WorldWideScience

Sample records for chemical vapour process

  1. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  2. Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition

    Indian Academy of Sciences (India)

    Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt

    2013-06-01

    Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.

  3. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  4. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kartopu, G., E-mail: giray.kartopu@glyndwr.ac.uk; Barrioz, V.; Monir, S.; Lamb, D.A.; Irvine, S.J.C.

    2015-03-02

    Cd{sub 1−x}Zn{sub x}S and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd{sub 1−x}Zn{sub x}S coatings were applied onto 15 × 15 cm{sup 2} float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd{sub 0.36}Zn{sub 0.64}S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd{sub 0.36}Zn{sub 0.64}S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd{sub 0.36}Zn{sub 0.64}S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells.

  5. Study of barrier properties and chemical resistance of recycled PET coated with amorphous carbon through a plasma enhanced chemical vapour deposition (PECVD) process.

    Science.gov (United States)

    Cruz, S A; Zanin, M; Nerin, C; De Moraes, M A B

    2006-01-01

    Many studies have been carried out in order to make bottle-to-bottle recycling feasible. The problem is that residual contaminants in recycled plastic intended for food packaging could be a risk to public health. One option is to use a layer of virgin material, named functional barrier, which prevents the contaminants migration process. This paper shows the feasibility of using polyethylene terephthalate (PET) recycled for food packaging employing a functional barrier made from hydrogen amorphous carbon film deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. PET samples were deliberately contaminated with a series of surrogates using a FDA protocol. After that, PET samples were coated with approximately 600 and 1200 Angstrons thickness of amorphous carbon film. Then, the migration tests using as food simulants: water, 10% ethanol, 3% acetic acid, and isooctane were applied to the sample in order to check the chemical resistance of the new coated material. After the tests, the liquid extracts were analysed using a solid-phase microextraction device (SPME) coupled to GC-MS.

  6. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    use as a construction material for process equipment, with the cheaper alternative being the construction of equipment from steel and then protecting it with a thin but efficacious layer of tantalum. Chemical Vapour Deposition (CVD) is chosen as the most effective process to apply thin corrosion...... protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... process that Tantaline A/S and Alfa Laval (Sweden) use to manufacture tantalum coated plate heat exchangers. Experiments are done by coating the inner side of long, thin stainless steel tubes in the temperature range of 700 – 950 °C and pressure range of 25 – 990 mbar while using different reactant...

  7. Role of Reaction and Factors of Carbon Nanotubes Growth in Chemical Vapour Decomposition Process Using Methane—A Highlight

    Directory of Open Access Journals (Sweden)

    Sivakumar VM

    2010-01-01

    This paper reviewed the synthesis of CNT by CVD especially focusing on methane CVD. Various parameters influencing the reaction and CNT growth were also discussed. A detailed review was made over the different types of CVD process, influence of metal, supports, metal-support interaction, effect of promoters, and reaction parameters role in CNTs growth.

  8. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  9. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can......Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...

  10. Reducing chemical vapour infiltration time for ceramic matrix composites.

    Science.gov (United States)

    Timms, L. A.; Westby, W.; Prentice, C.; Jaglin, D.; Shatwell, R. A.; Binner, J. G. P.

    2001-02-01

    Conventional routes to producing ceramic matrix composites (CMCs) require the use of high temperatures to sinter the individual ceramic particles of the matrix together. Sintering temperatures are typically much higher than the upper temperature limits of the fibres. This paper details preliminary work carried out on producing a CMC via chemical vapour infiltration (CVI), a process that involves lower processing temperatures, thus avoiding fibre degradation. The CVI process has been modified and supplemented in an attempt to reduce the CVI process time and to lower the cost of this typically expensive process. To this end microwave-enhanced CVI (MECVI) has been chosen, along with two alternative pre-infiltration steps: electrophoretic infiltration and vacuum bagging. The system under investigation is based on silicon carbide fibres within a silicon carbide matrix (SiCf/SiC). The results demonstrate that both approaches result in an enhanced initial density and a consequent significant reduction in the time required for the MECVI processing step. Dual energy X-ray absorptiometry was used as a non-destructive, density evaluation technique. Initial results indicate that the presence of the SiC powder in the pre-form changes the deposition profile during the MECVI process.

  11. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  12. Controlled oxidation of iron nanoparticles in chemical vapour synthesis

    Science.gov (United States)

    Ruusunen, Jarno; Ihalainen, Mika; Koponen, Tarmo; Torvela, Tiina; Tenho, Mikko; Salonen, Jarno; Sippula, Olli; Joutsensaari, Jorma; Jokiniemi, Jorma; Lähde, Anna

    2014-02-01

    In the present study, iron oxide nanoparticles (primary particle size of 80-90 nm) with controlled oxidation state were prepared via an atmospheric pressure chemical vapour synthesis (APCVS) method. Iron pentacarbonyl [Fe(CO)5], a precursor material, was thermally decomposed to iron in the APCVS reactor. Subsequently, the iron was oxidized with controlled amount of oxygen in the reactor to produce nearly pure magnetite or haematite particles depending on the oxygen concentration. Size, morphology and crystal structure of the synthesized nanoparticles were studied with scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, thermodynamic equilibrium calculations and computational fluid dynamics model were used to predict the oxidation state of the iron oxides and the reaction conditions during mixing. Aggregates of crystalline particles were formed, determined as magnetite at the oxygen volumetric fraction of 0.1 % and haematite at volumetric fraction of 0.5 %, according to the XRD. The geometric mean electrical mobility diameter of the aggregates increased from 110 to 155 nm when the volumetric fraction of oxygen increased from 0.1 to 0.5 %, determined using the SMPS. The aggregates were highly sintered based on TEM analyses. As a conclusion, APCVS method can be used to produce nearly pure crystalline magnetite or haematite nanoparticles with controlled oxidation in a continuous one-stage gas-phase process.

  13. Silicon nanowire arrays as learning chemical vapour classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M, E-mail: antti.niskanen@nokia.com [Nokia Research Center, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2011-07-22

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  14. Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in

    2012-11-01

    Structural and optical properties of the amorphous silicon carbide (a-SiC:H) thin films deposited by radio frequency plasma enhanced chemical vapour deposition method from a mixture of silane (SiH{sub 4}) and methane (CH{sub 4}) diluted in argon (Ar) have been studied with variation of Ar dilution from 94% to 98.4%. It is observed that nanocrystalline silicon starts to form within the a-SiC:H matrix by increasing the dilution to 96%. With further increase in Ar dilution to 98% formation of the silicon nanocrystals (nc-Si) with variable size is enhanced. The optical band gap (E{sub g}) of the a-SiC:H film decreases from 2.0 eV to 1.9 eV with increase in Ar dilution from 96% to 98% as the a-SiC:H films gradually become Si rich. On increasing the Ar dilution further to 98.4% leads to the appearance of crystalline silicon quantum dots (c-Si q-dots) of nearly uniform size of 3.5 nm. The quantum confinement effect is apparent from the sharp increase in the E{sub g} value to 2.6 eV. The phase transformation phenomenon from nc-Si within the a-SiC:H films to Si q-dot were further studied by high resolution transmission electron microscopy and the grazing angle X-ray diffraction spectra. A relaxation in the lattice strain has been observed with the formation of Si q-dots.

  15. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  16. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  17. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  18. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dabirian, Ali [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Kuzminykh, Yury, E-mail: yury.kuzminykh@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Wagner, Estelle; Benvenuti, Giacomo [3D-Oxides, 70 Rue G. Eiffel Technoparc, 01630 St Genis Pouilly (France); ABCD Technology, 12 route de Champ-Colin, 1260 Nyon (Switzerland); Rushworth, Simon [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Hoffmann, Patrik, E-mail: patrik.hoffmann@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland)

    2014-11-28

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb{sub 2}(OEt){sub 10} does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt){sub 5} acts as an octahedral field completing entity and leads to Nb(OEt){sub 4}(dmae). We show that Nb(OEt){sub 4}(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h{sup −1} to values larger than 400 nm·h{sup −1} can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt){sub 4}(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt){sub 4}(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an

  19. Spontaneous and parametric processes in warm rubidium vapours

    CERN Document Server

    Dąbrowski, Michał; Pęcak, Daniel; Chrapkiewicz, Radosław; Wasilewski, Wojciech

    2014-01-01

    Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the {\\Lambda}-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  20. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  1. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  2. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  3. Laser diagnostics of chemical vapour deposition of diamond films

    CERN Document Server

    Wills, J B

    2002-01-01

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH sub 4 / H sub 2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH sub 3 , NH and C sub 2 H sub 2 in a hot filament (HF) activated gas mixture and CH, C sub 2 and C sub 2 H sub 2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH sub 3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O sub 2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (approx 10 sup 1 sup 3 molecules / cm...

  4. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  5. On The Stability Of Model Flows For Chemical Vapour Deposition

    Science.gov (United States)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  6. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    Science.gov (United States)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  7. Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, E. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Sandu, C.S., E-mail: cosmin.sandu@3d-oxides.com [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Harada, S.; Benvenuti, G. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Savu, V. [Laboratoire de Microsystèmes 1, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne (Switzerland); Muralt, P. [Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-01

    Chemical Beam Vapour Deposition is a gas phase deposition technique, operated under high vacuum conditions, in which evaporated chemical precursors are thermally decomposed on heated substrates to form a film. In the particular equipment used in this work, different chemical beams effuse from a plurality of punctual precursor sources with line of sight trajectory to the substrate. A shadow mask is used to produce 3D-structures in a single step, replicating the apertures of a stencil as deposits on the substrate. The small gap introduced between substrate and mask induces a temperature difference between both surfaces and is used to deposit selectively solely on the substrate without modifying the mask, taking advantage of the deposition rate dependency on temperature. This small gap also enables the deposition of complex patterned structures resulting from the superposition of many patterns obtained using several precursor beams from different directions through a single mask aperture. A suitable process parameter window for precursor flow and substrate temperature is evidenced to maximize resolution. - Highlights: • Micro-feature growth with stencil mask by Chemical Beam Vapour Deposition • Growth of complex structured oxide films in one step • The gap between substrate and mask avoids deposition on the stencil. • Fabrication of 3D structures by superposing deposits from several beams • The versatile setup combines few chemical beams, variable geometry and stencil mask patterns.

  8. Corrosion resistant coatings (Al2O3) produced by metal organic chemical vapour deposition using aluminium-tri-sec-butoxide

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1993-01-01

    The metal organic chemical vapour deposition (MOCVD) of amorphous alumina films on steel was performed in nitrogen at atmospheric pressure. This MOCVD process is based on the thermal decomposition of aluminium-tri-sec-butoxide (ATSB). The effect of the deposition temperature (within the range 290–42

  9. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    Institute of Scientific and Technical Information of China (English)

    YIN Long-Cheng; LUAN Sen; LV Guo-Hua; WANG Xing-Quan; HUANG Jun; JIN Hui; FENG Ke-Cheng; YANG Si-Ze

    2008-01-01

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from2.0 at. % to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase.The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm.

  10. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  11. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  12. The mechanical properties of thin alumina film deposited by metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Gellings, P.J.; Vendel, van de D.; Metselaar, H.S.C.; Corbach, van H.D.; Fransen, T.

    1995-01-01

    Amorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low and atmospheric pressures. The effects of deposition temperature, growth rate and film thickness on the mechanical pro

  13. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    Science.gov (United States)

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  14. Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures.

    Science.gov (United States)

    Boi, Filippo S; Wilson, Rory M; Mountjoy, Gavin; Ibrar, Muhammad; Baxendale, Mark

    2014-01-01

    Boundary layer chemical vapour synthesis is a new technique that exploits random fluctuations in the viscous boundary layer between a laminar flow of pyrolysed metallocene vapour and a rough substrate to yield ferromagnetically filled radial-carbon-nanotube structures departing from a core agglomeration of spherical nanocrystals individually encapsulated by graphitic shells. The fluctuations create the thermodynamic conditions for the formation of the central agglomeration in the vapour which subsequently defines the spherically symmetric diffusion gradient that initiates the radial growth. The radial growth is driven by the supply of vapour feedstock by local diffusion gradients created by endothermic graphitic-carbon formation at the vapour-facing tips of the individual nanotubes and is halted by contact with the isothermal substrate. The radial structures are the dominant product and the reaction conditions are self-sustaining. Ferrocene pyrolysis yields three common components in the nanowire encapsulated by multiwall carbon nanotubes, Fe3C, α-Fe, and γ-Fe. Magnetic tuning in this system can be achieved through the magnetocrystalline and shape anisotropies of the encapsulated nanowire. Here we demonstrate proof that alloying of the encapsulated nanowire is an additional approach to tuning of the magnetic properties of these structures by synthesis of radial-carbon-nanotube structures with γ-FeNi encapsulated nanowires.

  15. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  16. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve protection

  17. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  18. Development and characterization of Undoped Silicon Glass (USG using chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Jagadeesha T

    2011-02-01

    Full Text Available Sub atmospheric chemical vapour deposition (SACVD is a widely used technique in semiconductor integrated circuit (IC manufacturing, especially to form inter-metal silicon (IMD dioxide thin films. It was designed for commercially available tools in order to satisfy the gap filling requirements necessary for 0.18 and 0.15 lm technology ICs, but it has been successfully extended also for 0.13 lm technological node and over. SACVD technique has a potential impact on device electrical characteristics and metallurgy compatibility, according to process conditions, such as mass flow rate of TEOS, Gasflows, RF power. Present work focuses on development and characterisation of undoped silicate glass that can be used for Flash memory and Logic devices. It is shown that new process yield deposition rate improvement of 51% and throughput improvement of 13%.. Qualitative yield comparison and wafer map to map comparison work is also presented for various technology nodes. Device parameters comparison with the standard process is also included in the present work.

  19. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    S. Karamat; S. Sonuşen; Ü. Çelik; Y. Uysallı; E. Özgönül; A. Oral

    2015-01-01

    The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties;in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM) value of 30 cm ? 1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm ? 1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm ? 1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm ? 1 as compare to single layer graphene which showed its

  20. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  1. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    Science.gov (United States)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  2. High-Rate Growth and Nitrogen Distribution in Homoepitaxial Chemical Vapour Deposited Single-crystal Diamond

    Institute of Scientific and Technical Information of China (English)

    LI Hong-Dong; ZOU Guang-Tian; WANG Qi-Liang; CHENG Shao-Heng; LI Bo; L(U) Jian-Nan; L(U) Xian-Yi; JIN Zeng-Sun

    2008-01-01

    High rate (> 50 μm/h) growth of homoepitaxial single-crystal diamond (SCD) is carried out by microwave plasma chemical vapour deposition (MPCVD) with added nitrogen in the reactant gases of methane and hydrogen,using a polycrystalline-CVD-diamond-film-made seed holder. Photoluminescence results indicate that the nitrogen concentration is spatially inhomogeneous in a large scale,either on the top surface or in the bulk of those as-grown SCDs.The presence of N-distribution is attributed to the facts: (I) a difference in N-incorporation efficiency and (ii) N-diffusion,resulting from the local growth temperatures changed during the high-rate deposition process.In addition,the formed nitrogen-vacancy centres play a crucial role in N-diffusion through the growing crystal.Based on the N-distribution observed in the as-grown crystals,we propose a simple method to distinguish natural diamonds and man-made CVD SCDs.Finally,the disappearance of void defect on the top surface of SCDs is discussed to be related to a filling-in mechanism.

  3. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    Science.gov (United States)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  4. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function...... of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  5. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2012-01-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  6. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  7. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    Science.gov (United States)

    Stern, E.; Cheng, G.; Guthrie, S.; Turner-Evans, D.; Broomfield, E.; Lei, B.; Li, C.; Zhang, D.; Zhou, C.; Reed, M. A.

    2006-06-01

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 °C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs.

  8. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  9. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  10. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  11. Orthogonal self-assembly and selective solvent vapour annealing: simplified processing of a photovoltaic blend.

    Science.gov (United States)

    De Luca, Giovanna; Liscio, Andrea; Battagliarin, Glauco; Chen, Long; Scolaro, Luigi Monsù; Müllen, Klaus; Samorì, Paolo; Palermo, Vincenzo

    2013-05-14

    Selective solvent vapour annealing is used on a photovoltaic blend to enhance the interaction between the electron acceptor and the electron donor, simplifying thin films post-processing for photovoltaic applications. A remarkable improvement in the interfacial charge transfer in the bulk hetero-junction is attained, as measured by Kelvin Probe Force Microscopy.

  12. Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    杨武保; 王久丽; 张谷令; 范松华; 刘赤子; 杨思泽

    2003-01-01

    In this paper, the structures, optical and mechanical properties of diamond-like carbon films are studied, which are prepared by a self-fabricated electron cyclotron resonance microwave plasma chemical vapour deposition method at room temperature in the ambient gases of mixed acetylene and nitrogen. The morphology and microstructure of the processed film are characterized by the atomic force microscope image, Raman spectra and middle Fourier transform infrared transmittance spectra, which reveal that there is an intertwisted fibrillar diamond-like structure in the film and the film is mainly composed of sp3 CH, sp3 C-C, sp2 C=C, C=N and C60. The film micro-hardness and bulk modulus are measured by a nano-indenter and the refractive constant and deposition rate are also calculated.

  13. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Investigation of Chemical-Vapour-Deposition Diamond Alpha-Particle Detectors

    Institute of Scientific and Technical Information of China (English)

    GU Bei-Bei; WANG Lin-Jun; ZHANG Ming-Long; XIA Yi-Ben

    2004-01-01

    Diamond films with [100] texture were prepared by a hot-filament chemical vapour deposition technique to fabricate particle detectors. The response of detectors to 5.5 MeV 241 Am particles is studied. The photocurrent increases linearly and then levels off with voltage, and 7hA is obtained at bias voltage of 100 V. The timedependent photocurrent initially increases rapidly and then tends to reach saturation. Furthermore, a little increase of the dark-current after irradiation can be accounted for by the release of the charges captured by the trapping centres at low energy levels during irradiation. An obvious peak of the pulse height distribution can be observed, associated with the energy of 5.5 MeV.

  15. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  16. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  17. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  18. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  19. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  20. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  1. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  2. High Resistive ZnO/Diamond/Si Films Grown via Metal-organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-jun; ZHAO Bai-jun; FANG Xiu-jun; DU Guo-tong; LIU Da-li; GAO Chun-xiao; LIU Xi-zhe

    2005-01-01

    Piezoelectric ZnO layers with high resistivity for surface acoustic wave applications were prepared on polycrystalline diamond/Si substrates with (111) orientation via metal-organic chemical vapour deposition.The characteristics of the films were optimized through different growth methods. The comparative study of the X-ray diffraction spectra and scanning electron microscopic images showed that the final-prepared ZnO films were dominantly c-axis oriented. Zn and O elements in the final prepared ZnO films were investigated through X-ray photoelectron spectroscopy. According to the statistical results, the n(Zn)/n(O) ratio is near 1. The Raman scattering was also performed in back scattering configuration. E2 mode was observed for the final films, which indicated that the better quality ZnO films had been obtained. The resistivity of the films was also enhanced via the modification of the growth methods.

  3. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  4. Catalytic Carbon Submicron Fabrication Using Home-Built Very-High Frequency Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Sukirno

    2008-09-01

    Full Text Available In this research, carbon nanotubes (CNT fabrication is attempted by using existing home-made Plasma Enhanced Chemical Vapour Deposition (PECVD system. The fabrication is a catalytic growth process, which Fe catalyst thin film is grown on the Silicon substrate by using dc-Unbalanced Magnetron Sputtering method. By using methane (CH4 as the source of carbon and diluted silane (SiH4 in hydrogen as the source of hydrogen with 10:1 ratio, CNT fabrications have been attempted by using Very High Frequency PECVD (VHF-PECVD method. The fabrication processes are done at relatively low temperature, 250oC, but with higher operated plasma frequency, 70 MHz. Recently, it is also been attempted a fabrication process with only single gas source, but using one of the modification of the VHF-PECVD system, which is by adding hot-wire component. The attempt was done in higher growth temperature, 400oC. Morphological characterizations, by using Scanning Electron Micrograph (SEM and Scanning Probe Microscopy (SPM, as well as the composition characterization, by using Energy Dispersion Analysis by X-Ray (EDAX, show convincing results that there are some signatures of CNT present.

  5. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    Science.gov (United States)

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  6. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  7. Continuous production of carbon nanotubes and diamond films by swirled floating catalyst chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    S.E. Iyuke

    2010-01-01

    Full Text Available Various techniques for the synthesis of carbon nanotubes (CNTs are being developed to meet an increasing demand as a result of their versatile applications. Swirled floating catalyst chemical vapour deposition (SFCCVD is one of these techniques. This method was used to synthesise CNTs on a continuous basis using acetylene gas as a carbon source, ferrocene dissolved in xylene as a catalyst precursor, and both hydrogen and argon as carrier gases. Transmission electron microscopy analyses revealed that a mixture of single and multi-wall carbon nanotubes and other carbon nanomaterials were produced within the pyrolytic temperature range of 900–1 100°C and acetylene flow rate range of 118–370 ml min–1. Image comparison of raw and purified products showed that low contents of iron particles and amorphous carbon were contained in the synthesised carbon nanotubes. Diamond films were produced at high ferrocene concentration, hydrogen flow rate and pyrolysis temperatures, while carbon nanoballs were formed and attached to the surface of theCNTs at low ferrocene content and low pyrolysis temperature.

  8. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    Science.gov (United States)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  9. Effect of surface treatment on hot-filament chemical vapour deposition grown diamond films

    Science.gov (United States)

    Ali, M.; Ürgen, M.; Atta, M. A.

    2012-02-01

    Diamond film growth without seeding treatment has been the subject of numerous studies. In this study, diamond films with/without seeding treatment were grown on silicon using hot-filament chemical vapour deposition. An inexpensive and simple approach, namely ‘dry ultrasonic treatment’, was introduced in which full coverage of the diamond film was achieved over the substrate having no prior seeding treatment. For comparison purposes, two substrates were seeded with different sizes of diamond particles, 5 µm by hand and 30-40 µm by ultrasonic agitation, prior to deposition. The produced diamond films were examined through standard characterization tools and distinct features were observed in each film. The diamond film grown without the seeding treatment shows slightly lower growth rate (1 µm h-1) but bigger grain size up to 8 µm compared with seeded films. Here we show the growth of uniform and high-purity diamond films free from nano-sized grains, which are grown without any seeding treatment.

  10. Metal Organic Chemical Vapour Deposited Thin Films of Cobalt Oxide Prepared via Cobalt Acetylacetonate

    Institute of Scientific and Technical Information of China (English)

    C.U. Mordi; M.A. Eleruja; B.A. Taleatu; G.O. Egharevba; A.V. Adedeji; 0.0. Akinwunmi; B. Olofinjana; C. Jeynes; E.O.B. Ajayi

    2009-01-01

    The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spec-troscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylaceto-nate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2.15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron mi-croscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than 1 micron for the deposited thin films of cobalt oxide.

  11. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  12. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  13. The reaction-field effect on the chemical potentials of polar aprotic non-aromatic liquids 1. Vapour pressure

    Science.gov (United States)

    Rosseinsky, D. R.; Stead, K.; Mowforth, C. W.

    1998-10-01

    The reaction field for the interaction of a molecule with its identical neighbours is shown to be a major determinant of the chemical potential of many dipolar liquids. The electrostatic potential w, derived for immersion of the dipolar molecule in its own kind, and notably comprising solely static and hf permittivities, is equated with the difference between the polar-liquid chemical potential and that of an isostructural non-polar hydrocarbon. For all the 26 non-aromatic Onsager liquids for which the requisite data are available, acceptable conformity is established of the vapour pressure calculated from w with that observed, fluorocarbons excepted. If w turns out to be small, vapour pressures of (these 12) dipolars approximate quite closely to those of the isostructural non-polars, as expected. For ketones and nitroalkanes varied-temperature data are available and well reproduced via w: thus calculated vaporization enthalpies equal the observed.

  14. Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Purabi; Agarwal, Pratima [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2009-02-15

    Thin films of hydrogenated silicon are deposited by hot wire chemical vapour deposition technique, as an alternative of plasma enhanced chemical vapour deposition technique. By varying the hydrogen and silane flow rate, we deposited the films ranging from pure amorphous to nanocrystallite-embedded amorphous in nature. In this paper we report extensively studied structural and optical properties of these films. It is observed that the rms bond angle deviation decreases with increase in hydrogen flow rate, which is an indication of improved order in the films. We discuss this under the light of breaking of weak Si-Si bonds and subsequent formation of strong Si-Si bonds and coverage of the growing surface by atomic hydrogen. (author)

  15. An Investigative and Concise Review on Evaporation and Condensation Processes Using Vapour Adsorption Technique

    Directory of Open Access Journals (Sweden)

    Dim Dim Kumar

    2014-10-01

    Full Text Available The vapour adsorption refrigeration is based on the evaporation and condensation of a refrigerant combined with adsorption or chemical reaction. The towering fossil fuel price and the responsiveness of environmental problems offer many potential applications to thermal powered adsorption cooling. However, the adsorption cooling machines still have some disadvantages that hinder their wide application. The patents surveyed are classified into four main groups: adsorption system development, adsorbent bed innovation, adsorbent/adsorbate material development and novel application of adsorption cooling system. The adsorption refrigeration is based on the evaporation and condensation of a refrigerant combined with adsorption or chemical reaction. Important targets are to reach a high efficiency through optimization measures at various components and the control system. On the other hand measures are to verify to simplify the construction with regard to a low-cost manufacturing, as well as to reach long periods with maintenance-free operation. This review paper gives a comprehensive review on the work carried out on vapour adsorption refrigeration for cryogenic applications.

