by x-ray photoelectron spectroscopy.According to the statistical results,the Zn/O ratio changes from Zn-rich for ZnO/Al2O3 films to O-rich for ZnO/GaN/Al2O3 films.

  17. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility

    Science.gov (United States)

    Alcotte, R.; Martin, M.; Moeyaert, J.; Cipro, R.; David, S.; Bassani, F.; Ducroquet, F.; Bogumilowicz, Y.; Sanchez, E.; Ye, Z.; Bao, X. Y.; Pin, J. B.; Baron, T.

    2016-04-01

    Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001) wafers was studied. Antiphase boundary (APB) free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.

  18. Comparison between conventional chemical processes and bioprocesses in cotton fabrics

    OpenAIRE

    Mojsov, Kiro

    2015-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. They are also not easily biodegradable. Biotechnology in textiles is one of the revolutionary ways to promote the textile field. Bio-processing were accompanied by a significant lower demand of energy, water, chemicals, time and costs. Due to the ever growing costs for water and energy worldwide investigations are carried out to substitute conventional chemical textile processes by...

  19. Contributions of Organic Vapours to Atmospheric Nanoparticle Growth

    Science.gov (United States)

    Wang, L.; Xu, W.; Khalizov, A. F.; Zhang, R.

    2010-12-01

    Atmospheric aerosol particles alter radiative balance of the earth-atmosphere system, impact the regional and global climate, and pose negative effects on human health. Aerosol nucleation events have been frequently observed under various tropospheric conditions and account for a major fraction of the total aerosol population. Although a number of studies suggest that organics are involved in both new particle formation and their subsequent growth, the fundamental chemical processes responsible for organic vapours’ contribution remain poorly understood. This work will focus on laboratory studies on the role of various organic vapours in sulphuric acid nanoparticles growth. Sulfuric acid nanoparticles of 4-20 nm diameter size are generated from homogeneous binary nucleation of H2SO4 and H2O vapors in a laminar flow reactor. The growth factor of H2SO4 nanoparticles exposed to organics including methyglyoxal, ethanol, 1-butanol, 1-heptanol, 1-decanol, and cis-pinonic acid is measured using a nano-tandem differential mobility analyzer (nano-TDMA). Also studied is the potential synergistic effect in the presence of two or more organic vapours to which sulphuric acid nanoparticles are exposed. The chemical compositions of H2SO4 particles exposed to the organics are analyzed by a thermal desorption-ion drift-chemical ionization mass spectrometer (TD-ID-CIMS), and the spectroscopic evolution of functional groups in H2SO4 particles of ~40 nm diameter size, deposited on ZnSe crystal and subsequently exposed to organics, is studied using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The combined techniques are used to elucidate the key factors in controlling atmospheric nanoparticle growth.

  20. Total chemical management in photographic processing

    Science.gov (United States)

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  1. Consistent vapour-liquid equilibrium data containing lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent;

    Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, it was observed a lack of experimental data for pure compounds and also for...... their mixtures in open literature, what makes necessary the development of reliable predictive models based on limited data. To contribute to the missing data, measurements of isobaric vapour-liquid equilibrium (VLE) data of three binary mixtures at two different pressures were performed at State...... distillates while systems 2 and 3 are relevant in the purification steps of biodiesel and bioglycerin. It should be highlighted that there is no such data in the open literature, not only for the specific compounds we selected but also for the combination of the classes of compounds considered in this work...

  2. Investigations on the effects of plasma-assisted pre-treatment for plasma-assisted chemical vapour deposition TiN coatings on tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Gammer, K.; Stoiber, M.; Wagner, J.; Hutter, H.; Kullmer, R.; Mitterer, C

    2004-08-16

    Different mixtures of hydrogen, nitrogen and argon were tested for the cleaning and nitriding of cold-working, high chromium tool steel, prior to TiN deposition with the aim of improving adhesion of the TiN layer. It is well known that the condition of the substrate surface and hardening of the substrate by nitriding have a large influence on the adhesion strength of films. Good adhesion was achieved when nitrogen-hydrogen atmosphere with 40%-80% nitrogen (and 20%-60% hydrogen, respectively) was used, the best adhesion quality values were achieved (HF 1-2) with 40% nitrogen. With higher or lower fractions of nitrogen in the pre-treatment gas, adhesion was reduced. Argon addition also had negative effects on the adhesion strength. The microstructure and chemical composition of the near-interface region of the differently pretreated samples were analysed using secondary ion mass spectrometry, X-ray diffraction and light optical microscopy.

  3. Investigations on the effects of plasma-assisted pre-treatment for plasma-assisted chemical vapour deposition TiN coatings on tool steel

    International Nuclear Information System (INIS)

    Different mixtures of hydrogen, nitrogen and argon were tested for the cleaning and nitriding of cold-working, high chromium tool steel, prior to TiN deposition with the aim of improving adhesion of the TiN layer. It is well known that the condition of the substrate surface and hardening of the substrate by nitriding have a large influence on the adhesion strength of films. Good adhesion was achieved when nitrogen-hydrogen atmosphere with 40%-80% nitrogen (and 20%-60% hydrogen, respectively) was used, the best adhesion quality values were achieved (HF 1-2) with 40% nitrogen. With higher or lower fractions of nitrogen in the pre-treatment gas, adhesion was reduced. Argon addition also had negative effects on the adhesion strength. The microstructure and chemical composition of the near-interface region of the differently pretreated samples were analysed using secondary ion mass spectrometry, X-ray diffraction and light optical microscopy

  4. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001 substrate by metalorganic chemical vapour deposition with high mobility

    Directory of Open Access Journals (Sweden)

    R. Alcotte

    2016-04-01

    Full Text Available Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001 wafers was studied. Antiphase boundary (APB free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.

  5. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    , biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can be......Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives...

  6. Chemical vapour deposition of graphene on Nk(111) and Co(0001) and intercalation with Au to study Dirac Cone Formation and Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J.; Vescovo, E.; Varykhalov, A.; Scholz, M.R.; Rader, O.; Marchenko, D.; Rybkin, A.

    2010-01-01

    We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapor deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene {pi}-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the {pi}-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect.

  7. Structural and chemical transformations in the products of the interaction of silica gel with vapours of TiCl4 and H2O

    International Nuclear Information System (INIS)

    Titanium oxide structures were synthesised by a molecular layering method on the surface of silica (ShSKG, SBET = 270 m2/g, V = 0.94 cm3/g, d = 14 nm). The change in the mass of the sample during the deposition was measured in situ. The samples were characterised by elemental analysis of Ti (photocolorimetry) and Cl (mercurimetry), scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In this study, the effect of the temperature (200 °C, 500 °C) and number of synthesis cycles (1–4) on the distribution of titanium oxide structures over a cross-section of silica was investigated, along with the chemical composition and the microstructure of the modified silica samples. All of the deposition steps carried out at 200 °C and 500 °C were self-limiting. Synthesis at 200 °C provided a uniform distribution of titanium oxide structures over a cross-section of silica, and no traces of phase formation were found by scanning electron microscopy. For the samples synthesised at 500 °C, the titanium concentration in the edge of the granule was 1.5 times higher than in the central regions. Titanium dioxide crystals were found on the external surface of the silica modified by four cycles at 500 °C (its concentration was approximately 3.5 wt% of the total titanium content in the sample). On the surface of this sample, oval agglomerates of a higher titanium concentration were observed. The structure of these agglomerates was globular, similar to the structure of the initial silica.