  16. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Peralvarez, M; Carreras, Josep; Navarro-Urrios, D; Lebour, Y; Garrido, B [MIND, IN2UB, Department of Electronics, University of Barcelona, C/Marti i Franques 1, PL2, E-08028 Barcelona (Spain); Barreto, J; DomInguez, C [IMB-CNM, CSIC, Bellaterra, E-08193 Barcelona (Spain); Morales, A, E-mail: mperalvarez@el.ub.e [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2009-10-07

    An in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current-voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, {approx}10{sup -3}%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO{sub 2} stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.

  17. Role of Duty Ratio in Diamond Growth by Pulsed DC-Bias Enhanced Hot Filament Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    MENG Liang; ZHOU Haiyang; ZHU Xiaodong

    2007-01-01

    In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-dc biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond quality. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.

  18. PENGARUH KATALIS Co DAN Fe TERHADAP KARAKTERISTIK CARBON NANOTUBES DARI GAS ASETILENA DENGAN MENGGUNAKAN PROSES CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2013-11-01

    Full Text Available EFFECT OF Co AND Fe ON CARBON NANOTUBES CHARACTERISTICS FROM ACETYLENE USING CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD PROCESS. Carbon Nanotubes (CNTs is one of the most well known nano-technology applications which the most of attracting the attention of researchers, because it has more advantages than other materials. The application of the CNT has extended into various aspects, such as electronics, materials, biology and chemistry. This research uses a system of Catalytic Chemical Vapour Deposition (CCVD, which aims to determine the influence of Co and Fe as a catalyst and zeolite 4A as a support catalyst with acetylene gas (C2H2 as carbon source in the synthesis of Carbon Nanotubes (CNTs. In this experiment, used the ratio of acetylene gas and flow rate of N2 gas is 1:1 by weight of the catalyst Co/Zeolite and Fe/Zeolite amounted to 0.5 grams at the operating temperature of 700oC for 20 minutes. N2 gas serves to minimize the occurrence of oxidation reaction (explosion when operating. From analysis result by Scanning Electron Microscopy (SEM shows the CNTs formed a type of MWNT with different of diameter size and product weight, depending on the size of the active component concentration on the catalyst. The larger of active components produced CNTs with larger diameter, whereas product weight syntheses result smaller. Use of the catalyst Fe/Zeolite produce CNTs with a diameter larger than the catalyst Co/Zeolite.  Carbon Nanotubes (CNTs merupakan salah satu aplikasi nanoteknologi yang paling terkenal dan banyak menarik perhatian para peneliti, karena memiliki beberapa kelebihan daripada material lainnya. Aplikasi dari CNT telah merambah ke berbagai aspek, seperti bidang elektronika, material, biologi dan kimia. Penelitian ini menggunakan sistem Catalytic Chemical Vapour Deposition (CCVD yang bertujuan untuk mengetahui pengaruh variasi Cobalt (Co dan Ferrum (Fe sebagai katalis dan zeolit tipe 4A sebagai penyangga katalis dengan gas

  19. Synthesis of nanocrystalline silicon thin films using the increase of the deposition pressure in the hot-wire chemical vapour deposition technique

    Directory of Open Access Journals (Sweden)

    J.K. Rath

    2010-01-01

    Full Text Available Nanostructured thin silicon-based films have been deposited using the hot-wire chemical vapour deposition (HWCVD technique at the University of the Western Cape. A variety of techniques including optical and infrared spectroscopy, Raman scattering spectroscopy, X-rays diffraction (XRD and transmission electron microscopy (TEM have been used for characterisation of the films. The electrical measurements show that the films have good values of photoresponse, and the photocurrent remains stable after several hours of light soaking. This contribution will discuss the characteristics of the hydrogenated nanocrystalline silicon thin films deposited using increased process chamber pressure at a fixed hydrogen dilution ratio in monosilane gas.

  20. Low-pressure Chemical Vapour Deposition of Silicon Nanoparticles:Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2008-07-01

    Full Text Available emiconductor nanostructures such as quantum wells, quantum wires or quantum dots exhibit superior properties in comparison to their bulk forms. Quantum dots are described aszero-dimensional electron gas system, as carriers are confined in all the three directions. Densityof states is discrete function of energy. Allowed energy spectrum is discrete like in an atom.Energy band gap is broadened due to carriers confinement. Semiconductor quantum dots exhibittypical coulomb blockade characteristic which is exploited for development of new generationof nanoelectronic devices namely single-electron transistor, memories, etc, whose operationdepends on quantum mechanical tunneling of carriers through energy barriers. Thesesemiconductor nanostructures emit light in visible range upon excitation by optical means. Inrecent years,  research  has been focused on different nano-scale materials; metals (Au, Ag, Fe,Mn, Ni, metal oxides (SnO2, ZnO2, compound semiconductors (GaAs, GaAlAs, CdSe, CdS,GaN, and elemental semiconductors (silicon and germanium. As silicon is the most favouredmaterial in the established integrated circuits manufacturing technology, research is being donefor controlled synthesis and characterisation of Si nanoparticles. The Si nanoparticles havebeen synthesised on oxide and nitride layers over  Si substrate by IC technology compatiblelow-pressure chemical vapour deposition technique. Atomic force microscopy (AFMcharacterisation has been extensively carried out on the samples. It is shown that the tip radiusand shape of tip lead to less accurate estimate of the actual size. The AFM images have been evaluated based on the real surface topography and shape of the tip. Photolumine scence (PL studies have been performed to characterise the samples. The PL measurements showed visiblelight emission from synthesised silicon nanoparticles.Defence Science Journal, 2008, 58(4, pp.550-558, DOI:http://dx.doi.org/10.14429/dsj.58.1676

  1. Influence of hydrogen on chemical vapour synthesis of different carbon nanostructures using propane as precursor and nickel as catalyst

    Indian Academy of Sciences (India)

    R K Sahoo; H Mamgain; C Jacob

    2014-10-01

    The role of hydrogen in the catalytic chemical vapour deposition of carbon nanotubes using sputtered nickel thin film as a catalyst is explained in this work. The growth of different carbon nanostructures with the variation in the precursor gas content was studied by keeping all other process parameters constant and using sputtered Ni thin film as a catalyst. The catalyst granule size, its external morphology and the resulting products were analysed. Carbon nanotubes (CNTs), carbon nanofibres (CNFs) and carbon nanoribbons (CNRs) were observed under different growth conditions. The different conditions of growth leading to form tubes, fibres or ribbons were analysed by varying the flow ratio of propane and hydrogen gas during the high temperature growth. Scanning and transmission electron microscopies confirmed the above structures under different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  2. Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique.

    Science.gov (United States)

    Dasgupta, K; Sen, D; Mazumder, S; Basak, C B; Joshi, J B; Banerjee, S

    2010-06-01

    The process parameters (viz. temperature of synthesis, type of catalyst, concentration of catalyst and type of catalyst-support material) for controlling purity of carbon nanotubes synthesized by catalytic chemical vapour deposition of acetylene have been optimized by analyzing the experimental results using Taguchi method. It has been observed that the catalyst-support material has the maximum (59.4%) and the temperature of synthesis has the minimum effect (2.1%) on purity of the nanotubes. At optimum condition (15% ferrocene supported on carbon black at the synthesis temperature of 700 degrees C) the purity of nanotubes was found out to be 96.2% with yield of 1900%. Thermogravimetry has been used to assess purity of nanotubes. These nantubes have been further characterized by scanning electron microscopy, transmission electron microscopy and Raman Spectroscopy. Small angle neutron scattering has been used to find out their average inner and outer diameter using an appropriate model. The nanotubes are well crystallized but with wide range of diameter varying between 20-150 nm.

  3. Surface and Compositional Study of Graphene grown on Lithium Niobate (LiNbO3) substrates by Chemical Vapour Deposition

    Science.gov (United States)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    The diversity required in the designing of electronic devices motivated the community to always attempt for new functional materials and device structures. Graphene is considered as one of the most promising candidate materials for future electronics and carbon based devices. It is very exciting to combine graphene with new dielectric materials which exhibit multifunctional properties. Lithium Niobate exhibits ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as strong photorefractive and photovoltaic effects which made it one of the most extensively studied materials over the last 50 years. We used ambient pressure chemical vapour deposition to grow graphene on LiNbO3 substrates without any catalyst. The growth was carried out in presence of methane, argon and hydrogen. AFM imaging showed very unique structures on the surface which contains triangular domains. X-ray photoelectron spectroscopy (XPS) was used to get information about the presence of necessary elements, their bonding with LiNbO3 substrates. Detailed characterization is under process which will be presented later.

  4. Rewetting of semi-dried ink patterns by vapour annealing for developing a reflow process in reverse offset printing

    Science.gov (United States)

    Kusaka, Yasuyuki; Sugihara, Kazuyoshi; Koutake, Masayoshi; Ushijima, Hirobumi

    2017-01-01

    A process for reflowing patterned materials for reverse offset printing was developed, with the aim of mitigating the step-coverage problem in multilayered devices. The proposed reflow process involves a single step of vapour annealing at moderate temperatures ranging from 60 to 70 °C. This step successfully changes the height profile of semi-dried ink patterns formed on a silicone blanket, from an initially rectangular shape to a rounded shape. A systematic investigation on the effects of various vapour species and vapour temperatures on the reflow process revealed that the miscibility between the vapour and the ink, and a low boiling point of the respective solvent (high vapour pressure) are the prerequisites for successful reflows of semi-dried ink layers patterned on a silicone blanket. The results suggested that the rewetting of previously semi-dried patterns is the main mechanism in the reflow process, which led to a change in the height profile. Furthermore, the reflowed patterns demonstrated almost identical peak-height thicknesses, irrespective of the width of the patterns. This is a unique property that is unattainable by other printing methods, including gravure offset printing and microcontact printing, wherein printed patterns have rounded shapes without a reflow process, but their thickness inevitably depends on the pattern sizes.

  5. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    Science.gov (United States)

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-06-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs.

  6. Chemical Processing Manual

    Science.gov (United States)

    Beyerle, F. J.

    1972-01-01

    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  7. Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

    Indian Academy of Sciences (India)

    D Sen; K Dasgupta; J Bahadur; S Mazumder; D Sathiyamoorthy

    2008-11-01

    Small angle neutron scattering (SANS) has been utilized to study the morphology of the multi-walled carbon nanotubes prepared by chemical vapour deposition of acetylene. The effects of various synthesis parameters like temperature, catalyst concentration and catalyst support on the size distribution of the nanotubes are investigated. Distribution of nanotube radii in two length scales has been observed. The number density of the smaller diameter tubes was found more in number compared to the bigger one for all the cases studied. No prominent scaling of the structure factor was observed for the different synthesis conditions.

  8. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser

    Institute of Scientific and Technical Information of China (English)

    N. A. Poklonski; N. M. Lapchuk; A. V. Khomich; LU Fan-Xiu; TANG Wei-Zhong; V. G. Ralchenko; I. I. Vlasov; M. V. Chukichev; Sambuu Munkhtsetseg

    2007-01-01

    Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 1018 cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.

  9. Growth of AlGaN Epitaxial Film with High Al Content by Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lan; ZHAO De-Gang; YANG Hui; LIANG Jun-Wu

    2007-01-01

    A high-Al-content AlCaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire bylow pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity,and twisted mosaicity on the conditions of the AlCaN epilayer deposition is evaluated. An AlCaN epilayer withfavourable surface morphology and crystal quality is deposited on a 20nm low-temperature-deposited AlN buffer at a low Ⅴ/Ⅲ flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.

  10. Chemical vapour deposition of tungsten oxide thin films from single-source precursors

    Science.gov (United States)

    Cross, Warren Bradley

    This thesis describes the chemical vapour deposition (CVD) of tungsten oxide thin films on glass from a wide range of single-source precursors. Chapter 1 describes previous work that has motivated this research. Chapter 2 discusses the synthesis of conventional style candidates for single-source precursors. Reactions of WOCl4 with 3-methyl salicylic acid (MesaliH2) and 3,5-di-iso-propyl salicylic acid (di-i-PrsaliH2) yielded the ditungsten complexes [WO(Mesali)(MesaliH)2(mu-O)], 1, and [WO(di-i-Prsali)(di-i-PrsaliH)2(mu-O)], 2, and the monotungsten complex [WO(di-i-Pr sali)(di-i-PrsaliH)Cl], 3. Tungsten(VI) dioxo complexes were prepared by ligand exchange reactions of [WO2(acac)2], 4, yielding [WO2(catH)2], 5, and [WO2(malt)2], 6, (catH2 = 3,5-di-tert-butyl-catechol; maltH = maltol). Chapter 3 describes thermal analyses of the complexes 1 - 6 and tungsten hexaphenoxide, and consequently their suitability for CVD. The use of [W(OPh)6] and 2 - 6 in aerosol assisted CVD is reported in Chapter 4. Brown tungsten oxide was deposited from 2 and 3 at 600 °C; blue partially-reduced WO3-x thin films were deposited from [W(OPh)6] from 300 to 500 °C, from 4 at 600 °C and 6 at 620 °C. Sintering all of the coatings in air at 550 °C afforded yellow films of stoichiometric WO3. Raman spectroscopy and glancing angle XRD showed that coatings deposited from [W(OPh)6] at 300 °C were amorphous, whereas all the other films were the monoclinic phase gamma-tungsten oxide. Taking full advantage of the aerosol vaporisation technique led to the CVD of tungsten oxide films from polyoxometalate single-source precursors, as described in Chapter 5. The isopolyanion [nBu4N]2[W6O19], 7, afforded WO3 at 410 °C; the heteropolyanions [nBu4N]4H3[PW11O39], 8, and [nBu4N]4[PNbW11O40], 9, were used to deposit doped WO3 thin films in a highly-controlled manner at 480 °C. Thus, the unprecedented use of large, charged clusters for CVD was demonstrated. Chapter 6 describes investigations of the

  11. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    Directory of Open Access Journals (Sweden)

    C. Ren

    2007-04-01

    Full Text Available We have developed a Lagrangian air-parcel cirrus model (LACM, to diagnose the processes controlling water in the tropical tropopause layer (TTL. LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics.

    The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign, have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air

  12. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    Directory of Open Access Journals (Sweden)

    C. Ren

    2007-10-01

    Full Text Available We have developed a Lagrangian air-parcel cirrus model (LACM, to diagnose the processes controlling water in the tropical tropopause layer (TTL. LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripy" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics.

    The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign, have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2

  13. Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study

    Science.gov (United States)

    Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera

    2016-04-01

    A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http

  14. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  15. Growth of a Novel Periodic Structure of SiC/AlN Multilayers by Low Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-Mei; SUN Guo-Sheng; LI Jia-Ye; LIU Xing-Fang; WANG Lei; ZHAO Wan-Shun; LI Jin-Min

    2007-01-01

    A novel 10-period SiC/AlN multilayered structure with a SiC cap layer is prepared by low pressure chemical vapour deposition (LPCVD). The structure with total Sim thickness of about 1.45μm is deposited on a Si (111) substrate and shows good surface morphology with a smaller rms surface roughness of 5.3 nm. According to the secondary ion mass spectroscopy results, good interface of the 10 period SiC/AlN structure and periodic changes of depth profiles of C, Si, Al, N components are obtained by controlling the growth procedure. The structure exhibits the peak reflectivity close to 30% near the wavelength of 322 nm. To the best of our knowledge, this is the first report of growth of the SiC/AlN periodic structure using the home-made LPCVD system.

  16. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  17. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  18. Monte Carlo simulation of the behaviour of electrons during electron-assisted chemical vapour deposition of diamond

    Institute of Scientific and Technical Information of China (English)

    董丽芳; 陈俊英; 董国义; 尚勇

    2002-01-01

    The behaviour of electrons during electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron energy distribution and velocity distribution are obtained over a wide range of reduced field E/N (the ratio of the electric field to gas molecule density) from 100 to 2000 in units of 1Td=10-17Vcm2.Their effects on the diamond growth are also discussed. Themain results obtained are as follows. (1) The velocity profile is asymmetric for the component parallel to the field.Ihe velocity distribution has a peak shift in the field direction. Most electrons possess non-zero velocity parallel to the substrate. (2) The number of atomic H is a function of E/N. (3) High-quality diamond can be obtained under the condition of E/N from 50 to 800Td due to sufficient atomic H and electron bombardment.

  19. Properties of MgB{sub 2} films grown at various temperatures by hybrid physical-chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Veldhorst, Menno; Li, Qi; Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lee, Che-Hui; Lamborn, Daniel R; DeFrain, Raymond; Redwing, Joan M [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-09-15

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB{sub 2} thin films and thick films at various temperatures. We are able to grow superconducting MgB{sub 2} thin films at temperatures as low as 350 deg. C with a T{sub c0} of 35.5 K. MgB{sub 2} films up to 4 {mu}m in thickness grown at 550 deg. C have J{sub c} over 10{sup 6} A cm{sup -2} at 5 K and zero applied field. The low deposition temperature of MgB{sub 2} films is desirable for all-MgB{sub 2} tunnel junctions and MgB{sub 2} thick films are important for applications in coated conductors.

  20. Aerosol assisted chemical vapour deposition of germanium thin films using organogermanium carboxylates as precursors and formation of germania films

    Indian Academy of Sciences (India)

    Alpa Y Shah; Amey Wadawale; Vijaykumar S Sagoria; Vimal K Jain; C A Betty; S Bhattacharya

    2012-06-01

    Diethyl germanium bis-picolinate, [Et2Ge(O2CC5H4N)2], and trimethyl germanium quinaldate, [Me3Ge(O2CC9H6N)], have been used as precursors for deposition of thin films of germanium by aerosol assisted chemical vapour deposition (AACVD). The thermogravimetric analysis revealed complete volatilization of complexes under nitrogen atmosphere. Germanium thin films were deposited on silicon wafers at 700°C employing AACVD method. These films on oxidation under an oxygen atmosphere at 600°C yield GeO2. Both Ge and GeO2 films were characterized by XRD, SEM and EDS measurements. Their electrical properties were assessed by current–voltage (–) characterization.

  1. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LIU Guo-Jun; WANG Xiao-Hua; LI Mei; LI Zhan-Guo; WAN Chun-Ming

    2008-01-01

    The serf-assembled InAs quantum dots (QDs) on GaAs substrates with low density (5×108cm-2) are achieved using relatively higher growth temperature and low InAs coverage by low-pressure metal-organic chemical vapour deposition.The macro-PL spectra exhibit three emission peaks at 1361,1280 and 1204nm,corresponding to the ground level (GS),the first excited state (ES1) and the second excited state (ES2) of the QDs,respectively,which are obtained when the GaAs capping layer/s grown using triethylgallium and tertiallybutylarsine.As a result of micro-PL,only a few peaks from individual dots have been observed.The exciton-biexciton behaviour was clearly observed at low temperature.

  2. Water vapour variability and trends in the Arctic stratosphere

    Science.gov (United States)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  3. Low Temperature Silicon Nitride by Hot Wire Chemical Vapour Deposition for the Use in Impermeable Thin Film Encapsulation on Flexible Substrates

    NARCIS (Netherlands)

    Spee, D.A.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    High quality non porous silicon nitride layers were deposited by hot wire chemical vapour deposition at substrate temperatures lower than 110 C. The layer properties were investigated using FTIR, reflection/transmission measurements and 1:6 buffered HF etching rate. A Si–H peak position of 2180 cm−1

  4. The effect of thermal annealing on the properties of alumina films prepared by metal organic chemical vapour deposition at atmospheric pressure

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin films deposited at 330°C by metal organic chemical vapour deposition on stainless steel, type AISI 304, were annealed in a nitrogen atmosphere for 1, 2 and 4 h at 600, 700 and 800°C. The film properties, including the protection of the underlying substrate against high temperature corrosion, th

  5. Chemical-vapour-deposition growth and electrical characterization of intrinsic silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salem, B. [Laboratoire des Technologies de la Microelectronique (LTM)-UMR 5129 CNRS, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble (France)], E-mail: bassem.salem@cea.fr; Dhalluin, F.; Baron, T. [Laboratoire des Technologies de la Microelectronique (LTM)-UMR 5129 CNRS, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble (France); Jamgotchian, H.; Bedu, F.; Dallaporta, H. [CRMC-N, Faculte des Sciences de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Gentile, P.; Pauc, N. [CEA-DRFMC/SiNaPS, 17 Rue des Martyrs, F-38054 Grenoble (France); Hertog, M.I. den; Rouviere, J.L. [CEA-DRFMC/SP2M/LEMMA GEM-minatec, 17 Rue des Martyrs, F-38054 Grenoble (France); Ferret, P. [CEA-Leti, DOPT, 17 Rue des Martyrs, F-38054 Grenoble (France)

    2009-03-15

    In this work, we present the elaboration and the electrical characterisation of undoped silicon nanowires (SiNWs) which are grown via vapour-liquid-solid mechanism using Au nucleation catalyst and SiH{sub 4} as the silicon source. The nanowires were investigated by high-resolution transmission electron microscopy. An electrical test structure was realized by a dispersion of the nanowires on SiO{sub 2}/Si substrate with photolithography pre-patterned Au/Ti microelectrodes. The connexion is made on a single nanowire using a cross beam plate form allowing scanning electron microscopy imaging and the deposition of tungsten wiring by focussed ion beam deposition. The current-voltage characteristics of the nanowires are linear which indicates an ohmic contact between tungsten allow and SiNWs. The total resistance of the nanowires increases from 135 M{omega} to 5 G{omega} when the diameter decreases from 190 to 130 nm. This effect is may be due to the reduction of the conductive inner volume of the nanowires and to charged defects at the Si-SiO{sub 2} interface if we assume that the contact resistance is constant. Moreover, gate-dependent current versus bias voltage measurement show that the nanowires exhibit a field effect response characteristic of a p-type semiconductor.

  6. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Taraneh [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada); Laurent, Sophie; Stanicki, Dimitri [University of Mons, Laboratory of NMR and Molecular Imaging (Belgium); Raphael, Wendell; Tavares, Jason Robert, E-mail: jason.tavares@polymtl.ca [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada)

    2015-12-15

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract.

  7. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  8. SiC-Si[sub 3]N[sub 4] composite coatings produced by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gerretsen, J. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kirchner, G. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kelly, T. (Irish Science and Technology Agency, Dublin (Ireland)); Mernagh, V. (Irish Science and Technology Agency, Dublin (Ireland)); Koekoek, R. (Tempress, Hoogeveen (Netherlands)); McDonnell, L. (Tekscan Ltd., Cork (Ireland))

    1993-10-08

    Silicon carbonitride coatings have been produced by plasma-enhanced chemical vapour deposition (CVD) on AISI 440C steel in a hot-wall reactor at 250 C from a mixture of SiH[sub 4], N[sub 2]-NH[sub 3] and C[sub 2]H[sub 4], and analysed by electron probe microanalysis and Rutherford backscattering spectroscopy-elastic recoil detection. Coatings with different ratios of silicon carbide to silicon nitride and silicon suband superstoichiometries have been deposited. Stoichiometric coatings show a maximum in their mechanical properties. Depending on the SiC-to-Si[sub 3]N[sub 4] ratio, the Knoop hardness values vary between 1500 and 2800 HK[sub 0.025]. Internal stress is low at a level of 100-300 MPa. The pinhole density is less than 2 cm[sup -2]. The fracture toughness as determined from indention tests is 4 MPa m[sup 1/2]. Linear polarization testing results show excellent protection of the substrate material against chemically aggressive media as compared with conventional CVD. (orig.)

  9. Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using Laser assisted Chemical Vapour Pyrolysis

    Science.gov (United States)

    Veliscek, Ziga; Perse, Lidija Slemenik; Dominko, Robert; Kelder, Erik; Gaberscek, Miran

    2015-01-01

    Suitability of silicon prepared using Laser assisted Chemical Vapour Pyrolysis (LaCVP) as a potential anode material in lithium batteries is systematically investigated. Its compositional, morphological, physical-chemical and electrochemical properties are compared to a current benchmark commercial silicon. Important differences in particle size and particle composition are found which, as shown, affect critically the rheological properties of the corresponding electrode slurries. In order to overcome the rheological problems of prepared nanosilicon, we introduce and optimise a spraying method instead of using the usual casting technique for slurry application. Interestingly, the optimised electrodes show similar electrochemical performance, regardless of the particle size or composition of nanosilicon. This unexpected result is explained by the unusually high resistance of electrochemical wiring in silicon-based electrodes (about 60 Ohm per 1 mg cm-2 of active material loading). Despite that, the optimised material still shows a capacity up to 1200 mA h g-1 at a relatively high loading of 1.6 mg cm-2 and after 20 cycles. On the other hand, by decreasing the loading to below ca. 0.9 mg cm-2 the wiring problems are effectively overcome and capacities close to theoretical values can be obtained.

  10. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Science.gov (United States)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  11. Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Long; Liu Feng-Zhen; Zhu Mei-Fang; Liu Jin-Long

    2012-01-01

    The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated.The plasma ignition condition is modified by varying the ratio of SiH4 to H2 (RH).For plasma ignited with a constant gas ratio,the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Hα to SiH(IHα/IsiH) at the initial stage,which leads to a thick amorphous incubation layer.For the ignition condition with a profiling RH,the higher IHα/IsiH values are realized.By optimizing the RH modulation,a uniform crystallinity along the growth direction and a denser μc-Si:H film can be obtained.However,an excessively high IHα/IsiH* may damage the interface properties,which is indicated by capacitance-voltage (C-V) measurements.Well controlling the ignition condition is critically important for the applications of Si thin films.

  12. Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Liang Song; Wang Wei; Zhu Hong-Liang; Pan Jiao-Qing; Zhao Ling-Juan; Wang Lu-Feng; Zhou Fan; Shu Hui-Yun; Bian Jing; An Xin

    2008-01-01

    Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied.PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample.During rapid thermal annealing,however,the low growth rate sample shows a greater blueshift of PL peak wavelength.This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample.A growth technique including growth interruption and in-situ annealing,named indium flush method,is used during the growth of GaAs cap layer,which can flatten the GaAs surface effectively.Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width,it is essential for the fabrication of room temperature working QD lasers.