  8. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  9. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  10. Stereodynamics: From elementary processes to macroscopic chemical reactions

    International Nuclear Information System (INIS)

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed

  11. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  12. News: Good chemical manufacturing process criteria

    Science.gov (United States)

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  13. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  14. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  15. A eutectic gold vapour laser

    Science.gov (United States)

    Tou, T. Y.; Cheak, K. E.; Low, K. S.

    This paper presents a eutectic gold vapour laser (EGVL) which uses the eutectic alloy of gold and silicon, Au/3.15Si, as the lasant. It was observed that, at low input power operation, the presence of the silicon vapour could increase the output of the 627.8 nm laser line by (50-60)% when compared with a gold vapour laser (GVL) which uses pure gold as the lasant. The improved laser output for the EGVL may be explained by an increased electron density, as a result of Penning ionization of silicon atoms. However, for higher input power operation, the EGVL showed a slower rate of increase in its laser output power and was overtaken by GVLs at a tube operating temperature of around 1650°C. This may be explained by a lowering of the electron temperature owing to increasing inelastic collisions between the electrons and silicon atoms which, although excited, may not produce additional electrons.

  16. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  17. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  18. Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry

    Indian Academy of Sciences (India)

    G V Kunte; Ujwala Ail; P K Ajikumar; A K Tyagi; S A Shivashankar; A M Umarji

    2011-12-01

    A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure–temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

  19. Efficient Nonlinear Programming Algorithms for Chemical Process Control and Operations

    Science.gov (United States)

    Biegler, Lorenz T.

    Optimization is applied in numerous areas of chemical engineering including the development of process models from experimental data, design of process flowsheets and equipment, planning and scheduling of chemical process operations, and the analysis of chemical processes under uncertainty and adverse conditions. These off-line tasks require the solution of nonlinear programs (NLPs) with detailed, large-scale process models. Recently, these tasks have been complemented by time-critical, on-line optimization problems with differential-algebraic equation (DAE) process models that describe process behavior over a wide range of operating conditions, and must be solved sufficiently quickly. This paper describes recent advances in this area especially with dynamic models. We outline large-scale NLP formulations and algorithms as well as NLP sensitivity for on-line applications, and illustrate these advances on a commercial-scale low density polyethylene (LDPE) process.

  20. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li+ + K, Na+ + K, K+ + K, and Rb+ + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG)

  1. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    group parameter is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis...... of organic chemicals, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues......Physical-chemical properties of pure chemicals and their mixtures play an important role in the design of chemicals based products and the processes that manufacture them. Although, the use of experimental data in design and analysis of chemicals based products and their processes is desirable...

  2. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    Science.gov (United States)

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  3. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937. ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  4. Chemical interaction matrix between reagents in a Purex based process

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague, France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (authors)

  5. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  6. Chemical Processing Department monthly report for August 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-09-21

    This report, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  7. Chemical Processing Department monthly report for August 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-09-22

    This report, for August 1958 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operation; facilities engineering; research; and employee relations.

  8. Chemical Processing Department monthly report for February 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-03-21

    This report from the Chemical Processing Department at HAPO, discusses the following: Production operation, purex operation, redox operation, finished products operation, power and general maintenance operation, financial operation, facilities engineering operation, research and engineering operation, and employee relations operation.

  9. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  10. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.

    1957-08-22

    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  11. Chemical Processing Department monthly report for September 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-10-23

    This report, for September 1962 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  12. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  13. Chemical Processing Department monthly report for July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-21

    This report, for July 1964 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  14. Chemical grouting process for tight soil

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E.H.; Kauffman, D.; Herce, J.A.

    1975-07-15

    A process is described for strengthening a soil in which the pores are too small to be penetrated by a slurry of cement. A means for injecting fluid is arranged for flowing fluid into a selected zone within such a soil formation at a rate such that the fluid velocity in the pores in that zone is at least 0.3 cm per min. A determination is made of the extent of time-temperature exposure to which a fluid is subjected when it flows at the selected rate from a fluid-compounding location to the selected zone within the soil formation. A basic aqueous solution of an amphoteric metal oxide and a pH-reducing reactant that begins precipitating a hydrated metal oxide after being subjected to the determined extent of time-temperature exposure is prepared at the fluid-compounding location. The prepared solution is flowed into the selected zone at the selected rate while the time and the temperature conditions of the compounding and storing of the fluid are adjusted so that substantially all portions of the solution are subjected to the determined extent of time-temperature exposure. (9 claims)

  15. Chemical Processing Department monthly report, March 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-04-20

    Production of Pu, UO{sub 3}, and Pu metal exceeded forecasts. The 2nd attempt at Purex to recover Zr-Nb resulted in about 1/3 recovery, contaminated with about 1% of the Ce. Palm losses to Purex U product were eliminated, and the Pu content was reduced 5 to 10{times}. Routing the dissolver rinses into 3WB concentrator resulted into improved rinsing efficiency. Unclarified feed was processed through Purex HA column. In a test for using B in Redox, the B was routed completely to the waste; it was not detectable in product streams beyond the first cycle. Almost 1000 g Palm was purified and converted to oxide. Ferrous ion catalyzed the reduction of Palm VI by hydrazine or semicarbazide. Coordination of E-metal and NPR reprocessing at Redox in multipurpose dissolver was studied. An interim fission product recovery program at Purex will be directed toward low-efficiency collection of Pm {sup 147}. Locations for critical incident alarms were selected. (DLC)

  16. Analysis of chemical coal cleaning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  17. Chemicals in the process chain from raw material to product

    International Nuclear Information System (INIS)

    As described in this presentation, chemicals are added at various points along the physical flow from oil/gas well to sold products. They have several functions and are added in different amounts. The chemicals may have a negative impact on the environment by emission to sea. But they can also reduce the regularity of the processing equipment and the prices of the products. Therefore, Statoil has begun a research project that aims to develop improved methods and tools for the prediction of the distribution of chemicals in the process chain and the unwanted effects they might have on the environment, on downstream installations and on the products. 4 refs., 11 figs

  18. The metal-organic chemical vapour deposition and optical studies of ZnSe1-xTex and CdS1-xTex epilayers and tellurium doped ZnS/CdS superlattices

    International Nuclear Information System (INIS)