  13. In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition

    Indian Academy of Sciences (India)

    Preetam Singh; Ashvani Kumar; Ajay Kaushal; Davinder Kaur; Ashish Pandey; R N Goyal

    2008-06-01

    Ultrasonic mist chemical vapour deposition (UM–CVD) system has been developed to prepare ZnO nanopowder. This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using transmission electron microscopy (TEM) and field emission electron microscope (FESEM). The optical properties are observed using UV-visible spectrophotometer. The influence of high temperature vacuum annealing on XRD pattern is systematically studied. Results of high temperature XRD showed prominent 100, 002 and 101 reflections among which 101 is of highest intensity. With increase in temperature, a systematic shift in peak positions towards lower 2 values has been observed, which may be due to change in lattice parameters. Temperature dependence of lattice constants under vacuum shows linear increase in their values. Diffraction patterns obtained from TEM are also in agreement with the XRD data. The synthesized powder exhibited the estimated direct bandgap (g) of 3.43 eV. The optical bandgap calculated from Tauc’s relation and the bandgap calculated from the particle size inferred from XRD were in agreement with each other.

  14. Atmospheric pressure chemical vapour deposition of SnSe and SnSe{sub 2} thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Boscher, Nicolas D.; Carmalt, Claire J.; Palgrave, Robert G. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom); Parkin, Ivan P. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)], E-mail: i.p.parkin@ucl.ac.uk

    2008-06-02

    Atmospheric pressure chemical vapour deposition of tin monoselenide and tin diselenide films on glass substrate was achieved by reaction of diethyl selenide with tin tetrachloride at 350-650 {sup o}C. X-ray diffraction showed that all the films were crystalline and matched the reported pattern for SnSe and/or SnSe{sub 2}. Wavelength dispersive analysis by X-rays show a variable Sn:Se ratio from 1:1 to 1:2 depending on conditions. The deposition temperature, flow rates and position on the substrate determined whether mixed SnSe-SnSe{sub 2}, pure SnSe or pure SnSe{sub 2} thin films could be obtained. SnSe films were obtained at 650 {sup o}C with a SnCl{sub 4} to Et{sub 2}Se ratio greater than 10. The SnSe films were silver-black in appearance and adhesive. SnSe{sub 2} films were obtained at 600-650 {sup o}C they had a black appearance and were composed of 10 to 80 {mu}m sized adherent crystals. Films of SnSe only 100 nm thick showed complete absorbtion at 300-1100 nm.

  15. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  16. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    Science.gov (United States)

    Roro, K. T.; Kassier, G. H.; Dangbegnon, J. K.; Sivaraya, S.; Westraadt, J. E.; Neethling, J. H.; Leitch, A. W. R.; Botha, J. R.

    2008-05-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3-4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18-300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm2 V-1 s-1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33-41 meV range and concentration of the order of 1017 cm-3, as well as a total acceptor concentration of mid-1015 cm-3. Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered.

  17. Bamboo and herringbone shaped carbon nanotubes and carbon nanofibres synthesized in direct current-plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Zhang, Lu; Chen, Li; Wells, Torquil; El-Gomati, Mohamed

    2009-07-01

    Carbon nanotubes with different structures were catalytically synthesized on Ni coated SiO2/Si substrate in a Direct Current Plasma Enhanced Chemical Vapour Deposition system, in which C2H2 acted as the carbon source and NH3 as the etchant gas. A Scanning Electron Microscope study showed that carbon nanotubes were all vertically aligned with respect to the substrate, with diameters ranging from 10 nm to 200 nm. Different sizes of Ni catalyst particles were observed on the tips of carbon nanotubes. Transmission Electron Microscopy was used to study the morphology of the grown tubes and the results obtained show that the diameters and structures of these carbon nanotubes were closely correlated to the sizes and structures of the Ni nanoparticles. Two main structures namely bamboo shaped carbon nanotubes and herringbone shaped carbon nanofibres were found on the same sample. It is suggested that by controlling the pre-growth condition, desired structure of carbon nanotubes or carbon nanofibres could be produced for practical applications.

  18. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    Indian Academy of Sciences (India)

    Kaushik Patel; Jagdish Prajapati; Rajiv Vaidya; S G Patel

    2005-08-01

    Single crystals of the lamellar compound, ZrSe3, were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700–1450 nm. The indirect as well as direct band gap of ZrSe3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303–423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail.

  19. InGa1−N fibres grown on Au/SiO2 by chemical vapour deposition

    Indian Academy of Sciences (India)

    A Ramos-Carrazco; R García; M Barboza-Flores; R Rangel

    2014-12-01

    The growth of InGa1−N films ( = 0.1 and = 0.2) on a thin gold layer (Au/SiO2) by chemical vapour deposition (CVD) at 650 °C is reported. As a novelty, the use of a Ga–In metallic alloy to improve the indium incorporation in the InGa1−N is proposed. The results of high quality InGa1−N films with a thickness of three micrometres and the formation of microfibres on the surface are presented. A morphological comparison between the InGa1−N and GaN films is shown as a function of the indium incorporation. The highest crystalline InGa1−N films structure was obtained with an indium composition of = 0.20. Also, the preferential growth on the (002) plane over In0.2Ga0.8N was observed by means of X-ray diffraction. The thermoluminescence (TL) of the InGa1−N films after beta radiation exposure was measured indicating the presence of charge trapping levels responsible for a broad TL glow curve with a maximum intensity around 150 °C. The TL intensity was found to depend on composition being higher for = 0.1 and increases as radiation dose increases.

  20. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  1. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  2. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  3. Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor

    Directory of Open Access Journals (Sweden)

    Oyedotun K.O.

    2015-12-01

    Full Text Available Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS, UV-Vis spectrophotometry, X-ray diffraction (XRD spectroscopy, atomic force microscopy (AFM and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2 and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.

  4. Low temperature silicon nitride by hot wire chemical vapour deposition for the use in impermeable thin film encapsulation on flexible substrates.

    Science.gov (United States)

    Spee, D A; van der Werf, C H M; Rath, J K; Schropp, R E I

    2011-09-01

    High quality non porous silicon nitride layers were deposited by hot wire chemical vapour deposition at substrate temperatures lower than 110 degrees C. The layer properties were investigated using FTIR, reflection/transmission measurements and 1:6 buffered HF etching rate. A Si-H peak position of 2180 cm(-1) in the Fourier transform infrared absorption spectrum indicates a N/Si ratio around 1.2. Together with a refractive index of 1.97 at a wavelength of 632 nm and an extinction coefficient of 0.002 at 400 nm, this suggests that a transparent high density silicon nitride material has been made below 110 degrees C, which is compatible with polymer films and is expected to have a high impermeability. To confirm the compatibility with polymer films a silicon nitride layer was deposited on poly(glycidyl methacrylate) made by initiated chemical vapour deposition, resulting in a highly transparent double layer.

  5. Direct chemical vapour deposited grapheme synthesis on silicon oxide by controlled copper dewettting

    NARCIS (Netherlands)

    Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    In this paper we present a novel method for direct uniform graphene synthesis onto silicon oxide in a controlled manner. On a grooved silicon oxide wafer is copper deposited under a slight angle and subsequently the substrate is treated by a typical graphene synthesis process. During this process di

  6. A Passively Mode-Locked Diode-End-Pumped Nd:YAG Laser with a Semiconductor Saturable Absorber Mirror Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    王勇刚; 马骁宇; 李春勇; 张治国; 张丙元; 张志刚

    2003-01-01

    We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror(SESAM)from which we achieved a 10ps pulse duration at 150MHz repetition rate.The SESAM was grown by metal organic chemical vapour deposition at low temperature.The recovery time was measured to be 0.5 ps,indicating the potential pulse compression to sub-picoseconds.

  7. Diamond films grown on seeded substrates by hot-filament chemical vapour deposition with H sub 2 as the only feeding gas

    CERN Document Server

    LiuHongWu; Gao Chun Xi; Han Yong; Luo Ji Feng; Zou Guang Tian; Wen Chao

    2002-01-01

    Diamond films have been grown on polished Si substrates seeded with nanocrystalline diamond powder colloid using hot-filament chemical vapour deposition. Instead of using the conventional gaseous carbon source, a carbonized W filament was used as the carbon source. The only feeding gas was hydrogen. Compared with those produced by traditional methods, the polycrystalline diamond grown by this new method has smaller grain size. The growth mechanism is also discussed.

  8. Substrate patterning with NiOx nanoparticles and hot-wire chemical vapour deposition of WO3x and carbon nanostructures

    Science.gov (United States)

    Houweling, Z. S.

    2011-10-01

    The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to

  9. Luminescent Nanocrystalline Silicon Carbide Thin Film Deposited by Helicon Wave Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Wan-bing; YU Wei; WU Li-ping; CUI Shuang-kui; FU Guang-sheng

    2006-01-01

    Hydrogenated nanocrystalline silicon carbide (SiC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.

  10. Growth of AlGaSb Compound Semiconductors on GaAs Substrate by Metalorganic Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    A. H. Ramelan

    2010-01-01

    Full Text Available Epitaxial AlxGa1-xSb layers on GaAs substrate have been grown by atmospheric pressure metalorganic chemical vapour deposition using TMAl, TMGa, and TMSb. We report the effect of V/III flux ratio and growth temperature on growth rate, surface morphology, electrical properties, and composition analysis. A growth rate activation energy of 0.73 eV was found. For layers grown on GaAs at 580∘C and 600∘C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580∘C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology and its hole mobility and carrier concentration are equal to 237 cm2/V.s and 4.6 × 1017 cm-3, respectively, at 77 K. The net hole concentration of unintentionally doped AlGaSb was found to be significantly decreased with the increased of aluminium concentration. All samples investigated show oxide layers (Al2O3, Sb2O3, and Ga2O5 on their surfaces. In particular the percentage of aluminium-oxide was very high compared with a small percentage of AlSb. Carbon content on the surface was also very high.

  11. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    Science.gov (United States)

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  12. Biocidal Silver and Silver/Titania Composite Films Grown by Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    D. W. Sheel

    2008-01-01

    Full Text Available This paper describes the growth and testing of highly active biocidal films based on photocatalytically active films of TiO2, grown by thermal CVD, functionally and structurally modified by deposition of nanostructured silver via a novel flame assisted combination CVD process. The resulting composite films are shown to be highly durable, highly photocatalytically active and are also shown to possess strong antibacterial behaviour. The deposition control, arising from the described approach, offers the potential to control the film nanostructure, which is proposed to be crucial in determining the photo and bioactivity of the combined film structure, and the transparency of the composite films. Furthermore, we show that the resultant films are active to a range of organisms, including Gram-negative and Gram-positive bacteria, and viruses. The very high-biocidal activity is above that expected from the concentrations of silver present, and this is discussed in terms of nanostructure of the titania/silver surface. These properties are especially significant when combined with the well-known durability of CVD deposited thin films, offering new opportunities for enhanced application in areas where biocidal surface functionality is sought.

  13. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    R V Krishnarao; J Subrahmanyam; S Subbarao

    2001-06-01

    A CVD system for the production of continuous SiC fibre was set up. The process of SiC coating on 19 m diameter tungsten substrate was studied. Methyl trichloro silane (CH3SiCl3) and hydrogen reactants were used. Effect of substrate temperature (1300–1500°C) and concentration of reactants on the formation of SiC coating were studied. SiC coatings of negligible thickness were formed at very low flow rates of hydrogen (5 × 10–5 m3/min) and CH3SiCl3 (1.0 × 10–4 m3/min of Ar). Uneven coatings and brittle fibres were formed at very high concentrations of CH3SiCl3 (6 × 10–4 m3/min of Ar). The flow rates of CH3SiCl3 and hydrogen were adjusted to get SiC fibre with smooth surface. The structure and morphology of SiC fibres were evaluated.

  14. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    Science.gov (United States)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  15. Modelling and optimization of seawater desalination process using mechanical vapour compression

    Directory of Open Access Journals (Sweden)

    V.P. Kravchenko

    2016-09-01

    Full Text Available In the conditions of global climate changes shortage of fresh water becomes an urgent problem for an increasing number of the countries. One of the most perspective technologies of a desalting of sea water is the mechanical vapour compression (MVC providing low energy consumption due to the principle of a heat pump. Aim: The aim of this research is to identify the reserves of efficiency increasing of the desalination systems based on mechanical vapour compression by optimization of the scheme and parameters of installations with MVC. Materials and Methods: The new type of desalination installation is offered which main element is the heat exchanger of the latent heat. Sea water after preliminary heating in heat exchangers comes to the evaporator-condenser where receives the main amount of heat from the condensed steam. A part of sea water evaporates, and the strong solution of salt (brine goes out of the evaporator, and after cooling is dumped back in the sea. The formed steam is compressed by the compressor and comes to the condenser. An essential singularity of this scheme is that condensation happens at higher temperature, than evaporation. Thanks to this the heat, which is comes out at devaporation, is used for evaporation of sea water. Thereby, in this class of desalination installations the principle of a heat pump is implemented. Results: For achievement of a goal the following tasks were solved: the mathematical model of installations with MVC is modified and supplemented; the scheme of heat exchangers switching is modified; influence of design data of desalination installation on the cost of an inventory and the electric power is investigated. The detailed analysis of the main schemes of installation and mathematical model allowed defining ways of decrease in energy consumption and the possible merit value. Influence of two key parameters - a specific power of the compressor and a specific surface area of the evaporator-condenser - on a

  16. Mechanical alloying and sintering of aluminum reinforced with SiC nanopowders produced by plasma-enhanced chemical-vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J.; Fort, J.; Roura, P. [GRM, Dept. de Enginyeria Industrial, Universitat de Girona (Spain); Froyen, L. [MTM Katholieke Universiteit Leuven (Belgium); Viera, G.; Bertran, E. [FEMAN, Dept. Fisica Aplicada i Optica, Universitat de Barcelona (Spain)

    2000-07-01

    Nanometric powders of stoichiometric SiC have been synthesised by plasma-enhanced chemical-vapour deposition. These are constituted by amorphous particles with diameters ranging from 10 to 100 nm. Due to their high hydrogen content, a heat treatment at 900 C was needed to prevent spontaneous oxidation. The stabilized SiC powder was mechanically alloyed with aluminum particles of 40 {mu}m in diameter and the alloy was formed by hot isostatic sintering. The SiC content ranged from 0 to 5% in weight. A detailed analysis of the alloyed powder microstructure is presented as well as preliminary results concerning the mechanical properties after sintering. (orig.)

  17. Effect of surfactants on the morphology of FeSe films fabricated from a single source precursor by aerosol assisted chemical vapour deposition

    Indian Academy of Sciences (India)

    Raja Azadar Hussain; Amin Badshah; Naghma Haider; Malik Dilshad Khan; Bhajan Lal

    2015-03-01

    This article presents the fabrication of FeSe thin films from a single source precursor namely (1-(2-fluorobenzoyl)-3-(4-ferrocenyl-3-methylphenyl)selenourea (MeP2F)) by aerosol assisted chemical vapour deposition (AACVD). All the films were prepared via similar experimental conditions (temperature, flow rate, concentration, solvent system and reactor type) except the use of three different concentrations of two different surfactants i.e., triton and span. Seven thin films were characterized with PXRD, SEM, AFM, EDS and EDS mapping. The mechanism of the interaction of surfactant with MeP2F was determined with cyclic voltammetry (CV) and UV-Vis spectroscopy.

  18. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  19. On titanium dioxide thin films growth from the direct current electric field assisted chemical vapour deposition of titanium (IV) chloride in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L. [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Jorge-Sobrido, A.-B.; McMillian, P.F. [Christopher Ingold Building (Chemistry), University College of London, 20 Gordon street, London WC1H 0AJ (United Kingdom); Binions, R. [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-06-01

    Titanium dioxide thin films were deposited from the aerosol assisted chemical vapour deposition reaction of titanium tetrachloride in toluene (1 M) at 600 °C and 5 L min{sup −1}. Direct current electric fields were applied and increased in a range of 0 to 30 V during the reaction. Changes in particle size, agglomeration and particle shape were observed. Raman spectroscopy analysis revealed different composition of anatase and rutile and crystal phase depending on the field strength applied. The photocatalytic activity was calculated from the half-life or time needed by the films to degrade 50% Resazurin dye-ink initial concentration. High photocatalytic performance with high anatase content (98.3%) was observed with half-life values of 3.9 min. Deposited films with pure content in rutile showed better photocatalytic performance than films with mix of crystal phases with anatase content below 40%. - Highlights: • Electric field assisted chemical vapour deposition used to synthesis titania thin films. • Significant alterations to crystallographic orientation and microstructure observed • Order of magnitude reduction in half life of dye degradation obtainable.

  20. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Science.gov (United States)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  1. Vapour Treatment Method Against Other Pyro- and Hydrometallurgical Processes Applied to Recover Platinum From Used Auto Catalytic Converters

    Institute of Scientific and Technical Information of China (English)

    Agnieszka FORNALCZYK; Mariola SATERNUS

    2013-01-01

    Today more and more cars are produced every year.All of them have to be equipped with catalytic converters,the main role of which is to obtain substances harmless to the environment instead of exhausted gases.Catalytic converters contain platinum group metals (PGM) especially platinum,palladium and rhodium.The price of these metals and their increasing demand are the reasons why today it is necessary to recycle used auto catalytic converters.There are many available methods of recovering PGM metals from them,especially platinum.These methods used mainly hydrometallurgical processes; however pyrometallurgical ones become more and more popular.The article presents results of the research mainly concerning pyrometallurgical processes.Two groups of research were carried out.In the first one different metals such as lead,magnesium and copper were used as a metal collector.During the tests,platinum went to those metals forming an alloy.In other research metal vapours were blown through catalytic converter carrier (grinded or whole).In the tests metals such as calcium,magnesium,cadmium and zinc were applied.As a result white or grey powder (metal plus platinum) was obtained.The tables present results of the research.Processing parameters and conclusions are also shown.To compare efficiency of pyrometallurgical and hydrometallurgical methods catalytic converter carrier and samples of copper with platinum obtained from pyrometallurgical method were solved in aqua regia,mixture of aqua regia and fluoric acid.

  2. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Pérez, Arllene M.; Renero, Francisco J.; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-01

    Optical, structural and electric properties of (a-(Si90Ge10)1-yBy:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10-3 to 101 Ω-1 cm-1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  3. Room-Temperature Ferromagnetism of Ga1-xMnxN Grown by Low-Pressure Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Tao; ZHANG Guo-Yi; SU Yue-Yong; YANG Zhi-Jian; ZHANG Yan; ZHANG Bin; GUO Li-Ping; XU Ke; PAN Yao-Bao; ZHANG Han

    2006-01-01

    @@ Epitaxial films of Ga1-xMnxN have been grown on c-sapphire substrates by low-pressure metal-organic vapour phase epitaxy. The samples show ferromagnetic behaviour up to a temperature of T = 380 K with hysteresis curves showing a coercivity of 50-100Oe. No ferromagnetic second phases and no significant deterioration in crystal quality with the incorporation of Mn can be detected by high-resolution x-ray diffraction. The result of x-ray absorption near-edge structures indicates that Mn atoms substitute for Ga atoms. The Mn concentrations of the layers are determined to reach x = 0.038 by proton-induced x-ray emission.

  4. Preparation of high-quality hydrogenated amorphous silicon film with a new microwave electron cyclotron resonance chemical vapour deposition system assisted with hot wire

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Yin Sheng-Yi; Rong Yan-Dong; Zhang Wen-Li; Hu Yue-Hui

    2005-01-01

    The preparation of high-quality hydrogenated amorphous silicon (a-Si:H) film with a new microwave electron cyclotron resonance-chemical vapour deposition (MWECR-CVD) system assisted with hot wire is presented. In this system the hot wire plays an important role in perfecting the microstructure as well as improving the stability and the optoelectronic properties of the a-Si:H film. The experimental results indicate that in the microstructure of the a-Si:H film, the concentration of dihydride is decreased and a trace of microcrystalline occurs, which is useful to improve its stability, and that in the optoelectronic properties of the a-Si:H film, the deposition rate reaches above 2.0nm/s and the photosensitivity increases up to 4.71× 105.

  5. Atomic-Scale Kinetic Monte Carlo Simulation of {100}-Oriented Diamond Film Growth in C-H and C-H-Cl Systems by Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    安希忠; 张禹; 刘国权; 秦湘阁; 王辅忠; 刘胜新

    2002-01-01

    We simulate the { 100}-oriented diamond film growth of chemical vapour deposition (CVD) under different modelsin C-H and C-H-CI systems in an atomic scale by using the revised kinetic Monte Carlo method. The sirnulationresults show that: (1) the CVD diamond flm growth in the C-H system is suitable for high substrate temperature,and the flm surface roughness is very coarse; (2) the CVD diamond film can grow in the C-H-C1 system eitherat high temperature or at low temperature, and the film quality is outstanding; (3) atomic CI takes ala activerole for the growth of diamond film, especially at low temperatures. The concentration of atomic C1 should becontrolled in a proper range.

  6. Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing of silicon rich oxide deposited by low pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Aceves-Mijares, Mariano [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Luna-Lopez, A [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Du Jinhui [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China); Bian Dongcai [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China)

    2006-10-14

    We report the preparation and characterization of Si nanoislands grown on a c-Si substrate by thermal annealing of silicon-rich oxide (SRO) films deposited using a conventional low pressure chemical vapour deposition (LPCVD) technique. Transmission electron microscopy revealed that a high density of Si nanoislands was formed on the surface of the c-Si substrate during thermal annealing. The nanoislands are nanocrystallites with the same crystal orientation as the substrate. The strain at the c-Si/SRO interface is probably the main reason for the nucleation of the self-assembled Si nanoislands that epitaxially grow on the c-Si substrate. The proposed method is very simple and compatible with Si integrated circuit technology.

  7. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  8. Growth of MgB2 Thin Films by Chemical Vapour Deposition Using B2H6 as a boron Source

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 朱亚彬; 刘震; 周岳亮; 张芹; 陈正豪; 吕惠宾; 杨国桢

    2003-01-01

    Superconducting MgB2 thin films were grown on single crystal Al2O3 (0001) by chemical vapour deposition using B2H6 as a boron source. MgB2 film was then accomplished by annealing the boron precursor films in the presence of high-purity magnesium bulk at 890℃ in vacuum. The as-grown MgB2 films are smooth and c-axis-oriented.The films exhibit a zero-resistance transition of about 38K with a narrow transition width of 0.2 K. Magnetic hysteresis measurements yield the critical current density of 1.9 × 107 A/cm2 at 10 K in zero field.

  9. Growth of (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} thin films by metal-organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aboulfarah, B.; Mzerd, A. [Univ. MedV Agdal, Rabat (Morocco). Dept. de Physique; Giani, A.; Boulouz, A.; Pascal-Delannoy, F.; Foucaran, A.; Boyer, A. [Centre d' Electronique et de Micro-Optoelectronique de Montpellier (CEM 2), UM II UMR 5507 CNRS, Place E. Bataillon, 34095, Montpellier (France)

    2000-01-29

    The effects of VI/V ratio on electrical and thermoelectrical properties of p-type (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} elaborated by metal-organic chemical vapour deposition (MOCVD) in horizontal quartz reactor are discussed. The deposited layers exhibit a polycrystalline structure and an improvement in the intensity is observed with increasing the VI/V ratio. The quality of the layers is measured by means of the Energy dispersive X-ray (EDX) microanalyser and scanning electron microscopy (SEM). It is observed that the layers are stoichiometric when the VI/V ratio exceeds 3 and the surface texture is improved with increasing this ratio. The electrical properties of the thin films dependent on the VI/V ratio. The measurements of the Seebeck coefficient suggest a significant potential of MOCVD growth for large-scale production of thermoelectric materials. (orig.)

  10. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection.

    Science.gov (United States)

    Bramanti, Emilia; Toncelli, Daniel; Morelli, Elisabetta; Lampugnani, Leonardo; Zamboni, Roberto; Miller, Keith E; Zemetra, Joseph; D'Ulivo, Alessandro

    2006-11-10

    Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.

  11. Idaho Chemical Processing Plant Process Efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  12. Personal Simulator of Chemical Process

    Institute of Scientific and Technical Information of China (English)

    吴重光

    2002-01-01

    The Personal Simulator of chemical process (PS) means that fully simulationsoftware can be run on one personal computer. This paper describes the kinds of PSprograms, its features, the graphic functions and three examples. PS programs are allbased on one object-oriented and real-time simulation software environment. Authordevelops this simulation software environment. An example of the batch reaction kineticsmodel is also described. Up to now a lot of students in technical schools and universitieshave trained on PS. The training results are very successful.

  13. Effects of boron addition on a-Si{sub 90}Ge{sub 10}:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Arllene M [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Universidad Popular Autonoma del Estado de Puebla (UPAEP), 21 Sur 1103 Colonia Santiago, CP 72160, Puebla, Puebla (Mexico); Renero, Francisco J [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Zuniga, Carlos [Instituto Nacional de AstrofIsica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Torres, Alfonso [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Santiago, Cesar [Universidad Politecnica de Tulancingo, Prolongacion Guerrero 808 Colonia Caltengo, CP 43626, Tulancingo, Hidalgo (Mexico)

    2005-06-29

    Optical, structural and electric properties of (a-(Si{sub 90}Ge{sub 10}){sub 1-y}B{sub y}:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10{sup -3} to 10{sup 1} {omega}{sup -1} cm{sup -1} when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  14. Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model

    Science.gov (United States)

    Payra, Swagata; Ricaud, Philippe; Abida, Rachid; El Amraoui, Laaziz; Attié, Jean-Luc; Rivière, Emmanuel; Carminati, Fabien; von Clarmann, Thomas

    2016-09-01

    The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316-5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the

  15. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  16. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  17. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  18. Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications

    Indian Academy of Sciences (India)

    Bhubesh Chander Joshi; Manish Mathew; B C Joshi; D Kumar; C Dhanavantri

    2010-01-01

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016 /cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.

  19. Effect of Postdeposition Heat Treatment on the Crystallinity, Size, and Photocatalytic Activity of TiO2 Nanoparticles Produced via Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2010-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles were produced using chemical vapour deposition (CVD at different deposition temperatures (300–700°C. All the samples were heat treated at their respective deposition temperatures and at a fixed temperature of 400°C. A scanning electron microscope (SEM, a transmission electron microscope (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles in terms of size and crystallinity. The photocatalytic activity was investigated via degradation of methylene blue under UV light. The effects of post deposition heat treatment are discussed in terms of crystallinity, nanoparticle size as well as photocatalytic activity. Crystallinity was found to have a much larger impact on photocatalytic activity compared to nanoparticle size. Samples having a higher degree of crystallinity were more photocatalytically active despite being relatively larger in size. Surprisingly, the photocatalytic activity of the samples reduced when heat treated at temperatures lower than the deposition temperature despite showing an improvement in crystallinity.

  20. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    FAN Hai-Bo; YANG Shao-Yan; ZHANG Pan-Feng; WEI Hong-Yuan; LIU Xiang-Lin; JIAO Chun-Mei; ZHU Qin-Sheng; CHEN Yong-Hai; WANG Zhan-Guo

    2008-01-01

    @@ Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 20 locations of ZnO (002) face in the XRD patterns and the E2 (high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopyresults show all the samples have a sharp ultraviolet luminescent band without any defects-related emission.Upon the experiments a possible growth mechanism is proposed.

  1. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  2. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Wen-Juan; XIE Fen-Yan; CHEN Qiang; WENG Jing

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  3. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  4. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  5. Effects of annealing temperature on crystallisation kinetics and properties of polycrystalline Si thin films and solar cells on glass fabricated by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tao Yuguo, E-mail: yuguo.tao@hotmail.com [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Varlamov, Sergey; Jin, Guangyao [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Wolf, Michael; Egan, Renate [CSG Solar Pty Ltd, Sydney, NSW (Australia)

    2011-10-31

    Solid-phase crystallisation of Si thin films on glass fabricated by plasma enhanced chemical vapour deposition is compared at different annealing temperatures. Four independent techniques, optical transmission microscopy, Raman and UV reflectance spectroscopy, and X-ray diffraction, are used to characterise the crystallisation kinetics and film properties. The 1.5 {mu}m thick films with the n+/p-/p+ solar cell structure have incubation times of about 300, 53, and 14 min and full crystallisation times of about 855, 128, and 30 min at 600 deg. C, 640 deg. C, and 680 deg. C respectively. Estimated activation energies for incubation and crystal growth are 2.7 and 3.2 eV respectively. The average grain size in the resulting polycrystalline Si films measured from scanning electron microscopy images gradually decreases with a higher annealing temperature and the crystal quality becomes poorer according to the Raman, UV reflection, and X-ray diffraction results. The dopant activation and majority carrier mobilities in heavily doped n+ and p+ layers are similar for all crystallisation temperatures. Both the open-circuit voltage and the spectral response are lower for the cells crystallised at higher temperatures and the minority carrier diffusion lengths are shorter accordingly although they are still longer than the cell thickness for all annealing temperatures. The results indicate that shortening the crystallisation time by merely increasing the crystallisation temperature offers little or no merits for PECVD polycrystalline Si thin-film solar cells on glass.

  6. Pengaruh Temperatur, Massa Zink, Substrat Dan Waktu Tahan Terhadap Struktur Dan Morfologi Zno Hasil Sintesis Dengan Metode Chemical Vapour Transport (CVT

    Directory of Open Access Journals (Sweden)

    Arisela Distyawan

    2013-09-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Material Zink Oksida (ZnO telah berhasil disintesis menggunakan metode Chemical Vapour Transport dengan bahan dasar prekursor berupa serbuk Zn yang dipanaskan hingga mencapai temperatur uap dalam furnace horisontal. Adapun variasi yang diberikan dalam penelitian adalah berupa temperatur pemanasan (850, 900, dan 950oC, massa prekursor Zn (0,15, 0,25, dan 0,35g, lama waktu sputtering substrat (90 dan 180 detik, dan waktu tahan khusus untuk mengetahui initial growth ZnO (10, 20, 30, 40, 50, dan 60 menit. Pembentukan Zink Oksida (ZnO dikonfirmasi melalui data X-RD, dimana telah terbentuk material ZnO dengan struktur hexagonal wurtzite. Berdarsarkan data XRD juga diketahui ukuran kristal pada sampel sputtering 90 detik mengalami penurunan bersamaan penambahan massa Zn. Dari hasil pengamatan SEM didapatkan bahwa morfologi permukaan lapisan tipis ZnO terdiri dari berbagai macam bentuk berupa nanoparticle, nanowires, nanorods, dan nanotetrapod. Lapisan Zno paling tebal sebesar ±350 nm pada sampel 950oC-0,15g sputter 90 detik. Semakin tinggi temperatur operasi berdampak peningkatan ukuran partikel. Pengujian FTIR turut menguatkan terbentuknya lapisan tipis di permukaan substrat Alumina. Hal ini didasarkan terjadinya penyerapan vibrasi yang membentuk lekukan pada kisaran area 509 cm-1 dari masing-masing sampel.

  7. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  8. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  9. High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yuwei [Department of Chemistry and Biochemistry, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada); Belzile, Nelson, E-mail: nbelzile@laurentian.ca [Department of Chemistry and Biochemistry, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada); Cooperative Freshwater Ecology Unit, Laurentian University, Ramsey Lake Road, Sudbury P3E 2C6 (Canada)

    2010-06-25

    We present the most recent applications of high performance liquid chromatography (HPLC) hyphenated to hydride generation or chemical vapour generation and atomic fluorescence spectrometry (HG/CVG-AFS), for the determination and speciation of the selected hydride-forming elements arsenic (As), selenium (Se) and antimony (Sb) and the chemical vapour-forming metal Hg. The review focuses on sample preparation, post-column treatments and on the applications of this technique to various liquid and solid samples. This review also intends to discuss some limitations associated to HPLC-HG/CVG-AFS due to the necessity on post-column treatments, including the oxidation of organo-element compounds and the pre-reduction to a suitable valence. Nevertheless, the hyphenated technique HPLC-HG/CVG-AFS remains an efficient, sensitive and affordable approach to perform speciation of the four studied elements as shown by the variety of applications presented and discussed in this review.

  10. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  11. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  12. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  13. Effect of reaction parameters on the growth of MWCNTs using mesoporous Sb/MCM-41 by chemical vapour deposition

    Science.gov (United States)

    Atchudan, R.; Pandurangan, A.; Subramanian, K.

    2011-11-01

    Mesoporous Si-MCM-41 molecular sieve was synthesized hydrothermally and different wt.% of Sb (1.0, 2.0, 3.0, 5.0, 10.0, 15.0 and 20.0) was loaded on it by wet impregnation method. The Sb/MCM-41 materials were characterized by various physico-chemical techniques such as XRD, TGA and TEM. The TEM image showed a honeycomb structure of the host material. They were used as catalytic templates for the growth of MWCNTs by CVD method with different temperatures at 700, 800, 900 and 1000 °C using acetylene as a carbon precursor. The reaction temperature was optimized for the better formation of MWCNTs and they were purified and then characterized by XRD, SEM, HR-TEM and Raman spectroscopy techniques. The formation of MWCNTs with diameter in the range of 4-6 nm was observed from HR-TEM. The good thermal stability and high productivity of catalyst observed in this study revealed that the 2 wt.% Sb loaded MCM-41 could be a promising support for the catalytic synthesis of MWCNTs at 800 °C by CVD method.

  14. Analysis, synthesis and design of chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Turton, R. [West Virginia Univ., Morgantown, WV (United States); Bailie, R.C.; Whiting, W.B.

    1998-12-31

    The book illustrates key concepts through a running example from the real world: the manufacture of benzene; covers design, economic considerations, troubleshooting and health/environmental safety; and includes exclusive software for estimating chemical manufacturing equipment capital costs. This book will help chemical engineers optimize the efficiency of production processes, by providing both a philosophical framework and detailed information about chemical process design. Design is the focal point of the chemical engineering practice. This book helps engineers and senior-level students hone their design skills through process design rather than simply plant design. It introduces all the basics of process simulation. Learn how to size equipment, optimize flowsheets, evaluate the economics of projects, and plan the operation of processes. Learn how to use Process Flow Diagrams; choose the operating conditions for a process; and evaluate the performance of existing processes and equipment. Finally, understand how chemical process design impacts health, safety, the environment and the community.

  15. Determination of the optical parameters of a-Si:H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only

    Indian Academy of Sciences (India)

    Nabeel A Bakr; A M Funde; V S Waman; M M Kamble; R R Hawaldar; D P Amalnerkar; S W Gosavi; S R Jadkar

    2011-03-01

    Three demonstration samples of intrinsic hydrogenated amorphous silicon (a-Si:H) films were deposited using hot wire–chemical vapour deposition (HW–CVD) technique. The optical parameters and the thickness were determined from the extremes of the interference fringes of transmission spectrum in the range of 400–2500 nm using the envelope method. The calculated values of the refractive index () were fitted using the two-term Cauchy dispersion relation and the static refractive index values (0) obtained were 2.799, 2.629 and 3.043 which were in the range of the reported values. The calculated thicknesses for all samples were cross-checked with Taly-Step profilometer and found to be almost equal. Detailed analysis was carried out to obtain the optical band gap (g) using Tauc’s method and the estimated values were 1.99, 2.01 and 1.75 eV. The optical band gap values were correlated with the hydrogen content (H) in the samples calculated from Fourier transform infrared (FTIR) analysis. An attempt was made to apply Wemple–DiDomenico single-effective oscillator model to the a-Si:H samples to calculate the optical parameters. The optical band gap obtained by Tauc’s method and the static refractive index calculated from Cauchy fitting are in good agreement with those obtained by the single-effective oscillator model. The real and the imaginary parts of dielectric constant (r, ), and the optical conductivity () were also calculated.

  16. Comparison of the Er,Cr:YSGG laser with a chemical vapour deposition bur and conventional techniques for cavity preparation: a microleakage study.

    Science.gov (United States)

    Yazici, A Rüya; Yıldırım, Zeren; Antonson, Sibel A; Kilinc, Evren; Koch, Daniele; Antonson, Donald E; Dayangaç, Berrin; Ozgünaltay, Gül

    2012-01-01

    The aim of this study was to compare the effects of the Er,Cr:YSGG laser using chemical vapour deposition (CVD) bur cavity preparation with conventional preparation methods including a diamond bur and a carbide bur on the microleakage with two different adhesive systems. A total of 40 extracted human premolars were randomly assigned to four experimental groups according to the cavity preparation technique: group I diamond bur (Diatech); group II carbide bur (Diatech); group III Er,Cr:YSGG laser (Biolase Millennium II); and group IV CVD bur (CVDentUS). Using the different preparation techniques, Class V standardized preparations were performed on the buccal and lingual surfaces with gingival margins on the dentin and occlusal margins on the enamel. Each preparation group was randomly assigned to two subgroups (five teeth, ten preparations) according to the type of adhesive: an etch-and-rinse adhesive (Adper Single Bond), and a single-step self-etch adhesive (AdheSE One). All preparations were restored with a nanohybrid composite resin in a single increment. Following thermocycling (×500; 5-55°C), the teeth were immersed in basic fuchsin and sectioned in the orovestibular direction. Dye penetration was evaluated under a light microscope by two blinded examiners. Data were statistically analysed with the Kruskal-Wallis and Wilcoxon tests (p0.05). Comparing the enamel and dentin leakage scores within each group, no statistically significant differences were found (p>0.05). The Er,Cr:YSGG laser cavity preparation did not differ from preparation with CVD, diamond or carbide bur in terms of microleakage with the different adhesive systems.

  17. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  18. Surface morphological and photoelectrochemical studies of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Peiris, T.A. Nirmal; Wijayantha, K.G. Upul [Department of Chemistry, Loughborough University, Loughborough, LE11 3TU (United Kingdom); Khaledi, Hamid [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Ming, Huang Nay [Faculty of Science, Department of Physics, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Misran, Misni; Arifin, Zainudin [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-07-01

    Zinc sulphide (ZnS) thin films have been deposited on fluorine-doped tin oxide-coated conducting glass substrates at 375, 425 and 475 °C temperatures from single source adduct precursors [Zn(S{sub 2}CNCy{sub 2}){sub 2}(py)] (1) [where, Cy = cyclohexyl, py = pyridine] and [Zn{S_2CN(CH_2Ph)(Me)}{sub 2}(py)] (2) [where, Ph = Phenyl, Me = Methyl] using aerosol assisted chemical vapour deposition (AACVD). The precursor complexes have been characterized by microanalysis, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray single crystal and thermogravimetric analysis. Thermal analysis showed that both precursors (1) and (2) undergo thermal decomposition at 375 °C to produce ZnS residues. The deposited ZnS films have been characterized by X-ray diffraction and energy dispersive X-ray spectroscopy. Scanning electron microscopic studies indicated that the surface morphology of ZnS films strongly depends on the nature of the precursor and the deposition temperature, regardless of marginal variation in thermal stability of the precursors. Direct band gap energies of 3.36 and 3.40 eV have been estimated from the ultraviolet–visible spectroscopy for the ZnS films fabricated from precursors (1) and (2), respectively. The current–voltage characteristics recorded under air mass 1.5 illumination confirmed that the deposited ZnS thin films are photoactive under anodic bias conditions. Furthermore, the photoelectrochemical (PEC) results indicate that these synthesised single source precursors are suitable for obtaining ZnS thin films by AACVD method. The ZnS thin film electrode prepared in this study are very promising for solar energy conversion and optoelectronic applications. The PEC properties of ZnS electrodes prepared from (2) are superior to that of the ZnS electrode prepared from precursor (1). - Highlights: • Synthesis and characterization of zinc dithiocarbamate pyridine adducts. • ZnS photo electrodes have been fabricated using aerosol

  19. Chemical Processing Department monthly report, April 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-05-21

    This report, from the Chemical Processing Department at HAPO, for April 1962 discusses the following: Production operation; Purex and Redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; employee relations; special separation processing; and auxiliaries operation.

  20. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    Science.gov (United States)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  1. Markov Chains and Chemical Processes

    Science.gov (United States)

    Miller, P. J.

    1972-01-01

    Views as important the relating of abstract ideas of modern mathematics now being taught in the schools to situations encountered in the sciences. Describes use of matrices and Markov chains to study first-order processes. (Author/DF)

  2. The role of chemical engineering in pharmaceutical chemical process development.

    Science.gov (United States)

    Landau, R N; Blacklock, T J; Girgis, M J; Tedesco, A

    1998-11-01

    The task of chemical process development in the pharmaceutical industry has grown into a multidisciplinary endeavor requiring years to complete. Increased competition in the pharmaceutical Additionally, the ever-tightening regulatory environment further compromises the business objective (ultimately, profits). This has required careful analysis of the activities within development. This work discusses the results of this analysis, which shows how a balance between minimal resource utilization and phased development achievements can be reached. The cycle of development, from inception to completion, is examined. Special emphasis is placed upon the role of chemical engineering and its appropriate deployment. Simple examples of the synergies that are possible between chemistry and chemical engineering are also given.

  3. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  4. Chemical sensing in process analysis.

    Science.gov (United States)

    Hirschfeld, T; Callis, J B; Kowalski, B R

    1984-10-19

    Improvements in process control, which determine production efficiency and product quality, are critically dependent upon on-line process analysis. The technology of the required instrumentation will be substantially expanded by advances in sensing devices. In the future, the hardware will consist of sensor arrays and miniaturized instruments fabricated by microlithography and silicon micromachining. Chemometrics will be extensively used in software to provide error detection, selfcalibration, and correction as well as multivariate data analysis for the determination of anticipated and unanticipated species. A number of examples of monolithically fabricated sensors now exist and more will be forthcoming as the new paradigms and new tools are widely adopted. A trend toward not only on-line but even in-product sensors is becoming discernible.

  5. Virucidal efficacy of hydrogen peroxide vapour disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Terpstra, P.; Koopmans, M.; Duizer, E.

    2012-01-01

    Background: Viral contamination of surfaces is thought to be important in transmission. Chemical disinfection can be an effective means of intervention, but little is known about the virucidal efficacy of hydrogen peroxide vapour (HPV) against enteric and respiratory viruses. Aim: To measure the vir

  6. Chemical Processing Division monthly report, September 1966

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1966-10-21

    This report, from the Chemical Processing Department at HAPO for September 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  7. Chemical Processing Department monthly report, February 1965

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1965-03-22

    This report, from the Chemical Processing Department at HAPO, discusses the following: production operation; purex and redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; and employee relations.

  8. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  9. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  10. Chemical Processing Department monthly report, August 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-09-21

    This report, from the Chemical Processing Department at HAPO, August 1965, discusses the following: Production Operation; Purex and Redox Operation; Finished Products Operation; Maintenance; Financial Operations; facilities engineering; research; and employee Relations.

  11. Chemical Processing Division monthly report, April 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-05-20

    This report, from the Chemical Processing Department at HAPO for April 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and waste management.

  12. Molecular Thermodynamics for Chemical Process Design

    Science.gov (United States)

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  13. Chemical Processing Division monthly report, February 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-03-21

    This report, from the Chemical Processing Department at HAPO for February 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  14. Chemical Processing Department monthly report, December 1964

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-21

    This report for December 1964, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

  15. Study of three dimensional germanium islands and ultrathin Si{sub x}Ge{sub 1-x} films grown by chemical vapour deposition on Si(111)-(7 x 7)

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Selvi

    2005-07-15

    This work probed at the atomic level, processes that occur during the Ge three dimensional island formation and on ultrathin Si{sub x}Ge{sub 1-x} epitaxial growth by chemical vapour deposition on the Si(111)-(7 x 7) substrate with the aid of surface probe techniques such as STM and AFM, XPS, as well as TEM imaging of any 3D island formation. This work could essentially be divided into two parts. The first part studied the growth of the strained Ge on Si system with emphasis on the characterisation of the CVD grown three dimensional germanium islands on a standard Si(111)-(7 x 7) substrate as well as on a surface modified Si(111)-(7 x 7) substrate. The characterisation was carried out using a combination of techniques. XPS was used to calculate the effective coverages of deposited germanium, the STM was used to image the top most layers whenever possible and AFM, cross-sectional TEM and HRTEM to image the three dimensional islands. The possible causes of the surface modification were also examined. In the second part of this work the growth morphologies ultrathin Si{sub x}Ge{sub 1-x} layers grown on the Si(111)-(7 x 7) substrate at 750 K where the hydrogen desorption rate from the Si(111) surface is low and at 850 K which was the temperature at which the rate of hydrogen desorption from the Si(111) surface was a maximum were investigated. In addition modelling of ultrathin layer growth was carried out using two existing growth models. (orig.)

  16. Supporting chemical process design under uncertainty

    OpenAIRE

    Wechsung,A.; Oldenburg, J; J. Yu; Polt,A.

    2010-01-01

    A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enh...

  17. Modeling heterogeneous chemical processes on aerosol surface

    Institute of Scientific and Technical Information of China (English)

    Junjun Deng; Tijian Wang; Li Liu; Fei Jiang

    2010-01-01

    To explore the possible impact of heterogeneous chemical processes on atmospheric trace components,a coupled box model including gas-phase chemical processes,aerosol thermodynamic equilibrium processes,and heterogeneous chemical processes on the surface of dust,black carbon(BC)and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface,and analyze the primary factors affecting the heterogeneous processes.Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2,HO2,O3,NO2,NO3,HNO3 and SO2,and aerosols such as SO42-,NO3-and NH4+.Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model.However,the impact of temperature on heterogeneous chemical processes is considerably less.The"renoxification"of HNO3 will affect the components of the troposphere such as nitrogen oxide and ozone.

  18. A liquid crystalline chirality balance for vapours

    Science.gov (United States)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  19. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  20. Chemical Processing Department monthly report, September 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-10-22

    The September, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.

  1. Chemical Processing Department monthly report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    The November 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed was the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  2. Chemical Processing Department monthly report, September 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-10-18

    The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  3. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  4. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  5. Behavioural Change according to the Si/Al Ratio of Successive Na-Mordenites Observed through Their Dielectric Relaxation during Water Vapour Adsorption Process

    Directory of Open Access Journals (Sweden)

    Sekou Diaby

    2016-01-01

    Full Text Available The experimental study of water vapour adsorption phenomenon on a zeolite, by dielectric relaxation measurement, makes it possible to determine the variations in the exchangeable cation hopping activation energy, on the surface of the solid, in relation to the number of adsorbed molecules. The present work shows that it is possible to explain the change observed in the energy, by means of simple assumptions based, on the one hand, on the models used in order to simulate the adsorption process and, on the other hand, on the distribution of the molecules adsorbed near the exchangeable cations. Thus, the phenomenological interpretation suggested here, about the change in the exchangeable cation hopping energy, obtained by dielectric relaxation measurement, makes us with a mind to conceive a simple method for explaining the results leading to new information on the organization of the first adsorbed molecules on the surface of the studied zeolite. Then, it can be verified that these conclusions confirm the assumptions already developed for interpreting the inferences from previous experiments carried out by means of other techniques.

  6. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size

    Science.gov (United States)

    Knight, John H.; Davis, Gregory B.

    2013-12-01

    Petroleum hydrocarbon vapours pose a reduced risk to indoor air due to biodegradation processes where oxygen is available in the subsurface or below built structures. However, no previous assessment has been available to show the effects of a building footprint (slab size) on oxygen-limited hydrocarbon vapour biodegradation and the potential for oxygen to be present beneath the entire sub-slab region of a building. Here we provide a new, conservative and conceptually simple vapour screening model which links oxygen and hydrocarbon vapour transport and biodegradation in the vicinity and beneath an impervious slab. This defines when vapour risk is insignificant, or conversely when there is potential for vapour to contact the sub-slab of a building. The solution involves complex mathematics to determine the position of an unknown boundary interface between oxygen diffusing in from the ground surface and vapours diffusing upwards from a subsurface vapour source, but the mathematics reduces to a simple relationship between the vapour source concentration and the ratio of the half slab width and depth to the vapour source. Data from known field investigations are shown to be consistent with the model predictions. Examples of 'acceptable' slab sizes for vapour source depths and strengths are given. The predictions are conservative as an estimator of when petroleum hydrocarbon vapours might come in contact with a slab-on-ground building since additional sources of oxygen due to advective flow or diffusion through the slab are ignored. As such the model can be used for screening sites for further investigation.

  7. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  8. Chlorine-free plasma-based vapour growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Siche, D.; Kachel, K.; Zwierz, R.; Golka, S.; Sudhoff, P.; Gogova, D. [Leibniz-Institut fuer Kristallzuechtung, Berlin (Germany); Vodopyanov, A.; Izotov, I.; Sennikov, P.; Golubev, S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation); Franke, K.P. [Institute fuer Umwelttechnologien GmbH, Berlin (Germany)

    2012-03-15

    In pure physical vapour transport process for GaN growth, the liquid Ga source has to be kept at temperatures about 1300-1400 C to provide sufficient Ga vapour pressure for reasonably large growth rates. The growth temperature needs to be slightly lower to prevent droplet formation in the Ga vapour. At such high temperatures, however, the early ammonia decomposition prevents the favorable growth with reactive nitrogen in excess. The vapour processes under development in this study aim at overcoming the drawbacks of the reaction of physically or chemically transported Ga and ammonia. For this purpose, the reactive nitrogen will be supplied by plasma excitation of N{sub 2}. First, the results on ammonia-based GaN growth and their disadvantages are discussed. Then, the challenges in designing of a new type of plasma sources (a microwave and a dielectric barrier discharge) and the first experimental results on the ammonia-free process development are presented. The microwave approach seems to be very promising in terms of GaN growth. It has higher growth rates than the dielectric barrier discharge method and therefore it is more cost-effective. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  10. Chemical computing with reaction-diffusion processes.

    Science.gov (United States)

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed.

  11. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.

    Science.gov (United States)

    Pereira, Evandro Brum; de la Piscina, Pilar Ramírez; Homs, Narcís

    2011-02-01

    The aim of this study was to investigate biohydrogen production from biofuel-reforming processes using new multi-component bulk-type cobalt-based catalysts. The addition of different components to improve the catalytic performance was studied. Monometallic cobalt catalyst and catalysts containing Ru (ca. 1%) and/or Na (ca. 0.5%) were characterized and tested in the 623-673 K temperature range in ethanol steam reforming (ESR) with a steam/carbon ratio (S/C) of 3. The catalysts showed a high performance for hydrogen production and, except for H(2) and CO(2), only small amounts of by-products were obtained, depending on the temperature and the catalyst used. The catalyst containing both Ru and Na (Co-Ru(Na)) showed the best catalytic behavior in ESR. It operated stably for at least 12 days under cycles of oxidative steam reforming of glycerol/ethanol mixtures (S/C=2) and activation under O(2).

  12. Absence of the 90 K structural transition in CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Crandles, D A [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Reedyk, M [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Wardlaw, G [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Razavi, F S [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Hagino, T [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Nagata, S [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Shimono, I [Hokkaido Industrial Technology Centre, 379 Kikyo-cho, Hakodate, Hokkaido 041-0801 (Japan); Kremer, R K [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2005-08-03

    Various physical properties (magnetization, specific heat, optical reflectance, electrical resistivity) of CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4} as the transporting agent have been measured. The data show slight differences compared to samples grown using different techniques. These differences include the absence of a sharp drop in magnetization and the absence of a peak in the heat capacity near 90 K. These differences suggest that the cubic-tetragonal phase transition near 90 K does not occur in these particular crystals. The reflectance of the same crystals has been studied from (70-20 000 cm{sup -1}) for temperatures between 40 and 300 K and the data are consistent with those for a disordered metal. A high frequency absorption, perhaps an interband transition, has been observed in addition to absorption due to strongly scattered free carriers.