    This work sought to achieve efficient room temperature blue photoluminescence (PL) from II-VI superlattices by incorporation of tellurium (Te) exciton traps into the wells. In preparation for this, the growth and optical properties of ZnSe1-xTex and CdS1-xTex dilute alloy epilayers were first investigated. The epilayer and superlattice samples were prepared using atmospheric pressure metal-organic chemical vapour deposition (AP-MOCVD). The dependence of Te concentration (x) on the growth precursors and conditions used was investigated. This led to an understanding of the relative stabilities of the precursors used, as well as the best growth conditions required to control Te concentrations. A diffusion doping technique was also developed for growth of low Te concentration ZnSe:Te and CdS:Te epilayers. The corresponding concentration and PL results for these layers were used to confirm the expected microscopic nature of the Te centres. The low temperature (1.8K) PL emission intensities from ZnSe1-xTex and CdS1-xTex epilayers were intense, but found to decrease rapidly with increasing temperature despite the large exciton trapping energies. A theoretical capture cross section model was thus developed to explain these observations. In addition, application of this model allowed the microscopic size of Te centres to be obtained, thereby explaining the different appearance of corresponding PL bands. In view of the more persistent emissions from CdS1-xTex layers compared with those of ZnSe1-xTex, it was decided to grow Te doped ZnS/CdS:Te superlattices. The ZnS/CdS:Te superlattices were found give the intended blue emission. However, structural disruption in these superlattice samples led to quenching of this emission at room temperature. Finally, it was found that the degree of electron-phonon coupling to Te centres was less in superlattice structures compared to epilayers. (author)

  19. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  20. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  1. Dust as interstellar catalyst. I. Quantifying the chemical desorption process

    Science.gov (United States)

    Minissale, M.; Dulieu, F.; Cazaux, S.; Hocuk, S.

    2016-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV- and cosmic-ray-induced photons do not account for such processes. Aims: The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included in astrochemical models. Methods: We present a collection of experimental results of more than ten reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice were used. We derived a formula for reproducing the efficiencies of the chemical desorption process that considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II of this study we extend these results to astrophysical conditions. Results: The equipartition of energy correctly describes the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient, and a better description of the interaction with the surface is still needed. Conclusions: We show that the mechanism that directly transforms solid species into gas phase species is efficient for many reactions.

  2. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  3. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  4. Chemical Processing Department monthly report for October 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-11-21

    The October, 1956 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  5. Chemical Processing Department monthly report for September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    The September, 1958 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  6. Diffusion mechanisms for chemical-thermal metal processing

    International Nuclear Information System (INIS)

    To describe volumetric diffusion in metals, some possible mechanisms are offered: exchange, cyclic (circular), interstitial idle time and interstitial with cumulative and vacancy replacement. It is revealed that at chemical-thermal processing the diffusion process is complex where there is multidimensional movement of atoms and displacement of crystal lattices

  7. MICROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING

    OpenAIRE

    Brandner, Juergen; Anurjew, E.; Henning, T.; Schygulla, U.; Schubert, K.

    2006-01-01

    In this publication, an overview of the work dealing with thermal and chemical micro process engineering performed at the Institute for Micro Process Engineering (IMVT) of Forschungszentrum Karlsruhe will be given. The focus will be set on manufacturing of metallic microstructure devices and on microstructure heat exchangers. A brief outlook will describe possible future application fields.

  8. A Course in Project Evaluation in the Chemical Process Industries.

    Science.gov (United States)

    Valle-Riestra, J. Frank

    1983-01-01

    Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…

  9. Dust as interstellar catalyst I. Quantifying the chemical desorption process

    CERN Document Server

    Minissale, M; Cazaux, S; Hocuk, S

    2015-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these resul...

  10. The National Toxicology Program chemical nomination selection and testing process.

    Science.gov (United States)

    Heindel, J J

    1988-01-01

    The NTP is an interagency program of the Federal Government which coordinates toxicological programs at the NIH (NIEHS), FDA (NCTR), and CDC (NIOSH) with input from NCI, NIH, OSHA, CPSC, EPA, and ATSDR. The NTP has the capability to completely characterize the toxicologic profile of a chemical, including studies of chemical disposition, genetic toxicity, immunotoxicity, teratology, reproductive toxicity, carcinogenicity, neurotoxicity, and specific organ toxicity. The NTP encourages nominations of chemicals of human health concern from all sectors of the public, including industry, labor, and the general public. The specific process of nomination, evaluation, and selection of chemicals for testing by the NTP is described. It is a multicomponent system with several evaluations and a public peer review step to assure adequate consideration of all nominated chemicals. The results of NTP studies are all peer reviewed and available to the general public as well as to the scientific community. PMID:2980357

  11. The Vapour Pressure of Plutonium

    International Nuclear Information System (INIS)

    The vapour pressure of liquid plutonium has been determined over the temperature range 1100 to 1800°K by the Knudsen effusion method. The least-squares equation which fits the data is log10p(atm) = -17 420/T(°K) + 4.913. The standard deviation corresponds to about ±10% in the pressures calculated from this equation. The heat of vaporization computed from the temperature dependence of the experimental data is ΔH0298 = 82.3 kcal/g-at. The heat computed by combining independent entropy and heat capacity data with the present measurements is ΔH0298 = 82.1 kcal/g-at. Effects of oxygen upon the volatility of liquid plutonium were sought by comparing the vapour pressures observed with the liquid in contact with tantalum, tantalum carbide, magnesia, and plutonium sesquioxide. No differences were found. In addition, the vapour pressure was measured with different degrees of vacuum in the system. No effect was found here either, except that in very poor vacuums a surface film of oxide apparently formed and reduced the volatility by about a factor of 2. (author)

  12. Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2010-01-01

    Full Text Available In this work, a TPR (Temperature Programmed Reduction system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition, The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.

  13. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  14. A chemical process of asphaltenes dispersion : anticor DSA 700

    International Nuclear Information System (INIS)

    This work deals with asphalts dispersion chemical process. Asphaltenes are constituents of petroleum which under chemical, physical or mechanical variations effect precipitate and create deposits. In order to cope with this problem, a product : Anticor DSA 700 has been adjusted and allow to stabilize asphaltenes. This method has already been used in France and in Algeria and will be extended to others west countries. (O.L.). 2 figs

  15. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... well as to match different catalyst conditions. These kinds of problems are crucial, especially at the early stages of process development, when information is limited. This thesis describes a methodological framework for dealing with the challenges and giving direction to research in the process...... process design of the synthesis 2,5-furandicarboxylic acid (FDA) from glucose. By using the selected case study, the complexity and challenges for the process engineer to choose between different alternative routes and technologies as well as to combine two different kinds of catalysis (enzymatic...