  13. Modelling and analysis of CVD processes in porous media for ceramic composite preparation

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1991-01-01

    A continuum phenomenological model is presented to describe chemical vapour deposition (CVD) of solid product inside porous substrate media for the preparation of reinforced ceramic-matrix composites [by the chemical vapour infiltration (CVI) process] and ceramic membrane composites (by a modified C

  14. Need for Vapour-Liquid Equilibrium Data Generation of Systems Involving Green Solvents

    OpenAIRE

    V. M. Parsana; S. P. Parikh

    2015-01-01

    Much has been said and written over the years regarding green chemistry concept and use of green solvents. The green solvents can potentially replace the traditional or classical solvents in order to reduce the environment footprint or their harmful impact on human being and/or environment. Vapour-liquid equilibrium data is indispensable for the design of distillation columns for separation processes which account for a large percentage of total costs in a typical chemical plant. ...

  15. Need for Vapour-Liquid Equilibrium Data Generation of Systems Involving Green Solvents

    Directory of Open Access Journals (Sweden)

    V. M. Parsana

    2015-06-01

    Full Text Available Much has been said and written over the years regarding green chemistry concept and use of green solvents. The green solvents can potentially replace the traditional or classical solvents in order to reduce the environment footprint or their harmful impact on human being and/or environment. Vapour-liquid equilibrium data is indispensable for the design of distillation columns for separation processes which account for a large percentage of total costs in a typical chemical plant. Though extensive approach has been made for the replacement of traditional solvents, but not enough consideration been given for vapour-liquid equilibrium data, required for designing separation processes in case of replacement with green solvents. So this paper aims at encouraging vapour-liquid equilibrium data generation for design of efficient separation for binary systems involving ethereal green solvents such as cyclopentyl methyl ether (CPME and 2-methyl tetrahydrofuran (2-MeTHF. A brief review and outline of procedure for generating vapour-liquid equilibrium data is presented here.

  16. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  17. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......Process design and process control have been considered as independent problems for many years. In this context, a sequential approach is used where the process is designed first, followed by the control design. However, this sequential approach has its limitations related to dynamic constraint...... violations, for example, infeasible operating points, process overdesign or under-performance. Therefore, by using this approach, a robust performance is not always guaranteed. Furthermore, process design decisions can influence process control and operation. To overcome these limitations, an alternative...

  18. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  19. Chemical Mechanical Planarization of Cu: Nanoscale Processes

    Science.gov (United States)

    Arthur, Michael; Fishbeck, Kelly; Muessig, Kara; McDonald, James; Williams, Christine; White, Daniel; Koeck, Deborah; Perry, Scott; Galloway, Heather

    2002-10-01

    Interconnect lines in state of the art integrated circuits are made of copper in a process that requires the repeated planarization of the copper layer. During this process the material is subjected to an aqueous slurry containing active chemicals, corrosion inhibitors and abrasive particles. A model slurry buffered to pH2, pH4 and pH6, contained nitric acid, silica particles and benzotriazole (BTA) as a corrosion inhibitor. The degree of copper planarization was investigated as a function of slurry composition and pH using atomic force microscopy. Chemical surface changes can be explained by the effect of slurry composition on the charge at the material surface. This surface charge controls the amount of friction between the abrasive and the surface which, in turn, effects the global planarization of the material. Experiments using a macroscopic polishing system with AFM characterization along with the microscopic interaction of the AFM tip and sample provide insights into the fundamental mechanisms of a planarization process.

  20. SAPHYR: A new chemical stabilisation process

    Energy Technology Data Exchange (ETDEWEB)

    Baratto, Gilles; Fernandes, Paulo; Patria; Lucie; Cretenot, Didier

    2003-07-01

    Odour control and dewaterability are the key criteria during biosolids storage either for use on land or incineration. In the case of use on land, stabilisation/sanitisation are also part of the key criteria. Vivendi Water Systems developed the SAPHYR process to answer those three requirements. The SAPHYR process principle is based on an acidification of biosolids associated to the addition of nitrite. The main results are a noticeable odour control lasting other periods of 6 to 9 months, an improved dewaterability (2 to 4 points of dryness) and depending on chemical dosages a stabilisation or a sanitisation of biosolids. Another characteristic is that biosolids conditioned with the Saphyr process can be used both on land or for incineration. After several demonstrations on more than 5 different plants throughout France on a 10 000 p.e. unit, the first industrial reference of the process was installed on a 50 000 population equivalent wastewater treatment plant in 2002 and has been in operation since december 2002. A close monitoring of the process operation, the biosolids quality and its storage and spreading on land is planned from November 2002 to spring 2003. A comparison with lime addition will take place on the same plant. The present paper will produce a presentation of the SAPHYR process, its operation on a 50 000 pe WWTP and its different applications for biosolids storage.

  1. Deposition of cobalt and nickel sulfide thin films from thio- and alkylthio-urea complexes as precursors via the aerosol assisted chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mgabi, L.P.; Dladla, B.S. [Department of Chemistry, University of Zululand, Private bag X1001 KwaDlangezwa, 3880 (South Africa); Malik, M.A. [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Garje, Shivram S. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Akhtar, J. [Nanoscience and Materials Synthesis Lab, Department of Physics, COMSATS, Institute of Information Technology (CIIT), Chak shahzad, Islamabad (Pakistan); Revaprasadu, N., E-mail: RevaprasaduN@unizulu.ac.za [Department of Chemistry, University of Zululand, Private bag X1001 KwaDlangezwa, 3880 (South Africa)

    2014-08-01

    We report the synthesis of Co(II) and Ni(II) thiourea and alkylthiourea complexes by reacting the metal salts (CoCl{sub 2} and NiCl{sub 2}) with the thiourea, phenylthiourea and dicyclohexylthiourea ligands in a 1:2 ratio. The complexes, [CoCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (I), [CoCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2} (II) and [CoCI{sub 2}(SC(NHC{sub 6}H{sub 11}){sub 2}){sub 2}] (III), [NiCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (IV), [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) and [NiCl{sub 2}(SC(NHC{sub 6}H{sub 11}){sub 2}){sub 2}] (VI) were characterized by C, H, N analysis and Fourier transform infrared spectroscopy. Thermogravimetric analysis shows that all complexes undergo a two step decomposition process except for [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) which decomposes in a single step. The complexes were used as single-source precursors for the deposition of cobalt sulfide and nickel sulfide thin films by aerosol assisted chemical vapor deposition at temperatures between 350 an 500 °C. The crystallinity of the films was determined by X-ray diffraction and their morphology was determined by scanning electron microscopy. The morphology of the cobalt sulfide thin films varies from randomly oriented platelets, to granulated spheres and cubes as the precursor and deposition conditions are changed. For nickel sulfide, the [NiCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (IV) complex gave rods whereas the [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) produced spherical particles. - Highlights: • We report the synthesis of Co(II) and Ni(II) thiourea and alkylthiourea complexes. • C, H, N analysis and Fourier transform infrared spectroscopy characterization • NiS and CoS thin films deposited by aerosol assisted chemical vapor deposition • X-ray diffraction characterization of the phase of the films • Film morphology determined by scanning electron microscopy.

  2. The impact of deep overshooting convection on the water vapour and trace gas distribution in the TTL and lower stratosphere

    Science.gov (United States)

    Frey, W.; Schofield, R.; Hoor, P. M.; Ravegnani, F.; Ulanovsky, A.; Viciani, S.; D'Amato, F.; Lane, T. P.

    2014-12-01

    Overshooting convection penetrating the tropical tropopause layer (TTL) and the lower stratosphere has a significant impact on the redistribution of water vapour and further trace gases. This is of importance for the stratospheric water vapour budget, which plays a central role in radiative and chemical processes. Modelling studies and in situ measurements show the hydration potential of convective overshooting partly by direct injection of ice particles into the stratosphere and subsequent sublimation. However, processes leading to dehydration of the TTL may also impact the stratospheric humidity by limiting the amount of water vapour carried aloft. While the large scale drives some of the dehydrating processes, others are of convective origin, for example gravity waves and cooling associated with overshooting turrets. Furthermore, downdrafts may transport dry and ozone rich air masses from the stratosphere into the TTL. Improving our understanding of overshooting convection and its influence on TTL water vapour will ultimately place better constraints on the budget of water vapour in the stratosphere.In this study we use three-dimensional cloud resolving (WRF-ARW) simulations of a deep convective thunderstorm (Hector) to study the redistribution of water vapour and trace gases in the upper TTL/lower stratosphere. Passive tracers are initialised to investigate the transport of air masses. The simulations focus on an Hector event that has been probed by aircraft during the SCOUT-O3 field campaign. Observations were performed in and around overshoots that even penetrated the stratosphere. These observations as well as the model simulations show downward transport and mixing of air masses from the stratosphere, though less strong and more localised in the simulation. Furthermore, the simulations shows a layering of hydrated and dehydrated air masses post-convection in the upper TTL and lower stratosphere. Here we use the model to explain the processes causing the

  3. GREENSCOPE: A Method for Modeling Chemical Process ...

    Science.gov (United States)

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  4. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pesticide chemicals in processed foods. 170.19... chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use of... exemption granted or a tolerance prescribed under section 408 of the Act, the processed food will not...

  5. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pesticide chemicals in processed foods. 570.19... chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use of... exemption granted or a tolerance prescribed under section 408 of the act, the processed food will not...

  6. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  7. Quantum Chemical Strain Analysis For Mechanochemical Processes.

    Science.gov (United States)

    Stauch, Tim; Dreuw, Andreas

    2017-03-24

    The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical

  8. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    赵佰军; 杨洪军; 杜国同; 缪国庆; 杨天鹏; 张源涛; 高仲民; 王金忠; 方秀军; 刘大力; 李万成; 马燕; 杨晓天; 刘博阳

    2003-01-01

    ZnO films were deposited by low-pressure metal organic chemical vapour deposition on epi-GaN/Al2O3 films and c-Al2O3 substrates.The structure and optical properties of the ZnO/GaN/Al2O3 and ZnO/Al2O3 films have been investigated to determine the differences between the two substrates.ZnO films on GaN/Al2O3 show very strong emission features associated with exciton transitions,just as ZnO films on Al2O3,while the crystalline structural qualities for ZnO films on GaN/Al2O3 are much better than those for ZnO films directly grown on Al2O3 substrates.Zn and O elements in the deposited ZnO/GaN/Al2O3 and ZnO/Al2O3 films are investigated and compared by x-ray photoelectron spectroscopy.According to the statistical results,the Zn/O ratio changes from Zn-rich for ZnO/Al2O3 films to O-rich for ZnO/GaN/Al2O3 films.

  9. On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS).

    Science.gov (United States)

    Krishna, M V Balarama; Chandrasekaran, K; Karunasagar, D

    2010-04-15

    A simple and efficient method for the determination of ultra-trace amounts of inorganic mercury (iHg) and methylmercury (MeHg) in waters and fish tissues was developed using a micro-column filled with polyaniline (PANI) coupled online to flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS) system. Preliminary studies indicated that inorganic and methyl mercury species could be separated on PANI column in two different speciation approaches. At pH extraction of the mercury species from biological samples, was used directly to separate MeHg from iHg in the fish tissues (tuna fish ERM-CE 463, ERM-CE 464 and IAEA-350) by PANI column using speciation procedure 1. The determined values were in good agreement with certified values. Under optimal conditions, the limits of detection (LODs) were 2.52 pg and 3.24 pg for iHg and MeHg (as Hg) respectively. The developed method was applied successfully to the direct determination of iHg and MeHg in various waters (tap water, lake water, ground water and sea-water) and the recoveries for the spiked samples were in the range of 96-102% for both the Hg species.

  10. A catalyst-free synthesis of germanium nanowires obtained by combined X-ray chemical vapour deposition of GeH$_4$ and low-temperature thermal treatment techniques

    Indian Academy of Sciences (India)

    CHIARA DEMARIA; ALDO ARRAIS; PAOLA BENZI; ENRICO BOCCALERI; PAOLA ANTONIOTTI; ROBERTO RABEZZANA; LORENZA OPERTI

    2016-04-01

    A catalyst-free innovative synthesis, by combined X-ray chemical vapour deposition and lowtemperature thermal treatments, which has not been applied since so far to the growth of germanium nanowires (Ge-NWs), produced high yields of the nanoproducts with theGeH4 reactant gas. Nanowires were grown on both surfaces of a conventional deposition quartz substrate. They were featured with high purity and very large aspect ratios (ranging from 100 to 500). Products were characterized by scanning electron microscopy with energy-dispersiveatomic X-ray fluorescence and transmission electron microscopies, X-ray powder diffraction diffractometry, thermogravimetric analysis with differential scanning calorimetry, vibrational infrared and Raman and ultraviolet–visible–near infrared spectroscopies. A quantitative nanowire bundles formation was observed in the lower surface of the quartz substrate positioned over a heating support, whilst spots of nanoflowers constituted by Ge-NWs emerged from a bulk amorphous germanium film matter, deposited on the upper surface of the substrate. Thenanoproducts were characterized by crystalline core morphology, providing semiconductive features and optical band gap of about 0.67 eV. The possible interpretative base-growth mechanisms of the nanowires, stimulated bythe concomitant application of radiant and thermal conditions with no specific added metal catalyst, are hereafter investigated and presented.

  11. Preparation and Properties of N-Doped p-Type ZnO Films by Solid-Source Chemical Vapour Deposition with the c-Axis Parallel to the Substrate

    Institute of Scientific and Technical Information of China (English)

    吕建国; 叶志镇; 汪雷; 赵炳辉; 黄靖云

    2002-01-01

    We report on N-doped p-type ZnO films with the c-axis parallel to the substrate. ZnO films were prepared onan α-A12O3 (0001) substrate by solid-source chemical vapour deposition (CVD). Zn( CH3COO)2.2H2O was usedas the precursor and CH3COONH4 as the nitrogen source. The growth temperature was varied from 300℃ C to600℃ C. The as-grown ZnO film deposited at 500° C showed p-type conduction with its resistivity of 42 Ωcrm, carrierdensity 3.7 × 1017 cm-3 and Hall mobility 1.26cm2V-1.s-1 at room temperature, which are the best propertiesfor p-type ZnO deposited by CVD. The p-type ZnO film possesses a transmittance of about 85% in the visibleregion and a bandgap of 3.21 eV at room temperature.

  12. Physical-chemical processes in a protoplanetary cloud

    Science.gov (United States)

    Lavrukhina, Avgusta K.

    1991-01-01

    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  13. Annealing effects on capacitance-voltage characteristics of a-Si/SiN(x) multilayer prepared using hot-wire chemical vapour deposition.

    Science.gov (United States)

    Panchal, A K; Rai, D K; Solanki, C S

    2011-04-01

    Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.

  14. Physical and Chemical Processing in Flames

    Science.gov (United States)

    2013-08-12

    than the classical Troe formula, and the development of a Chemical Explosive Mode Analysis ( CEMA ) computation algorithm that allows on-the-fly...6-311++G(d,p) method. 3. Flame Stabilization and Chemical Explosive Mode Analysis ( CEMA ) Flame stabilization is essential in the understanding of

  15. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  16. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  17. Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates

    Science.gov (United States)

    Liu, Xi; Chai, Yang; Liu, Zhaojun

    2017-04-01

    With the development of portable electronics, higher performance transistors are required to reduce the form factor and improve the performance of the devices. The key issue relies on developing transistors with outstanding electrical properties and low energy consumption at small scale. Here we demonstrate chemical vapor deposition (CVD) grown MoS2 transistors with a high on/off ratio using ZrO2 as a gate dielectric. Using 10 nm thick ZrO2, the transistor has an on/off ratio of 108, a sub-threshold swing of 0.1 V/dec, and a mobility of 64.66 cm2 V‑1 s‑1. Compared to the MoS2 devices grown on 300 nm SiO2, the electrical performance demonstrates an all round improvement, which indicates the high crystalline quality of MoS2/ZrO2. Owing to the high-k ZrO2 dielectrics, the MoS2 transistor has a high on/off ratio, a low operating voltage, and good channel modulation capability which ensures that MoS2 is a good candidate for low power electronics.

  18. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  19. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    Science.gov (United States)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  20. Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry

    Indian Academy of Sciences (India)

    G V Kunte; Ujwala Ail; P K Ajikumar; A K Tyagi; S A Shivashankar; A M Umarji

    2011-12-01

    A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure–temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

  1. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111) via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In.

    Science.gov (United States)

    Zervos, Matthew; Tsokkou, Demetra; Pervolaraki, Maria; Othonos, Andreas

    2009-02-21

    Indium oxide (In2O3) nanocrystals (NCs) have been obtained via atmospheric pressure, chemical vapour deposition (APCVD) on Si(111) via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl) which is incorporated into the In under a gas flow of nitrogen (N2). Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forTG sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111) where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111). The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111) with an average diameter of 300 nm.

  2. Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Funde, A.M.; Bakr, Nabeel Ali; Kamble, D.K. [School of Energy Studies, University of Pune, Pune 411 007 (India); Hawaldar, R.R.; Amalnerkar, D.P. [Center for Materials for Electronics Technology (C-MET), Panchawati, Pune 411 008 (India); Jadkar, S.R. [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India)

    2008-10-15

    Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (Si-H) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (Si-H) to di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2}){sub n} complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size {proportional_to}7.67 nm having good degree of crystallinity ({proportional_to}84%) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Aa/s). (author)

  3. Metal Vapour Lasers: Physics, Engineering and Applications

    Science.gov (United States)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  4. Vapour Intrusion into Buildings - A Literature Review

    Science.gov (United States)

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  5. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  6. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  7. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  8. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO/H2O variations

    OpenAIRE

    Eichinger, Roland; Jöckel, Patrick; Lossow, Stefan

    2015-01-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this m...

  9. Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO / H2O variations

    OpenAIRE

    R. Eichinger; Jöckel, P.; S. Lossow

    2015-01-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this mode...

  10. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  11. Chemical Process Design: An Integrated Teaching Approach.

    Science.gov (United States)

    Debelak, Kenneth A.; Roth, John A.

    1982-01-01

    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  12. Quantum Matter-Photonics Framework: Analyses of Chemical Conversion Processes

    CERN Document Server

    Tapia, O

    2014-01-01

    A quantum Matter-Photonics framework is adapted to help scrutinize chemical reaction mechanisms and used to explore a process mapped from chemical tree topological model. The chemical concept of bond knitting/breaking is reformulated via partitioned base sets leading to an abstract and general quantum presentation. Pivotal roles are assigned to entanglement, coherence,de-coherence and Feshbach resonance quantum states that permit apprehend gating states in conversion processes. A view from above in the state energy eigenvalue ladder, belonging to full system spectra complement the standard view from ground state. A full quantum physical view supporting chemical change obtains.

  13. Chemical Processing Department monthly report, April 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-05-22

    Two new production records were set during April, for processed U and Pu production. 0.9 tons sheared NRX fuel were dissolved in Redox. Discrepancies in Pu yield are being studied. Alternate methods of recovering Np are being evaluated. The Purex prototype facility will be converted to the anion exchange process. Alternate designs for a Purex miniature service dissolver were reviewed. The Purex HA column will be replaced.

  14. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  15. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  16. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  17. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    Science.gov (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  18. Single mode quadrature entangled light from room temperature atomic vapour

    CERN Document Server

    Wasilewski, W; Jensen, K; Madsen, L S; Krauter, H; Polzik, E S

    2009-01-01

    We analyse a novel squeezing and entangling mechanism which is due to correlated Stokes and anti-Stokes photon forward scattering in a multi-level atom vapour. Following the proposal we present an experimental demonstration of 3.5 dB pulsed frequency nondegenerate squeezed (quadrature entangled) state of light using room temperature caesium vapour. The source is very robust and requires only a few milliwatts of laser power. The squeezed state is generated in the same spatial mode as the local oscillator and in a single temporal mode. The two entangled modes are separated by twice the Zeeman frequency of the vapour which can be widely tuned. The narrow-band squeezed light generated near an atomic resonance can be directly used for atom-based quantum information protocols. Its single temporal mode characteristics make it a promising resource for quantum information processing.

  19. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    Science.gov (United States)

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  20. Evaluation of Chemical Coating Processes for AXAF

    Science.gov (United States)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell

    1998-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  1. Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2010-01-01

    Full Text Available In this work, a TPR (Temperature Programmed Reduction system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition, The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.

  2. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  3. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.

    1957-08-22

    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  4. Chemical Processing Department monthly report for June 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-07-21

    This report, for June 1961 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  5. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    to each other. Similarly, in process design, steady state is always assumed for processes (i.e. production of a given chemical occurs at a constant rate, temperature, pressure and composition; feeds enter the plant at constant rates, etc.). However, in practice, chemical plants need to be carefully......, Process Design provides an opportunity for a comprehensive implementation of CDIO principles in a single course. Already the traditional chemical engineering “capstone” design course has for decades embodied many of the essential features of CDIO (for example the focus on group work, development......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...

  6. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  7. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic...... gained considerable interest. Renewable feedstocks usually cannot be converted into fuels and chemicals with existing process facilities due to the molecular functionality and variety of the most common renewable feedstock (biomass). Therefore new types of catalytic methods as well as new types...

  8. Chemical Processing Department monthly report for January 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-02-20

    This report for January 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  9. From pulsed power to processing: Plasma initiated chemical process intensification

    NARCIS (Netherlands)

    Heesch, E.J.M. van; Yan, K.; Pemen, A.J.M.; Winands, G.J.J.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.

    2012-01-01

    Smart electric power for process intensification is a challenging research field that integrates power engineering, chemistry and green technology. Pulsed power technology is offering elegant solutions. This work focuses on backgrounds of matching the power source to the process. Important items are

  10. ADVANCED CONTROL OF A COMPLEX CHEMICAL PROCESS

    Directory of Open Access Journals (Sweden)

    Roxana Both

    Full Text Available Abstract Three phase catalytic hydrogenation reactors are important reactors with complex behavior due to the interaction among gas, solid and liquid phases with the kinetic, mass and heat transfer mechanisms. A nonlinear distributed parameter model was developed based on mass and energy conservation principles. It consists of balance equations for the gas and liquid phases, so that a system of partial differential equations is generated. Because detailed nonlinear mathematical models are not suitable for use in controller design, a simple linear mathematical model of the process, which describes its most important properties, was determined. Both developed mathematical models were validated using plant data. The control strategies proposed in this paper are a multivariable Smith Predictor PID controller and multivariable Smith Predictor structure in which the primary controllers are derived based on Internal Model Control. Set-point tracking and disturbance rejection tests are presented for both methods based on scenarios implemented in Matlab/SIMULINK.

  11. Chemical Processing Department monthly report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-22

    Record highs were set for Pu output in separations plants and for amount of U processed in Purex. UO{sub 3} production and shipments exceeded schedules. Fabrication of 200 and 250 Model assemblies is reported. Unfabricated Pu production was 8.5% short. Nitric acid recovery in Purex and Redox is reported. Prototype anion exchange system for Pu was tested in Purex. Hinged agitator arms with shear pin feature was installed in UO{sub 3} plant H calciner. Operation of continuous type Task I, II facility improved. DBBP is considered for Recuplex. Methods for Pu in product solutions agreed to within 0. 10%. Purex recycle dock shelter is complete. Other projects are reported.

  12. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  13. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E.; Tornos, J.

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  14. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer

    2004-01-01

    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  15. Textual and chemical information processing: different domains but similar algorithms

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2000-01-01

    Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.

  16. Chemical Processes and Thresholds in Hawaiin Soils

    Science.gov (United States)

    Chadwick, O.

    2007-12-01

    The Hawaiian Islands are a useful natural laboratory for studying soil development particularly those that can be understood using a matrix of chonosequences and climosequences. The islands are formed over a stationary mantle plume and then are carried to the northwest on the Pacific Plate. Thus the islands get older with distance from the hotspot; Kauai has remnant shield surfaces whose lavas date to about 4,000 ky. It is possible to sample soils that are developing on different age flows ranging from a few hundred years to a few million years. Additionally, individual volcanoes are impacted by differing amounts of rainfall depending on location with respect to the northeasterly trade winds. Whereas rainfall over the open ocean near Hawaii is about 700 mm, rainfall over the Islands ranges from 150 to 11,000 mm. Hawaii is minimally impacted by mineral aerosol additions compared to continental areas and this has a significant impact on soil development. More than 100 soil profiles have been sampled along the Hawaii time-climate matrix with some surprising results. For example, in arid soils might be expected to develop smectite clays, but they are rich in halloysite and allophane. Importantly, these same soils show a trend from high-Mg calcite to dolomite as carbonates accumulate within the profiles - this is one of the first documented occurrences of pedogenic dolomite that is not associated with high levels of salts. It appears that lack of smectite formation lowers the incorporation of Mg into silicate clays and increases its incorporation into carbonates. This is an unusual pedogenic process that seems to be enhanced by the lack of substantial amounts of mica in the basalt derived soils. The only mica is in surface horizons that receive dust derived from distant continents. Without mica there is no template to allow smectite clay formation under the rapid wetting and drying regimes encountered in the arid soils. At the same time that halloysite is forming, iron

  17. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    OpenAIRE

    Peet, E.; V. Rudakov; V. Yushkov; G. Redaelli; A. R. MacKenzie

    2004-01-01

    In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of p...