  16. Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University

    International Nuclear Information System (INIS)

    Highlights: • Moving bed reducer maximizes solids conversion and maintains full fuel conversion. • 850+ Operating hours completed in 25-kWth sub-pilot chemical looping units. • Full solid and gaseous fuel conversion achieved in sub-pilot chemical looping units. • Fully integrated, pressurized 250-kWth pilot SCL unit construction initiated. • Extensive techno-economic analysis performed on CDCL and SCL process configurations. - Abstract: The increasing demands for energy and concern of global warming are intertwined issues of critical importance. With the pressing need for clean, efficient, and cost-effective energy conversion processes, the chemical looping strategy has evolved as a promising alternative to the traditional carbonaceous fuel conversion processes. Chemical looping processes utilize oxygen carrier particles to indirectly convert carbonaceous fuels while capturing CO2 for sequestration and/or utilization. Throughout its development, multiple oxygen carrier compositions and reactor configurations have been studied and demonstrated. The Ohio State University (OSU) chemical looping technologies have received significant attention over the recent years. OSU’s unique moving-bed chemical looping technologies coupled with iron-based oxygen carrier particles capable of sustaining hundreds of redox cycles have the advantage of converting a variety of carbonaceous fuels, such as natural gas, coal and biomass, to electricity, H2, liquid fuels, or any combination thereof with zero to negative net CO2 emissions. Specifically, two chemical looping processes are being developed and studied, the syngas chemical looping (SCL) and the coal direct chemical looping (CDCL) technologies. Over the past 14 years, these processes have developed from a novel concept to successful sub-pilot (25 kWth) demonstrations. With the support of the Advanced Research Projects Agency – Energy (ARPA-E) of the US Department of Energy (USDOE), a 250 kWth high pressure SCL pilot

  17. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    Science.gov (United States)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  18. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  19. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  20. Electrochemistry and green chemical processes: electrochemical ozone production

    Directory of Open Access Journals (Sweden)

    Leonardo M. da Silva

    2003-12-01

    Full Text Available After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

  1. Atomic vapour laser isotope separation of zirconium

    International Nuclear Information System (INIS)

    The possibility of separating the 91Zr isotope from the rest of the isotopes of zirconium were investigated. The current interest in zirconium arise from the fact that zirconium is an important element in the construction of nuclear reactors. The technique proposed for the isotope separation process is different from those currently in use for the separation of isotopes of refractory elements such as uranium. The proposed isotope separation process is based on the multi-step selective excitation of the isotope to be extracted, which in this case is 91Zr. The isotope-selective laser excitation relies on the angular-momentum selection rules for the absorption of circularly polarized light. The theory governing the isotope separation process is discussed and the various parameters in the practical implementation of the theory are investigated. The suitability of a demountable hollow cathode lamp as zirconium atomic vapour source was investigated. The optimum working conditions for the demountable hollow cathode lamp was determined and fluorescence, absorption and emission measurements were made. In order to realize a selective two-step excitation process, relevant energy levels must exist which fulfill certain requirements as discussed in the thesis. Energy levels fulfilling the necessary conditions for isotope separation are not readily available and an intensive study of the zirconium energy levels were made. Non-selective two-step excitation of the zirconium atoms was realized. These fluorescence measurements gave information regarding the optical alignment of the laser beams as well as the construction of the demountable hollow cathode lamp as atomic vapour source for the two-step excitation process. Although selective two-step excitation of the 91Zr isotope could not be achieved, a number of valuable results were obtained during the project. Proposals on how the necessary selective excitation could be achieved, in order to realize the separation of the 91Zr

  2. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik;

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... receive. The education is designed to provide students with the necessary tools to become productive in a company in a short time – so there is a strong industrial focus. Some students choose to continue with their studies and can then complete an M.Sc. after a further two years of study. The demands of...... chemical plants will incorporate one or more chemical reactors. In the initial stages of a process design, it is sufficient to express simply the reactor inputs and outputs. However in later stages, details about the reactor need to be specified. This is only possible using tools learned in the course...

  3. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  4. Condensation of water vapour on moss-dominated biological soil crust, NW China

    Indian Academy of Sciences (India)

    Xin-Ping Wang; Yan-Xia Pan; Rui Hu; Ya-Feng Zhang; Hao Zhang

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3°C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4°C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  5. Water vapour permeability of clay bricks

    OpenAIRE

    Dondi, M.; Principi, P.; Raimondo, M.; Zanarini, G.

    2003-01-01

    The water vapour permeability of clay bricks has been experimentally measured in order to draw a representative outline of industrial products without pore-forming additives. The correlations between water vapour permeability and the main compositional and microstructural parameters of both bricks and clay bodies have been investigated. A statistical model was set up in order to predict with reasonable precision and reliability, the water vapour permeability on the basis of open porosity, bul...

  6. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation and...

  7. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    Science.gov (United States)

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  8. Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process

    Directory of Open Access Journals (Sweden)

    J. Curtius

    2010-08-01

    Full Text Available Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene for adjusting the OH radical concentration and resulting OH levels in the range (4–300 ×105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing an upper limit. Addition of 1.2×1011 molecule cm−3 or 1.2×1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions, i.e. a rise of the particle number by 1–2 orders of magnitude at RH = 13% and only by a factor of 2–5 at RH = 47% (NH3 addition: 1.2×1012 molecule cm−3. Using the amine tert-butylamine instead of NH3, the enhancing impact of the base for nucleation and particle growth appears to be stronger. Tert-butylamine addition of about 1010 molecule cm−3 at RH = 13% enhances particle formation by about two orders of magnitude, while for NH3 only a small or negligible

  9. Fabrication of agglomerate-free nanopowders by hydrothermal chemical processing

    OpenAIRE

    Schmidt, Helmut K.; Nass, Rüdiger; Burgard, Detlef; Nonninger, Ralph

    1998-01-01

    A chemical processing technique for the fabrication of nanopowders has been developed. The route is based on precipitation processes in solutions, either within aqueous droplets in microemulsions in the presence of surface modifiers like surfactants or by direct precipitation in solutions in the presence of theses surface modifiers or small organic molecules directly bonded to the particle surface. In order to obtain well crystallized or densified particles, a continuous flow hydrothermal pro...

  10. Data reconciliation and gross error detection: application in chemical processes

    OpenAIRE

    EGHBAL AHMADİ, Mohammad Hosein

    2015-01-01

    Abstract. Measured data are normally corrupted by different kinds of errors in many chemical processes. In this work, a brief overview in data reconciliation and gross error detection believed as the most efficient technique in reducing the measurement errors and obtaining accurate information about the process is presented. In addition to defining the basic problem and a survey of recent developments in this area that is categorized in “Real Time Optimization” field, we will describe about a...

  11. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012)

    Science.gov (United States)

    Weigel, K.; Rozanov, A.; Azam, F.; Bramstedt, K.; Damadeo, R.; Eichmann, K.-U.; Gebhardt, C.; Hurst, D.; Kraemer, M.; Lossow, S.; Read, W.; Spelten, N.; Stiller, G. P.; Walker, K. A.; Weber, M.; Bovensmann, H.; Burrows, J. P.

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  12. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    Science.gov (United States)

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-09-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

  13. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  14. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  15. A group contribution method for estimating the vapour pressures of α-pinene oxidation products

    OpenAIRE

    J. F. Müller; Capouet, M.

    2005-01-01

    A prediction method based on group contribution principles is proposed for estimating the vapour pressure of α-pinene oxidation products. Temperature dependent contributions are provided for the following chemical groups: carbonyl, nitrate, hydroxy, hydroperoxide, acyl peroxy nitrate and acid. On the basis of observed vapour pressure differences between isomers of diols and dinitrates, a simple refinement is introduced in the method, which allows to account for the influence of the subs...