  18. Condensation of water vapour on moss-dominated biological soil crust, NW China

    Science.gov (United States)

    Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Ya-Feng; Zhang, Hao

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3◦C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4◦C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  19. Condensation of water vapour on moss-dominated biological soil crust, NW China

    Indian Academy of Sciences (India)

    Xin-Ping Wang; Yan-Xia Pan; Rui Hu; Ya-Feng Zhang; Hao Zhang

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3°C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4°C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  20. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  1. Computer simulation for designing waste reduction in chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K. [Oak Ridge Inst. for Science and Technology, TN (United States); Cabezas, H.; Bare, J.C. [Environmental Protection Agency, Cincinnati, OH (United States)

    1996-12-31

    A new methodology has been developed for implementing waste reduction in the design of chemical processes using computer simulation. The methodology is based on a generic pollution balance around a process. For steady state conditions, the pollution balance equation is used as the basis to define a pollution index with units of pounds of pollution per pound of products. The pollution balance has been modified by weighing the mass of each pollutant by a chemical ranking of environmental impact. The chemical ranking expresses the well known fact that all chemicals do not have the same environmental impact, e.g., all chemicals are not equally toxic. Adding the chemical ranking effectively converts the pollutant mass balance into a balance over environmental impact. A modified pollution index or impact index with units of environmental impact per mass of products is derived from the impact balance. The impact index is a measure of the environmental effects due to the waste generated by a process. It is extremely useful when comparing the effect of the pollution generated by alternative processes or process conditions in the manufacture of any given product. The following three different schemes for the chemical ranking have been considered: (i) no ranking, i.e., considering that all chemicals have the same environmental impact, (ii) a simple numerical ranking of wastes from 0 to 3 according to the authors judgement of the impact of each chemical, and (iii) ranking wastes according to a scientifically derived combined index of human health and environmental effects. Use of the methodology has been illustrated with an example of production of synthetic ammonia. 3 refs., 2 figs., 1 tab.

  2. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources......, are the needed models for such a framework available? Or, are modelling tools that can help to develop the needed models available? Can such a model-based framework provide the needed model-based work-flows matching the requirements of the specific chemical product-process design problems? What types of models...

  3. Microclimatic, chemical, and mineralogical evidence for tafoni weathering processes on the Miaowan Island, South China

    Science.gov (United States)

    Huang, Rihui; Wang, Wei

    2017-02-01

    Tafoni were widely distributed around the world; however, their processes of development remain unclear. In this study, the roles of microclimatic, geochemical and mineralogical processes on tafoni development along the subtropical coastline of the Miaowan Island, south China, are investigated. Field observations were carried out during three visits to the island over a four-year period (2011-2015). The orientation of 184 tafoni openings were measured, and micrometeorological changes of three tafoni on opposite sides of the island were monitored by pocket weather trackers (Kestrel 4500) in two periods. Samples of residual debris inside three tafoni hosted in a large boulder, the parent rock of the tafoni, and from the weathering profile of a nearby bedrock outcrop were collected for X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses. The field observations showed that tafoni were of different sizes and constantly produced flakes and debris inside the tafoni caves, indicating their on-going active development. An increase in Na in residual debris in tafoni caves on the Miaowan Island is the most obvious evidence of salt weathering. Salt weathering inside tafoni caves is not intense and does not match the salt-rich environment outside the caves, indicating that the influence of salt is not strong. The loss of K, Ca, and Mg in the residue samples, and the appearance of the clay mineral montmorillonite are caused by chemical weathering. Most of the tafoni openings face mountains, demonstrating the effect of humidity in tafoni weathering. Tafoni cave shapes are related to the distribution of humid water vapour, which tends to collect at the top of the cave, and leads to more intensive development here than in other parts. Drastic daily changes in relative humidity inside tafoni caves accelerate mechanical weathering owing to swelling and shrinking of salt and clay minerals. The Miaowan Island tafoni are formed by weathering, but they cannot be simply

  4. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    Science.gov (United States)

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-09-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

  5. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  6. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto;

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...... chemical processes is presented. The framework allows the use of appropriate computer-aided methods and tools in a hierarchical manner according to a developed work flow for a multilevel criteria analysis that helps generate competing and more sustainable process design options. The application...

  7. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  8. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  9. Chemical Processing Department monthly report for December 1956

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-21

    The December, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  10. Chemical Processing Department monthly report for September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    The September, 1958 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  11. Dust as interstellar catalyst I. Quantifying the chemical desorption process

    CERN Document Server

    Minissale, M; Cazaux, S; Hocuk, S

    2015-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these resul...

  12. A New Optimal Control System Design for Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    丛二丁; 胡明慧; 涂善东; 邵惠鹤

    2013-01-01

    Based on frequency response and convex optimization, a novel optimal control system was developed for chemical processes. The feedforward control is designed to improve the tracking performance of closed loop chemical systems. The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function, which can be measured accurately. In particular, the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization. Simula-tion examples show the effectiveness of the method. The design method is simple and easily adopted in chemical industry.

  13. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul

    2016-01-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  14. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join......, the implementation of the computer-aided process-group based flowsheet synthesis-design framework is presented together with an extended library of flowsheet property models to predict the environmental impact, safety factors, product recovery and purity, which are employed to screen the generated alternatives. Also...... flowsheet (the well-known Hydrodealkylation of toluene process) and another for a biochemical process flowsheet (production of ethanol from lignocellulose). In both cases, not only the reported designs are found and matched, but also new innovative designs are found, which is possible because...

  15. The role of chemical engineering in process development and optimization.

    Science.gov (United States)

    Dienemann, E; Osifchin, R

    2000-11-01

    This review focuses on the roles that chemical engineers can play in the development, scale-up and optimization of synthetic processes for the production of active pharmaceutical ingredients. This multidisciplinary endeavor involves close collaboration among chemists and chemical engineers, and, for successful products, involves bridging the R&D and manufacturing enterprises. Balancing these disparate elements in the face of ever-mounting competitive pressures to shorten development timelines and ever-tightening regulatory, safety and environmental constraints, has become a critical business objective for all pharmaceutical companies. The concept of focusing development resources on selected critical process features as a function of phase within the development cycle will be discussed. In addition, several examples of chemical engineering- focused process development and optimization will be presented.

  16. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    Science.gov (United States)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  17. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  18. Electrochemistry and green chemical processes: electrochemical ozone production

    Directory of Open Access Journals (Sweden)

    Leonardo M. da Silva

    2003-12-01

    Full Text Available After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

  19. Stratospheric water vapour as tracer for Vortex filamentation in the Arctic winter 2002/2003

    Directory of Open Access Journals (Sweden)

    M. Müller

    2003-01-01

    Full Text Available Balloon-borne frost point hygrometers measured three high-resolution profiles of stratospheric water vapour above Ny-Ålesund, Spitsbergen during winter 2002/2003. The profiles obtained on 12 December 2002 and on 17 January 2003 provide an insight into the vertical distribution of water vapour in the core of the polar vortex. The water vapour sounding on 11 February 2003 was obtained within the vortex edge region of the lower stratosphere. Here, a significant reduction of water vapour mixing ratio was observed between 16 and 19 km. The stratospheric temperatures indicate that this dehydration was not caused by the presence of polar stratospheric clouds or earlier PSC particle sedimentation. Ozone observations on this day indicate a large scale movement of the polar vortex and show laminae in the same altitude range as the water vapour profile. The link between the observed water vapour reduction and filaments in the vortex edge region is indicated in the results of the semi-lagrangian advection model MIMOSA, which show that adjacent filaments of polar and mid latitude air can be identified above the Spitsbergen region. A vertical cross-section produced by the MIMOSA model reveals that the water vapour sonde flew through polar air in the lowest part of the stratosphere below 425 K, then passed through filaments of mid latitude air with lower water vapour concentrations, before it finally entered the polar vortex above 450 K. These results indicate that on 11 February 2003 the frost point hygrometer measured different water vapour concentrations as the sonde detected air with different origins. Instead of being linked to dehydration due to PSC particle sedimentation, the local reduction in the stratospheric water vapour profile was in this case caused by dynamical processes in the polar stratosphere.

  20. Removal of vapour phase PCDD/Fs in electric arc furnace steelmaking emissions by sorption using plastics.

    Science.gov (United States)

    Ooi, Tze Chean; Ewan, Bruce C R; Cliffe, Keith R; Anderson, David R; Fisher, Raymond; Thompson, Dennis

    2008-08-01

    Plastics are potentially suitable for the removal of vapour phase PCDD/Fs in emissions from the electric arc furnace (EAF) steelmaking process. Three different commercial plastics, i.e. polypropylene BE170MO (Borealis A/S, Denmark), polypropylene in the form of 5 mm spheres (The Precision Plastic Ball Co. Ltd., UK) and polyethylene LD605BA (ExxonMobil Chemical, Belgium), have been studied using a novel experimental apparatus for the removal of vapour phase PCDD/Fs. Polypropylene BE170MO was identified to be the most suitable product amongst the three plastics in terms of PCDD/F sorption and potential industrial application. The optimum temperature for PCDD/F sorption on polypropylene BE170MO was below 90 degrees C for a removal efficiency of >99% at an average vapour phase PCDD/F concentration of 3.5 ng I-TEQ/Nm(3). At 130 degrees C, 53% of the PCDD/Fs trapped on polypropylene BE170MO were desorbed.

  1. Composition and placement process for oil field chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  2. rf excited optical emission spectrum of radicals generated during hot wire chemical vapour deposition for the preparation of microcrystalline silicon thin film%射频激发热丝化学气相沉积制备硅薄膜过程中光发射谱的研究

    Institute of Scientific and Technical Information of China (English)

    李天微; 刘丰珍; 朱美芳

    2011-01-01

    To study the radicals behavior in the hot wire chemical vapour deposition (HWCVD) process for the preparation of microcrystalline Si (μc-Si: H) thin film, a weak radio frequency (rf) power was introduced to excite the radicals generated in HWCVD chamber. The spectrum of fi-excited HWCVD (rf-HWCVD) was obtained by subtracting the emission of hot wires from the spectrum measured by OES. The influence of the rf power on the rf-HWCVD spectrum can be neglected as the rf power density was less than 0. 1 W/cm2. Under the same deposition parameters, the emission spectra for rf-HWCVD and plasma enhanced CVD (PECVD) processes are different. Under the low deposition pressure ( 7.5 Pa), the intensities of Sill * and Hα vary with the hot wire temperature reversely, which is characteristic of HWCVD with high gas dissociation rate and high concentration of atomic H. The ratio of intensity of Hα to Sill * in the emission spectrum of rf-HWCVD varying with deposition pressure is consistent with the crystalline fraction of μc-Si: H film. The results indicate that the optical emission spectroscopy measurement is a suitable method for the investigation of the HWCVD process excited by a weak rf-power.%采用射频(rf)激发,在热丝化学气相沉积(HWCVD)制备微晶硅薄膜的过程中产生发光基元,测量了rf激发HWCVD(rf-HWCVD)的光发射谱,比较了相同工艺条件下rf-HWCVD和等离子体增强CVD(PECVD)的光发射谱,分析了rf功率、热丝温度和沉积气压对rf-HWCVD光发射谱的影响.结果表明,在射频功率<0.1W/cm1时,rf-HWCVD发射光谱反映了HWCVD高的气体分解效率和高浓度原子氢的特点,能够解释气压变化与微晶硅薄膜微结构的关系,是研究HWCVD气相过程的有效方法之一.

  3. Optimizing evaporation process to decrease vapour consumption%优化蒸发工艺 降低蒸汽消耗

    Institute of Scientific and Technical Information of China (English)

    王世荣

    2001-01-01

    对近几年山东大成农药股份有限公司氯碱厂烧碱蒸发工艺中存在的问题和采取的相应措施,及取得的效果进行了总结,并对现系统中仍存在的一些不足进行了探讨。%The present problems, measures to solve them, and results obtained in the caustic soda evaporation process of Chlor- Alkali Plant of Shangdonng Dacheng Pesticide Co. Ltd. in recent years were summarized. The shortcomings remained in the present system were investigated.

  4. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E.; Tornos, J.

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  5. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  6. The kinetics of chemical processes affecting acidity in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, J.J.; Helas, G. [Potchefstroom University of Christian Higher Education, Potchefstroom (South Africa). Atmospheric Chemistry Research Group

    1996-03-01

    The dominant chemical reactions affecting atmospheric pollution chemistry and in particular, those leading to the formation of acid rain are outlined. The factors controlling the oxidation rate of atmospheric pollutants as well as the rate laws describing these processes are discussed in the light of our latest results and the current literature.

  7. Chemical Processing Department monthly report for June 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-07-22

    This report, from the Chemical Processing Department at HAPO for June 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; and employee relations; weapons manufacturing operation; and power and crafts operation.

  8. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    Science.gov (United States)

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  9. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation...

  10. An Integrated Course and Design Project in Chemical Process Design.

    Science.gov (United States)

    Rockstraw, David A.; And Others

    1997-01-01

    Describes a chemical engineering course curriculum on process design, analysis, and simulation. Includes information regarding the sequencing of engineering design classes and the location of the classes within the degree program at New Mexico State University. Details of course content are provided. (DDR)

  11. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.

    1984-01-01

    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  12. Static and dynamic properties of curved vapour-liquid interfaces by massively parallel molecular dynamics simulation

    CERN Document Server

    Horsch, Martin T; Vrabec, Jadran; Glass, Colin W; Niethammer, Christoph; Bernreuther, Martin F; Müller, Erich A; Jackson, George

    2011-01-01

    Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

  13. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  14. Chemical measurements with optical fibers for process control.

    Science.gov (United States)

    Boisde, G; Blanc, F; Perez, J J

    1988-02-01

    Several aspects of remote in situ spectrophotometric measurement by means of optical fibers are considered in the context of chemical process control. The technique makes it possible to measure a species in a particular oxidation state, such as plutonium(VI), sequentially, under the stringent conditions of automated analysis. For the control of several species in solution, measurements at discrete wavelengths on the sides of the absorption peaks serve to increase the dynamic range. Examples are given concerning the isotopic separation of uranium in the Chemex process. The chemical control of complex solutions containing numerous mutually interfering species requires a more elaborate spectral scan and real-time processing to determine the chemical kinetics. Photodiode array spectrophotometers are therefore ideal for analysing the uranium and plutonium solutions of the Purex process. Remote on-line control by ultraviolet monitoring exhibits limitations chiefly due to Rayleigh scattering in the optical fibers. The measurement of pH in acidic (0.8-3.2) and basic media (10-13) has also been attempted. Prior calibration, signal processing and optical spectra modeling are also discussed.

  15. Approaches to Chemical and Biochemical Information and Signal Processing

    Science.gov (United States)

    Privman, Vladimir

    2012-02-01

    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  16. Sustainability assessment of novel chemical processes at early stage: application to biobased processes

    NARCIS (Netherlands)

    Patel, A.D.; Meesters, K.; Uil, H. den; Jong, E. de; Blok, K.; Patel, M.K.

    2012-01-01

    Chemical conversions have been a cornerstone of industrial revolution and societal progress. Continuing this progress in a resource constrained world poses a critical challenge which demands the development of innovative chemical processes to meet our energy and material needs in a sustainable way.

  17. Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO/H2O variations

    OpenAIRE

    R. Eichinger; Jöckel, P.; S. Lossow

    2014-01-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during the recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this mod...

  18. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    T) for model translation, analysis and solution. The integration of ModDev, MoT and ICAS or any other external software or process simulator (using COM-Objects) permits the generation of different models and/or process configurations for purposes of simulation, design and analysis. Consequently, it is possible......Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...... for model generation, analysis, solution and implementation is necessary for the development and application of the desired model-based approach for product-centric process design/analysis. This goal is achieved through the combination of a system for model development (ModDev), and a modelling tool (Mo...

  19. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  20. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  1. RDF gasification with water vapour: influence of process temperature on yield and products composition; Gassificazione con vapore del CDR: influenza della temperatura di processo su rese e composizione dei prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S. [C. R. ENEA Trisaglia, Rotondella (Italy). PROT-STP

    2005-08-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950{sup o}C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling. [Italian] La possibilita' di usare il CDR (combustibile derivato dai rifiuti) per produrre gas combustibile, sembra particolarmente promettente e particolare attenzione si sta rivolgendo a tecnologie alternative di trattamento termico, quali la pirolisi e la gassificazione. In questo ambito, il presente lavoro riporta le prove sperimentali e i risultati ottenuti in una campagna di prove di gassificazione di CDR con vapor d'acqua, effettuate su scala banco in un forno a tamburo rotante a temperatura di processo variabile, utilizzando tecniche di analisi termogravimetrica (TG) e di spettrometria infrarossa in trasformata di Fourier (FTIR), per la caratterizzazione del materiale di ingresso, e analisi gascromatografiche on

  2. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols

    Science.gov (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.

    2008-02-01

    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  3. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  4. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  5. Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures

    Science.gov (United States)

    Delattre, H.; Vallet-Coulomb, C.; Sonzogni, C.

    2015-09-01

    Stable isotopes of water vapour represent a powerful tool for tracing atmospheric vapour origin and mixing processes. Laser spectrometry recently allowed high time-resolution measurements, but despite an increasing number of experimental studies, there is still a need for a better understanding of the isotopic signal variability at different time scales. We present results of in situ measurements of δ18O and δD during 36 consecutive days in summer 2011 in atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation (Camargue, Rhône River delta, France). The mean composition of atmospheric vapour (δv) is δ18O = -14.66 ‰ and δD = - 95.4 ‰, with data plotting clearly above the local meteoric water line on a δ18O-δD plot, and an average deuterium excess (d) of 21.9 ‰. Important diurnal d variations are observed, and an hourly time scale analysis is necessary to interpret the main processes involved in its variability. After having classified the data according to air mass back trajectories, we analyse the average daily cycles relating to the two main meteorological situations, i.e. air masses originating from North Atlantic Ocean and Mediterranean Sea. In both situations, we show that diurnal fluctuations are driven by (1) the influence of local evaporation, culminating during daytime, and leading to an increase in absolute water vapour concentration associated to a δv enrichment and d increase; (2) vertical air mass redistribution when the Planetary Boundary Layer collapses in the evening, leading to a d decrease, and (3) dew formation during the night, producing a δv depletion with d remaining stable. Using a two-component mixing model, we calculate the average composition of the locally evaporated vapour (δE). We find higher d(E) under North Atlantic air mass conditions, which is consistent with lower humidity conditions. We also suggest that δv measured when the PBL collapses is the most representative of a regional signal

  6. Surface chemical studies of chemical vapour deposited diamond thin films

    CERN Document Server

    Proffitt, S

    2001-01-01

    could not easily be correlated to the bulk film properties. It is suggested that electron emission arises from the graphite component of graphite- diamond grain boundaries that are present in the nanocrystalline films. species. The adsorbed O and Cl species are more strongly bound to the K layer than they are to the diamond substrate, so thermal desorption of K from the K/CI/diamond or K/O/diamond surface results also in the simultaneous loss ofO and Cl. The phosphorus precursor trisdimethylaminophosphine (TDMAP) has a negligible reactive sticking probability on the clean diamond surface. This can be increased by thermal cracking of the gas phase precursor by a heated filament, resulting in non-activated adsorption to produce an adlayer containing a mixture of surface-bound ligands and phosphorus containing species. The ligands were readily lost upon heating, leaving P, some of which was lost from the surface at higher temperatures. Pre-hydrogenation of the diamond surface inhibited the uptake of cracked TDMA...

  7. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, J. M.

    2000-06-01

    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep

  8. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  9. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  10. A pollution reduction methodology for chemical process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K.; Cabezas, H.; Bare, J.C.; Sikdar, S.K. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1996-11-01

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has been modified by weighing the mass flowrate of each pollutant by its potential environmental impact score. This converts the mass balance into an environmental impact balance. This balance defines an impact index with units of environmental impact per mass of products. The impact index measures the potential environmental effects of process wastes. Three different schemes for chemical ranking were considered: (1) no ranking, (2) simple ranking from 0 to 3, and (3) ranking by a scientifically derived measure of human health and environmental effects. Use of the methodology is illustrated with two examples from the production of (1) methyl ethyl ketone and (2) synthetic ammonia.

  11. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  12. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  13. A liquid crystalline chirality balance for vapours

    OpenAIRE

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-01-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a t...

  14. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu

    2004-01-01

    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  15. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  16. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  17. The role of chemical interactions in ion-solid processes

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, B.W.

    1990-01-01

    Computer simulation of low-energy ion-solid processes has greatly broadened in scope in recent years. In particular, realistic descriptions of the ion-solid and solid-solid interactions can now be utilized. The molecular dynamics technique, in which the equations of motion of the interacting atoms are numerically integrated, can now be used to characterize ion-solid interactions in a range of model material systems. Despite practical limitations of this procedure, a number of substantial results have appeared. The available results are examined to investigate the qualitative influence that chemical interactions have on low-energy ion-solid processes. 26 refs., 4 figs.

  18. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  19. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  20. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale

    2014-01-01

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  1. Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho.

    Science.gov (United States)

    Poncelet, Olivier; Tallier, Guillaume; Mouchet, Sébastien R; Crahay, André; Rasson, Jonathan; Kotipalli, Ratan; Deparis, Olivier; Francis, Laurent A

    2016-05-09

    The unique architecture of iridescent Morpho butterfly scales is known to exhibit different optical responses to various vapours. However, the mechanism behind this phenomenon is not fully quantitatively understood. This work reports on process developments in the micro-fabrication of a Morpho-inspired photonic structure in atomic layer deposited (ALD) materials in order to investigate the vapour optical sensitivity of such artificial nanostructures. By developing recipes for dry and wet etching of ALD oxides, we micro-fabricated two structures: one combining Al2O3 and TiO2, and the other combining Al2O3 and HfO2. For the first time, we report the optical response of such ALD Morpho-like structures measured under a controlled flow of either ethanol or isopropyl alcohol (IPA) vapour. In spite of the small magnitude of the effect, the results show a selective vapour response (depending on the materials used).

  2. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  3. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    Full Text Available Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard. In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  4. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    , polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property......, they are not always available. Also, it may be too expensive to measure them or it may take too much time. In these situations and when repetitive calculations are involved (as in process simulation), it is useful to have appropriate models to reliably predict the needed properties. A collection of methods tools...... such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...

  5. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    Science.gov (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  6. Co-TPP functionalized carbon nanotube composites for detection of nitrobenzene and chlorobenzene vapours

    Indian Academy of Sciences (India)

    Swasti Saxena; G S S SAINI; A L Verma

    2015-04-01

    We report preparation of nanocomposites by non-covalent functionalization of carbon nanotubes (CNTs) with metal-tetraphenylporphyrins (M-TPP). Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) results suggest formation of nanosized clusters of Co-TPP around the CNTs surface. X-ray diffraction studies indicate electronic charge re-distribution and strong interactions among CNTs and Co-TPP on functionalization. The films of the hybrid CNT–M-TPP nanocomposite exhibit change in conductivity on exposure to some chemical vapours. In the present work, the films prepared from the cobalt-TPP functionalized CNTs hybrid composites have been investigated for the detection of chlorobenzene (CB) and nitrobenzene (NB) vapours at room temperature. The films show response time of few seconds on exposure to both the NB and CB vapours while the recovery time for NB is significantly different compared to CB. A distinct and highly reproducible response pattern in the relative changes in resistance, recovery and response times on exposure to the vapours of NB, CB and few other chemicals at room temperature has been exploited to differentiate CB and NB vapours from one another.

  7. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  8. Relationship between snow microstructure and physical and chemical processes

    Directory of Open Access Journals (Sweden)

    T. Bartels-Rausch

    2012-11-01

    Full Text Available Ice and snow in the environment are important because they not only act as a host to rich chemistry but also provide a matrix for physical exchanges of contaminants within the ecosystem. This review discusses how the structure of snow influences both chemical reactivity and physical processes, which thereby makes snow a unique medium for study. The focus is placed on impacts of the presence of liquid and surface disorder using many experimental studies, simulations, and field observations from the molecular to the micro-scale.

  9. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  10. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  11. First test results of the pilot plant for the pressure loaded vapour loaded fluidized bed drying process (DDWT) of brown coals. A pilot plant for 5 t/h dry coal and till 6 bar dryer pressure; Erste Testergebnisse von der Versuchsanlage zur Druckaufgeladenen Dampfwirbelschicht-Trocknung (DDWT) von Braunkohlen. Versuchsanlage fuer 5 t/h Trockenkohle und bis 6 bar Trocknerdruck

    Energy Technology Data Exchange (ETDEWEB)

    Porsche, T.; Thannhaeuser, L.; Hoehne, O.; Martin, J.S. [Vattenfall Europe Generation AG, Cottbus (Germany)

    2009-07-01

    Apart from other promising possibilities for the improvement of the efficiency of fossil fuelled power stations such as the improvement of the steam parameters and optimization of the equipment technology the preliminary drying of coal possesses a very high potential. This results from a more effective combustion of the dried coal in the power station boiler and from the energetic use of the condensation enthalpy of the coal water vapour during processing the power station. Especially, if the vapour steam is on a high level of pressure, the applied evaporation enthalpy completely can be led back into the power station process. Thereby, improvements of the net efficiency of power stations of about 4 to 5 % are attainable. Starting from October 2008, Vattenfall Europe AG (Berlin, Federal Republic of Germany) established a pilot plant for a vapour loaded fluidized bed drying process (DDWT) of brown coals at the site Schwarze Pumpe. The plant is laid out for a dryer performance of 5 t/h dry brown coal. This plant enables tests with a dryer system pressure between 1 and 6 bar. After start-up in the third quarter 2008, the operation of the pilot plant begun. Extensive tests of the plant and components were accomplished, and the procedure proof for DDWT of Lausitz brown coals was furnished. So far, up to 4 t/h dry coal were produced with the accomplished test campaigns. A dryer system pressure of up to 4.5 bar started. The target is to transfer the results and experiences from the test operation into planning and construction of a 250 MW{sub e}l Oxyfuel demonstration power station with upstream coal pressure drying process which is established by Vattenfall Europe AG at the location Jaenschwalde until 2015.

  12. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  13. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    During the growth of a-C:H thin films for tribological applications, the characteristic optical emission from a CH4 plasma was used to estimate growth conditions such as the degree of dissociation of the feed gas, the deposition rate and the presence of impurities. Films were fabricated with vari...

  14. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  15. DYNSYL: a general-purpose dynamic simulator for chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, G.K.; Rozsa, R.B.

    1978-09-05

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.

  16. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  17. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  18. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Masson-Delmotte, Valérie; Genthon, Christophe; Kerstel, Erik; Kassi, Samir; Arnaud, Laurent; Picard, Ghislain; Prie, Frederic; Cattani, Olivier; Steen-Larsen, Hans-Christian; Vignon, Etienne; Cermak, Peter

    2016-07-01

    Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014-January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading

  19. Solvents for CO2 capture. Structure-activity relationships combined with vapour-liquid-equilibrium measurements

    NARCIS (Netherlands)

    Mergler, Y.L.; Rumley-Van Gurp, R.; Brasser, P.; Koning, M.C. de; Goetheer, E.L.V.

    2011-01-01

    In this study a systematic approach was chosen to test and characterize amine systems for CO2 capture. Vapour-liquid-equilibrium measurements were performed on a homologue series of amines, with ethylene amine as base structure. Various functional groups were used that ranged in chemical and physica

  20. Integration of process design and controller design for chemical processes using model-based methodology

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    In this paper, a novel systematic model-based methodology for performing integrated process design and controller design (IPDC) for chemical processes is presented. The methodology uses a decomposition method to solve the IPDC typically formulated as a mathematical programming (optimization...... that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights to the solution of IPDC problems in chemical engineering practice....... with constraints) problem. Accordingly the optimization problem is decomposed into four sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification, which are relatively easier to solve. The methodology makes use of thermodynamic-process...

  1. Modelling vapour transport in Surtseyan bombs

    Science.gov (United States)

    McGuinness, Mark J.; Greenbank, Emma; Schipper, C. Ian

    2016-05-01

    We address questions that arise if a slurry containing liquid water is enclosed in a ball of hot viscous vesicular magma ejected as a bomb in the context of a Surtseyan eruption. We derive a mathematical model for transient changes in temperature and pressure due to flashing of liquid water to vapour inside the bomb. The magnitude of the transient pressure changes that are typically generated are calculated together with their dependence on material properties. A single criterion to determine whether the bomb will fragment as a result of the pressure changes is derived. Timescales for ejection of water vapour from a bomb that remains intact are also revealed.

  2. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  3. Modular microcomponents for a flexible chemical process technology

    Science.gov (United States)

    Schwesinger, Norbert

    2000-08-01

    Different types of modular micro components such as pumps, values, reactors, separators, residence structures, extractors have been developed. Silicon was used as basic material. Most external dimensions of all different modules are equal. The components contain deep micro structures like channels or groves produced in dry or in wet chemical etching procedures. Different types of bonding technologies were applied to cover the flow structures. Openings positioned at the surface allow the connection with external standard tubes. These openings are arranged on each module at the same position. Due to this basic design a highly flexible combination of the micro modules is possible. Specific process conditions of chemical reactions can be adapted very easily and cost effective by means of module combinations. Holders for the modules contain the fluidic/electric connectors and allow their flexible combination. They are made of PEEK or PTFE. Fixing and sealing of external tubes to the modules can be realised by simple screwing procedures of standard tubes into the holders. Due to this simple screwing procedure all modules can be exchanged on demand. Operating pressures up to the limitation values of the external tubes can be applied to the modules. Electrical contacts arranged inside the holders allow the electrical connection of the modules to an external power supply, as well as a read out of electrical signals delivered from possibly integrated specific sensors. Stand alone examinations of single modules as well as specific chemical reactions in modular combinations were carried out to verify the performance of the micro devices. Successful and hopeful results were found in all cases.

  4. Simulation of Discharge Production in a Water Vapour Layer on an Electrode

    Science.gov (United States)

    Karim, Mohammad; Evans, Benjamin; Asimakoulas, Leonidas; Stalder, Kenneth; Field, Thomas; Graham, Bill; Murakami, Tomoyuki

    2016-09-01

    Electrical discharges in water are receiving increasing attention because of chemical, environmental and biomedical applications.The work to be presented focuses on plasmas created directly in high conductivity water, saline solution. Here the plasma is produced at low voltage ( 200V) and is clearly associated with an initial vapour layer on the electrode surface that isolates the electrode from the liquid. In a previous paper a finite element multi-physics program, incorporating all relevant electrical and thermal properties of the solution was shown to reproduce the experimentally observed pre-plasma vapour layer behaviour. The results of a simulation of the plasma production in vapour layers of the same size and shape as predicted in will be presented, At present inert gas fills the ``vapour layer''. However this produces spatial distributions of the electron parameters that are consistent with the electric fields predicted in the original simulations. The water plasma simulation recently developed by Murakami is currently being included. It is anticipated that results of the coupled codes, showing the temporal and 2-D spatial development of the vapour and plasma, will be presented.

  5. Linear nonequilibrium thermodynamics of periodic processes and chemical oscillations

    CERN Document Server

    Heimburg, Thomas

    2016-01-01

    Onsager's phenomenological equations successfully describe irreversible thermodynamic processes. They assume a symmetric coupling matrix between thermodynamic fluxes and forces. It is easily shown that the antisymmetric part of a coupling matrix does not contribute to dissipation. Therefore, entropy production is exclusively governed by the symmetric matrix even in the presence of antisymmetric terms. In this work we focus on the antisymmetric contributions which describe isentropic oscillations and well-defined equations of motion. The formalism contains variables that are equivalent to momenta, and coefficients that are analogous to an inertial mass. We apply this formalism to simple problems such as an oscillating piston and the oscillation in an electrical LC-circuit. We show that isentropic oscillations are possible even close to equilibrium in the linear limit and one does not require far-from equilibrium situations. One can extend this formalism to other pairs of variables, including chemical systems w...

  6. SDG-based Model Validation in Chemical Process Simulation

    Institute of Scientific and Technical Information of China (English)

    张贝克; 许欣; 马昕; 吴重光

    2013-01-01

    Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a soft-ware environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, as-sess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.

  7. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  8. Chemical and Mechanical processes during burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida

    1998-01-01

    or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone below 1100......Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here...... in the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200-300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an equal...

  9. Corrosion study in the chemical air separation (MOLTOX trademark ) process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohee; Wong, Kai P.; Archer, R.A.; Cassano, A.A.

    1988-12-01

    This report presents the results of studies aimed at solving the corrosion problems encountered during operation of the MOLTOX{trademark} pilot plant. These studies concentrated on the screening of commercial and developmental alloys under conditions simulating operation conditions in this high temperature molten salt process. Process economic studies were preformed in parallel with the laboratory testing to ensure that an economically feasible solution would be achieved. In addition to the above DOE co-funded studies, Air Products and Chemicals pursued proprietary studies aimed at developing a less corrosive salt mixture which would potentially allow the use of chemurgically available alloys such as stainless steels throughout the system. These studies will not be reported here; however, the results of corrosion tests in the new less corrosive salt mixtures are reported. Because our own studies on salt chemistry impacts heavily on the overall process and thereby has an influence on the experimental work conducted under this contract, some of the studies discussed here were impacted by our own proprietary data. Therefore, the reasons behind some of the experiments presented herein will not be explained because that information is proprietary to Air Products. 14 refs., 42 figs., 21 tabs.

  10. Accelerating chemical database searching using graphics processing units.

    Science.gov (United States)

    Liu, Pu; Agrafiotis, Dimitris K; Rassokhin, Dmitrii N; Yang, Eric

    2011-08-22

    The utility of chemoinformatics systems depends on the accurate computer representation and efficient manipulation of chemical compounds. In such systems, a small molecule is often digitized as a large fingerprint vector, where each element indicates the presence/absence or the number of occurrences of a particular structural feature. Since in theory the number of unique features can be exceedingly large, these fingerprint vectors are usually folded into much shorter ones using hashing and modulo operations, allowing fast "in-memory" manipulation and comparison of molecules. There is increasing evidence that lossless fingerprints can substantially improve retrieval performance in chemical database searching (substructure or similarity), which have led to the development of several lossless fingerprint compression algorithms. However, any gains in storage and retrieval afforded by compression need to be weighed against the extra computational burden required for decompression before these fingerprints can be compared. Here we demonstrate that graphics processing units (GPU) can greatly alleviate this problem, enabling the practical application of lossless fingerprints on large databases. More specifically, we show that, with the help of a ~$500 ordinary video card, the entire PubChem database of ~32 million compounds can be searched in ~0.2-2 s on average, which is 2 orders of magnitude faster than a conventional CPU. If multiple query patterns are processed in batch, the speedup is even more dramatic (less than 0.02-0.2 s/query for 1000 queries). In the present study, we use the Elias gamma compression algorithm, which results in a compression ratio as high as 0.097.

  11. Radioactive decay as a forced nuclear chemical process: Phenomenology

    Science.gov (United States)

    Timashev, S. F.

    2015-11-01

    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  12. Chemical Processing and Characterization of Fiber Reinforced Nanocomposite Silica Materials

    Science.gov (United States)

    Burnett, Steven Shannon

    Ultrasound techniques, acoustic and electroacoustic spectroscopy, are used to investigate and characterize concentrated fluid phase nanocomposites. In particular, the data obtained from ultrasound methods are used as tools to improve the understanding of the fundamental process chemistry of concentrated, multicomponent, nanomaterial dispersions. Silicon nitride nanofibers embedded in silica are particularly interesting for lightweight nanocomposites, because silicon nitride is isostructural to carbon nitride, a super hard material. However, the major challenge with processing these composites is retarding particle-particle aggregation, to maintain highly dispersed systems. Therefore, a systematic approach was developed to evaluate the affect of process parameters on particle-particle aggregation, and improving the chemical kinetics for gelation. From the acoustic analysis of the nanofibers, this thesis was able to deduce that changes in aspect ratio affects the ultrasound propagation. In particular, higher aspect ratio fibers attenuate the ultrasound wave greater than lower aspect fibers of the same material. Furthermore, our results confirm that changes in attenuation depend on the hydrodynamical interactions between particles, the aspect ratio, and the morphology of the dispersant. The results indicate that the attenuation is greater for fumed silica due to its elastic nature and its size, when compared to silica Ludox. Namely, the larger the size, the greater the attenuation. This attenuation is mostly the result of scattering loss in the higher frequency range. In addition, the silica nanofibers exhibit greater attenuation than their nanoparticle counterparts because of their aspect ratio influences their interaction with the ultrasound wave. In addition, this study observed how 3M NH 4 Cl's acoustic properties changes during the gelation process, and during that change, the frequency dependency deviates from the expected squared of the frequency, until the

  13. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  14. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  15. The 2009 stratospheric major warming described from synergistic use of BASCOE water vapour analyses and MLS observations

    Directory of Open Access Journals (Sweden)

    W. A. Lahoz

    2010-10-01

    Full Text Available The record–breaking major stratospheric warming of northern winter 2009 (January–February is studied using BASCOE (Belgian Assimilation System for Chemical ObsErvation stratospheric water vapour analyses and MLS (Microwave Limb Sounder water vapour observations, together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF and potential vorticity derived from ECMWF meteorological data. We focus on the interaction between the cyclonic wintertime stratospheric polar vortex and subsidiary anticyclonic stratospheric circulations during the build-up, peak and aftermath of the major warming. We show dynamical consistency between the water vapour analysed fields, and the meteorological and PV fields. New results include the analysis of water vapour during the major warming and demonstration of the benefit of assimilating MLS satellite data into the BASCOE model.

  16. The experiment on the saturation polarization of Rb vapour

    Institute of Scientific and Technical Information of China (English)

    Huang Xiang-You; You Pei-Lin; Du Wei-Min

    2004-01-01

    @@ A cylindrical capacitor containing rubidium vapour is made. The capacitance of it at. different voltages is measured under a certain Rb vapour pressure. The experimental C-V curve shows that the saturation polarization of Rb vapour is easily observed. The experiment further supports the idea that the Rb atom has a large permanent electric dipole moment.

  17. Parameter Optimization of Nitriding Process Using Chemical Kinetics

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils

    2016-09-01

    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  18. Electron and proton elastic scattering in water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Champion, C., E-mail: champion@univ-metz.fr [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, 1 Boulevard Arago, Technopole 2000, 57078 Metz (France); Universite Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP120, 33175 Gradignan (France); Incerti, S.; Tran, H.N. [Universite Bordeaux 1, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP120, 33175 Gradignan (France); El Bitar, Z. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP28, 67037 Strasbourg, Cedex 2 (France)

    2012-02-15

    In the present work, we report theoretical differential and integrated cross sections of the elastic scattering process for sub-thermalization electrons (E{sub inc} {approx_equal} 10 meV-10 keV) and 1 keV-1 MeV protons in water vapour. The calculations are performed within the quantum mechanical framework for electrons whereas classical calculations are provided for protons. The results obtained in this free-parameter theoretical treatment are compared to available data and quantitative differences are reported.

  19. Kinetic model of water vapour adsorption by gluten-free starch

    Science.gov (United States)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  20. Characterization of biomass burning particles: chemical composition and processing

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  1. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  2. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  3. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  4. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives...... on petroleum-derive fuels....

  5. Electron collisions by metal atom vapours

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B.P. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia)]. E-mail: bratislav.marinkovic@phy.bg.ac.yu; Pejcev, V. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia); Faculty of Natural Sciences, University of Kragujevac (Serbia); Filipovic, D.M. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia); Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia); Sevic, D. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia); Milisavljevic, S. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia); Predojevic, B. [Institute of Physics, P.O. Box 68, 11080, Belgrade (Serbia); Faculty of Natural Sciences, University of Banja Luka, Republic of Srpska (Bosnia and Herzegowina)

    2007-03-15

    Differential cross sections (DCS) for the elastic electron scattering and electron excitation of metal atom vapours are presented and discussed. Absolute scale was obtained by normalization procedure where generalized oscillator strengths were fitted to terminate at forward scattering function which leads to optical oscillator strength at zero momentum transfer. DCSs are compared with other available experimental and theoretical results and their importance for our understanding of basic electron atom interactions is pointed out.

  6. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Science.gov (United States)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  7. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    Science.gov (United States)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    water vapour and particular temperature the severe denitrification observed in 2010/11 cannot be directly related to any changes in water vapour and temperature since the millennium. However, the observations indicate a clear correlation between cold winters and enhanced water vapour mixing ratios. This indicates a connection between dynamical and radiative processes that govern water vapour and temperature in the Arctic lower stratosphere.

  8. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  9. Experimental investigation of Mars meandering rivers: Chemical precipitation process

    Science.gov (United States)

    Kim, W.; Lim, Y.; Cleveland, J.; Reid, E.; Jew, C.

    2014-12-01

    On Earth, meandering streams occur where the banks are resistant to erosion, which enhances narrow and deep channels. Often this is because the stream banks are held firm by vegetation. The ancient, highly sinuous channels with cutoffs found on Mars are enigmatic because vegetation played no role in providing bank cohesion and enhancing fine sediment deposition. Possible causes of the meandering therefore include ice under permafrost conditions and chemical processes. We conducted carbonate flume experiments to investigate possible mechanisms creating meandering channels other than vegetation. The experiment includes a tank that dissolves limestone by adding CO2 gas and produces artificial spring water, peristaltic pumps to drive water through the system, a heater to control the temperature of the spring water, and a flume where carbonate sediment deposits. Spring water containing dissolved calcium and carbonate ions moves through a heater to increase temperature, and then into the flume. The flume surface is open to the air to allow CO2 degassing, decrease temperature, and increase pH, which promotes carbonate precipitation. A preliminary experiment was done and successfully created a meander pattern that evolved over a 3-day experiment. The experiment showed lateral migration of the bend and avulsion of the stream, similar to a natural meander. The lateral variation in flow speed increased the local residence time of water, thus increasing the degassing of CO2 on the two sides of the flow and promoting more precipitation. This enhanced precipitation on the sides provided a mechanism to build levees along the channel and created a stream confined in a narrow path. This mechanism also potentially applies to Earthly single thread and/or meandering rivers developed and recorded before vegetation appeared on Earth's surface.

  10. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    Science.gov (United States)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  11. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  12. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  13. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development. In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment. Field dye staining experiments were conducted at different soils with various irrigation amount. Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency. Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage efficiency, and uniformity. Under the same irrigation condition, soil chemical distributions were more heterogeneous than soil water distributions. The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount. Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount. Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uniformity, which resulted in high environmental risks of groundwater pollution.

  14. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    A. Laaksonen

    2004-11-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulfur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  15. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  16. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The technique of Flow-injection Analysis (FIA), now aged 25 years, offers unique analytical methods that are fast, reliable and consuming an absolute minimum of chemicals. These advantages together with its inherent feasibility for automation warrant the future applications of FIA as an attractive...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  17. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  18. Vapour Recoil Effect on a Vapour-Liquid System with a Deformable Interface

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Qiu-Sheng

    2006-01-01

    @@ A new two-sided model of vapour-Iiquid layer system with a deformable interface is proposed. In this model,the vapour recoil effect on the Marangoni-Bénard instability of a thin evaporating liquid layer can be examined only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory.We modify and develop the Chebyshev-Tau method to solve the instability problem of a deformable interface system by introducing a new equation at interface boundary. New instability behaviour of the system has been found and the self-amplification mechanism between the evaporation flux and the interface deflexion is discussed.

  19. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  20. Rapid neutron capture process in supernovae and chemical element formation

    NARCIS (Netherlands)

    Baruah, Rulee; Duorah, Kalpana; Duorah, H. L.

    2009-01-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half o

  1. The beauty of frost: nano-sulfur assembly via low pressure vapour deposition.

    Science.gov (United States)

    Wang, Yu; Chen, Lu; Scudiero, Louis; Zhong, Wei-Hong

    2015-11-14

    A low pressure vapour deposition (LPVD) technique is proposed as an environmentally friendly, cost-effective and versatile strategy for fabrication of sulfur nanomaterials. By controlling the characteristics of the deposit substrate for the LPVD, various sulfur-based nanomaterials have been obtained through a substrate-induced self-assembly process.

  2. Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Karel [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, Rozvojova 135, 165 02 Praha 6 - Suchdol 2 (Czech Republic); Siewiorek, Aleksandra; Baxter, David [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Rogut, Jan [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Central Mining Institute, Plac Gwarkow 1, 40 166 Katowice (Poland); Pohorely, Michael [Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, Rozvojova 135, 165 02 Praha 6 - Suchdol 2 (Czech Republic)

    2008-02-15

    The reduction of nickel and cobalt oxides by hydrogen, CO, CH{sub 4} and model syngas (mixtures of CO + H{sub 2} or H{sub 2} + CO + CO{sub 2}) and oxidation by water vapour has been studied from the thermodynamic and chemical equilibrium points of view. Attention was concentrated not only on convenient conditions for reduction of the relevant oxides to metals at temperatures in the range 400-1000 K, but also on the possible formation of undesired soot, carbides and carbonates as precursors for carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of nickel and cobalt oxides (NiO, CoO and Co{sub 3}O{sub 4}) by hydrogen or CO at such temperatures is feasible. The oxidation of Ni and Co by steam and simultaneous production of hydrogen is thermodynamically the more difficult step at temperatures of 400-900 K. For the Ni-NiO and Co-CoO systems, the formation of corresponding Ni/Co-ferrite or Ni/Co aluminum spinel could be used for a higher hydrogen equilibrium yield. Only such Ni-NiO and Co-CoO systems with the support of ferrite and aluminum spinel formation could be suitable systems for chemical looping production of hydrogen by the chemical looping redox process. Oxidation of mixed Ni/Co-Fe metals or alloys by steam without segregation caused by preferential oxidation of Fe is critical for the ferrites. For processes based on Ni/Co aluminum spinel, reduction to metals is the critical part of the cyclic process. Under strongly reducing conditions, at high CO concentrations/pressures, formation of nickel carbide (Ni{sub 3}C) before cobalt carbide Co{sub 2}C is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO{sub 2} containing gases enhance the formation of soot and carbon containing carbide and/or carbonate compounds. (author)

  3. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge%The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    杨旗; 胡辉; 陈卫鹏; 许杰; 张锦丽; 吴双

    2011-01-01

    By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.

  4. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  5. Ultrafast vapourization dynamics of laser-activated polymeric microcapsules

    Science.gov (United States)

    Lajoinie, Guillaume; Gelderblom, Erik; Chlon, Ceciel; Böhmer, Marcel; Steenbergen, Wiendelt; de Jong, Nico; Manohar, Srirang; Versluis, Michel

    2014-04-01

    Precision control of vapourization, both in space and time, has many potential applications; however, the physical mechanisms underlying controlled boiling are not well understood. The reason is the combined microscopic length scales and ultrashort timescales associated with the initiation and subsequent dynamical behaviour of the vapour bubbles formed. Here we study the nanoseconds vapour bubble dynamics of laser-heated single oil-filled microcapsules using coupled optical and acoustic detection. Pulsed laser excitation leads to vapour formation and collapse, and a simple physical model captures the observed radial dynamics and resulting acoustic pressures. Continuous wave laser excitation leads to a sequence of vapourization/condensation cycles, the result of absorbing microcapsule fragments moving in and out of the laser beam. A model incorporating thermal diffusion from the capsule shell into the oil core and surrounding water reveals the mechanisms behind the onset of vapourization. Excellent agreement is observed between the modelled dynamics and experiment.

  6. Helping Students Develop a Critical Attitude towards Chemical Process Calculations.

    Science.gov (United States)

    de Nevers, Noel; Seader, J. D.

    1992-01-01

    Discusses the use of computer-assisted programs that allow chemical engineering students to study textbook thermodynamics problems from different perspectives, including the classical graphical method, while utilizing more than one property correlation and/or operation model so that comparisons can be made and sensitivities determined more…

  7. Chemical dehumidification and thermal regeneration: Applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F.

    1991-11-01

    Chemical dehumidification may be used in industrial dessiccation treatments operating with new air or closed cycle. The authors suggest a few schemes and analyze operation parameters and performance. Finally, comparisons are made with the most efficient systems that have been used so far: energy savings are between 25 and 40 per cent.

  8. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    WANG Kang; ZHANG RenDuo; SHENG Feng

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development.In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment.Field dye staining experiments were conducted at different soils with various irrigation amount.Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency.Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage effi-ciency, and uniformity.Under the same irrigation condition, soil chemical distributions were more het-erogeneous than soil water distributions.The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount.Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount.Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uni-formity, which resulted in high environmental risks of groundwater pollution.

  9. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  10. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  11. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  12. Development of Chemical Process Design and Control for Sustainability

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  13. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    Science.gov (United States)

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40

  14. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  15. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    Science.gov (United States)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  16. Rapid Neutron Capture Process in Supernovae and Chemical Element Formation

    Indian Academy of Sciences (India)

    Rulee Baruah; Kalpana Duorah; H. L. Duorah

    2009-09-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for the production of heavy elements beyond = 40 with the newest mass values available. The supernova envelopes at a temperature ≻ 109 K and neutron density of 1024 cm-3 are considered to be one of the most potential sites for the r-process. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation.We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm-3 to 1030 cm-3. With temperature and density conditions of 3.0 × 109 K and 1020 cm-3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.

  17. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  18. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  19. The importance of the poikilohydric nature of lichens as natural tracers for delta18O of ambient vapour

    Science.gov (United States)

    Hartard, Britta; Cuntz, Matthias; Lakatos, Michael; Máguas, Cristina

    2010-05-01

    The stable isotope composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in poikilohydric organisms (i.e. lichens and bryophytes), where relative water content equilibrate with the surrounding humidity conditions and that are able to use distinct water sources such as precipitation, dew, fog and also water vapour. Moreover, lichens are ubiquitous organisms, and on a global scale, they are found in nearly all terrestrial ecosystems and also within these ecosystems they inhabit many microhabitats. As poikilohydric. especially green algal lichens are known to photosynthetically reactivate solely upon uptake of atmospheric moisture, even at non-saturated ambient humidity conditions. To understand basic isotope exchange processes on non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrates with the isotopic composition of surrounding water vapour. We found that the thallus water of lichens exposed to high relative humidity shows fast isotopic equilibration with the surrounding vapour regardless of whether the lichen experiences water loss or vapour uptake. The time until isotopic equilibrium is achieved depends on the initial water status as well as on the lichen's specific morphology. It ranged from 5 to 12h in previously dried lichens to approximately 40h in lichens previously rehydrated with liquid water of distinct isotopic composition. Even though markedly slower, isotopic equilibration between leaf water and ambient vapour may also occur in homoiohydric plants exposed to high relative humidity. At low relative humidity, however, the apparent vapour pressure deficit between the evaporative sites and the ambient air and the increased stomatal diffusion resistance generally causes leaf water enrichment. In contrast, poikilohydric lichens lack

  20. Cogeneration handbook for the chemical process industries. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  1. On the design of chemical processes with improved controllability characteristics

    NARCIS (Netherlands)

    Meeuse, F.M.

    2003-01-01

    Traditionally, process design and control system design are carried out sequentially. The premise underlying this sequential approach is that the decisions made in the process design phase do not limit the control design. However, it is generally known that incongruent designs can occur quite easily

  2. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    Science.gov (United States)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  3. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Science.gov (United States)

    Grant, M.A.; Truesdell, A.H.; Manon, M.A.

    1984-01-01

    Chemical and physical data suggest that the relatively shallow, western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapour. Local boiling occurs near most wells in response to pressure decreases, but no general vapour zone has formed. ?? 1984.

  4. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  5. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li

    2016-07-01

    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  6. Sustainable Chemical Process Development through an Integrated Framework

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Anantpinijwatna, Amata

    2016-01-01

    This paper describes the development and the application of a general integrated framework based on systematic model-based methods and computer-aided tools with the objective to achieve more sustainable process designs and to improve the process understanding. The developed framework can be applied...... to a wide range of problems, including the design of new processes as well as retrofit of existing batch-continuous production systems. The overview of the framework together with results from two case studies is presented to highlight the key aspects and the applicability of the framework. These case...