  16. A Framework to Design and Optimize Chemical Flooding Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  17. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  18. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  19. New trajectory driven aerosol and chemical process model: chemical and aerosol Lagrangian model (CALM)

    OpenAIRE

    Tunved, P.; D. G. Partridge; Korhonen, H.

    2010-01-01

    A new Chemical and Aerosol Lagrangian Model (CALM) have been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61°51' N, 24°17' E) over a time period of two years, 2000–2001. The model shows good agreement with measurements thro...

  20. Review of Life Cycle Assessment in Agro-Chemical Processes

    OpenAIRE

    Gillani, Sayed Tamizuddin; Belaud, Jean-Pierre; Sablayrolles, Caroline; Vignoles, Mireille; Le Lann, Jean-Marc

    2010-01-01

    Life Cycle Assessment (LCA) is a method used to evaluate the potential impacts on the environment of a product, process, or activity throughout its life cycle. Today’s LCA users are a mixture of individuals with skills in different disciplines who want to evaluate their products, processes, or activities in a life cycle context. This study attempts to present some of the LCA studies on agro-chemical processes, recent advances in LCA and their application on food products and non-food products...

  1. Transuranium element production. II. Chemical processing of targets

    International Nuclear Information System (INIS)

    The chemical processing described concerns small experimental targets irradiated in OSIRIS or EL-III and industrial targets irradiated in the CELESTIN reactors. In view of the difficulties encountered when processing highly irradiated targets (760MWd.kg-1) by liquid-liquid extraction (interface sludges leading to stable emulsion) the new processes developed are based on inverse phase chromatography. This technique applied to targets of americium 241, plutonium 239 and a plutonium mixture rich in isotope 242 has given tens of milligrams of curium 242, grams of americium 243 and curium 244 and micrograms of californium 252

  2. A chemical decontamination process for decontaminating and decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    Five chemical decontamination processes have been developed for nuclear reactor applications. One of these processes is the cerium decontamination process (CDP). This method uses a cerium acid reagent to rapidly decontaminate surfaces, obtaining decontamination factors in excess of 300 in 6 h on pressurized water reactor specimens. Sound volume reduction and waste management techniques have been demonstrated, and solidified waste volume fractions as low as 9% experimentally obtained. The CDP method represents the hybrid decontamination technique often sought for component replacement and decommissioning operations: high effectiveness, rapid kinetics, simple waste treatment, and a low solidified waste volume

  3. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes

    Directory of Open Access Journals (Sweden)

    F. R. de Souza

    2012-09-01

    Full Text Available The use of biotechnology by tanneries has increased in recent years. Enzymes can be applied during different steps of the leather production process: soaking, dehairing, bating, dyeing, degreasing or in effluent and solid waste treatment. This study evaluated the performance of five commercial enzymes in soaking and unhairing/liming by comparing the chemical and coenzymatic processes. Tests were conducted in bench drums to evaluate the action of enzymes during each stage. Concentration, processing time and type of enzyme were varied. Total organic carbon and soluble protein were used to measure the efficiency of the processes. Enzymatic activity assays on collagen, keratin and lipid and scanning electron microscopic (SEM analyses of hides were used to complement the study. Coenzymatic processes generally showed better results in comparison to chemical processes. The enzymes showed activity on all substrates, and the SEM analyses of the hides showed a clear difference between the chemical and coenzymatic processes.

  4. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  5. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...... for model generation, analysis, solution and implementation is necessary for the development and application of the desired model-based approach for product-centric process design/analysis. This goal is achieved through the combination of a system for model development (ModDev), and a modelling tool...... (MoT) for model translation, analysis and solution. The integration of ModDev, MoT and ICAS or any other external software or process simulator (using COM-Objects) permits the generation of different models and/or process configurations for purposes of simulation, design and analysis. Consequently, it...

  6. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  7. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    Science.gov (United States)

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  8. ROBUST TEMPERATURE CONTROLLER DESIGN FOR A CHEMICAL PROCESS

    Directory of Open Access Journals (Sweden)

    G.Glan Devadhas

    2010-10-01

    Full Text Available This paper attempts to tuning out a new PID control strategy to provide Robust Control for a Chemical process. Chemical process control is a challenging problem due to the strong on-line non-linearity and extreme sensitivity to disturbances of the process. The proposed method has the advantage that it takes into account all the parameters variations associated with the process. The variations in the process parameters are modeled as a gaussian noise and an adaptive gaussian filter is placed in the feedback path. The adaptivegaussian filter in the feedback path adapts its filter coefficients based on a kalman estimation algorithm. This adaptive filter adapts so as to maintain the mean square error a minimum. The LQG (Linear Quadratic Gaussian in Robust Control is used in designing of the proposed strategy. The analysis of a PID tuning [7] strategy and the necessity of such an adaptive strategy is also explored in this paper. The proposed strategy of Robust Control has been designed for a First Order Lag Plus Delay (FOLPD process. The proposed strategy ofRobust Control has been simulated for an FOLPD process in SIMULINK.

  9. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  10. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  11. Gas and vapour detection using polypyrrole

    NARCIS (Netherlands)

    Leur, R.H.M. van de; Waal, A. van der

    1999-01-01

    The vapours of organic solvents like toluene, butanon, and ethanol do effect the electrical conductivity of electrochemically synthesised polypyrrole. This property allows the use of polypyrrole in sensors for vapour detection. The conductivity is also a function of temperature and the history of th

  12. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates. PMID:27088667

  13. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  14. Conventional and chemical processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Conventional and chemical processing of the superconducting YBa2Cu3Ox ceramic powders are reviewed. Conditions for calcination, sintering and microstructural development are shown to be important considerations for the superconducting properties of YBa2Cu3Ox ceramics. The authors examine different forming techniques, e.g. dry pressing, hot pressing, tape casting and screen printing, to prepare superconducting components with different sizes, shapes and configurations

  15. Quality costs and robustness criteria in chemical process design optimization

    OpenAIRE

    Bernardo, Fernando P.; Pistikopoulos, Efstratios N; Pedro M. Saraiva

    2001-01-01

    The identification and incorporation of quality costs and robustness criteria is becoming a critical issue while addressing chemical process design problems under uncertainty. This article presents a systematic design framework that includes Taguchi loss functions and other robustness criteria within a single-level stochastic optimization formulation, with expected values in the presence of uncertainty being estimated by an efficient cubature technique. The solution obtained defines an optima...