  7. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  8. Hot-filament chemical vapour deposition of diamond onto steel

    NARCIS (Netherlands)

    Buijnsters, Ivan

    2003-01-01

    The main goal of this project was to establish the feasibility of depositing well adhering polycrystalline diamond coatings on steel substrates. It is well known that the growth and adhesion of diamond layers directly onto steels is complicated by the high carbon solubility and the high thermal expa

  9. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  10. Procafd: Computer Aided Tool for Synthesis-Design & Analysis of Chemical Process Flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Eden, Mario R.; Gani, Rafiqul

    2015-01-01

    In practice, chemical process synthesis-design involves identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste...... are synthesized to form molecules in computer-aided molecular design (CAMD) techniques [4]. The main idea here was to apply the principle of group-contribution approach from chemical property estimation to the synthesis and design of chemical process flowsheets. That is, use process-groups representing different...... of mathematical programming techniques, (c) hybrid approach which combine two or more approaches. D’Anterroches [3] proposed a group contribution based hybrid approach to solve the synthesis-design problem where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms...

  11. Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications

    Science.gov (United States)

    Gatensby, Riley; Hallam, Toby; Lee, Kangho; McEvoy, Niall; Duesberg, Georg S.

    2016-11-01

    Two-dimensional (2D) transitional metal dichalcogenides (TMDs) are of major interest to the research and electrical engineering community. A number of TMDs are semiconducting and have a wide range of bandgaps, they can exhibit n- or p-type behaviour, and the electronic structure changes with the number of layers. These exceptional properties hold much promise for a host of electrical applications including low- or high power field-effect transistors, sensors and diodes. Moreover, the unique optical properties of TMDs make them attractive for optoelectronic applications such as light-emitting diodes, photodiodes, and photovoltaic cells. A prerequisite for all of these applications is a synthesis route which is well controlled, scalable, reproducible and compatible with semiconductor industry process flows. Thermally assisted conversion (TAC), a variant of chemical vapour deposition, shows much promise for meeting these requirements. Herein we review the current progress and challenges of research on 2D semiconducting materials for electronics with a special focus on TAC produced TMD thin films.

  12. EVALUATING THE ENVIRONMENTAL FRIENDLINESS, ECONOMICS, AND ENERGY EFFICIENCY OF CHEMICAL PROCESSES: HEAT INTEGRATION

    Science.gov (United States)

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  13. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2010-10-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. While for global HALOE observations the diabatic prediction underestimates the vertical ozone gradient, for SCOUT-O3 in-situ observations the kinematic prediction shows a clear high bias above 390 K. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity. In turn, ozone may provide constraints on aspects of transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  14. [Investigation on chemical constituents of processed products of Eucommiae Cortex].

    Science.gov (United States)

    Tao, Yi; Sheng, Chen; Li, Wei-dong; Cai, Bao-chang; Lu, Tu-lin

    2014-11-01

    According to the 2010 Chinese pharmacopeia, salt processed and charcoal processed Eucommiae Cortex were pre- pared. HPLC-DAD analysis of the content of the bark and leaf of Eucommiae Cortex showed that the bark of Eucommiae Cortex mainly contained lignans such as pinoresinol glucose and iridoid including genipin, geniposide, geniposidic acid, while the leaf of Eucommiae Cortex consisted of flavonoids such as quercetin and phenolic compound such as chlorogenic acid. The content of pinoresinol diglucoside in the bark of Eucommiae Cortex was about 18 times more than that in the leaf of Eucommiae Cortex. The content of pinoresinol diglucoside in salted and charcoal processed Eucommiae Cortex decreased approximately by 30% and 85%, respectively. The content of genipin, geniposide and geniposidic acid in the bark of Eucommiae Cortex was about 3 times, 23 times, 28 times more than that in the leaf of Eucommiae Cortex. The content of genipin, geniposide and geniposidic acid in salted Eucommiae Cortex were reduced by 25%, 40% and 40%, respectively. The content of genipin, geniposide and geniposidic acid in charcoal processed Eucommiae Cortex were reduced by 98%, 70%, 70%, respectively. The content of caffeic acid in bark of Eucommiae Cortex was about 3 times more than that in the leaf of Eucommiae Cortex. The content of caffeic acid was decreased by about 50% in the salted Eucommiae Cortex. While the content of caffeic acid in charcoal processed Eucommiae Cortex was decreased approximately 75%; the content of chlorogenic acid in bark of Eucommiae Cortex was about 1/6 of that in the leaf of Eucommiae Cortex. The content of chlorogenic acid in salted and charcoal processed Eucommiae Cortex decreased by 40% and 75%, respectively; the content of quercetin in bark of Eucommiae Cortex was only 1/40 of that in the leaf of Eucommiae Cortex. The content of quercetin in salted and charcoal processed Eucommiae Cortex were reduced by 60% and 50%, respectively.

  15. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  16. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  17. Process-oriented knowledge-sharing platform for chemical engineering design projects

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge...

  18. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  19. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    Directory of Open Access Journals (Sweden)

    V. Marécal

    2007-01-01

    Full Text Available In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS. The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i the enhanced vertical resolution in the UTLS and (ii to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar

  20. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  1. Comparison of the Cytotoxic Potential of Cigarette Smoke and Electronic Cigarette Vapour Extract on Cultured Myocardial Cells

    Directory of Open Access Journals (Sweden)

    Dimitris Tsiapras

    2013-10-01

    Full Text Available Background: Electronic cigarettes (ECs have been marketed as an alternative-to-smoking habit. Besides chemical studies of the content of EC liquids or vapour, little research has been conducted on their in vitro effects. Smoking is an important risk factor for cardiovascular disease and cigarette smoke (CS has well-established cytotoxic effects on myocardial cells. The purpose of this study was to evaluate the cytotoxic potential of the vapour of 20 EC liquid samples and a “base” liquid sample (50% glycerol and 50% propylene glycol, with no nicotine or flavourings on cultured myocardial cells. Included were 4 samples produced by using cured tobacco leaves in order to extract the tobacco flavour. Methods: Cytotoxicity was tested according to the ISO 10993-5 standard. By activating an EC device at 3.7 volts (6.2 watts—all samples, including the “base” liquid and at 4.5 volts (9.2 watts—four randomly selected samples, 200 mg of liquid evaporated and was extracted in 20 mL of culture medium. Cigarette smoke (CS extract from three tobacco cigarettes was produced according to ISO 3308 method (2 s puffs of 35 mL volume, one puff every 60 s. The extracts, undiluted (100% and in four dilutions (50%, 25%, 12.5%, and 6.25%, were applied to myocardial cells (H9c2; percent-viability was measured after 24 h incubation. According to ISO 10993-5, viability of 6.25% (viability: 76.9 ± 2.0% at 6.25%, 38.2 ± 0.5% at 12.5%, 3.1 ± 0.2% at 25%, 5.2 ± 0.8% at 50%, and 3.9 ± 0.2% at 100% extract concentration. Three EC extracts (produced by tobacco leaves were cytotoxic at 100% and 50% extract concentrations (viability range: 2.2%–39.1% and 7.4%–66.9% respectively and one (“Cinnamon-Cookies” flavour was cytotoxic at 100% concentration only (viability: 64.8 ± 2.5%. Inhibitory concentration 50 was >3 times lower in CS extract compared to the worst-performing EC vapour extract. For EC extracts produced by high-voltage and energy, viability was

  2. Chemical Processing Department monthly report for April 1958

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1958-05-21

    The separations plants operated on schedule, and Pu production exceeded commitment. UO{sub 3} production and shipments were also ahead of schedule. Purex operation under pseudo two-cycle conditions (elimination of HS and 1A columns, co-decontamination cycle concentrator HCP) was successful. Final U stream was 3{times} lower in Pu than ever before; {gamma} activity in recovered HNO{sub 3} was also low. Four of 6 special E metal batches were processed through Redox and analyzed. Boric acid is removed from solvent extraction process via aq waste. The filter in Task II hydrofluorinator was changed from carbon to Poroloy. Various modifications to equipment were made.

  3. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    Science.gov (United States)

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  4. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Localisation of an unknown number of land mines using a network of vapour detectors.

    Science.gov (United States)

    Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila

    2014-11-06

    We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach.

  6. Microwave Field Applicator Design in Small-Scale Chemical Processing

    NARCIS (Netherlands)

    Sturm, G.S.J.

    2013-01-01

    Ever since the first experiments nearly three decades ago, microwave enhanced chemistry has received incessant scientific attention. Many studies report improved process performance in terms of speed and conversion under microwave exposure and therefore it is recognized as a promising alternative me

  7. Thermo-Chemical Modelling Strategies for the Pultrusion Process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal

    2013-01-01

    In the present study, three dimensional (3D) numerical modeling strategies of a thermosetting pultrusion process are investigated considering both transient and steady state approaches. For the transient solution, an unconditionally stable alternating direction implicit Douglas-Gunn (ADI-DG) sche...

  8. Titan. [physical and chemical processes in satellite atmosphere

    Science.gov (United States)

    Hunten, D. M.; Tomasko, M. G.; Flasar, F. M.; Samuelson, R. E.; Strobel, D. F.; Stevenson, D. J.

    1984-01-01

    It is pointed out that Titan, which is the second largest satellite in the solar system, is considerably larger than Mercury. It is made unique by its dense atmosphere, which consists mainly of nitrogen, although a substantial component of methane is present. The basic properties of Titan are summarized in a table. Many of the data were obtained during the close pass of Voyager 1 in November 1980. The atmospheric temperature decreases from its surface value of 94 K at a pressure of 1500 mbar to a minimum of 71 K at a height of 42 km and a pressure of 128 mbar. Details of atmospheric composition and thermal structure are discussed, taking into account chemical identifications and abundances, the vertical temperature structure, the horizontal temperature and opacity structure, and the radiative equilibrium. The upper atmosphere composition and temperature is considered along with the properties of aerosols, and meteorology and atmospheric dynamics. Titan's interior has an average density of 1.88 g per cu cm. Attention is given to Titan's surface and interior, and its formation.

  9. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  10. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  11. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    Science.gov (United States)

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well.

  12. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  13. 三正丁基膦稳定的铜(Ⅰ)β-二酮配合物的合成、表征以及作为前驱物用化学汽相沉积法生长铜膜%Synthesis of Tri-n-butylphosphine Copper(Ⅰ)β-Diketonates and Their Use in Chemical Vapour Deposition of Copper

    Institute of Scientific and Technical Information of China (English)

    沈应中; Marion Leschke; Stefan E. Schulz; Ramona Ecke; Thomas Gessner; Heinrich Lang

    2004-01-01

    A series of copper(Ⅰ)β-diketonate complexes of type [(nBu3P)mCuL] [m=1 or 2. m=1: L=acac (4), acac=acety lacetonate; L=dbac (5), dbac=1,3-di-tert-butylacetonate; L=hfac (6), hfac=1, 1, 1, 5, 5, 5-hexafluoroacetylaceto nate; m=2: L=acac (7); L=dbac (8); L=hfac (9)] with nBu3P as ancillary Lewis-base ligand is accessible by the reaction of [(nBu3P)mCuCl] (1: m=1, 2: m=2) with the sodium-β-diketonate salts NaL (3a: L=acac; 3b: L=dbac; 3c:L=hfac) in a 1:1 molar ratio. Complexes 7~9 can also be prepared by treatment of 4~6 with one equivalent of nBu3P (10).Spectroscopic data (IR,1H-,13C{1H}-NMR)of 4~9 reveal that the respective β-diketonates are chelate -bound to copper(Ⅰ), thus resulting in a tri-(4~6) or trtra-coordination (7~9) at the transition metal ion.The thermal properties of 4~9 were studied by ThermoGravimetric anlaysis (TG) and Differential Scanning Calorometry (DSC).Hot -wall Chemical Vapour Deposition experiments (CVD) were carried-out by using ,for example ,complexes 4 and 7 as precursors for the deposition of copper onto TiN-coated SiO2 wafers. SEM and EDX studies were applied to characterize the obained copper films.%合成了一系列三正丁基膦辅助配体稳定的铜(Ⅰ)β-二酮配合物,对合成的配合物用元素分析、红外、核磁共振以及热重和差热等手段进行了表征.筛选出性能优良的配合物为前驱物用化学汽相沉积(CVD)的方法生长出金属铜膜,用SEM和EDX等手段对生长的铜膜进行了表征.

  14. Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…

  15. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    NARCIS (Netherlands)

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities o

  16. The Technology for Intensification of Chemical Reaction Process Envisaged in the "863" Plan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ It is learned from the Ministry of Science and Technology that in order to promote the shift of China's chemical industry toward an energy efficient and environmentally friendly product mode, the technology for intensification of chemical reaction processes has been included in the National "863" Project of the "Eleventh Five-Year Plan", and the application for research project proposals is to be accepted.

  17. 3D thermo-chemical-mechanical analysis of the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem C.

    2013-01-01

    In the present study, a 3D Eulerian thermo-chemical analysis is sequentially coupled with a 3D Lagrangian quasi static mechanical analysis of the pultrusion process. The temperature and degree of cure profiles at the steady state are first calculated in the thermo-chemical analysis...

  18. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  19. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  20. Active Chemical Sensing With Partially Observable Markov Decision Processes

    Science.gov (United States)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2009-05-01

    We present an active-perception strategy to optimize the temperature program of metal-oxide sensors in real time, as the sensor reacts with its environment. We model the problem as a partially observable Markov decision process (POMDP), where actions correspond to measurements at particular temperatures, and the agent is to find a temperature sequence that minimizes the Bayes risk. We validate the method on a binary classification problem with a simulated sensor. Our results show that the method provides a balance between classification rate and sensing costs.

  1. Application of Artificial Neural Networks and Chaos in Chemical Processes

    Science.gov (United States)

    Otawara, Kentaro

    1995-01-01

    An artificial neural network (ANN) and chaos, conceived and developed independently, are beginning to play essential roles in chemical engineering. Nonetheless, the ANN possesses an appreciable number of deficiencies that need be remedied, and the capability of the ANN to explore and tame chaos or an irregularly behaving system is yet to be fully realized. The present dissertation attempts to make substantial progress toward such ends. The problem of controlling the temperature of an industrial reactor carrying out semibatch polymerization has been solved by an innovative adaptive hybrid control system comprising an ANN and fuzzy expert system (FES) complemented by two supervisory ANN's. The system enhances the strength and compensates for the weaknesses of both the ANN and FES. The system, named dual ANN (DANN), has been proposed for characterizing the nonlinear nature of chaotic time -series data. Its capability to approximate the behavior of a chaotic system has been found to far exceed that of a conventional ANN. A novel approach has been devised for training an ANN through the modified interactive training (MIT) mode. This mode of training has been demonstrated to substantially outperform a conventional interactive training (CIT) mode. A method has been established for synchronizing chaos by resorting to an ANN. This method is capable of causing to be coherent the trajectories of systems whose deterministic governing equations are insufficiently known. This requires training the ANN with a time series and a common driving signal or signals. Examples are given for chaos generated by difference as well as differential equations. An alternative to the OGY method has been proposed for controlling chaos; it meticulously perturbs an accessible parameter of the chaotic system. A single, highly precise ANN suffices to render stable any of an infinite number of unstable periodic orbits embedded in a chaotic or strange attractor. A method for estimating sub

  2. Benzene as a Chemical Hazard in Processed Foods

    Science.gov (United States)

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  3. Benzene as a Chemical Hazard in Processed Foods

    Directory of Open Access Journals (Sweden)

    Vânia Paula Salviano dos Santos

    2015-01-01

    Full Text Available This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  4. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  5. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  6. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  7. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    Science.gov (United States)

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  8. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  9. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  10. A Systematic Computer-Aided Framework for Integrated Design and Control of Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted;

    Chemical processes are conventionally designed through a sequential approach. In this sequential approach, first, a steady-state process design is obtained and then, control structure synthesis that, in most of the cases, is based on heuristics is performed. Therefore, process design and process......-defined operational conditions whereas controllability is considered to maintain desired operating points of the process at any kind of imposed disturbance under normal operating conditions. In this work, a systematic hierarchical computer-aided framework for integrated process design and control of chemical...... control and operation considerations have been studied independently. Furthermore, this sequential approach does not adequately answer this question, “How process design decisions influence process control and operation?”. In order to answer this question, it is necessary to consider process...

  11. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  12. Chemicals in the process chain from raw material to product; Kjemikalier i verdikjeden

    Energy Technology Data Exchange (ETDEWEB)

    Nordstad, Ellen N. [Statoil, Stavanger (Norway)

    1998-07-01

    As described in this presentation, chemicals are added at various points along the physical flow from oil/gas well to sold products. They have several functions and are added in different amounts. The chemicals may have a negative impact on the environment by emission to sea. But they can also reduce the regularity of the processing equipment and the prices of the products. Therefore, Statoil has begun a research project that aims to develop improved methods and tools for the prediction of the distribution of chemicals in the process chain and the unwanted effects they might have on the environment, on downstream installations and on the products. 4 refs., 11 figs.

  13. Integration of chemical product development, process design and operation based on a kilo-plant

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu; WU Zhihui; JIANG Yanbin

    2006-01-01

    Presented in this paper is an integrated approach of computer-aided product development, process design and operation analysis based on a kilo-plant. The implemented kilo-plant, as a research platform to manufacture product in kilogram-scale, was designed especially for fine and specialty chemicals. The characteristics of product synthesis, process operation and product quality control are investigated coupled with computer-aided monitoring, online modeling, simulation and operation process optimization. In this way, chemical product discovery, process design and operation are integrated in a systematic approach, in the aim to respond to rapid changing marketplace demands to new products.

  14. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  15. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes

    Science.gov (United States)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco

    2017-04-01

    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  16. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  17. Thermo-chemical process with sewage sludge by using CO2.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

    2013-10-15

    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  18. Particle size distribution and removal in the chemical-biological flocculation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; ZHAO Jian-fu; XIA Si-qing; LIU Chang-qing; KANG Xing-sheng

    2007-01-01

    The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.

  19. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  20. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Román-Martinez, Alicia; Woodley, John;

    2010-01-01

    Process intensification (PI) has the potential to improve existing processes or create new process options which are needed in order to produce products using more sustainable methods. PI creates an enormous number of process options. In order to manage the complexity of options in which a feasible...... and optimal process solution may exist, the application of process synthesis tools results in the development of a systematic methodology to implement PI. Starting from an analysis of existing processes, this methodology generates a set of feasible process options and reduces their number through a number...

  1. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  2. Probabilistic risk assessment for six vapour intrusion algorithms

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Bronders, J.; Van Keer, I.; Govaerts, S.

    2014-01-01

    A probabilistic assessment with sensitivity analysis using Monte Carlo simulation for six vapour intrusion algorithms, used in various regulatory frameworks for contaminated land management, is presented here. In addition a deterministic approach with default parameter sets is evaluated against obse

  3. Water Vapour Radiometers for the Australia Telescope Compact Array

    CERN Document Server

    Indermuehle, Balthasar T; Crofts, Jonathan

    2012-01-01

    We have developed Water Vapour Radiometers (WVRs) for the Australia Telescope Compact Array (ATCA) that are capable of determining path fluctuations by virtue of measuring small temperature fluctuations in the atmosphere using the 22.2 GHz water vapour line for each of the six antennae. By measuring the line of sight variations of the water vapour, the induced path excess and thus the phase delay can be estimated and corrections can then be applied during data reduction. This reduces decorrelation of the source signal. We demonstrate how this recovers the telescope's efficiency and image quality as well as how this improves the telescope's ability to use longer baselines at higher frequencies, thereby resulting in higher spatial resolution. A description of the WVR hardware design, their calibration and water vapour retrieval mechanism is given.

  4. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2017-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  5. The top 50 commodity chemicals: Impact of catalytic process limitations on energy, environment, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Tonkovich, A.L.Y.; Gerber, M.A.

    1995-08-01

    The production processes for the top 50 U.S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratory has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts. Many commodity chemicals are used to produce large volume polymer products. Of the energy and feedstock wasted during the production of the commodity chemicals, nearly one-third and one-half, respectively, represents chemicals used as polymer precursors. Approximately 38% of the carbon dioxide emissions are generated producing polymer feedstocks.

  6. Landmine Detection Technologies to TraceExplosive Vapour Detection Techniques

    OpenAIRE

    2007-01-01

    Large quantity of explosive is manufactured worldwide for use in various types of ammunition,arms, and mines, and used in armed conflicts. During manufacturing and usage of the explosiveequipment, some of the explosive residues are released into the environment in the form ofcontaminated effluents, unburnt explosives fumes and vapours. Limited but uncontrolledcontinuous release of trace vapours also takes place when explosive-laden landmines are deployedin the field. One of the major technolo...

  7. Stand-off detection of alcohol vapours in moving cars

    Science.gov (United States)

    Kopczyński, Krzysztof; Kubicki, Jan; Młyńczak, Jaroslaw; Mierczyk, Jadwiga; Hackiewicz, Klaudia

    2016-12-01

    In this article we present the research on optoelectronic system for stand-off detection of alcohol vapours in moving cars. The idea of using commercially available cascade lasers was presented. Special attention was paid to the optical characteristics of the car windowpanes. It was shown that using 3.45 μm and 3.59 μm wavelengths the alcohol vapours inside a car can be successfully detected even for cars with different windows

  8. An apparatus for determining water vapour permeability of fabrics

    Directory of Open Access Journals (Sweden)

    B. L. Saksena

    1955-04-01

    Full Text Available An apparatus for the determination of water vapour permeability (W.V.P. of fabrics is described. The fabric partitions a closed space into two compartments in which are circulated air streams having high and low water vapour pressure respectively, without any overall pressure or temperature difference. The transfer of moisture from the high to the low humidity side of the fabric is gravimetrically measured. Results of tests are given.

  9. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  10. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller reacti

  11. Multivariate Statistical Process Monitoring and Control:Recent Developments and Applications to Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    梁军; 钱积新

    2003-01-01

    Multivariate statistical process monitoring and control (MSPM& C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper,The four-step procedure of performing MSPM &C for chemical process ,modeling of processes ,detecting abnormal events or faults,identifying the variable(s) responible for the faults and diagnosing the source cause for the abnormal behavior,is analyzed,Several main research directions of MSPM&C reported in the literature are discussed,such as multi-way principal component analysis (MPCA) for batch process ,statistical monitoring and control for nonlinear process,dynamic PCA and dynamic PLS,and on -line quality control by infer-ential models,Industrial applications of MSPM&C to several typical chemical processes ,such as chemical reactor,distillation column,polymeriztion process ,petroleum refinery units,are summarized,Finally,some concluding remarks and future considerations are made.

  12. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Woodley, John; Gani, Rafiqul

    be intensified for biggest improvement, process synthesis and design tools are applied which results in the development of a systematic methodology incorporating PI. In order to manage the complexity of PI process options in which a feasible and optimal process solution may exist, the solution procedure......Process intensification (PI) has the potential to improve existing processes or create new process options which are needed in order to produce products using more sustainable methods. Potentially, PI creates an enormous number of process options. For identification where and how the process should...... of this methodology is based on the decomposition approach. Starting from an analysis of existing processes, this methodology generates a set of feasible process options and reduces their number through several screening steps until from the remaining feasible options, the optimal is found. In this presentation...

  13. Chemical input and I-V output: stepwise chemical information processing in dye-sensitized solar cells.

    Science.gov (United States)

    Satoh, Norifusa; Han, Liyuan

    2012-12-14

    As a complex system, a dye-sensitized solar cell (DSC) exhibits emergent photovoltaics not obvious from the properties of the individual components. The chemical input of 4-tert-butylpyridine (TBP) into DSC improves the open circuit voltage (V(oc)) and reduces the short circuit current (I(sc)) in I-V output through multiple interactions with the components, yet it has been difficult to distinguish the multiple interactions and correlate the interactions with the influences on I-V output due to the complexity of the system. To deal with the multiple interactions, we have adapted a conceptual framework and methodology from coordination chemistry. First, we titrated the photovoltaic interface and electrolyte with TBP to identify the stepwise chemical interaction processes. An isopotential point observed in I-V output indicates that most of the inputted chemicals interact with the electrolyte. Cyclic voltammetric titration of the electrolyte demonstrates asymmetric redox peaks and two different isopotential points, indicating that the two-step coordination-decoordination process inhibits the reduction current of the electrolyte. Second, we set an interaction model bridging the hierarchical gaps between the multiple interactions and the I-V output to address the influences on outputs from the amount of the inputs. From the viewpoint of the interaction model and interactions observed, we are able to comprehend the processes of the complex system and suggest a direction to improve V(oc) without sacrificing I(sc) in DSCs. We conclude that the conceptual framework and methodology adapted from coordination chemistry is beneficial to enhance the emergent outputs of complex systems.

  14. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  15. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  16. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus.

  17. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  18. The technology of Plasma Spray Physical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The deposition of thermal barrier coatings is currently the most effective means of protecting the surface of aircraft engine turbine blades from the impact of aggressive environment of combustion gases. The new technologies of TBC depositions are required.Design/methodology/approach: The essential properties of the PS-PVD process have been outlined, as well as recent literature references. In addition, the influence of a set process condition on the properties of the deposited coatings has been described.Findings: The new plasma-spraying PS-PVD method is a promising technology for the deposition of modern thermal barrier coatings on aircraft engine turbine blades.Research limitations/implications: The constant progress of engine operating temperatures and increasing pollution restrictions determine the intensive development of heat-resistant coatings, which is directed to new deposition technologies and coating materials.Practical implications: The article presents a new technology of thermal barrier coating deposition - LPPS Thin Film and Plasma Spray - Physical Vapour Deposition.Originality/value: The completely new technologies was described in article.

  19. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker;

    2003-01-01

    It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...... mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models...

  20. Optimal design of sustainable chemical processes via a combined simulation-optimization approach

    OpenAIRE

    Brunet Solé, Robert

    2012-01-01

    The society is every day more conscious about the scarce of resources, the global economy, and the environmental changes. Hence, chemical companies have the necessity to be adapted and develop more sustainable processes. There is a clear demanding to the scientific community to develop systematic tools to achieve reductions in the production costs as well as the associated environmental impact in order to develop decision support tools for the design of chemical plants. This thesis introdu...