  16. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  17. Breakdown and dc discharge in low-pressure water vapour

    Science.gov (United States)

    Sivoš, J.; Škoro, N.; Marić, D.; Malović, G.; Petrović, Z. Lj

    2015-10-01

    In this paper we report studies of basic properties of breakdown, low-current Townsend discharge and high-current discharge regimes in water vapour. Paschen curves and the corresponding distributions of emission intensities at low current were recorded in the range of pd (pressure x electrode gap) from 0.1 to 10 Torrcm covering the region of Paschen minimum. From the experimental profiles we obtained effective ionization coefficient of water vapour for the E/N range 650 Td-7 kTd and fitted the results by using the extended Townsend analytical formula. Using the obtained ionization coefficient, we calculated the effective yield of secondary electrons from the copper cathode. Results of the measurements of Volt-Ampere characteristics in water vapour were presented together with the images of the axial structure of the discharge in a wide range of discharge currents for two pd values. Recorded profiles showed development of the spatial structure of the discharge in different operating regimes. We were able to identify conditions where processes induced by heavy particles, probably fast hydrogen atoms, are dominant in inducing emission from the discharge. Finally, standard scaling laws were tested for low current and glow discharges in water vapour.

  18. Technical evaluation on some chemical exchange process for uranium enrichment

    International Nuclear Information System (INIS)

    In CEA in France, Asahi Chemical Industry Co., Ltd., in Japan and others, the industrialization of the uranium enrichment by chemical processes has been studied independently for ten years, using large amount of research expenses. In this study, technological examination was carried out on such processes and their separation characteristics, based on the published literatures. As the results, it was recognized that they have sufficient separation capability to aim at the industrialization, and the power required can be limited relatively low. However, very precise plant design and operation control system are required for them, and it is necessary to watch the future course to carry out the objective evaluation of the economic efficiency. The electric power has become a dominant factor in the production cost of enriched uranium. The separation of uranium isotopes with anion exchange resin being developed by Asahi Chemical Industry Co., Ltd., and the isotope separation by electron exchange using solvent extraction method being developed by CEA in France are introduced. Though the equilibrium separation factor is very small, they utilize reversible processes, and have the possibility of large power reduction and the cost reduction due to scaling-up. (Kako, I.)

  19. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  20. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  1. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  2. Production of process vapour and refrigeration with solar collectors, steam jet refrigerator and latent heat storages; Prozessdampf- und Kaelteerzeugung mit Solarkollektoren, Dampfstrahlkaeltemaschine und latenten Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Oezcan, Tunay; Korejba, Wladimir; Kettner, Maurice; Kauffeld, Michael [Hochschule Karlsruhe - Technik und Wirtschaft (Germany). Inst. fuer Kaelte-, Klima- und Umwelttechnik

    2011-07-01

    The paper describes the construction and trial operation of a pilot plant for solar thermal production of process steam and cold water. For this, a solar collector field of evacuated tube collectors with a thermal capacity of 200 kWth was combined with a steam jet refrigerator with capacity of 80 kWth at a cold water temperature of 6 C. A latent heat and cold stora was used for ensuring steam and cold water supply. The project of HS Karlsruhe aimed at integration of a latent heat store for temperatures around 150 C in the overall concept. Potential heat storage fluids are plastics, sugar alcohols, or salt hydrates. Preliminary experiments served to check the functionality of the storage concept, i.e. the energy storage concept and the energy uptake and release rates. The investigations were carried out in the context of charging and discharge tests on a model storage unit. [German] Die Ziele des hier vorgestellten Projektes sind die Errichtung und der Demonstrationsbetrieb einer Pilotanlage zur solarthermischen Prozessdampf- und Kaltwassererzeugung. Hierfuer werden ein Solarkollektorfeld auf Basis von Vakuumroehrenkollektoren (VRK) mit einer thermischen Leistung von 200 kWth und eine Dampfstrahlkaeltemaschine (DSKM) mit einer Kaelteleistung von 80 kWth bei einer Kaltwassertemperatur von 6 C miteinander kombiniert. Zur Sicherstellung der Dampfversorgung bzw. Kaltwasserversorgung werden ein latenter Waerme- und Kaeltespeicher eingesetzt. Die Projektziele der HS Karlsruhe sind die Entwicklung eines latenten Waermespeichers fuer den Temperaturbereich um 150 C und die Einbindung des Waermespeichers in das Gesamtkonzept der Anlage. Fuer die Entwicklung und Planung des Waermespeichers ist es zunaechst notwendig, geeignete Speichermedien zu identifizieren. Als Waermespeichermedium koennten beispielsweise Kunststoffe, Zuckeralkohole, Salzhydrate eingesetzt werden. Vorversuche dienen zur Pruefung der Funktionalitaet des Speicherkonzepts. Erforderlich sind Untersuchungen des

  3. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  4. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    International Nuclear Information System (INIS)

    Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer. (paper)

  5. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  6. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale

    2014-01-01

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  7. Development of a conceptual model for vapour diffusion dominated bentonite re-saturation

    International Nuclear Information System (INIS)

    phase with an additional liquid water uptake provided the basis for this exercise. In the first phase only thermally induced moisture redistribution took place which was used to check the validity of the non-isothermal vapour flow approach. Afterwards, the second phase was used to draw conclusions from modelling water uptake. In the end the alternative conceptual model in the non-isothermal form proved to be valid even for repository conditions. The new model is restricted to the re-saturation under constant volume conditions. This type of problem does apparently not require a coupling of hydraulics to the mechanics. Whether the coupling of hydraulics to heat transport can be neglected as well is still to be investigated. A particularly appealing aspect of the alternative re-saturation approach is the fact that most data and relations required by the model are already well established. Only the macroscopic diffusion coefficient for vapour in air, the end porosity, and the temperature-dependency of the adsorption isotherm for the bentonite are not exactly known. However, they can vary only within very limited boundaries. All other quantities cannot be altered at all. Under these stringent conditions a good data correlation between measurements and numerical simulations provides strong evidence for a viable alternative conceptual model. Nevertheless, simply presenting a working model can not be considered as a validation of the conceptual model. This must be the conclusion from the fact that the THM-approach as well as the alternative vapour diffusion approach is able to reproduce the re-saturation phenomena despite the radically different physical basis of these models. Thus it has become even more pressing to reconsider the conceptual basis of the established THM-models. It will certainly be of utmost importance to know how much water actually moves freely in the pore space if chemical or biological processes are additionally

  8. Surface chemical studies of chemical vapour deposited diamond thin films

    CERN Document Server

    Proffitt, S

    2001-01-01

    could not easily be correlated to the bulk film properties. It is suggested that electron emission arises from the graphite component of graphite- diamond grain boundaries that are present in the nanocrystalline films. species. The adsorbed O and Cl species are more strongly bound to the K layer than they are to the diamond substrate, so thermal desorption of K from the K/CI/diamond or K/O/diamond surface results also in the simultaneous loss ofO and Cl. The phosphorus precursor trisdimethylaminophosphine (TDMAP) has a negligible reactive sticking probability on the clean diamond surface. This can be increased by thermal cracking of the gas phase precursor by a heated filament, resulting in non-activated adsorption to produce an adlayer containing a mixture of surface-bound ligands and phosphorus containing species. The ligands were readily lost upon heating, leaving P, some of which was lost from the surface at higher temperatures. Pre-hydrogenation of the diamond surface inhibited the uptake of cracked TDMA...

  9. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM)

    OpenAIRE

    Tunved, P.; D. G. Partridge; Korhonen, H.

    2010-01-01

    A new Chemical and Aerosol Lagrangian Model (CALM) has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E) over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout mos...

  10. Evaluating the vapour shift concept in agriculture: some aspects

    Science.gov (United States)

    Schmidt, S.; Metselaar, K.; van Dam, J. C.; Klik, A.

    2009-04-01

    Human population growth leads to an increasing pressure on freshwater resources. By 2050 Falkenmark et al. (2004) estimate a global water deficit for crop production of 5800 km3.y-1. This has important consequences for management of fresh water resources at different scales, and new strategies at different scales are required. One of the strategies suggested is that of managing crops in such a way that the use of rainfall and irrigation is shifted as much as possible from evaporation towards transpiration, a so-called vapour shift. The suggested savings are in the order of 330 km3.y-1, and are based on estimates of the magnitude of three processes: Reducing early season evaporation; increasing canopy cover; and increasing yield levels. The vapour shift concept was evaluated empirically, and in a simulation study. The empirical evaluation using results for wheat, maize, millet, cotton, and barley suggests the estimate of potential savings is 37% lower than the estimate by Falkenmark et al. (2004). The uncertainty is large and due to the limited number of experiments in which a separation of evapotranspiration in evaporation and transpiration has been made over the entire growing season. This suggests that theoretical support for the vapour shift concept should become more important. In the simulation approach two management options, mulching and planting density, are evaluated for a site in India for an irrigated wheat crop using a simulation approach for water limited crop yield. Given the simulation model used, and the management options investigated, the assumption implicit in the vapour shift concept - decreasing evaporation with increasing yield level - does not hold in irrigated areas, or in areas in which water is the most limiting factor. This suggests that vapour shift will be largest in those areas where nutrients and pests- and diseases are still limiting or reducing crop yields, and measures are taken to reduce those limitations.

  11. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  12. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  13. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  14. A chemical cleaning process with Cerium (IV)-sulfuric acid

    International Nuclear Information System (INIS)

    A chemical cleaning process with a high decontamination factor (DF) is requested for decommissioning. Usually, the process should be qualified with the features, such as the feasibility of treating large or complicated form waste, the minimization of secondary waste. Therefore, a powerful technique of redox decontamination process with Ce+4/Ce+3 has been studied at INER. First, the redox of cerium ion with electrolytic method was developed. Two kinds of home-made electrolyzer were used. One is with an ion-exchange membrane, and the other one is with a ceramic separator. Second, factors influencing the decontamination efficiency, such as the concentration of Ce+4, regeneration current density, temperature, acidity of solution were all studied experimentally, and the optimum conditions were specified too. Third, the liquid waste recycling and treatment were developed with electrodialysis and ion-exchange absorption methods. Finally, the hot test was proceeded with the contaminated metals from DCR of nuclear facility. (author)

  15. RDF gasification with water vapour: influence of process temperature on yield and products composition; Gassificazione con vapore del CDR: influenza della temperatura di processo su rese e composizione dei prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S. [C. R. ENEA Trisaglia, Rotondella (Italy). PROT-STP

    2005-08-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950{sup o}C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling. [Italian] La possibilita' di usare il CDR (combustibile derivato dai rifiuti) per produrre gas combustibile, sembra particolarmente promettente e particolare attenzione si sta rivolgendo a tecnologie alternative di trattamento termico, quali la pirolisi e la gassificazione. In questo ambito, il presente lavoro riporta le prove sperimentali e i risultati ottenuti in una campagna di prove di gassificazione di CDR con vapor d'acqua, effettuate su scala banco in un forno a tamburo rotante a temperatura di processo variabile, utilizzando tecniche di analisi termogravimetrica (TG) e di spettrometria infrarossa in trasformata di Fourier (FTIR), per la caratterizzazione del materiale di ingresso, e analisi gascromatografiche on

  16. Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method

    CERN Document Server

    Vrabec, J

    2009-01-01

    A new molecular simulation method for the calculation of vapour-liquid equilibria of mixtures is presented. In this method, the independent thermodynamic variables are temperature and liquid composition. In the first step, one isobaric isothermal simulation for the liquid phase is performed, in which the chemical potentials of all components and their derivatives with respect to the pressure, i.e., the partial molar volumes, are calculated. From these results, first order Taylor series expansions for the chemical potentials as functions of the pressure $\\mu_i(p)$ at constant liquid composition are determined. That information is needed, as the specified pressure in the liquid will generally not be equal to the equilibrium pressure, which has to be found in the course of a vapour simulation. In the second step, one pseudo grand canonical simulation for the vapour phase is performed, where the chemical potentials are set according to the instantaneous pressure $p^v$ using the previously determined function $\\mu...

  17. 'Exalting Understanding without Depressing Imagination': Depicting Chemical Process

    Directory of Open Access Journals (Sweden)

    David Knight

    2003-10-01

    Full Text Available Alchemists' illustrations indicated through symbols the processes being attempted; but with Lavoisier's Elements (1789, the place of imagination and symbolic language in chemistry was much reduced. He sought to make chemistry akin to algebra and its illustrations merely careful depictions of apparatus. Although younger contemporaries sought, and found in electrochemistry, a dynamical approach based upon forces rather than weights, they found this very difficult to picture. Nevertheless, by looking at chemical illustrations in the eighty years after Lavoisier's revolutionary book, we can learn about how reactions were carried out, and interpreted, and see that there was scope for aesthetic judgement and imagination.

  18. Fundamental studies of chemical vapor deposition diamond growth processes

    International Nuclear Information System (INIS)

    We are developing laser spectroscopic techniques to foster a fundamental understanding of diamond film growth by hot filament chemical vapor deposition (CVD). Several spectroscopic techniques are under investigation to identify intermediate species present in the bulk reactor volume, the thin active volume immediately above the growing film, and the actual growing surface. Such a comprehensive examination of the overall deposition process is necessary because a combination of gas phase and surface chemistry is probably operating. Resonantly enhanced multiphoton ionization (REMPI) techniques have been emphasized. A growth rector that permits through-the-substrate gas sampling for REMPI/time-of-flight mass spectroscopy has been developed. 7 refs., 2 figs

  19. Optimization of radiation-chemical process of trichloroethylene oxidation

    International Nuclear Information System (INIS)

    Kinetics of trichloroethylene (TCE) oxidation under the effect of gamma-irradiation is investigated. It is shown that the reaction of TCE oxidation proceeds according to the chain mechanism. At the temperature of 60 deg C in the dose rate range from 1.1015 to 1.5x1016 eV(cm3xs) radiation-chemical yield changes from 1.5x104 to 5x103 molecules/100 eV. It is found that the reaction rate practically does not depend upon oxygen concentration and is directly proportional to the TCE concentration and the dose rate. The process optimization is studied

  20. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  1. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    OpenAIRE

    2003-01-01

    This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.Although the blowers showed very satisfact...

  2. Chemical elements dynamic in the fermentation process of ethanol producing

    International Nuclear Information System (INIS)

    This paper provides useful information about the dynamics of chemical elements analysed by instrumental neutron activation analysis (INAA) and, found in the various segments of the fermentation process of producing ethanol from sugar cane. For this, a mass balance of Ce, Co, Cs, Eu, Fe, Hf, La, Sc, Sm, and Th, terrigenous elements, as well as Br, K, Rb, and Zn, sugar cane plant elements, has been demonstrated for the fermentation vats in industrial conditions of ethanol production. (author). 10 refs, 4 figs, 1 tab

  3. Large deviations for two scale chemical kinetic processes

    CERN Document Server

    Li, Tiejun

    2015-01-01

    We formulate the large deviations for a class of two scale chemical kinetic processes motivated from biological applications. The result is successfully applied to treat a genetic switching model with positive feedbacks. The corresponding Hamiltonian is convex with respect to the momentum variable as a by-product of the large deviation theory. This property ensures its superiority in the rare event simulations compared with the result obtained by formal WKB asymptotics. The result is of general interest to understand the large deviations for multiscale problems.

  4. Integrating chemical engineering fundamentals in the capstone process design project

    OpenAIRE

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik; Abildskov, Jens

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30 students. The B.Eng. education lasts for 3½ years (seven semesters), of which the 5th semester consists of practical training with a company and the final (7th) semester consists of a research proje...

  5. Relationship between snow microstructure and physical and chemical processes

    Directory of Open Access Journals (Sweden)

    T. Bartels-Rausch

    2012-11-01

    Full Text Available Ice and snow in the environment are important because they not only act as a host to rich chemistry but also provide a matrix for physical exchanges of contaminants within the ecosystem. This review discusses how the structure of snow influences both chemical reactivity and physical processes, which thereby makes snow a unique medium for study. The focus is placed on impacts of the presence of liquid and surface disorder using many experimental studies, simulations, and field observations from the molecular to the micro-scale.

  6. High efficiency coherent optical memory with warm rubidium vapour

    CERN Document Server

    Hosseini, M; Lam, P K; Buchler, B C

    2010-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  7. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    Energy Technology Data Exchange (ETDEWEB)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H

    2004-04-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 {mu}m wide and 430 {mu}m deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 {mu}m thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices.

  8. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  9. EXCITATION AND IONIZATION OF LASER-PUMPED Ba VAPOUR

    OpenAIRE

    Huber, M.; Jahreiss, L.

    1985-01-01

    We describe the excitation and ionization of dense Ba vapour (1019 to 2021 m-3) by resonant (λ = 553.5 nm) laser radiation and discuss the processes responsible for the transfer of energy from the laser-excited atoms into ionization. Ionization was found to be density-dependent and this pointed to collision-dominated ionization mechanisms. It has been established that seed electrons were heated in superelastic collisions with laser-excited atoms, and that subsequent electron-impact excitation...

  10. Electron and proton elastic scattering in water vapour

    International Nuclear Information System (INIS)

    In the present work, we report theoretical differential and integrated cross sections of the elastic scattering process for sub-thermalization electrons (Einc ≅ 10 meV–10 keV) and 1 keV–1 MeV protons in water vapour. The calculations are performed within the quantum mechanical framework for electrons whereas classical calculations are provided for protons. The results obtained in this free-parameter theoretical treatment are compared to available data and quantitative differences are reported.

  11. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  12. Vapour pressures and enthalpies of vapourization of a series of the {gamma}-lactones

    Energy Technology Data Exchange (ETDEWEB)

    Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, 18051 Rostock (Germany)], E-mail: vladchimic@tut.by; Kozlova, Svetlana A.; Verevkin, Sergey P. [Department of Physical Chemistry, University of Rostock, 18051 Rostock (Germany); Roganov, Gennady N. [Department of Chemistry and Technology, Mogilev State University of Foodstaffs (Belarus)

    2008-06-15

    Vapour pressures and the molar enthalpies of vapourization of the {gamma}-lactones ({gamma}-valerolactone, {gamma}-hexanolactone, {gamma}-heptanolactone, {gamma}-nonanolactone, and {gamma}-decanolactone) have been determined by the transpiration method. These results together with a large number of experimental data from the literature have been checked for internal consistency. This collection has been used for development of group-additivity procedure for prediction of vapourization enthalpies of lactones.

  13. Vapour pressures and enthalpies of vapourization of a series of the γ-lactones

    International Nuclear Information System (INIS)

    Vapour pressures and the molar enthalpies of vapourization of the γ-lactones (γ-valerolactone, γ-hexanolactone, γ-heptanolactone, γ-nonanolactone, and γ-decanolactone) have been determined by the transpiration method. These results together with a large number of experimental data from the literature have been checked for internal consistency. This collection has been used for development of group-additivity procedure for prediction of vapourization enthalpies of lactones

  14. Development of microforming process combined with selective chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Koshimizu Kazushi

    2015-01-01

    Full Text Available Microforming has been received much attention in the recent decades due to the wide use of microparts in electronics and medical purpose. For the further functionalization of these micro devices, high functional surface with noble metals and nanomaterials are strongly required in bio- and medical fields, such as bio-sensors. To realize the efficient manufacturing process, which can deform the submillimeter scale bulk structure and can construct the micro to nanometer scale structures in one process, the present study proposes a combined process of microforming for metal foils with a selective chemical vapor deposition (SCVD on the active surface of work materials. To clarify the availability of this proposed process, the feasibility of SCVD of functional materials to active surface of titanium (Ti was investigated. CVD of iron (Fe and carbon nanotubes (CNTs which construct CNTs on the patterned surface of active Ti and non-active oxidation layer were conducted. Ti thin films on silicon substrate and Fe were used as work materials and functional materials, respectively. CNTs were grown on only Ti surface. Consequently, the selectivity of the active surface of Ti to the synthesis of Fe particles in CVD process was confirmed.

  15. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  16. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  17. Optimization of chemical etching process in niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, T. (Tsuyoshi); Trabia, M.; Culbreth, W.; Subramanian, S.

    2004-01-01

    Superconducting niobium cavities are important components of linear accelerators. Buffered chemical polishing (BCP) on the inner surface of the cavity is a standard procedure to improve its performance. The quality of BCP, however, has not been optimized well in terms of the uniformity of surface smoothness. A finite element computational fluid dynamics (CFD) model was developed to simulate the chemical etching process inside the cavity. The analysis confirmed the observation of other researchers that the iris section of the cavity received more etching than the equator regions due to higher flow rate. The baffle, which directs flow towards the walls of the cavity, was redesigned using optimization techniques. The redesigned baffle significantly improves the performance of the etching process. To verify these results an experimental setup for flow visualization was created. The setup consists of a high speed, high resolution CCD camera. The camera is positioned by a computer-controlled traversing mechanism. A dye injecting arrangement is used for tracking the fluid path. Experimental results are in general agreement with CFD and optimization results.

  18. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  19. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  20. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety