WorldWideScience

Sample records for chemical toxicity approach

  1. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  2. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  3. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  5. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Gupta, Shikha

    2014-01-01

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R 2 ) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R 2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  6. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    International Nuclear Information System (INIS)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Fott, Jan; Garmo, Øyvind A.; Hruska, Jakub; Keller, Bill; Löfgren, Stefan; Maberly, Stephen C.; Majer, Vladimir; Nierzwicki-Bauer, Sandra A.; Persson, Gunnar; Schartau, Ann-Kristin; Thackeray, Stephen J.

    2014-01-01

    The WHAM-F TOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F TOX ), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H + TOX to relate combined toxic effects of protons and metal cations towards lake crustacean zooplankton. • The fitted results give toxic potencies increasing in the order H + TOX model has been applied to field data for pelagic lake crustacean zooplankton. The fitted results give metal toxic potencies increasing in the order H + < Al < Cu < Zn < Ni

  7. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  8. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    Czech Academy of Sciences Publication Activity Database

    Stockdale, A.; Tipping, E.; Lofts, S.; Fott, J.; Garmo, Ø.; Hruška, Jakub; Keller, B.; Löfgren, S.; Maberlyh, S.; Majer, V.; Nierzwicki-Bauer, S. A.; Persson, G.; Schartau, A.; Thackeray, S. J.; Valois, A.; Vrba, Jaroslav; Walseng, B.; Yan, N.

    2014-01-01

    Roč. 186, MAR (2014), s. 115-125 ISSN 0269-7491 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR GA206/07/1200 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : chemical speciation * bioavailability * recovery * crustacean zooplankton * lakes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.143, year: 2014

  9. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  10. Minimizing employee exposure to toxic chemical releases

    International Nuclear Information System (INIS)

    Plummer, R.W.; Stobbe, T.J.; Mogensen, J.E.; Jeram, L.K.

    1987-01-01

    This book describes procedures for minimizing employee exposure to toxic chemical releases and suggested personal protective equipment (PPE) to be used in the event of such chemical release. How individuals, employees, supervisors, or companies perceive the risks of chemical exposure (risk meaning both probability of exposure and effect of exposure) determines to a great extent what precautions are taken to avoid risk. In Part I, the authors develop and approach which divides the project into three phases: kinds of procedures currently being used; the types of toxic chemical release accidents and injuries that occur; and, finally, integration of this information into a set of recommended procedures which should decrease the likelihood of a toxic chemical release and, if one does occur, will minimize the exposure and its severity to employees. Part II covers the use of personal protective equipment. It addresses the questions: what personal protective equipment ensembles are used in industry in situations where the release of a toxic or dangerous chemical may occur or has occurred; and what personal protective equipment ensembles should be used in these situations

  11. Oxidative stress in chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, H.

    1986-05-01

    The toxic effect of compounds which undergo redox cycling enzymatic one-electron reduction are reviewed. First of all, the enzymatic reduction of these compounds leads to reactive intermediates, mainly radicals which react with oxygen, whereby superoxide anion radicals are formed. Further oxygen metabolites are hydrogen peroxide, singlet oxygen and hydroxyl radicals. The role of these oxygen metabolites in toxicity is discussed. The occurrence of lipid peroxidation during redox cycling of quinonoide compounds, e.g., adriamycin, and the possible relationship to their toxicity is critically evaluated. It is shown that iron ions play a crucial role in lipid peroxidation induced by redox cycling compounds. DNA damage by metal chelates, e.g., bleomycin, is discussed on the basis of findings that enzymatic redox cycling of a bleomycin-iron complex has been observed. The involvement of hydroxyl radicals in bleomycin-induced DNA damage occurring during redox cycling in cell nuclei is claimed. Redox cycling of other substances, e.g., aromatic amines, is discussed in relation to carcinogenesis. Other chemical groups, e.g., nitroaromatic compounds, hydroxylamines and azo compounds are included. Other targets for oxygen radical attack, e.g., proteins, are also dealt with. It is concluded that oxygen radical formation by redox cycling may be a critical event in toxic effects of several compounds if the protective mechanisms of cells are overwhelmed.

  12. The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals

    DEFF Research Database (Denmark)

    van der Burg, Bart; Wedebye, Eva Bay; Dietrich, Daniel R.

    2015-01-01

    to validate the test panel using mechanistic approaches. We are actively engaged in promoting regulatory acceptance of the tools developed as an essential step towards practical application, including case studies for read-across purposes. With this approach, a significant saving in animal use and associated......There is a great need for rapid testing strategies for reproductive toxicity testing, avoiding animal use. The EU Framework program 7 project ChemScreen aimed to fill this gap in a pragmatic manner preferably using validated existing tools and place them in an innovative alternative testing...

  13. Toxic chemical risk acceptance criteria

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.; Lee, L.; Lein, P.; Omberg, S.

    1992-01-01

    This paper presents recommendations of a subcommittee of the Westinghouse M ampersand 0 Nuclear Facility Safety Committee concerning toxic chemical risk acceptance criteria. Two sets of criteria have been developed, one for use in the hazard classification of facilities, and the second for use in comparing risks in DOE non-reactor nuclear facility Safety Analysis Reports. The Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges for specific chemicals above which exposure would be expected to lead to adverse heath effects of increasing severity for ERPG-1, -2, and -3s. The subcommittee recommends that criteria for hazard class or risk range be based on ERPGs for all chemicals. Probability-based Incremental Cancer Risk (ICR) criteria are recommended for additional analyses of risks from all known or suspected human carcinogens. Criteria are given for both on-site and off-site exposure. The subcommittee also recommends that the 5-minute peak concentration be compared with the relevant criterion with no adjustment for exposure time. Since ERPGs are available for only a limited number of chemicals, the subcommittee has developed a proposed hierarchy of concentration limit parameters for the different criteria

  14. Toxic effect of chemicals dumped in premises of UCIL, Bhopal leading to environmental pollution: An in silico approach

    Directory of Open Access Journals (Sweden)

    Manish Kumar Tripathi

    2016-04-01

    Full Text Available Objective: To investigate the role of dumped residues in the loss of immunity using human immune proteins, which provides protection against Mycobacterium tuberculosis. Methods: In this study, toxic chemicals were docked with immune proteins using AutoDock 4.0, and further, molecular dynamics simulations were performed for refinement of the docked complexes which were obtained from docking to confirm its stable behaviour over the entire simulation period. Results: Results revealed that alpha-naphthol showed the maximum inhibition with glutathione synthetase protein, while butylated hydroxytoluene and carbaryl showed the maximum inhibition with p38 MAPK14 protein with binding free energy ΔG -5.06, -5.1 and -5.36 kcal/ mol, respectively. Molecular dynamics simulation supported the greater stability of carbaryl and alpha-naphthol complexes with p38 MAPK 14 and glutathione synthetase protein as compared to butylated hydroxytoluene. Conclusions: In summary, findings suggested that toxic exposure of carbaryl and alphanaphthol as compared to butylated hydroxytoluene generated immunotoxicity and disrupted the functioning of immune system thus it may have caused an increase in susceptibility to Mycobacterium tuberculosis infection.

  15. Toxic Release Inventory Chemicals by Groupings

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released...

  16. Toxic chemicals: risk prevention through use reduction

    National Research Council Canada - National Science Library

    Higgins, Thomas E; Sachdev, Jayanti A; Engleman, Stephen A

    2011-01-01

    ... on the actual toxicity of chemicals currently in use, discusses variables that contribute to the relative toxicity of a substance, compares alternate emphases in existing programs for reducing environmental...

  17. Novel view on predicting acute toxicity: Decomposing toxicity data in species vulnerability and chemical potency.

    NARCIS (Netherlands)

    Jager, D.T.; Posthuma, L.; Zwart, D.D.; van de Meent, D.

    2007-01-01

    Chemical risk assessment usually applies empirical methods to predict toxicant effects on different species. We propose a more mechanism-oriented approach, and introduce a method to decompose toxicity data in a contribution from the chemical (potency) and from the exposed species (vulnerability). We

  18. Radiation treatment of toxic chemicals

    International Nuclear Information System (INIS)

    Lee, M.J.; Jung, I.H.; Jo, S.K.

    2010-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to conduct by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator. Electron beam accelerator of 2.5 MeV energy and 100 kW power capacity was used to decompose of PCBs having been used as a commercial transformer oil for more than 30 years. The oil were irradiated with ∼ 0.1 percent of TEA (Triethyl Amin) to make chloride ion aparted off from the PCBs into precipitate at the conditions of normal temperature and pressure. The concentrations of PCBs were measured by GC (Gas Chromatography) with ECD (Electron Capture Detector) following the KS (Korean Standard) test procedure. Electron beam should be a useful tool for environmental conservation. Residual concentrations of PCBs after irradiation were depended on the absorption dose of electron beam energy. Advantages comparing to other methods such as

  19. Removal of toxic dichlorophenol from water by sorption with chemically activated carbon of almond shells - a green approach

    International Nuclear Information System (INIS)

    Jamil, N.; Ahsan, N.; Munwar, M.A.; Anwar, J.; Shafiq, U.

    2011-01-01

    Chloro phenols (CP) represents a group of organic compounds having substituted chlorines attached to phenol ring. These trace organic pollutants represent a major environmental concern, because of toxicity, non-biodegradability, carcinogenic and stubborn properties. The adsorption of 2, 4-dichlorophenol (DCP) by chemically activated carbon of almond shells (CAC-AS) has been studied in the batch setup. Operational parameters like adsorbent dose, pH, and shaking speed were investigated. Langmuir and Freundlich isotherms were employed to calculate adsorption capacity and other sorption features of CAC-AS. The maximum amount of DCP adsorbed was 24.3 mg per gram of activated carbon derived from almond shells. Optimum conditions for DCP uptake were 2.5 g adsorbent dose, pH 5 and agitation speed of 200 rpm whereas the concentration of DCP solution was 25 mg/L (50 mL). Results corroborated that almond shells pretreated chemically, can be an excellent low cost adsorbents for removal of DCP from contaminated water. (author)

  20. Identification of Chemical Toxicity Using Ontology Information of Chemicals

    Directory of Open Access Journals (Sweden)

    Zhanpeng Jiang

    2015-01-01

    Full Text Available With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.

  1. Mixture toxicity of PBT-like chemicals

    DEFF Research Database (Denmark)

    Syberg, Kristian; Dai, Lina; Ramskov, Tina

    addition is a suitable model for default estimations of mixture effects. One of the major challenges is therefore how to select specific chemicals for actual mixture toxicity assessments. Persistant chemicals are likely to be present in the environment for an extended period of time, thus increasing...... the likelihood of them being present in environmentally found mixtures. Persistant, bioaccumulative and toxic (PBT) chemicals are therefore a highly relevant group of chemicals to consider for mixture toxicity regulation. The present study evaluates to what extent a number of PBT-like chemicals posess concern...... beyond that of the individual components. Firstly, the effects of three chemicals with PBT-like properties (acetyl cedrene, pyrene and triclosan) was examined on the freshwater snail, Potamopyrgus antipodarum. Secondly, mixture bioaccumulation of the same three chemicals were assessed experimentally...

  2. Toxic chemicals: risk prevention through use reduction

    National Research Council Canada - National Science Library

    Higgins, Thomas E; Sachdev, Jayanti A; Engleman, Stephen A

    2011-01-01

    "Catastrophic events such as the Bhopal, India tragedy and rising incidences of cancer in areas neighboring industrial facilities have heightened concern over the use of toxic chemicals in manufacturing and industry...

  3. DOE contractor's meeting on chemical toxicity

    International Nuclear Information System (INIS)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session

  4. Toxic chemical considerations for tank farm releases

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  5. A Risk Assessment Methodology for Toxic Chemicals Evaporation ...

    African Journals Online (AJOL)

    This study presents a method for determining the mass transfer coefficient for the toxic chemicals evaporation from circular pools formed due to the failure of plant integrity or escape from valves. The approach used in this present research work is to develop a correlation by a robust optimization technique known as Genetic ...

  6. Management of low and intermediate level radioactive wastes with regard to their chemical toxicity

    International Nuclear Information System (INIS)

    2002-12-01

    A preliminary overview is provided of management options for low and intermediate level radioactive waste (LILW) with regard to its chemical toxicity. In particular, the following issues are identified and described associated with the management and safe disposal of chemically toxic materials in LILW: the origin and characteristics; the regulatory approaches; the pre-disposal management; the disposal; the safety assessment. Also included are: regulatory framework for chemically toxic low level wastes in the USA; pre-disposal processing options for LILW containing chemically toxic components; example treatment technologies for LILW containing chemically toxic components and safety assessment case studies for Germany, Belgium, France and Sweden

  7. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Detailed Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Simple Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  9. Comparative toxicity of chemicals to earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, C.A.; Shirazi, M.A. (Environmental Protection Agency, Corvallis, OR (United States)); Neuhauser, E.F. (Niagara Mohawk Power Corp., Syracuse, NY (United States))

    1994-02-01

    The concentration-response (mortality) relationships of four species of earthworms, Eisenia fetida (Savigny), Allolobophora tuberculata (Eisen), Eudrilus eugeniae (Kinberg), and Perionyx excavatus (Perrier) are summarized for 62 chemicals and two test protocols. A Weibull function is used to summarize these data for each chemical in terms of sensitivity and toxicity, in addition to the LC50. The estimation of the Weibull parameters a and k summarize the entire concentration-response relationship. This technique should be applicable to a variety of testing protocols with different species whenever the goal is summarizing the shape of the concentration-response curves to fully evaluate chemical impact on organisms. In some cases for these data four orders of magnitude separate LC50s of the soil test and the contact test for the same chemical and species. All four species appear to be similar in range of toxicity and tolerance to these chemicals, suggesting that Eisenia fetida and may be representative of these four species and these chemicals.

  10. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  11. Identifying and designing chemicals with minimal acute aquatic toxicity.

    Science.gov (United States)

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  12. Toxicity assessment of unintentional exposure to multiple chemicals

    International Nuclear Information System (INIS)

    Mumtaz, M.M.; Ruiz, P.; De Rosa, C.T.

    2007-01-01

    Typically exposure to environmental chemicals is unintentional, and often the exposure is to chemical mixtures, either simultaneously or sequentially. When exposure occurs, in public health practice, it is prudent to ascertain if thresholds for harmful health effects are exceeded, whether by individual chemicals or by chemicals in combination. Three alternative approaches are available for assessing the toxicity of chemical mixtures. Each approach, however, has shortcomings. As the procedures of each approach are described in this paper, at various steps research needs are identified. Recently, reliance has increased on computational toxicology methods for predicting toxicological effects when data are limited. Advances in molecular biology, identification of biomarkers, and availability of accurate and sensitive methods allow us to more precisely define the relationships between multiple chemical exposures and health effects, both qualitatively and quantitatively. Key research needs are best fulfilled through collaborative research. It is through such collaborations that resources are most effectively leveraged to further develop and apply toxicity assessment methods that advance public health practices in vulnerable communities

  13. Sampling the stratum corneum for toxic chemicals.

    Science.gov (United States)

    Coman, Garrett; Blickenstaff, Nicholas R; Blattner, Collin M; Andersen, Rosa; Maibach, Howard I

    2014-01-01

    Dermal exposure is an important pathway in environmental health. Exposure comes from contaminated water, soil, treated surfaces, textiles, aerosolized chemicals, and agricultural products. It can occur in homes, schools, play areas, and work settings in the form of industrial sources, consumer products, or hazardous wastes. Dermal exposure is most likely to occur through contact with liquids, water, soil, sediment, and contaminated surfaces. The ability to detect and measure exposure to toxic materials on the skin is an important environmental health issue. The stratum corneum is the skin's first and principal barrier layer of protection from the outside world. It has a complex structure that can effectively protect against a wide variety of physical, chemical, and biological contaminants. However, there are a variety of chemical agents that can damage the stratum corneum and the underlying epidermis, dermis and subcutis, and/or enter systemic circulation through the skin. There are numerous ways of sampling the stratum corneum for these toxic materials like abrasion techniques, biopsy, suction blistering, imaging, washing, wipe sampling, tape stripping, and spot testing. Selecting a method likely depends on the particular needs of the situation. Hence, there is a need to review practical considerations for their use in sampling the stratum corneum for toxins.

  14. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  15. Toxicity challenges in environmental chemicals: Prediction of ...

    Science.gov (United States)

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do

  16. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  17. Toxic neuropathies: Mechanistic insights based on a chemical perspective.

    Science.gov (United States)

    LoPachin, Richard M; Gavin, Terrence

    2015-06-02

    2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.

    Science.gov (United States)

    Zhu, Hao; Tropsha, Alexander; Fourches, Denis; Varnek, Alexandre; Papa, Ester; Gramatica, Paola; Oberg, Tomas; Dao, Phuong; Cherkasov, Artem; Tetko, Igor V

    2008-04-01

    Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the

  19. Low Level Chemical Toxicity: Relevance to Chemical Agent Defense

    Science.gov (United States)

    2005-07-01

    or confirm a diagnosis of chemical sensitivity and suggest novel approaches in managing this malady. Project 4: Studies of gene expression...Lindberg I, Ugleholdt R, Holst J & Steiner DF 2002b Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing...2004;1:32- 34. [10] Diederich S,Eckmanns,T,Exner,P,Al-Saadi,N,Bahr,V,Oelkers,W. Differential diagnosis of polyuric/polydipsic syndromes with the aid

  20. Toxicity and chemical analyses of airport runoff waters in Poland.

    Science.gov (United States)

    Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek

    2014-05-01

    The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.

  1. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY: AN EXPANDED VIEW OF CHEMICAL TOXICITY

    Science.gov (United States)

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. T...

  2. Comparative toxicity of ten organic chemicals to four earthworm species

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Durkin, P.R.; Malecki, M.R.; Anatra, M.

    1986-01-01

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were the most toxic chemicals tested, followed by the amine, substituted benzenes, halogenated aliphatic hydrocarbon, polycyclic aromatic hydrocarbon and phthalate as the least toxic chemical tested. Correlations among species within each type of test for a given chemical were extremely high, suggesting that the selection of earthworm test species does not markedly affect the assessment of a chemical's toxicity. The correlation between the two tests was low for all test species. The contact test LC50 for a given chemical cannot be directly correlated to an artificial soil test LC50 for the same earthworm species.

  3. The Industrial Toxics Project: Targeting chemicals for environmental results

    International Nuclear Information System (INIS)

    Burch, W.M.

    1991-01-01

    In September, 1990, the Administrator of the US Environmental Protection Agency committed the Agency to a program of targeting chemicals for multi-media risk reduction activities through pollution prevention. The Industrial Toxics Project will place emphasis on obtaining voluntary commitments from industry to reduce releases of toxic chemicals to the air, water, and land with a goal of reducing releases nationwide by 33% by 1992 and 50% by 1995. An initial list of 18 chemicals have been selected based on recommendations from each Agency program. The chemicals selected are subject to reporting under the Toxic Chemical Release Inventory Program which will provide the basis for tracking progress. The chemicals are characterized by high production volume, toxicity and releases and present the potential for significant risk reduction through pollution prevention. This presentation will discuss the focus and direction of this new initiative

  4. Low-level toxicity of chemicals: No acceptable levels?

    Directory of Open Access Journals (Sweden)

    Bruce P Lanphear

    2017-12-01

    Full Text Available Over the past 3 decades, in a series of studies on some of the most extensively studied toxic chemicals and pollutants, scientists have found that the amount of toxic chemical linked with the development of a disease or death-which is central to determining "safe" or "hazardous" levels-is proportionately greater at the lowest dose or levels of exposure. These results, which are contrary to the way the United States Environmental Protection Agency (EPA and other regulatory agencies assess the risk of chemicals, indicate that we have underestimated the impact of toxic chemicals on death and disease. If widely disseminated chemicals and pollutants-like radon, lead, airborne particles, asbestos, tobacco, and benzene-do not exhibit a threshold and are proportionately more toxic at the lowest levels of exposure, we will need to achieve near-zero exposures to protect public health.

  5. Toxicity studies of drugs and chemicals in animals: An overview

    OpenAIRE

    S. Saganuwan

    2017-01-01

    Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50) first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety ...

  6. Comparison of the radiological and chemical toxicity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose.

  7. Comparison of the radiological and chemical toxicity of lead

    International Nuclear Information System (INIS)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose

  8. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    Science.gov (United States)

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  9. 40 CFR 372.45 - Notification about toxic chemicals.

    Science.gov (United States)

    2010-07-01

    ...) If the person considers the specific identity of a toxic chemical in a mixture or trade name product... corporate or business interest (including common ownership or control), as described in § 372.38(f), operate...

  10. Studies of radiation and chemical toxicity. Progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Annual report for the Studies of Radiation and Chemical Toxicity Program at the University of Rochester is presented. Progress is reported on four projects: Neurobehavorial Toxicity of Organometallic Fuel Additives, Mechanisms of Permanent and Delayed Pathologic Effects of Ionizing Radiation, Solid State Radiation Chemistry of the DNA Backbone, and Pulmonary Biochemistry

  11. Sources of toxicity and exposure information for identifying chemicals of high concern to children

    International Nuclear Information System (INIS)

    Stone, Alex; Delistraty, Damon

    2010-01-01

    Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was

  12. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    Science.gov (United States)

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  13. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  14. Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells

    Directory of Open Access Journals (Sweden)

    Fisichella Matthieu

    2012-05-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanoparticles (NPs are widely used due to their specific properties, like UV filters in sunscreen. In that particular case TiO2 NPs are surface modified to avoid photocatalytic effects. These surface-treated nanoparticles (STNPs spread in the environment and might release NPs as degradation residues. Indeed, degradation by the environment (exposure to UV, water and air contact … will occur and could profoundly alter the physicochemical properties of STNPs such as chemistry, size, shape, surface structure and dispersion that are important parameters for toxicity. Although the toxicity of surface unmodified TiO2 NPs has been documented, nothing was done about degraded TiO2 STNPs which are the most likely to be encountered in environment. The superoxide production by aged STNPs suspensions was tested and compared to surface unmodified TiO2 NPs. We investigated the possible toxicity of commercialized STNPs, degraded by environmental conditions, on human intestinal epithelial cells. STNPs sizes and shape were characterized and viability tests were performed on Caco-2 cells exposed to STNPs. The exposed cells were imaged with SEM and STNPs internalization was researched by TEM. Gene expression microarray analyses were performed to look for potential changes in cellular functions. Results The production of reactive oxygen species was detected with surface unmodified TiO2 NPs but not with STNPs or their residues. Through three different toxicity assays, the STNPs tested, which have a strong tendency to aggregate in complex media, showed no toxic effect in Caco-2 cells after exposures to STNPs up to 100 μg/mL over 4 h, 24 h and 72 h. The cell morphology remained intact, attested by SEM, and internalization of STNPs was not seen by TEM. Moreover gene expression analysis using pangenomic oligomicroarrays (4x 44000 genes did not show any change versus unexposed cells after exposure to 10 μg/ mL, which

  15. Toxicity studies of drugs and chemicals in animals: An overview

    Directory of Open Access Journals (Sweden)

    S. Saganuwan

    2017-12-01

    Full Text Available Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50 first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety as-sessment of drugs and chemicals, LD50 values are no longer used. In view of this, literature search was carried out with a view to investigating the relevance of LD50 in development and assessment of drugs and chemicals. The findings revealed that in the past, many animals had been used for LD50 determination. OECD has reduced the number of test animals to 5–15 and presently it is further re-duced to 2–6. Acute toxicity study is being carried out in medicinal plants research and in the study of patent medicine. Although the application of LD50 has been drastically reduced, it is still applied and accepted in some parts of the world. Moreover, animals on which LD50 tests are conducted, should be allowed to die to see the end effect of the test drug or chemical because euthanisia of test animals may mask some toxicity signs of the test agents. Therefore, toxicity study of drugs and chemicals is a sci-entific process necessary for discovery and development of drugs as well as identification of potential toxicants.

  16. Aquatic toxicity testing of liquid hydrophobic chemicals – Passive dosing exactly at the saturation limit

    DEFF Research Database (Denmark)

    Stibany, Felix; Nørgaard Schmidt, Stine; Schäffer, Andreas

    2017-01-01

    The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing...... format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth...... at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group...

  17. Children's vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy.

    Science.gov (United States)

    Landrigan, Philip J; Goldman, Lynn R

    2011-05-01

    A key policy breakthrough occurred nearly twenty years ago with the discovery that children are far more sensitive than adults to toxic chemicals in the environment. This finding led to the recognition that chemical exposures early in life are significant and preventable causes of disease in children and adults. We review this knowledge and recommend a new policy to regulate industrial and consumer chemicals that will protect the health of children and all Americans, prevent disease, and reduce health care costs. The linchpins of a new US chemical policy will be: first, a legally mandated requirement to test the toxicity of chemicals already in commerce, prioritizing chemicals in the widest use, and incorporating new assessment technologies; second, a tiered approach to premarket evaluation of new chemicals; and third, epidemiologic monitoring and focused health studies of exposed populations.

  18. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    Science.gov (United States)

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment

  19. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  20. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  1. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  2. DOE contractor's meeting on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  3. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  4. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  5. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    Science.gov (United States)

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  8. The effects on health of radiological and chemical toxicity

    International Nuclear Information System (INIS)

    Toledano, M.; Flury-Herard, A.

    2003-01-01

    Future trends in the protection against the effects on health of radiological and/or chemical toxicity will certainly be based on improved knowledge of specific biological mechanisms and individual sensitivity. Progress in these areas will most likely be made at the interfaces between research, health care and biomedical monitoring. (authors)

  9. Chemical composition and toxicities of essential oil of Illicium ...

    African Journals Online (AJOL)

    The aim of this research was to determine the chemical composition and toxicities of essential oil derived from Illicium fargesii Finet et Gagnep fruits against the maize weevil (Sitophilus zeamais Motsch). Essential oil of I. fargesii fruits was obtained from hydrodistillation and was investigated by GC (Gas Chromatography) ...

  10. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  11. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  12. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

    Science.gov (United States)

    Zingaro, Kyle A; Nicolaou, Sergios A; Papoutsakis, Eleftherios T

    2013-11-01

    Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 78 FR 69414 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2013-11-19

    ...; Acute emulsion polymerization in Inhalation Toxicity in paper, textile, fiber, and Rats; Bacterial.../ Reproduction Development Toxicity. Note: CAS No. = Chemical Abstracts Service Registry Number. Authority: 15 U...

  14. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    Science.gov (United States)

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  16. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    Science.gov (United States)

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies

  17. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  18. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.

    2017-12-05

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds\\' features may improve model\\'s performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  19. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2017-01-01

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  20. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  1. Microbial contamination and chemical toxicity of the Rio Grande

    Directory of Open Access Journals (Sweden)

    Valles Adrian

    2004-04-01

    Full Text Available Abstract Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC. Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no

  2. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    Science.gov (United States)

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  3. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: I. SYSTEMIC TOXICITY

    Science.gov (United States)

    The toxicity of 10 chemicals (carbaryl, carbon tetrachloride, chlordane, ethylhexylphthalate, dichloromethane, heptachlor, phenol, tetrachloroethylene, triadimefon, and trichloroethylene were examined in the liver, kidney, spleen, thymus, and adrenal of female F-344 rats. cute le...

  4. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... agencies, and others to promote reductions in toxic chemical releases. Industrial facilities use the TRI... Activities; Proposed Collections; Toxic Chemical Release Reporting; Request for Comments on Proposed Renewal... the individual listed in the preceding FOR FURTHER INFORMATION CONTACT section. Title: Toxic Chemical...

  5. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    Science.gov (United States)

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  6. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways.

    Directory of Open Access Journals (Sweden)

    Sudin Bhattacharya

    Full Text Available The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC report Toxicity Testing in the 21(st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals and (b the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU. EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.

  7. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  8. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  9. Neurodevelopmental toxicity risks due to occupational exposure to industrial chemicals during pregnancy

    DEFF Research Database (Denmark)

    Julvez, Jordi; Grandjean, Philippe

    2009-01-01

    Exposure to neurotoxic chemicals is of particular concern when it occurs during early development. The immature brain is highly vulnerable prenatally and is therefore at risk due to occupational exposures incurred by pregnant women. A systematic search of the literature has been performed...... by occupational health researchers and practitioners from the need to protect pregnant workers. Due to the vulnerability of the brain during early development, a precautionary approach to neurodevelopmental toxicity needs to be applied in occupational health....

  10. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  11. Amazing variational approach to chemical reactions

    OpenAIRE

    Fernández, Francisco M.

    2009-01-01

    In this letter we analyse an amazing variational approach to chemical reactions. Our results clearly show that the variational expressions are unsuitable for the analysis of empirical data obtained from chemical reactions.

  12. Radiation-dosimetry and chemical-toxicity considerations for 99Tc

    International Nuclear Information System (INIS)

    Coffey, J.L.; Hayes, R.L.; Rafter, J.J.; Watson, E.E.; Carlton, J.E.

    1982-01-01

    Technetium-99 (T/sub 1/2/ = 2.13 x 10 5 y) is produced in the fission of 235 U and 239 Pu. Technitium-99 has been found to contaminate some areas of the uranium re-enrichment process. ICRP-30 Part 2 gives the Annual Limit on Intake (ALI) for 99 Tc as 2 x 10 8 Bq (5.4 mCi) for class D inhaled material (IC80). The ICRP states clearly that ALIs are based on radiation risk only and that chemical toxicity is not considered (IC79). No data were found on the chemical toxicity of 99 Tc, possibly because there are no stable isotopes of technetium with which to study the toxicity, although, because of its long T/sub 1/2/, 99 Tc can, for all practical purposes, be considered stable. The ALI values for 99 Tc are based on data obtained using high specific activity /sup 99m/Tc (T/sub 1/2/ = 6 h) and /sup 95m/Tc (T/sub 1/2/ = 61 days). Since the specific activities of 99 Tc and Na 99 TcO 4 are quite low (17 mCi/g and 9 mCi/g, respectively) and 99 Tc is available in abundant supply, we have attempted to assess the relative radiation and chemical hazards that are associated with this radionuclide. The approach in this study was (1) to study the effect of chemical dose on the whole body retention of 99 Tc sodium pertechnetate in rats and to relate these effects to the radiation dose and the ALI and (2) to compare the chemical toxicity of 99 Tc sodium pertechnetate with the ALI at different chemical dose levels

  13. Predicting Chemical Toxicity from Proteomics and Computational Chemistry

    Science.gov (United States)

    2008-07-30

    perfluorooctanoic acid , perfluorodecanoic acid , clofibrate , and diethylhexyl phthalate) show that the leading eigenvalue of the D/D matrix derived from embedded... clofibrate , and DEHP, show that this approach clusters the first three highly-fluorinated and mechanistically similar chemicals together, while

  14. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  15. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  16. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches

    DEFF Research Database (Denmark)

    Hajeb, P.; Sloth, Jens Jørgen; Shakibazadeh, Sh

    2014-01-01

    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes...... of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect...... on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular...

  17. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    Industrial or terroristic accidents in which toxic chemicals (TC) are the main or attendant damaging factors should be regarded as a new challenge for experts, because of little knowledge on the methodology to estimating the long-term risk for humans due to contamination of the building materials and environment. In the Russian Federation, there appeared to be a kind of model systems for developing an algorithm for solving these or similar problems. Under dismantling and liquidation of the former facilities for chemical weapon production (FCWP) the building materials are regarded as potential waste products the fate of which (processing, warehousing, utilization, and destruction) is dependent on their possible hazard for human population and environment. The standard approaches for hazard assessment of waste products of the FCWP turned out to be insufficient. When conducting the present work, the following problems have been solved: 1. Selection of representative samples taking into consideration a diversity of construction materials, great quantities of potentially toxic waste materials, information on the production conditions, breakdowns in the process of production, accidents, composition of the decontaminators used, decontamination frequency, etc. 2. Analysis of TC in composite matrixes complicated by the following problems: extraction, masking effects of concomitant components during indirect analysis, lack of certified methods of direct analysis of TC, discrepancy of results of GC and direct GCMS analysis, low sensitivity of GCMS analysis, big volume of samples (more than 0.5 kg), heterogeneity of physical-chemical properties of different matrixes influencing the process of degradation of TC. 3. Hazard assessment of the wastes in toxic-and-sanitary experiment relying on non-specific signs of intoxication due to relatively low percentage of TC and masking effects of various matrix components. Application of the integral toxicity tests with soil

  18. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    Science.gov (United States)

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented

  19. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    Science.gov (United States)

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Assessment of the chemical toxicity of long-lived radionuclides on the basis of Who guidelines for drinking-water quality

    International Nuclear Information System (INIS)

    Renaud-Salis, V.; Menetrier, F.; Leudet, A.; Flury-Herard, A.

    2003-01-01

    The current assessment of health risks related to long lived radionuclides waste management is not complete if accounting only for radiological toxicity aspects. Although such an approach is justified for a large number of radionuclides of concern, it nevertheless cannot be exclusive and generalised: the chemical toxicity should be considered for radionuclides with a radioactive half-life exceeding 10 5 years. When assessing the chemical or radiological toxicity of a radionuclide, a reference dose applied to drinking water consumption (0.1 mSv/year) can be compared to existing toxicological data. Such an approach has been used by the World Health Organization for natural uranium, for which a guideline value in drinking water derived from its chemical toxicity (2 μg/l) is recommended. WHO's approach is used here for illustrating that the potential chemical toxicity of an element is to be considered for assessing health risks related to long-lived radionuclides. (authors)

  1. Computational Approaches to Chemical Hazard Assessment

    Science.gov (United States)

    Luechtefeld, Thomas; Hartung, Thomas

    2018-01-01

    Summary Computational prediction of toxicity has reached new heights as a result of decades of growth in the magnitude and diversity of biological data. Public packages for statistics and machine learning make model creation faster. New theory in machine learning and cheminformatics enables integration of chemical structure, toxicogenomics, simulated and physical data in the prediction of chemical health hazards, and other toxicological information. Our earlier publications have characterized a toxicological dataset of unprecedented scale resulting from the European REACH legislation (Registration Evaluation Authorisation and Restriction of Chemicals). These publications dove into potential use cases for regulatory data and some models for exploiting this data. This article analyzes the options for the identification and categorization of chemicals, moves on to the derivation of descriptive features for chemicals, discusses different kinds of targets modeled in computational toxicology, and ends with a high-level perspective of the algorithms used to create computational toxicology models. PMID:29101769

  2. Toxic chemical considerations for tank farm releases. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  3. Toxic chemical considerations for tank farm releases. Revision 1

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one

  4. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  5. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    Science.gov (United States)

    1985-06-01

    K., S. Barik , and N. Sethunathan. 1981. Stability of commercial formulations of fenitrothion, methyl parathion, and parathion in anaero- bic soils. J ...34 D(Cl - C2 )L where; J - rate of flow or flWx, or the 4mount of solute (chemical) diffuisiguuit ti= across a unit crossý-ectional area, D difffuoion...surfaces (coatentrations C, aud C2) varies vith the concentration gradient, tlus’: 3 - -D(dC/dx) Where: J * the flux in grams or moles in cm%1s- acroeas a

  6. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can...

  7. Allium -test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    International Nuclear Information System (INIS)

    Oudalova, A A; Pyatkova, S V; Geras’kin, S A; Dikareva, N S

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium -test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium -test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds. (paper)

  8. Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    Science.gov (United States)

    Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.

  9. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  10. Chemical mixtures in untreated water from public-supply wells in the U.S. - Occurrence, composition, and potential toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toccalino, Patricia L., E-mail: ptocca@usgs.gov [U.S. Geological Survey (USGS), 6000 J Street, Placer Hall, Sacramento, California 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [USGS, 2130 SW 5th Avenue, Portland, Oregon 97201 (United States); Scott, Jonathon C., E-mail: jon@usgs.gov [USGS, 202 NW 66th Street, Oklahoma City, Oklahoma 73116 (United States)

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: Black-Right-Pointing-Pointer We assessed mixtures in untreated groundwater samples from public

  11. Removal of toxic chemicals from water with activated carbon

    Science.gov (United States)

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  12. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Science.gov (United States)

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  13. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  14. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies.

    Science.gov (United States)

    Asic, Adna; Kurtovic-Kozaric, Amina; Besic, Larisa; Mehinovic, Lejla; Hasic, Azra; Kozaric, Mirza; Hukic, Mirsada; Marjanovic, Damir

    2017-07-01

    The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Transformation of highly toxic chemicals factory for Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Wang Hongkai; Gao Yuan; Li Hua

    2014-01-01

    For the iodine adsorption tests of current M310 nuclear power plant, dimethyl sulfate is one of highly toxic chemical of national strict standard management, and the nation make strict control over toxic chemicals procurement, transportation, storage, management requirements. Since the appropriate toxic chemicals storage place was not considered in the design of M310 nuclear power plant, Fuqing nuclear power sites for storage of dimethyl sulfate implement technical transformation to meet and regulate the storage requirements for highly toxic chemical. This will lay the foundation for carrying out smoothly the relevant tests of nuclear power plant, and provide the reference for the use and construction of toxic chemicals reactor in the same type nuclear power plant. (authors)

  16. A Novel Approach: Chemical Relational Databases, and the ...

    Science.gov (United States)

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as

  17. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  19. Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements

    Energy Technology Data Exchange (ETDEWEB)

    Levina, A.; Lay, P.A.

    2009-05-19

    The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, with implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.

  20. Alternative approaches for identifying acute systemic toxicity: Moving from research to regulatory testing.

    Science.gov (United States)

    Hamm, Jon; Sullivan, Kristie; Clippinger, Amy J; Strickland, Judy; Bell, Shannon; Bhhatarai, Barun; Blaauboer, Bas; Casey, Warren; Dorman, David; Forsby, Anna; Garcia-Reyero, Natàlia; Gehen, Sean; Graepel, Rabea; Hotchkiss, Jon; Lowit, Anna; Matheson, Joanna; Reaves, Elissa; Scarano, Louis; Sprankle, Catherine; Tunkel, Jay; Wilson, Dan; Xia, Menghang; Zhu, Hao; Allen, David

    2017-06-01

    Acute systemic toxicity testing provides the basis for hazard labeling and risk management of chemicals. A number of international efforts have been directed at identifying non-animal alternatives for in vivo acute systemic toxicity tests. A September 2015 workshop, Alternative Approaches for Identifying Acute Systemic Toxicity: Moving from Research to Regulatory Testing, reviewed the state-of-the-science of non-animal alternatives for this testing and explored ways to facilitate implementation of alternatives. Workshop attendees included representatives from international regulatory agencies, academia, nongovernmental organizations, and industry. Resources identified as necessary for meaningful progress in implementing alternatives included compiling and making available high-quality reference data, training on use and interpretation of in vitro and in silico approaches, and global harmonization of testing requirements. Attendees particularly noted the need to characterize variability in reference data to evaluate new approaches. They also noted the importance of understanding the mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Workshop breakout groups explored different approaches to reducing or replacing animal use for acute toxicity testing, with each group crafting a roadmap and strategy to accomplish near-term progress. The workshop steering committee has organized efforts to implement the recommendations of the workshop participants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  2. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  3. A systems-level approach for investigating organophosphorus pesticide toxicity.

    Science.gov (United States)

    Zhu, Jingbo; Wang, Jing; Ding, Yan; Liu, Baoyue; Xiao, Wei

    2018-03-01

    The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Chemical mixtures in untreated water from public-supply wells in the U.S.--occurrence, composition, and potential toxicity.

    Science.gov (United States)

    Toccalino, Patricia L; Norman, Julia E; Scott, Jonathon C

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. Published by Elsevier B.V.

  5. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    Science.gov (United States)

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  6. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...... characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates....

  7. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Science.gov (United States)

    EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800 chemicals. The 1,800 chemicals were screened in more than 800 rapid, automated tests (called high-throughput screening assays) to determine potential human health effects. The data is available through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard) and the complete data sets are also available for download.

  8. Use of computer-assisted prediction of toxic effects of chemical substances

    International Nuclear Information System (INIS)

    Simon-Hettich, Brigitte; Rothfuss, Andreas; Steger-Hartmann, Thomas

    2006-01-01

    The current revision of the European policy for the evaluation of chemicals (REACH) has lead to a controversy with regard to the need of additional animal safety testing. To avoid increases in animal testing but also to save time and resources, alternative in silico or in vitro tests for the assessment of toxic effects of chemicals are advocated. The draft of the original document issued in 29th October 2003 by the European Commission foresees the use of alternative methods but does not give further specification on which methods should be used. Computer-assisted prediction models, so-called predictive tools, besides in vitro models, will likely play an essential role in the proposed repertoire of 'alternative methods'. The current discussion has urged the Advisory Committee of the German Toxicology Society to present its position on the use of predictive tools in toxicology. Acceptable prediction models already exist for those toxicological endpoints which are based on well-understood mechanism, such as mutagenicity and skin sensitization, whereas mechanistically more complex endpoints such as acute, chronic or organ toxicities currently cannot be satisfactorily predicted. A potential strategy to assess such complex toxicities will lie in their dissection into models for the different steps or pathways leading to the final endpoint. Integration of these models should result in a higher predictivity. Despite these limitations, computer-assisted prediction tools already today play a complementary role for the assessment of chemicals for which no data is available or for which toxicological testing is impractical due to the lack of availability of sufficient compounds for testing. Furthermore, predictive tools offer support in the screening and the subsequent prioritization of compound for further toxicological testing, as expected within the scope of the European REACH program. This program will also lead to the collection of high-quality data which will broaden the

  9. A Decision Analytic Approach to Exposure-Based Chemical ...

    Science.gov (United States)

    The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. The National Exposure Research Laboratory′s (NERL′s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in suppor

  10. TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS

    Science.gov (United States)

    2017-03-01

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS...DISTRIBUTION A. Approved for public release: distribution unlimited. Toxic Leadership: A Systemic Approach to Shift From Reactive to Proactive Solutions 1...US military loses valuable personnel when it is too late to implement corrective action and after those toxic Toxic Leadership: A Systemic Approach

  11. Development of a toxicity-based fractionation approach for the identification of phototoxic PAHs in pore water

    International Nuclear Information System (INIS)

    Kosian, P.A.; Makynen, E.A.; Ankley, G.T.; Monson, P.D.

    1995-01-01

    Environmental matrices often contain complex mixtures of chemical compounds, however, typically only a few chemicals are responsible for observed toxicity. To determine those chemicals responsible for toxicity, a toxicity-based fractionation technique coupled with gas chromatography/mass spectrometry (GC/MS) has been used for the isolation and identification of nonpolar toxicants in aqueous samples. In this study, this technique was modified to separate and identify polycyclic aromatic hydrocarbons (PAHs) responsible for phototoxicity in pore water. Whole pore water, obtained from sediments collected near an oil refinery discharge site, was found to be toxic to Lumbriculus variegatus in the presence of ultraviolet (UV) light. Solid phase extraction disks and high pressure liquid chromatography were used, in conjunction with toxicity tests with L. variegatus, to extract and fractionate phototoxic chemicals from the pore water. GC/MS analysis was performed on the toxic fractions and a tentative list of compound identifications were made based on interpretation of mass spectra and elution information from the chromatographic separation. The compounds identified include PAHs and substituted PAHs that are known or predicted to be phototoxic in the presence of UV light. The results show that a modified toxicity-based fractionation approach can be successfully applied to identify phototoxic PAHs in sediment pore water and therefore used in the assessment of contaminated sediments

  12. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  13. Acute oral toxicity test of chemical compounds in silkworms.

    Science.gov (United States)

    Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa

    2016-02-01

    This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.

  14. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800...

  15. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  16. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  17. Upper parameters of toxicity (LDsub(50/30)) of some radioactive and chemical substances

    International Nuclear Information System (INIS)

    Rodionova, L.F.; Kupriyanova, V.M.; Zasedatelev, A.A.

    1978-01-01

    The toxicities of radioactive ( 90 Sr, 210 Po) and chemical (lead nitrate, mercuric chloride) substances were compared using equivalent procedures. Ninety six doses of toxic substances in various concentrations were tested on mice to which these substances were administered by intragastric intubation. The material was processed and analyzed by conventional methods used in toxicology. The upper limits of toxicity for the tested substances were determined from their LDsub(50/30) values by various methods of calculation

  18. Monitoring the effects of toxic chemicals on protein expression

    International Nuclear Information System (INIS)

    Giometti, C.S.; Taylor, J.

    1987-01-01

    Two-dimensional gel electrophoresis coupled with computer-assisted image and data analysis was used to monitor protein populations for both qualitative and quantitative changes induced by exposure to chemicals. For mutagenesis studies designed to screen for heritable mutations, a computer-assisted search of the optical density data from 2DE patterns was used to look for (a) new protein spots, (b) missing protein spots and/or (c) altered expression of normal protein spots. Using this approach, 320 mice were screened for mutations induced by treatment of sires with 150 mg/kg body weight of ethylnitrosourea (ENU) and four different mutations were identified. Protein patterns from 105 offspring from untreated male mice (controls) and 369 offspring from irradiated male mice (3 Gy gamma) were also screened. No heritable mutations were found in those data sets, however. In addition, protein changes were observed in livers of animals exposed to the hepatocellular peroxisomal proliferation agents (and carcinogens) Wy-14,643 and DEHP. The de novo synthesis of a new protein by these agents was demonstrated and quantitated

  19. Response of Nitrobacter to toxicity of drilling chemicals

    International Nuclear Information System (INIS)

    Okpokwasili, Gideon C.; Odokuma, Lucky O.

    1996-01-01

    The effect of drilling chemicals on nitrate utilization and logarithmic rate of growth of Nitrobacter was investigated using varying concentrations of the chemicals. Results indicated that all the drilling chemicals tested were inhibitory to nitrate utilization and caused decrease in growth rate of Nitrobacter. An increase in nitrite utilization by Nitrobacter with increase in exposure time to the chemicals was observed. Nitrite utilization decreased with increase in concentration of the chemicals. Some concentrations of drilling chemicals stimulated the growth rate of Nitrobacter as exposure time increased. Inhibition of nitrite utilization was greatest with Carbotrol and least with Chaux (lime) and Huile-clean. These results showed that drilling chemicals inhibit an aspect of nitrification in the biosphere thereby negatively affecting soil and water fertility

  20. Chemical concentrations, exposures, health risks by census tract from National Scale Air Toxics Assessment (NATA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentrations, exposures, health risks by census tract for the United States from National Scale Air Toxics Assessment (NATA). This dataset is associated...

  1. Chemical toxicity and radiological health detriment associated with the inhalation of various enrichments of uranium

    International Nuclear Information System (INIS)

    3C Limited, Queen Square House, 18-21 Queen Square, Bristol BS1 4NH (United Kingdom))" data-affiliation=" (SR3C Limited, Queen Square House, 18-21 Queen Square, Bristol BS1 4NH (United Kingdom))" >Bryant, P A

    2014-01-01

    The occupational risks associated with the chemical toxicity of uranium can be overlooked during the processing, handling and storage of the material, as the radioactivity of the material is often used alone to assess the health consequences of exposure to uranium compounds. This note provides a summary of the current United Kingdom occupational standards for uranium based on radiation dose and/or chemical toxicity with a particular focus on intake via inhalation. A simple model is subsequently presented to allow a comparison to be drawn between the occupational exposure standard for chemical toxicity and radiological dose limit. Using these data a set of suggested limits on occupational exposure to airborne uranium is proposed that indicate where the legal annual radiological dose limit for workers or the Health and Safety Executive occupational exposure standard for chemical toxicity are at risk of being breached. (note)

  2. NODC Standard Format Marine Toxic Substances and Pollutants (F144) chemical identification codes (NODC Accession 9200273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival information package contains a listing of codes and chemical names that were used in NODC Standard Format Marine Toxic Substances and Pollutants (F144)...

  3. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  4. Plant exposure chambers for study of toxic chemical-plant interactions (journal version)

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.

    1987-01-01

    Chambers for the study of plant uptake and phytotoxicity of toxic, radio-labeled chemicals are described. The chambers are designed to meet the criteria of continuously stirred tank reactors while providing containment for toxic chemicals. They are computer managed and operated within a controlled-environment room. Besides providing controlled conditions within the contained spaces, continuous measurements are made of various environmental parameters and plant transpiration, net photosynthesis, and dark respiration in up to 18 separate chambers

  5. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  6. Meta-analysis of aquatic chronic chemical toxicity data

    Science.gov (United States)

    Chronic toxicity data from the open literature and from tests submitted for pesticide registration were extracted and assembled into a database, AquaChronTox, with a flexible search interface. Data were captured at a treatment and, when available, replicate level to support conc...

  7. 2001 Toxic Chemical Release Inventory Emergency Planning and Community Right to Know Act SEC 313

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2002-01-01

    Pursuant to section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA), and Executive Order 13148, Greening the Government Through Leadership in Environmental Management, the US Department of Energy has prepared and submitted a Toxic Chemical Release Inventory for the Hanford Site covering activities performed during calendar year 2001. EPCRA Section 313 requires facilities that manufacture, process, or otherwise use listed toxic chemicals in quantities exceeding established threshold levels to report total annual releases of those chemicals. During calendar year 2001, Hanford Site activities resulted in one chemical used in amounts exceeding an activity threshold. Accordingly, the Hanford Site 2001 Toxic Chemical Release Inventory, DOE/RL-2002-37, includes total annual amount of lead released to the environment, transferred to offsite locations, and otherwise managed as waste

  8. Acute toxicity of fire control chemicals to Daphnia magna(Straus) and Selenastrum capricornutum(Printz)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1996-01-01

    Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.

  9. Data banks of chemical substances and their toxicity

    International Nuclear Information System (INIS)

    Craig, D.K.

    1992-01-01

    Rapid proliferation in the development of new chemical compounds, coupled with the discovery and/or identification of those already in existence, has led to a significant need to investigate their physicochemical and biological properties, to document the knowledge gained, and to communicate that knowledge in as convenient a manner as possible. This paper presents and briefly discusses several prominent chemical databases

  10. General approaches to the risk assessment of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Patrick [Commission of the European Communities, Directorate General XI, Environment, Nuclear Safety and Civil Protection (Belgium)

    1992-07-01

    deciding upon the granting of permits for landfill sites or the discharge of toxic chemicals to water or air and in doing so they must take into account the hydrology, geology and climate of the specific locality. While the basic approach to chemical risk assessment will be the same, irrespective of the specific objective for which the assessment is carried out, the details will vary as a function of: the product type (pharmaceutical, pesticide, industrial chemical, etc.), the target population of interest (patient, environment, consumer, worker, etc.) and the exposure scenario (global, international, national, local)

  11. General approaches to the risk assessment of chemicals

    International Nuclear Information System (INIS)

    Murphy, Patrick

    1992-01-01

    deciding upon the granting of permits for landfill sites or the discharge of toxic chemicals to water or air and in doing so they must take into account the hydrology, geology and climate of the specific locality. While the basic approach to chemical risk assessment will be the same, irrespective of the specific objective for which the assessment is carried out, the details will vary as a function of: the product type (pharmaceutical, pesticide, industrial chemical, etc.), the target population of interest (patient, environment, consumer, worker, etc.) and the exposure scenario (global, international, national, local)

  12. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  13. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  14. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  15. Removal of toxic industrial chemicals using novel adsorbent hollow fibres

    OpenAIRE

    Jeffs, Corinne

    2015-01-01

    The current military respirator provides protection from contaminants using a cartridge packed with adsorbent activated carbon particles treated with metal salts to provide protection from toxic gases. However, the user of this respirator is subject to a physiological burden as a result. One component of this burden is the pressure drop, which makes breathing through the respirator filter difficult, with the burden becoming more severe at higher breathing rates. This project investigates the ...

  16. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.

    Science.gov (United States)

    Reenu; Vikas

    2015-09-01

    Various quantum-mechanically computed molecular and thermodynamic descriptors along with physico-chemical, electrostatic and topological descriptors are compared while developing quantitative structure-activity relationships (QSARs) for the acute toxicity of 252 diverse organic chemicals towards Daphnia magna. QSAR models based on the quantum-chemical descriptors, computed with routinely employed advanced semi-empirical and ab-initio methods, along with the electron-correlation contribution (CORR) of the descriptors, are analyzed for the external predictivity of the acute toxicity. The models with reliable internal stability and external predictivity are found to be based on the HOMO energy along with the physico-chemical, electrostatic and topological descriptors. Besides this, the total energy and electron-correlation energy are also observed as highly reliable descriptors, suggesting that the intra-molecular interactions between the electrons play an important role in the origin of the acute toxicity, which is in fact an unexplored phenomenon. The models based on quantum-chemical descriptors such as chemical hardness, absolute electronegativity, standard Gibbs free energy and enthalpy are also observed to be reliable. A comparison of the robust models based on the quantum-chemical descriptors computed with various quantum-mechanical methods suggests that the advanced semi-empirical methods such as PM7 can be more reliable than the ab-initio methods which are computationally more expensive. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Toxicity assessment of chemical contaminants;transition from in vitromethods to novel in vitro methods

    Directory of Open Access Journals (Sweden)

    A.A. Farshad

    2007-04-01

    Full Text Available Exposure to occupational and environmental contaminants is a major contributor to human health problems. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there areapproximately 80, 000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from ethical, economical and scientific perspectives. Therefore, increasing the number of available industrial chemicals andnew products has created a demand for alternatives to animal methods for better safety evaluation. Recent toxicity studies have demonstrated that in vitro methods are capable of rapidly providing toxicity information. In this review, current toxicity test methods for risk evaluation of industrial chemical contaminants are presented. To evaluate the potential applications of  more recent test methods developed for toxicity testing of chemical contaminants are discussed. Although  to be considered more broadly for risk assessment of human chemical exposures. In vitro methods,in vitro toxicology methods cannot exactly mimic the biodynamics of the whole body, in vitro  relationships (QSARs and physiologically based toxicokinetic (PBTK models have a potentialtest systems in combination with the knowledge of quantitative structure activity.

  18. Engineering electrical properties of graphene: chemical approaches

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Yuna; Hong, Byung Hee; Novoselov, Konstantin

    2015-01-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed. (topical review)

  19. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  20. Acute toxicity of sea-dumped chemical munitions: Luminating the environmental toxicity of legacy compounds

    DEFF Research Database (Denmark)

    Mohammed Abdullah Christensen, Ilias; Sanderson, Hans; Baatrup, Erik

    2016-01-01

    As a result of the disarmament of Germany after the Second World War, 65,000 tons of chemical munitions were dumped in the Baltic Sea. Approximately 13,000 tons containing chemical warfare agents (CWAs) of which 11,000 tons were dumped in the Bornholm Basin east of Bornholm. This paper addresses...

  1. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  3. Study about chemical and radiological toxicity of rare earths

    International Nuclear Information System (INIS)

    Goncalez, O.L.

    1987-02-01

    The maximum permissible concentration in workplace air for an admixture of rare earths is calculated to be 1.47 mg/m 3 of air. This value takes into account the biological mean-life of those chemical elements in human body and acute toxicological data. A simplified mathematical models is done that describes the body content of this product as a time function, for cronic intoxication by air particulate inhalation. Under the radiological point of view the limit calculated for the air concentration is about 100 mg/m 3 , showing that the chemical toxity of these products is predominant. (Author) [pt

  4. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  5. A stochastic approach to chemical evolution

    International Nuclear Information System (INIS)

    Copi, C.J.

    1997-01-01

    Observations of elemental abundances in the Galaxy have repeatedly shown an intrinsic scatter as a function of time and metallicity. The standard approach to chemical evolution does not attempt to address this scatter in abundances since only the mean evolution is followed. In this work, the scatter is addressed via a stochastic approach to solving chemical evolution models. Three simple chemical evolution scenarios are studied using this stochastic approach: a closed box model, an infall model, and an outflow model. These models are solved for the solar neighborhood in a Monte Carlo fashion. The evolutionary history of one particular region is determined randomly based on the star formation rate and the initial mass function. Following the evolution in an ensemble of such regions leads to the predicted spread in abundances expected, based solely on different evolutionary histories of otherwise identical regions. In this work, 13 isotopes are followed, including the light elements, the CNO elements, a few α-elements, and iron. It is found that the predicted spread in abundances for a 10 5 M circle-dot region is in good agreement with observations for the α-elements. For CN, the agreement is not as good, perhaps indicating the need for more physics input for low-mass stellar evolution. Similarly for the light elements, the predicted scatter is quite small, which is in contradiction to the observations of 3 He in HII regions. The models are tuned for the solar neighborhood so that good agreement with HII regions is not expected. This has important implications for low-mass stellar evolution and on using chemical evolution to determine the primordial light-element abundances in order to test big bang nucleosynthesis. copyright 1997 The American Astronomical Society

  6. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    Science.gov (United States)

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (pnatural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Food safety. [chemical contaminants and human toxic diseases

    Science.gov (United States)

    Pier, S. M.; Valentine, J. L.

    1975-01-01

    Illness induced by unsafe food is a problem of great public health significance. This study relates exclusively to the occurrence of chemical agents which will result in food unsafe for human consumption since the matter of food safety is of paramount importance in the mission and operation of the manned spacecraft program of the National Aeronautics and Space Administration.

  8. Literature-based cheminformatics for research in chemical toxicity

    Science.gov (United States)

    PubMed is the largest freely available source of published literature available online with access to 27 million citations (as of October 2017). Contained within the literature is an abundance of information about the activity of chemicals in biological systems. Literature inform...

  9. Photochemical and microbial degradation technologies to remove toxic chemicals

    International Nuclear Information System (INIS)

    Matsumura, F.; Katayama, A.

    1992-01-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks

  10. Photochemical and microbial degradation technologies to remove toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, F.; Katayama, A.

    1992-07-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks.

  11. NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value

  12. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    Science.gov (United States)

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Investigations with beagles about toxicity and radioprotective effect of the chemical radioprotection substance WR 2721

    International Nuclear Information System (INIS)

    Wagner, M.; Sedlmeier, H.; Wustrow, T.; Messerschmidt, O.

    1980-01-01

    The toxicity of the chemical radioprotection substance WR 2721 (S-2-(3-aminopropylamino)ethyl-thiophosphate) was examined in 25 beagles. The study showed that the toxicity of the substance increases as the dose gets higher. Between the doses 200 and 250 mg/kg of body weight, the increase of toxicity was significantly greater than could be expected on the basis of the dose difference. Until a dose of 200 mg/kg, the authors found no side effects which would have disturbed vital functions, but higher doses led to marked symptoms of intoxication. (orig.) [de

  14. 1997 toxic chemical release inventory. Emergency Planning and Community Right-To-Know Act, Section 313

    International Nuclear Information System (INIS)

    Zaloudek, D.E.

    1998-01-01

    Two listed toxic chemicals were used at the Hanford Site above established activity thresholds: phosphoric acid and chlorine. Because total combined quantities of chlorine released, disposed, treated, recovered through recycle operations, co-combusted for energy recovery, and transferred to off-site locations for the purpose of recycle, energy recovery, treatment, and/or disposal, amounted to less than 500 pounds, the Hanford Site qualified for the alternate one million pound threshold for chlorine. Accordingly, this Toxic Chemical Release Inventory includes a Form A for chlorine, and a Form B for phosphoric acid

  15. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    Science.gov (United States)

    2015-10-01

    military threat chemicals with adverse health effects and clinical outcomes to improve diagnostic potential after exposure to toxic industrial...end organ injury following chemical exposures in the field. Markers of end-organ injury and toxicity and other health effects markers, particularly...Biomarkers of Toxic Industrial Chemical Exposure Major Jonathan D. Stallings *1 , Danielle L. Ippolito 1 , Anders Wallqvist 2 , B. Claire McDyre 3 , and

  16. Toxicovigilance: A new approach for the hazard identification and risk assessment of toxicants in human beings

    International Nuclear Information System (INIS)

    Descotes, Jacques; Testud, Francois

    2005-01-01

    The concept of toxicovigilance encompasses the active detection, validation and follow-up of clinical adverse events related to toxic exposures in human beings. Poison centers are key players in this function as poisoning statistics are essential to define the cause, incidence and severity of poisonings occurring in the general population. In addition, the systematic search for unexpected shifts in the recorded causes of poisonings, e.g., following the introduction of a new product, or change in the formulation or recommended use of an old product, allows for a rapid detection of potential adverse health consequences and the implementation of preventive or corrective measures. However, toxicovigilance is genuinely a medical and not only a statistical approach of human toxicity issues. In contrast to epidemiology, toxicovigilance is based on the in-depth medical assessment of acute or chronic intoxications on an individual basis, which requires detailed information that poison centers can rarely obtain via emergency telephone calls and that epidemiologists cannot collect or process. Validation of this medical information must primarily be based on toxicological expertise to help identify causal links between otherwise unexplained pathological conditions and documented toxic exposures. Thus, toxicovigilance can contribute to hazard identification and risk assessment by providing medically validated data which are often overlooked in the process of risk assessment. So far, very few structured toxicovigilance systems have been set up and hopefully national and international initiatives will bridge this gap in our knowledge of the toxicity of many chemicals and commercial products in human beings

  17. Toxicovigilance: a new approach for the hazard identification and risk assessment of toxicants in human beings.

    Science.gov (United States)

    Descotes, Jacques; Testud, François

    2005-09-01

    The concept of toxicovigilance encompasses the active detection, validation and follow-up of clinical adverse events related to toxic exposures in human beings. Poison centers are key players in this function as poisoning statistics are essential to define the cause, incidence and severity of poisonings occurring in the general population. In addition, the systematic search for unexpected shifts in the recorded causes of poisonings, e.g., following the introduction of a new product, or change in the formulation or recommended use of an old product, allows for a rapid detection of potential adverse health consequences and the implementation of preventive or corrective measures. However, toxicovigilance is genuinely a medical and not only a statistical approach of human toxicity issues. In contrast to epidemiology, toxicovigilance is based on the in-depth medical assessment of acute or chronic intoxications on an individual basis, which requires detailed information that poison centers can rarely obtain via emergency telephone calls and that epidemiologists cannot collect or process. Validation of this medical information must primarily be based on toxicological expertise to help identify causal links between otherwise unexplained pathological conditions and documented toxic exposures. Thus, toxicovigilance can contribute to hazard identification and risk assessment by providing medically validated data which are often overlooked in the process of risk assessment. So far, very few structured toxicovigilance systems have been set up and hopefully national and international initiatives will bridge this gap in our knowledge of the toxicity of many chemicals and commercial products in human beings.

  18. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings

    International Nuclear Information System (INIS)

    Lai, Jin-long; Tao, Zong-ya; Fu, Qian; Han, Na; Wu, Guo; Zhang, Hong; Lu, Hong; Luo, Xue-gang

    2016-01-01

    To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth. - Highlights: • Analyze the chemical toxicity of cesium in seedlings of Indian mustard. • Distinguish between the radiological and chemical effects of radiocesium. • 2032 DEGs that play significant roles in the response to Cs toxicity were identified. • Excessive Cs is disturbance the auxin signal transduction pathway.

  19. Management of diabetic complications: a chemical constituents based approach.

    Science.gov (United States)

    Singh, Randhir; Kaur, Navpreet; Kishore, Lalit; Gupta, Girish Kumar

    2013-10-28

    Long term hyperglycemia leads to development of complications associated with diabetes. Diabetic complications are now a global health problem without effective therapeutic approach. Hyperglycemia and oxidative stress are important components for the development of diabetic complications. Over the past few decades, herbal medicines have attracted much attention as potential therapeutic agents in the prevention and treatment of diabetic complications due to their multiple targets and less toxic side effects. This review aims to assess the current available knowledge of medicinal herbs for attenuation and management of diabetic complications and their underlying mechanisms. Bibliographic investigation was carried out by scrutinizing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases (SCOPUS, PUBMED, SCIELO, NISCAIR, Google Scholar) to retrieve available published literature. The inclusion criteria for the selection of plants were based upon all medicinal herbs and their active compounds with attributed potentials in relieving diabetic complications. Moreover, plants which have potential effect in ameliorating oxidative stress in diabetic animals have been included. Overall, 238 articles were reviewed for plant literature and out of the reviewed literature, 127 articles were selected for the study. Various medicinal plants/plant extracts containing flavonoids, alkaloids, phenolic compounds, terpenoids, saponins and phytosterol type chemical constituents were found to be effective in the management of diabetic complications. This effect might be attributed to amelioration of persistent hyperglycemia, oxidative stress and modulation of various metabolic pathways involved in the pathogenesis of diabetic complications. Screening chemical candidate from herbal medicine might be a promising approach for new drug discovery to treat the diabetic complications. There is still a dire need to explore the mechanism of action of

  20. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  1. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  2. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    Science.gov (United States)

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  4. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  5. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  6. Enhancement of developmental toxicity effects of chemicals by gestational stress. A review

    DEFF Research Database (Denmark)

    Hougaard, Karin S; Hansen, Åse Marie

    2007-01-01

    Risk assessment of developmental toxicants is almost exclusively based on single chemicals studied in animals under controlled experimental conditions, as to reduce stress. Although humans may be exposed simultaneously to numerous hazards, little is known about the interaction of prenatal chemica...

  7. Mode of Action Frameworks in Toxicity Testing and Chemical Risk Assessment

    NARCIS (Netherlands)

    Meek, B.

    2009-01-01

    Recently, legislative mandates worldwide are requiring systematic consideration of much larger numbers of chemicals. This necessitates more efficient and effective toxicity testing, as a basis to be more predictive in a risk assessment context. This in turn requires much more emphasis early in the

  8. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide; Correction. SUMMARY: The... Administrative Stay of the reporting requirements for hydrogen sulfide. The Office of the Federal Register...

  9. 76 FR 38169 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2011-06-29

    ... (7405M), Office of Pollution Prevention and Toxics, Environmental Protection Agency, 1200 Pennsylvania... gold leaf, dyeing mixtures, antifreeze mixtures, extraction of resins and waxes, preservative for...: June 21, 2011. Maria J. Doa, Director, Chemical Control Division, Office of Pollution Prevention and...

  10. Passive dosing of pyrethroid insecticides to Daphnia magna: Expressing excess toxicity by chemical activity

    DEFF Research Database (Denmark)

    Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, A. C.

    2015-01-01

    ) Effective chemical activities resulting in 50% immobilisation (Ea50) will be estimated from pyrethroid EC50 values via the correlation of sub-cooled liquid solubility (S L, [mmol/L], representing a=1) and octanol to water partitioning ratios (Kow), (3) The excess toxicity observed for pyrethroids...

  11. CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to compare the concentrations of contaminants and toxicities of sedime...

  12. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  13. Sacrifice zones: the front lines of toxic chemical exposure in the United States

    National Research Council Canada - National Science Library

    Lerner, Steve

    2010-01-01

    ... States of America. Library of Congress Cataloging-in-Publication Data Lerner, Steve. Sacrifice zones: the front lines of toxic chemical exposure in the United States / Steve Lerner. p. cm. Includes bibliographical references and index. ISBN 978-0-262-01440-3 (hardcover : alk. paper) 1. Environmental toxicology- United States- Case studies. 2. Che...

  14. ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?

    Science.gov (United States)

    Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...

  15. Environmental toxicity of Chemical Warfare Agents (CWAs) - MicrotoxTM and Spontaneous Locomotor Changes

    DEFF Research Database (Denmark)

    Storgaard, Morten Swayne; Sanderson, Hans; Baatrup, Erik

    After the 2nd World War the CWAs were prohibited by law and 11,000 tonnes of toxic agents were dumped in the Bornholm Basin east of Bornholm. The dumped chemical munitions have not reached attention from politicians and scientists until recently. During earlier projects, such as MERCW (2005...

  16. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  17. Mobility and Attenuation Dynamics of Potentially Toxic Chemical Species at an Abandoned Copper Mine Tailings Dump

    Directory of Open Access Journals (Sweden)

    Wilson Mugera Gitari

    2018-02-01

    Full Text Available Large volumes of disposed mine tailings abound in several regions of South Africa, as a consequence of unregulated, unsustainable long years of mining activities. Tailings dumps occupy a large volume of valuable land, and present a potential risk for aquatic systems, through leaching of potentially toxic chemical species. This paper reports on the evaluation of the geochemical processes controlling the mobility of potentially toxic chemical species within the tailings profile, and their potential risk with regard to surface and groundwater systems. Combination of X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS techniques, show that the tailing profiles are uniform, weakly altered, and vary slightly with depth in both physical and geochemical properties, as well as mineralogical composition. Mineralogical analysis showed the following order of abundance: quartz > epidote > chlorite > muscovite > calcite > hematite within the tailings profiles. The neutralization of the dominant alumino-silicate minerals and the absence of sulfidic minerals, have produced medium alkaline pH conditions (7.97–8.37 at all depths and low concentrations of dissolved Cu (20.21–47.9 µg/L, Zn (0.88–1.80 µg/L, Pb (0.27–0.34 µg/L, and SO42− (15.71–55.94 mg/L in the tailings profile leachates. The relative percentage leach for the potentially toxic chemical species was low in the aqueous phase (Ni 0.081%, Cu 0.006%, and Zn 0.05%. This indicates that the transport load of potentially toxic chemical species from tailings to the aqueous phase is very low. The precipitation of secondary hematite has an important known ability to trap and attenuate the mobility of potentially toxic chemical species (Cu, Zn, and Pb by adsorption on the surface area. Geochemical modelling MINTEQA2 showed that the tailings leachates were below saturation regarding oxyhydroxide minerals, but oversaturated with Cu

  18. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  19. Brand switching and toxic chemicals in cigarette smoke: A national study.

    Science.gov (United States)

    Mendel, Jennifer R; Baig, Sabeeh A; Hall, Marissa G; Jeong, Michelle; Byron, M Justin; Morgan, Jennifer C; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T

    2018-01-01

    US law requires disclosure of quantities of toxic chemicals (constituents) in cigarette smoke by brand and sub-brand. This information may drive smokers to switch to cigarettes with lower chemical quantities, under the misperception that doing so can reduce health risk. We sought to understand past brand-switching behavior and whether learning about specific chemicals in cigarette smoke increases susceptibility to brand switching. Participants were US adult smokers surveyed by phone (n = 1,151, probability sample) and online (n = 1,561, convenience sample). Surveys assessed whether smokers had ever switched cigarette brands or styles to reduce health risk and about likelihood of switching if the smoker learned their brand had more of a specific chemical than other cigarettes. Chemicals presented were nicotine, carbon monoxide, lead, formaldehyde, arsenic, and ammonia. Past brand switching to reduce health risk was common among smokers (43% in phone survey, 28% in online survey). Smokers who were female, over 25, and current "light" cigarette users were more likely to have switched brands to reduce health risks (all p brand switching based on information about particular chemicals. In both samples, lead, formaldehyde, arsenic, and ammonia led to more susceptibility to switch than nicotine (all p brands or styles to reduce health risks. The majority said they might or would definitely switch brands if they learned their cigarettes had more of a toxic chemical than other brands. Brand switching is a probable unintended consequence of communications that show differences in smoke chemicals between brands.

  20. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  2. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  3. Chronic uranium exposure and growth toxicity for phytoplankton. Dose-effect relationship: first comparison of chemical and radiological toxicity

    International Nuclear Information System (INIS)

    Gilbin, R.; Pradines, C.; Garnier-Laplace, J.

    2004-01-01

    The bioavailability of uranium for freshwater organisms, as for other dissolved metals, is closely linked to chemical speciation in solution (U aqueous speciation undergoes tremendous changes in the presence of ligands commonly found in natural waters e.g. carbonate, phosphate, hydroxide and natural organic matter). For the studied chemical domain, short-term uranium uptake experiments have already shown that the free uranyl ion concentration [UO 2 2+ ] is a good predictor of uranium uptake by the green algae Chlamydomonas reinhardtii, as predicted by the Free Ion Activity Model. In agreement with these results, acidic pH and low ligands concentrations in water enhance uranium bioavailability and consequently its potential chronic effects on phytoplankton. Moreover, uranium is known to be both radio-toxic and chemo-toxic. The use of different isotopes of uranium allows to expose organisms to different radiological doses for the same molar concentration: e.g. for a given element concentration (chemical dose), replacing depleted U by U-233 obviously leads to an enhanced radiological delivered dose to organisms (x10 4 ). In this work we established relationships between uranium doses (depleted uranium and 233-U ) and effect on the growth rate of the green algae Chlamydomonas reinhardtii. Uranium bioaccumulation was also monitored. Growth rate was measured both in classical batch (0-72 hrs) and continuous (turbidostat) cultures, the latter protocol allowing medium renewal to diminish exudates accumulation and speciation changes in the medium. The differences in effects will be, if possible, related to the development of defence mechanisms against the formation of reactive oxygen species (forms of glutathione) and the production of phyto-chelatins (small peptides rich in cystein that play an important role in the homeostasis and the detoxication of metals in cells). (author)

  4. Effects of toxic chemicals on the reproductive system. Council on Scientific Affairs.

    Science.gov (United States)

    1985-06-21

    In an effort to make physicians more aware of the hazards of the workplace to pregnant workers, the Council on Scientific Affairs' Advisory Panel on Reproductive Hazards in the Workplace prepared this third and final report reviewing the effects of chemical exposure. A total of 120 chemicals were considered for reviews based on an estimation of their imminent hazard, ie, widespread use and/or inherent toxicity. Following a brief introduction, which sets out general principles, clinical applications, and aids to the recognition of a human teratogen, the report presents reviews and opinions for three representative chemicals. Information concerning the remaining 117 compounds is available upon request.

  5. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    International Nuclear Information System (INIS)

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: ► We assessed mixtures in untreated groundwater samples from public-supply wells. ► A screening

  6. Toxicity testing of chemical mixtures: some general aspects and need of international guidelines.

    Science.gov (United States)

    Kappus, H; Yang, R S

    1996-01-01

    The topics discussed by the Working Group on Toxicity Testing of Chemical Mixtures included the following (1) the study designs and results from two real-life exposure scenarios as additional information to the various investigations reported at the conference; (2) the need to take into consideration low-level, long-term exposure (i.e. mimicking human exposure conditions) as well as the issue of limited resources in experimental toxicology studies; (3) the importance of exploring alternative and predictive toxicology methodologies to minimize animal use and to conserve resources; (4) the realization that interactive toxicity should include the consideration of physical and biological agents in addition to chemicals. Two specific studies reported at the conference were also discussed. A number of recommendations were made concerning the planning and implementation of toxicology studies on chemical mixtures.

  7. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  8. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  9. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  10. Protecting children from toxic chemicals: putting it on Australia's public health agenda.

    Science.gov (United States)

    Lantz, Sarah

    2013-11-01

    The high volume and widespread use of industrial chemicals, the backlog of internationally untested chemicals, the uptake of synthetic chemicals found in babies in utero, cord blood, and in breast milk, and the lack of a unified and comprehensive regulatory framework all necessitate developing policies that protect the most vulnerable in our society - our children. Australia's failure to do so raises profound intergenerational ethical issues. This article tells a story of international policy, and where Australia is falling down. It demonstrates that we can learn from countries already taking critical steps to reduce the toxic chemical exposure, and that the development of a comprehensive, child-centered chemical regulation framework is central to turning around Australia's failure.

  11. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    Science.gov (United States)

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Role of environmental stress in the physiological response to chemical toxicants

    International Nuclear Information System (INIS)

    Gordon, C.J.

    2003-01-01

    Environmental physiology is the study of the physiological mechanisms that allow animals to cope with and adapt to changes in temperature, humidity, atmospheric pressure, and other natural factors of their physical environment. Nearly all toxicological and pharmacological studies are performed in resting (i.e., non exercising) experimental animals acclimatized to standard environmental conditions that are usually considered ideal to the animal's physiological well-being. These ideal test conditions are clearly not representative of the fluctuations in the natural environment encountered by humans and other animals on a day-to-day basis. It behooves the toxicologist, especially those interested in extrapolating experimental data from laboratory animals to humans, to consider how variations in the natural environment will alter physiological responses to toxicants. Temperature and exercise are the two most well-studied parameters in the fields of environmental physiology and toxicology. In general, high temperatures exacerbate the toxic effects of many environmental toxicants. Moreover, exercising subjects are generally more vulnerable to airborne toxic agents. The prospect of global warming also warrants a better assessment of how higher environmental temperatures may impact on the response of humans and other species to toxic chemicals. Hence, this paper and accompanying papers from the proceedings of a symposium focus on the salient aspects of the interaction between environmental stress and physiological response to toxic agents with particular emphasis on temperature and exercise

  13. Bioassay of Lake Onego bottom sediments toxicity based on their chemical composition and deepwater macrozoobenthos state

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2017-03-01

    Full Text Available The bioassay of the toxicity of bottom sediments sampled in different areas of Lake Onega was carried out by crustaceans biotesting (Ceriodaphnia affinis Lillijeborg. It was shown that in the most areas of Lake Onega there are non-toxic bottom sediments. Toxic bottom sediments were found in Kondopogskaya Bay, intensively polluted with pulp-and-paper mill wastewaters. For the first time in the deep central part of Lake Onega the area was revealed where the toxic bottom sediments contain a high content of iron, manganese and other trace elements typical for the central areas of the lake. The mapping of the bottom of Lake Onega was accomplished, and three zones were identified based on the analysis of the data concerning the chemical composition of bottom sediments, bioassay toxicity data and the results of the deepwater macrozoobenthos assessment. For each zone the parameters of the main groups of benthos (Amphipoda, Oligochaeta, Chironomidae were defined. The first zone is located in the area of intensive anthropogenic influence (Kondopogskaya Bay, Petrozavodskaya Bay, Povenets Bay, Kizhi Skerries. The second zone is located mostly in the deep part of Petrozavodskaya Bay, where the most intensive development of amphipods is observed. The third area is identified for the first time: it is located in the central deep part of Lake Onega, where the communities of macrozoobenthos are limited by a natural toxic factor.

  14. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    Science.gov (United States)

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  15. A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard; Engelbrekt, Christian; Lützhøft, Hans-Christian Holten

    2016-01-01

    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata...

  16. Comparing rankings of selected TRI organic chemicals for two environments using a level III fugacity model and toxicity

    International Nuclear Information System (INIS)

    Edwards, F.G.; Egemen, E.; Nirmalakhandan, N.

    1998-01-01

    The Toxics Release Inventory, TRI (USEPA, 1995) is a comprehensive listing of chemicals, mass released, source of releases, and other related information for chemicals which are released into the environment in the US. These chemicals are then ranked according to the mass released as a indication of their environmental impact. Industries have been encouraged to adopt production methods to decrease the release of chemicals which are ranked highly in the TRI. Clearly, this ranking of the chemicals based upon the mass released fails to take into account very important environmental aspects. The first and most obvious aspect is the wide range of toxicity's of the chemicals released. Numerous researchers have proposed systems to rank chemicals according to their toxicity. The second aspect, which a mass released based ranking does not take into account, is the fate and transport of each chemical within the environment. Cohen and Ryan (1985) and Mackay and Paterson (1991) have proposed models to evaluate the fate and transport of chemicals released into the environment. Some authors have incorporated the mass released and toxicity with some fate and transport aspects to rank the impact of released chemicals. But, due to the complexities of modeling the environment, the lack of published data on properties of chemicals, and the lack of information on the speciation of chemicals in complex systems, modeling the fate and transport of toxic chemicals in the environment remains difficult. To provide an indication of the need to rank chemicals according to their environmental impact instead of the mass released, the authors have utilized a subset of 45 organic chemicals from the TRI, modeled the fate and transport of the chemicals using a Level III fugacity model, and compared those equilibrium concentrations with toxicity data to yield a hazard value for each chemical

  17. A Chemical Activity Approach to Exposure and Risk Assessment of Chemicals

    DEFF Research Database (Denmark)

    Gobas, Frank A. P. C.; Mayer, Philipp; Parkerton, Thomas F.

    2018-01-01

    activity approach, its strengths and limitations, and provides examples of how this concept may be applied to the management of single chemicals and chemical mixtures. The examples demonstrate that the chemical activity approach provides a useful framework for 1) compiling and evaluating exposure......To support the goals articulated in the vision for exposure and risk assessment in the twenty-first century, we highlight the application of a thermodynamic chemical activity approach for the exposure and risk assessment of chemicals in the environment. The present article describes the chemical...... assessment. The article further illustrates that the chemical activity approach can support an adaptive management strategy for environmental stewardship of chemicals where “safe” chemical activities are established based on toxicological studies and presented as guidelines for environmental quality...

  18. Integrated approaches for determination of environmental and human risks of persistent toxic substances

    International Nuclear Information System (INIS)

    Blaha, L.; Cupr, P.; Dusek, L.; Hilscherova, K.; Holoubek, I.; Klanova, J.

    2008-01-01

    Substances that are persistent and bioaccumulative often posses toxic characteristics and cause adverse human health or environmental effects. Basic objective of the long-term research project INCHEMBIOL undertaken by the Centre RECETOX are the complex studies of interactions among chemical compounds present in environmental compartments and their biological effects and studies of the fate of mainly persistent chemical compounds in the environment, their effects on the environment and living organisms including human. Destiny in this concept consists of a summary of transport (from their input in the environment, transport within the environmental compartment, where they are discharged, transport among compartments and long-range transport in the environment) and transformation processes (abiotic and biotic transformations). It also includes study of distribution equilibriums, properties conditioning their environmental behaviour, study of the transformation processes and their products. This complex approach is a part of long-term research activities of the centre RECETOX. In the contribution methods used and results obtained in exploration of the causality among chemical (presence of chemical compounds in the environment) and biological (mechanisms of effects on the living organisms) are described.

  19. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  20. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Directory of Open Access Journals (Sweden)

    Hongbin Yang

    2018-02-01

    Full Text Available During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  1. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  2. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dayong [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000 (China); Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Xianghong [Department of Public Management, Tongji University, Shanghai 200092 (China); Yin, Daqiang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-10-15

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two

  3. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Tian, Dayong; Lin, Zhifen; Zhou, Xianghong; Yin, Daqiang

    2013-01-01

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E binding ), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two generic

  4. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space.

    Science.gov (United States)

    Marvuglia, Antonino; Kanevski, Mikhail; Benetto, Enrico

    2015-10-01

    Toxicity characterization of chemical emissions in Life Cycle Assessment (LCA) is a complex task which usually proceeds via multimedia (fate, exposure and effect) models attached to models of dose-response relationships to assess the effects on target. Different models and approaches do exist, but all require a vast amount of data on the properties of the chemical compounds being assessed, which are hard to collect or hardly publicly available (especially for thousands of less common or newly developed chemicals), therefore hampering in practice the assessment in LCA. An example is USEtox, a consensual model for the characterization of human toxicity and freshwater ecotoxicity. This paper places itself in a line of research aiming at providing a methodology to reduce the number of input parameters necessary to run multimedia fate models, focusing in particular to the application of the USEtox toxicity model. By focusing on USEtox, in this paper two main goals are pursued: 1) performing an extensive exploratory analysis (using dimensionality reduction techniques) of the input space constituted by the substance-specific properties at the aim of detecting particular patterns in the data manifold and estimating the dimension of the subspace in which the data manifold actually lies; and 2) exploring the application of a set of linear models, based on partial least squares (PLS) regression, as well as a nonlinear model (general regression neural network--GRNN) in the seek for an automatic selection strategy of the most informative variables according to the modelled output (USEtox factor). After extensive analysis, the intrinsic dimension of the input manifold has been identified between three and four. The variables selected as most informative may vary according to the output modelled and the model used, but for the toxicity factors modelled in this paper the input variables selected as most informative are coherent with prior expectations based on scientific knowledge

  5. In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation

    International Nuclear Information System (INIS)

    Burton, G. Allen; Greenberg, Marc S.; Rowland, Carolyn D.; Irvine, Cameron A.; Lavoie, Daniel R.; Brooker, John A.; Moore, Laurie; Raymer, Delia F.N.; McWilliam, Ruth A.

    2005-01-01

    An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses. - In situ exposures provide unique information that is complementary to traditional lab-based toxicity results

  6. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  7. [Risk assessment and risk control for occupational exposure to chemical toxicants from an isophorone nitrile device].

    Science.gov (United States)

    Wang, Dejun; Fu, Xiaokuan; Kong, Fanling; Sui, Shaofeng; Jiang, Yuanyuan; Du, Yinglin; Zhou, Jingyang

    2014-06-01

    Risk assessment and risk control for occupational exposure to chemical toxicants were performed on an isophorone nitrile device with an annual production of 5,000 tons, based on improved Singaporean semi-quantitative risk assessment method, with consideration of actual situation in China and in the present project. With the use of engineering analysis and identification of occupational hazards in the improved Singaporean semi-quantitative risk assessment method, hazard rating (HR) and risk assessment were performed on chemical toxicants from an isophorone nitrile device with an annual production of 5,000 tons. The chemical toxicants in the isophorone nitrile device were mainly isophorone, hydrocyanic acid, methanol, phosphoric acid, sodium hydroxide, and sodium cyanide; the HR values were mild hazard (2), extreme hazard (5), mild hazard (2), mild hazard (2), moderate hazard (3), and extreme hazard (5), respectively, and the corresponding exposure rating (ER) values were 2.09, 2.72, 2.76, 1.68, 2.0, and 1.59, respectively. The risk of chemical toxicants in this project was assessed according to the formula Risk = [HR×ER](1/2). Hydrocyanic acid was determined as high risk, sodium hydroxide and sodium cyanide as medium risk, and isophorone, methanol, and phosphoric acid as low risk. Priority in handling of risks was determined by risk rating. The table of risk control measure was established for pre-assessment of occupational hazards. With risk assessment in this study, we concluded that the isophorone nitrile device with 5,000 ton annual production was a high-occupational hazard device. This device is a project of extreme occupational hazard. The improved Singaporean semi-quantitative risk assessment method is a scientific and applicable method, and is especially suitable for pre-evaluation of on-site project with no analogy.

  8. CHEMICAL COMPOSITION AND TOXICITY OF CITRUS ESSENTIAL OILS ON Dysmicoccus brevipes (HEMIPTERA: PSEUDOCOCCIDAE)

    OpenAIRE

    MARTINS, GISELE DOS SANTOS OLIVEIRA; ZAGO, HUGO BOLSONI; COSTA, ADILSON VIDAL; ARAUJO JUNIOR, LUIS MOREIRA DE; CARVALHO, JOSÉ ROMÁRIO DE

    2017-01-01

    ABSTRACT The insect Dysmicoccus brevipes (Hemiptera: Pseudococcidae) has been reported as an important pest for several crops, especially coffee. The citrus essential oils can be obtained as by-products of the citrus-processing industry and have been tested as an alternative to control different insect groups. Therefore, the objective of this work was to determine the chemical composition and evaluate the toxicity of commercial sweet orange (Citrus sinensis), bitter orange (Citrus aurantium) ...

  9. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  10. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  11. Toxicity of fire retardant chemicals and fire suppressant foams to vertebrate and invertebrate wildlife species

    Science.gov (United States)

    Vyas, Nimish B.; Hill, Elwood F.

    1996-01-01

    Under laboratory conditions, acute single-dose oral toxicity tests (LD50) were conducted with three fire retardant chemicals (Fire-Trol GTS-R, Phos-Chek D75-F, and Fire-Trol LCG-R) and two fire suppressant foams (Silv-Ex and Phos-Chek WD-881) to determine effects on adult northern bobwhite, American kestrel, red-winged blackbird, and white-footed mouse. In addition, earthworms were exposed (LC50) for 14 days in treated soil.In general, no toxic responses were evident. For northern bobwhite, the LD50 for all five chemicals was >2000 mg a.l./kg of body mass. American kestrels regurgitated all chemicals except Silv-ex; LD50s all exceeded 2000 mg/kg. The LD50 for red-winged blackbird was also >2000 mg/kg for all chemicals except Fire-Trol GTS-R which is currently undergoing further testing. In addition, the LD50 for white-footed mouse was >2000 mg/kg for Phos-Chek D75F. The 14-day LC50 for earthworms was >1000 ppm for all chemicals. Therefore, we concluded that these retardants and foams do not pose an acute hazard to adult birds, mammals, or earthworms. However, ecological studies to evaluate the potential effects of these formulations on vertebrate behavior and population dynamics are in progress.

  12. Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha--a review.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Tsay, Hsin Sheng

    2015-07-16

    Dysosma pleiantha (Hance) Woodson also called as Bajiaolian belongs to the family Berberidaceae, is widely used in Taiwan as traditional Chinese herbal medicine for more than thousands of years. It is usually recommended by various traditional Chinese medical doctors and herbal pharmacies for general remedies including postpartum recovery, treatment of weakness, neck mass, acne, hepatoma, lumbago, snakebite, tumor growth and dysmenorrhea. In the textbooks of traditional Chinese medicine, there is limited information about the toxicity of Bajiaolian. Podophyllotoxin, a lignan is the main toxic ingredient of Bajiaolian rhizome. Therefore, Bajiaolian is documented as the fifth highest cause of poisoning among the herbal medicine in Taiwan. Since the therapeutic and toxic doses are very close, Bajiaolian poisoning cases are frequently reported in Taiwan. Moreover, Dysosma poisoning cases are difficult to diagnosis because physicians are unfamiliar with this medicine's multiple clinical presentations in different stages of intoxication. Therefore, the objective of this review is to represent the collective information available in literatures regarding D. pleiantha, a cytotoxic lignan containing medicinal plant. Specifically, the literatures have been reviewed for articles pertaining to chemical constituents, properties, therapeutical benefits, toxicity, poisoning symptoms, toxic as well as therapeutic dose and medical management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Brand switching and toxic chemicals in cigarette smoke: A national study.

    Directory of Open Access Journals (Sweden)

    Jennifer R Mendel

    Full Text Available US law requires disclosure of quantities of toxic chemicals (constituents in cigarette smoke by brand and sub-brand. This information may drive smokers to switch to cigarettes with lower chemical quantities, under the misperception that doing so can reduce health risk. We sought to understand past brand-switching behavior and whether learning about specific chemicals in cigarette smoke increases susceptibility to brand switching.Participants were US adult smokers surveyed by phone (n = 1,151, probability sample and online (n = 1,561, convenience sample. Surveys assessed whether smokers had ever switched cigarette brands or styles to reduce health risk and about likelihood of switching if the smoker learned their brand had more of a specific chemical than other cigarettes. Chemicals presented were nicotine, carbon monoxide, lead, formaldehyde, arsenic, and ammonia.Past brand switching to reduce health risk was common among smokers (43% in phone survey, 28% in online survey. Smokers who were female, over 25, and current "light" cigarette users were more likely to have switched brands to reduce health risks (all p < .05. Overall, 61-92% of smokers were susceptible to brand switching based on information about particular chemicals. In both samples, lead, formaldehyde, arsenic, and ammonia led to more susceptibility to switch than nicotine (all p < .05.Many US smokers have switched brands or styles to reduce health risks. The majority said they might or would definitely switch brands if they learned their cigarettes had more of a toxic chemical than other brands. Brand switching is a probable unintended consequence of communications that show differences in smoke chemicals between brands.

  14. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    Science.gov (United States)

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at pchemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  15. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity.

    Science.gov (United States)

    Cruz-Monteagudo, Maykel; Cordeiro, M Natália D S; Borges, Fernanda

    2008-03-01

    Idiosyncratic drug toxicity (IDT), considered as a toxic host-dependent event, with an apparent lack of dose response relationship, is usually not predictable from early phases of clinical trials, representing a particularly confounding complication in drug development. Albeit a rare event (usually approach proposed in the present study, can play an important role in addressing IDT in early drug discovery. We report for the first time a systematic evaluation of classification models to predict idiosyncratic hepatotoxicity based on linear discriminant analysis (LDA), artificial neural networks (ANN), and machine learning algorithms (OneR) in conjunction with a 3D molecular structure representation and feature selection methods. These modeling techniques (LDA, feature selection to prevent over-fitting and multicollinearity, ANN to capture nonlinear relationships in the data, as well as the simple OneR classifier) were found to produce QSTR models with satisfactory internal cross-validation statistics and predictivity on an external subset of chemicals. More specifically, the models reached values of accuracy/sensitivity/specificity over 84%/78%/90%, respectively in the training series along with predictivity values ranging from ca. 78 to 86% of correctly classified drugs. An LDA-based desirability analysis was carried out in order to select the levels of the predictor variables needed to trigger the more desirable drug, i.e. the drug with lower potential for idiosyncratic hepatotoxicity. Finally, two external test sets were used to evaluate the ability of the models in discriminating toxic from nontoxic structurally and pharmacologically related drugs and the ability of the best model (LDA) in detecting potential idiosyncratic hepatotoxic drugs, respectively. The computational approach proposed here can be considered as a useful tool in early IDT prognosis.

  16. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential.

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A; Jolliet, Olivier; Georgopoulos, Panos G; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A; Vallero, Daniel A

    2013-08-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA's need to develop novel approaches and tools for rapidly prioritizing chemicals, a "Challenge" was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA's effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A.; Jolliet, Olivier; Georgopoulos, Panos G.; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A.; Vallero, Daniel A.

    2014-01-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA’s need to develop novel approaches and tools for rapidly prioritizing chemicals, a “Challenge” was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA’s effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. PMID:23707726

  19. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    Science.gov (United States)

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  20. Chemical Facility Preparedness: A Comprehensive Approach

    National Research Council Canada - National Science Library

    Pennington, Daniel

    2006-01-01

    .... Many sites are clustered together in densely populated areas. If terrorists cause catastrophic chemical releases or explosions at these key facilities, large numbers of Americans will be put at risk of injury or death...

  1. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  2. Toxic industrial chemicals (TICs) as asymmetric weapons: the design basis threat

    International Nuclear Information System (INIS)

    Skinner, L.

    2009-01-01

    Asymmetric warfare concepts relate well to the use of improvised chemical weapons against urban targets. Sources of information on toxic industrial chemicals (TICs) and lists of high threat chemicals are available that point to likely choices for an attack. Accident investigations can be used as a template for attacks, and to judge the possible effectiveness of an attack using TICs. The results of a chlorine rail car accident in South Carolina, USA and the Russian military assault on a Moscow theater provide many illustrative points for similar incidents that mighty be carried out deliberately. Computer modeling of outdoor releases shows how an attack might take into consideration issues of stand-off distance and dilution. Finally, the preceding may be used to estimate with some accuracy the design basis threat posed by the used of TICs as weapons.(author)

  3. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    Science.gov (United States)

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

    Directory of Open Access Journals (Sweden)

    Katharine A. Horzmann

    2016-08-01

    Full Text Available Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.

  5. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    Science.gov (United States)

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    Science.gov (United States)

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  7. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  8. Proteomic Signatures of the Zebrafish (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals.

    Science.gov (United States)

    Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike

    2010-01-01

    Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC(10)) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate "pattern-only" PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress.

  9. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish.

    Science.gov (United States)

    Harper, Bryan J; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B; Harper, Stacey L

    2016-06-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles.

  10. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  11. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  12. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    Science.gov (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  13. In Vitro Rat Hepatocyte Toxicity and Bacteria Genotoxicity Evaluation of High Energy Chemicals for Replacement of Hydrazine

    National Research Council Canada - National Science Library

    Husain, S

    2002-01-01

    In an effort to develop methods to predict the toxicological response of newly synthesized chemicals that are of interest to the US Air Force, in vitro rat hepatocyte toxicity and bacteria (Salmonella...

  14. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  15. The approach of toxic and radiological risk equivalence in UF6 transport

    International Nuclear Information System (INIS)

    Ringot, C.; Hamard, J.

    1989-01-01

    After a brief description of the present situation concerning the safety of the transport of UF6 and the new regulation project which is being developed under the behalf of IAEA, the equivalence of radioactive and chemical risks is considered for UF6 transport regulations. The concept of low specific activity appearing misfitting to toxic gas, it is proposed a quantity limit of material, T 2 (equivalent to A 2 for radioactive materials), for packagings which do not resist to accidental conditions, (9 m drop, 800 0 C, 30 minutes fire environment). It is proposed that this limit is chosen as the release rate which is acceptable after the IAEA tests for packages having a capacity higher than T 2 kilograms. The fire being considered as the most severe situation for the toxic risk, different possible scenarios are described. This approach of risk equivalence leads to impose that the packaging resists a 800 0 C - 30 minutes fire and that in this condition the release is less than T 2 . The problem of the behaviour of the shell and the openings (in particular the valve) is raised in this context [fr

  16. Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox (trade name)

    International Nuclear Information System (INIS)

    Ho, K.T.Y.; Quinn, J.G.

    1993-01-01

    Several physical and chemical parameters of sediment extraction and fractionation of organic compounds that influence bioassay results were evaluated. Each parameter was evaluated with a photoluminescent bacterial bioassay (Microtox) as an end point. Three solvents (acetonitrile, acetone, and methanol) were studied for their ability to extract toxic organic components from marine sediments. Acetone extracted the most toxicity, with no difference between acetonitrile and methanol. Two methods of fractionating sediment extracts (silica-gel-column chromatography (SGCC) and acid-base fractionation) were compared. SGCC was more useful because it resulted in a wider range of responses and was faster to perform than acid-base fractionation. Microtox was used to rank four marine sediments with respect to toxicity and to determine if one chemical class (or fraction) was consistently more toxic among different sediments. With some caveats, Microtox results agreed with general chemical concentration trends and other bioassay results in distinguishing between contaminated and noncontaminated sediments. Although results indicated there was not a consistently most toxic fraction among sediments, there was a consistently least toxic fraction. The effect of sediment storage time on toxicity was also evaluated. Results indicated that the most stable chemical fraction (containing nonpolar hydrocarbons) did not change toxicologically for 30 weeks, whereas the more chemically active fraction (containing ketones, quinones, and carboxyls) changed as soon as one week

  17. Toxicity testing and chemical analyses of recycled fibre-based paper for food contact

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Pedersen, Gitte Alsing; Vinggaard, Anne

    2002-01-01

    of different qualities as food-contact materials and to Perform a preliminary evaluation of their suitability from a safety point of view, and, second, to evaluate the use of different in vitro toxicity tests for screening of paper and board. Paper produced from three different categories of recycled fibres (B...... of the paper products were extracted with either 99% ethanol or water. Potential migrants in the extracts were identified and semiquantified by GC-1R-MS or GC-HRMS. In parallel to the chemical analyses, a battery of four different in vitro toxicity tests with different endpoints were applied to the same...... was less cytotoxic than the extracts prepared from paper made from recycled fibres, and extracts prepared from C was the most cytotoxic. None of the extracts showed mutagenic activity No conclusion about the oestrogenic activity could be made, because all extracts were cytotoxic to the test organism (yeast...

  18. Generally applicable limits on intakes of uranium based on its chemical toxicity and the radiological significance of intakes at those limits

    International Nuclear Information System (INIS)

    Thorne, M C; Wilson, J

    2015-01-01

    Uranium is chemically toxic and radioactive, and both considerations have to be taken into account when limiting intakes of the element, in the context of both occupational and public exposures. Herein, the most recent information available on the chemical toxicity and biokinetics of uranium is used to propose new standards for limiting intakes of the element. The approach adopted allows coherent standards to be set for ingestion and inhalation of different chemical forms of the element by various age groups. It also allows coherent standards to be set for occupational and public exposures (including exposures of different age groups) and for various exposure regimes (including short-term and chronic exposures). The proposed standards are more restrictive than those used previously, but are less restrictive than the Minimal Risk Levels proposed recently by the US Agency for Toxic Substances and Disease Registry. Having developed a set of proposed limits based solely on chemical toxicity considerations, the radiological implications of exposure at those proposed limits are investigated for natural, depleted and enriched uranium. (paper)

  19. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  20. Destruction of highly toxic chemical materials by using the energy of underground thermonuclear explosion

    International Nuclear Information System (INIS)

    Trutnev, Y.

    1991-01-01

    One of the main problems of modern technogenic civilisation is the evergrowing ecological crisis caused by the growth of industrial wastes harmful for biosphere. Among them the radioactive wastes of atomic energetics, worked out nuclear energy facilities and toxic wastes from various chemical plants begin to play a specific role. Traditional technologies of destruction and disposal of these wastes demand great investments up to many billions of dollars, enormous maintenance expenditures, occupation of substantial territories by new productions and security zones as well as many qualified specialists. On the other hand potential accidents during the conventional processes of waste reprocessing are fraught with the possibility of large ecological disasters, that are the reason of strong oppositions of population and 'green movement' to the foundation of such installations. So, rather progressive seem to be the technologies based on the utilisation of underground nuclear explosion energy for annihilations and disposal of high-level wastes of atomic energetics and nuclear facilities as well as for thermal decomposition of chemically toxic substances at extremely high temperatures. These technologies will be rather cheap, they will allow to process big amounts of materials in ecologically safe form far from the populated regions and will need a commercially beneficial if used for international purposes. The application of these technologies may be of great significance for realisation of disarmament process- destruction of chemical weapons and in future the nuclear warheads and some production components. (au)

  1. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  2. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    Science.gov (United States)

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  3. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust.

    Science.gov (United States)

    Cao, Zhi-Guo; Yu, Gang; Chen, Yong-Shan; Cao, Qi-Ming; Fiedler, Heidelore; Deng, Shu-Bo; Huang, Jun; Wang, Bin

    2012-11-15

    For researches on toxic chemicals in settled indoor dust, selection of dust fraction is a critical influencing factor to the accuracy of human exposure risk assessment results. However, analysis of the selection of dust fraction in recent studies revealed that there is no consensus. This study classified and presented researches on distribution of toxic chemicals according to dust particle size and on relationship between dust particle size and human exposure possibility. According to the literature, beyond the fact that there were no consistent conclusions on particle size distribution of adherent fraction, dust with particle size less than 100 μm should be paid more attention and that larger than 250 μm is neither adherent nor proper for human exposure risk assessment. Calculation results based on literature data show that with different selections of dust fractions, analytical results of toxic chemicals would vary up to 10-fold, which means that selecting dust fractions arbitrarily will lead to large errors in risk assessment of human exposure to toxic chemicals in settled dust. Taking into account the influence of dust particle size on risk assessment of human exposure to toxic chemicals, a new methodology for risk assessment of human exposure to toxic chemicals in settled indoor dust is proposed and human exposure parameter systems to settled indoor dust are advised to be established at national and regional scales all over the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    International Nuclear Information System (INIS)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr.

    1990-01-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36 degrees C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components

  5. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-09-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36{degrees}C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components.

  6. Colloid formation as an approach to remediate toxic wastes containing chromium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Larry L [Laboratory of Microbial Chemistry, Department of Biology, University of New Mexico, Albuquerque, NM (United States); Lindemann, William C [Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM (United States); Bearden, Deborah L [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM (United States)

    1992-07-01

    We have explored the use of bacteria to remediate soil and aquatic sites containing toxic levels of Pb II or Cr VI. Bacterial isolates from metal-containing sites are capable of detoxifying water containing up to 10 mM Pb II. This activity is a two step process with an initial binding of Pb II to the cells followed by production of a black Pb-containing colloid. Numerous bacteria will reduce Cr VI to Cr III and some isolates have been found to bind Cr III to the bacterial cell. Colloids consisting of Cr III would result from the formation of chromium hydroxide or from binding to bacteria. The bacterial metabolism of Pb II and Cr III converts the biologically toxic and chemically reactive metal to compounds of reduced toxicity and modified chemical activity. We propose a system which can employ bacteria for the bioremediation of toxic sites containing lead or chromium. (author)

  7. Approach to chemical equilibrium in thermal models

    International Nuclear Information System (INIS)

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  8. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  9. Environment-friendly approach for the removal of toxic metals

    International Nuclear Information System (INIS)

    Zahra, N.; Mehmood, F.; Sheikh, S.T.; Javed, K.; Amin, A.

    2006-01-01

    Water pollution is serious economical problem and the presence of toxic metals like lead causes contamination of plants and then through nutritional chain it affects the health of humans and animals. This research work describes the removal of lead from wastewater using natural bentonites taken from various areas of Pakistan. The batch adsorption process was applied to remove this toxic metal. The quantities of lead metal before and after the treatment of standard solutions with different samples of bentonite were determined by atomic absorption spectroscopic method. The studies were carried out at room temperature, pH 7 and -200 mesh particle size using 50 ml of metal solutions. The time taken to maintain equilibrium was one hour. Then percentage adsorption was estimated on bentonite samples. (author)

  10. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  11. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  12. Terrestrial ecotoxicity of eight chemicals in a systematic approach

    Energy Technology Data Exchange (ETDEWEB)

    Hund-Rinke, K.; Simon, M. [Fraunhofer Inst. for Molecular Biology and Applied Ecology, Schmallenberg (Germany)

    2005-07-01

    Background and objective. Terrestrial ecotoxicity data are required for many research purposes. The data are derived either from the literature or elaborated by own investigations. As the terrestrial toxicity tests are usually time-consuming and labour intensive, the experiments are performed with a limited number of test organisms and soils. In the context of a project sponsored by CEFIC-LRI (European Chemical Industry Council - Long-Range Research Initiative), EC{sub 50}-values were systematically elaborated for eight chemicals with a wide range of logK{sub ow}-values (CdCl{sub 2}, Trinitrotoluene, 3,4-dichloroaniline, 2,4-dichlorophenol, Tributyltinchloride, Pentachlorophenol, Benzo(a)pyrene, p,p-dichloro-2,2-diphenyl-1,1,1-trichloroethane). The substances were selected covering a broad range of physico-chemical and ecotoxicological properties. As toxicity endpoints, microbial activities, plant germination and growth as well as reproduction of earthworms and collembola were determined. As such systematic investigations are rarely performed and for some substances no data existed, the data pool is made available to the scientific community. Methods. All toxicity tests were conducted on three different soil types (sandy soil, silty soil, loamy soil), according to ISO and OECD guidelines Results, discussion, conclusion and outlook. The different toxicities of the chemicals, the influence of soil properties on bioavailability as well as different sensitivities of test organisms and test parameters are reflected by the EC{sub 50}-values. The results showed that the EC{sub 50}-values calculated on the basis of nominal concentrations can significantly vary from EC{sub 50}-values derived from analytical concentrations for some substances. To avoid false conclusions, this has to be considered especially when concentrations determined in the field are compared with toxicity data obtained from the literature or calculated on the basis of nominal concentrations. Moreover

  13. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    Science.gov (United States)

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  14. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  15. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    /antagonistic activity with the ecdysteroid-responsive Drosophila melanogaster BII cell line 6) to draft an OECD guideline proposal for testing of chemicals based on the experimental work performed within this study In preliminary investigations with A. tonsa were studied various parameters related to processes......New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...... of the present Ph.D. project were: 1) to develop a fully synthetic saltwater medium suitable for laboratory culturing of marine copepods including their feeding organism as well as for toxicity testing 2) to identify sensitive endpoints related to growth, development and reproduction of the pelagic calanoid...

  16. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  17. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  18. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    Science.gov (United States)

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  19. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Science.gov (United States)

    2010-04-14

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment Period... reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4) (75 FR... may be potentially affected by this action if you manufacture, process, or otherwise use hydrogen...

  20. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    2008-02-01

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  1. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes.

    Science.gov (United States)

    Rubinstein, Mark L; Delucchi, Kevin; Benowitz, Neal L; Ramo, Danielle E

    2018-04-01

    There is an urgent need to understand the safety of e-cigarettes with adolescents. We sought to identify the presence of chemical toxicants associated with e-cigarette use among adolescents. Adolescent e-cigarette users (≥1 use within the past 30 days, ≥10 lifetime e-cigarette use episodes) were divided into e-cigarette-only users (no cigarettes in the past 30 days, urine 4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL] level 30 pg/mL; n = 16), and never-using controls ( N = 20). Saliva was collected within 24 hours of the last e-cigarette use for analysis of cotinine and urine for analysis of NNAL and levels of 8 volatile organic chemical compounds. Bivariate analyses compared e-cigarette-only users with dual users, and regression analyses compared e-cigarette-only users with dual users and controls on levels of toxicants. The participants were 16.4 years old on average. Urine excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and acrylamide was significantly higher in dual users versus e-cigarette-only users (all P < .05). Excretion of metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were significantly higher in e-cigarette-only users compared with controls (all P < .05). Although e-cigarette vapor may be less hazardous than tobacco smoke, our findings can be used to challenge the idea that e-cigarette vapor is safe, because many of the volatile organic compounds we identified are carcinogenic. Messaging to teenagers should include warnings about the potential risk from toxic exposure to carcinogenic compounds generated by these products. Copyright © 2018 by the American Academy of Pediatrics.

  2. Data gaps in toxicity testing of chemicals allowed in food in the United States.

    Science.gov (United States)

    Neltner, Thomas G; Alger, Heather M; Leonard, Jack E; Maffini, Maricel V

    2013-12-01

    In the United States, chemical additives cannot be used in food without an affirmative determination that their use is safe by FDA or additive manufacturer. Feeding toxicology studies designed to estimate the amount of a chemical additive that can be eaten safely provide the most relevant information. We analyze how many chemical additives allowed in human food have feeding toxicology studies in three toxicological information sources including the U.S. Food and Drug Administration's (FDA) database. Less than 38% of FDA-regulated additives have a published feeding study. For chemicals directly added to food, 21.6% have feeding studies necessary to estimate a safe level of exposure and 6.7% have reproductive or developmental toxicity data in FDA's database. A program is needed to fill these significant knowledge gaps by using in vitro and in silico methods complemented with targeted in vivo studies to ensure public health is protected. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A Comprehensive Approach for Pectin Chemical and Functional Characterization

    DEFF Research Database (Denmark)

    de Sousa, António Felipe Gomes Teixeira

    In this work, a comprehensive approach for the chemical and functional analysis of pectin was used in order to relate the different extraction conditions used to the polymer structure and the final functional (mainly gelling) properties. A wide range of methods were utilized including chemical an...

  4. Improving ecological risk assessment of persistent, bioaccumulative, and toxic (PBT) chemicals by using an integrated modeling system - An example assessing chloroparaffins in riverine environments.

    Science.gov (United States)

    Chemical risk assessment (CRA) is primarily carried out at the screening level relying on empirical relationships between chemical properties and tested toxicity effects. Ultimately, risk to aquatic ecosystems is strongly dependent on actual exposure, which depends on chemical pr...

  5. 1992 Toxic Chemical Release Inventory: Emergency Planning and Community Right-To-Know-Act of 1986 Section 313

    International Nuclear Information System (INIS)

    1993-07-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA) requires the annual submittal of toxic chemical release information to the US Environmental Protection Agency (EPA). The following document is the July 1993 submittal of the EPCRA Toxic Chemical Release Inventory Report (Form R). Included is a Form R for chlorine and for lead, the two chemicals used in excess of the established regulatory thresholds at the Hanford Site by the US Department of Energy, Richland Operations Office and its contractors during calendar year 1992

  6. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    Science.gov (United States)

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  7. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the water framework directive approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartzke, Mariana [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Dept. Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig (Germany); Delov, Vera [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Ecotoxicology, Fraunhofer Inst. for Molecular Biology and Applied Ecology IME, Aachen (Germany); Stahlschmidt-Allner, Petra; Allner, Bernhard [Gobio GmbH, Aarbergen/Kettenbach (Germany); Oehlmann, Joerg [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany)

    2010-04-15

    Purpose: The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD. Materials and methods sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6. Results and discussion The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality clements at the sampling sites. Conclusions The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment. (orig.)

  8. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity.

    Science.gov (United States)

    Diaz, James H

    2016-03-01

    Most emerging infectious diseases today are arthropod-borne and cannot be prevented by vaccinations. Because insect repellents offer important topical barriers of personal protection from arthropod-borne infectious diseases, the main objectives of this article were to describe the growing threats to public health from emerging arthropod-borne infectious diseases, to define the differences between insect repellents and insecticides, and to compare the efficacies and toxicities of chemical and plant-derived insect repellents. Internet search engines were queried with key words to identify scientific articles on the efficacy, safety, and toxicity of chemical and plant-derived topical insect repellants and insecticides to meet these objectives. Data sources reviewed included case reports; case series; observational, longitudinal, and surveillance studies; and entomological and toxicological studies. Descriptive analysis of the data sources identified the most effective application of insect repellents as a combination of topical chemical repellents, either N-diethyl-3-methylbenzamide (formerly N, N-diethyl-m-toluamide, or DEET) or picaridin, and permethrin-impregnated or other pyrethroid-impregnated clothing over topically treated skin. The insecticide-treated clothing would provide contact-level insecticidal effects and provide better, longer lasting protection against malaria-transmitting mosquitoes and ticks than topical DEET or picaridin alone. In special cases, where environmental exposures to disease-transmitting ticks, biting midges, sandflies, or blackflies are anticipated, topical insect repellents containing IR3535, picaridin, or oil of lemon eucalyptus (p-menthane-3, 8-diol or PMD) would offer better topical protection than topical DEET alone. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    Science.gov (United States)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays. To help put this project into its proper context, we emphasize certain features of the study: 1) Standard protocols were used to mimic the major use of STTs worldwide--screening for mutagens and carcinogens; no attempt was made to optimize protocols for specific chemicals. 2) The 73 NTP chemicals and their 60% incidence of carcinogenicity are probably not representative of the universe of chemicals but rather reflect the recent chemical selection process for the NTP carcinogenicity assay. 3) The small, diverse group of chemicals precludes a meaningful evaluation of the predictive utility of chemical structure information. 4) The NTP is currently testing these same 73 chemicals in two in vivo STTs for chromosomal effects. 5) Complete data for an additional group of 30 to 40 NTP chemicals will be gathered on

  10. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Monette, F.A.; Avci, H.I.

    2000-01-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF 6 ) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  11. 78 FR 66700 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2013-11-06

    ... additive for food Rat--Up-and-Down processing, and as Procedure. ingredient in aluminum Micronucleus Test... Toxicity to Fish; Acute Toxicity to Daphnia; Toxicity to Algae; Acute Toxicity to Mammals; Bacterial..., cold Study in Zebra Fish set, and sheet-fed (Brachydanio rerio). applications. Acute Toxicity Study in...

  12. The multidisciplinary approach to the management toxic epidermal ...

    African Journals Online (AJOL)

    Complete haematological and biochemical tests were carried out and management was symptomatic. This report shows the multidisciplinary approach to the management and highlights the role of the dental surgeon in the management. It concludes that multidisciplinary approach to healthcare provision will be of benefit to ...

  13. Reproductive Toxic Chemicals at Work and Efforts to Protect Workers' Health: A Literature Review

    Directory of Open Access Journals (Sweden)

    Kyung-Taek Rim

    2017-06-01

    Full Text Available A huge number of chemicals are produced and used in the world, and some of them can have negative effects on the reproductive health of workers. To date, most chemicals and work environments have not been studied for their potential to have damaging effects on the workers' reproductive system. Because of the lack of information, many workers may not be aware that such problems can be related to occupational exposures. Newly industrialized countries such as Republic of Korea have rapidly amassed chemicals and other toxicants that pose health hazards, especially to the reproductive systems of workers. This literature review provides an overview of peer-reviewed literature regarding the teratogenic impact and need for safe handling of chemicals. Literature searches were performed using PubMed, Google Scholar, and ScienceDirect. Search strategies were narrowed based on author expertise and 100 articles were chosen for detailed analysis. A total of 47 articles met prespecified inclusion criteria. The majority of papers contained studies that were descriptive in nature with respect to the Medical Subject Headings (MeSH terms and keywords: “reproductive and heath or hazard and/or workplace or workers or occupations.” In the absence of complete information about the safe occupational handling of chemicals in Republic of Korea (other than a material safety data sheet, this review serves as a valuable reference for identifying and remedying potential gaps in relevant regulations. The review also proposes other public health actions including hazard surveillance and primary prevention activities such as reduction, substitution, ventilation, as well as protective equipment.

  14. Reproductive Toxic Chemicals at Work and Efforts to Protect Workers' Health: A Literature Review.

    Science.gov (United States)

    Rim, Kyung-Taek

    2017-06-01

    A huge number of chemicals are produced and used in the world, and some of them can have negative effects on the reproductive health of workers. To date, most chemicals and work environments have not been studied for their potential to have damaging effects on the workers' reproductive system. Because of the lack of information, many workers may not be aware that such problems can be related to occupational exposures. Newly industrialized countries such as Republic of Korea have rapidly amassed chemicals and other toxicants that pose health hazards, especially to the reproductive systems of workers. This literature review provides an overview of peer-reviewed literature regarding the teratogenic impact and need for safe handling of chemicals. Literature searches were performed using PubMed, Google Scholar, and ScienceDirect. Search strategies were narrowed based on author expertise and 100 articles were chosen for detailed analysis. A total of 47 articles met prespecified inclusion criteria. The majority of papers contained studies that were descriptive in nature with respect to the Medical Subject Headings (MeSH) terms and keywords: "reproductive and heath or hazard and/or workplace or workers or occupations." In the absence of complete information about the safe occupational handling of chemicals in Republic of Korea (other than a material safety data sheet), this review serves as a valuable reference for identifying and remedying potential gaps in relevant regulations. The review also proposes other public health actions including hazard surveillance and primary prevention activities such as reduction, substitution, ventilation, as well as protective equipment.

  15. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2005-01-01

    The lower sensitivity of in vitro cytotoxicity assays currently restricts their use as alternative to the fish acute toxicity assays for hazard assessment of chemicals in the aquatic environment. In vitro cytotoxic potencies mostly refer to nominal concentrations. The main objective of the present study was to investigate, whether a reduced availability of chemicals in vitro can account for the lower sensitivity of in vitro toxicity test systems. For this purpose, the bioavailable free fractions of the nominal cytotoxic concentrations (EC 50 ) of chemicals determined with a cytotoxicity test system using Balb/c 3T3 cells and the corresponding free cytotoxic concentrations (ECu 50 ) were calculated. The algorithm applied is based on a previously developed simple equilibrium distribution model for chemicals in cell cultures with serum-supplemented culture media. This model considers the distribution of chemicals between water, lipids and serum albumin. The algorithm requires the relative lipid volume of the test system, the octanol-water partition coefficient (K ow ) and the in vitro albumin-bound fraction of the chemicals. The latter was determined from EC 50 -measurements in the presence of different albumin concentrations with the Balb/c 3T3 test system. Organic chemicals covering a wide range of cytotoxic potency (EC 50 : 0.16-527000 μM) and lipophilicity (log K ow : -5.0-6.96) were selected, for which fish acute toxicity data (LC 50 -values) from at least one of the three fish species, medaka, rainbow trout and fathead minnow, respectively, were available. The availability of several chemicals was shown to be extensively reduced either by partitioning into lipids or by serum albumin binding, or due to both mechanisms. Reduction of bioavailability became more important with increasing cytotoxic potency. The sensitivity of the Balb/c 3T3 cytotoxicity assay and the correspondence between in vivo and in vitro toxic potencies were increased when the free cytotoxic

  16. Windows of sensitivity to toxic chemicals in the motor effects development.

    Science.gov (United States)

    Ingber, Susan Z; Pohl, Hana R

    2016-02-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.

  17. Oocyte toxicity: female germ-cell loss from radiation and chemical exposures

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1984-01-01

    In some mammals, female germ cells are extraordinarily sensitive to killing by exposure to ionizing radiation, especially during development. Immature oocytes, which constitute the lifetime germ-cell pool of the female, have an LD 50 in juvenile mice of only 6 rad (compared with typical LD 50 s of 100-300 rad for most other cell types studied). Essentially, the entire germ-cell supply in female squirrel monkeys is destroyed prenatally by exposure of only 0.7 rad/day. Severe but lesser destruction has been found in other species. However, evidence suggests (though not ruled out for all developmental stages) that unusually high sensitivity probably does not occur in the human female. Germ cells can also be killed by certain chemicals, and similarities exist between chemical and radiation effects. More than 75 compounds have been quantitatively studied in mice, with determination of OTI values (OTI = oocyte toxicity index = mouse LD 50 /oocyte LD 50 ) to measure the degree of preferential oocyte killing. High sensitivity in mice does not mean necessarily high sensitivity in women. Of special interest is the recent discovery that the lethal target in the extremely sensitive mouse immature oocyte is probably the plasma membrane, not DNA. Since mouse data form the main basis from which human genetic hazard (for both radiation and chemicals) is estimated, this has important implications for the determination of genetic risk in women

  18. Toxicity induced by chemical warfare agents: insights on the protective role of melatonin.

    Science.gov (United States)

    Pita, René; Marco-Contelles, José; Ramos, Eva; Del Pino, Javier; Romero, Alejandro

    2013-11-25

    Chemical Warfare Agents (CWAs) are substances that can be used to kill, injure or incapacitate an enemy in warfare, but also against civilian population in terrorist attacks. Many chemical agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence they can cause neurological symptoms and damage in different organs. Nowadays, taking into account that total immediate decontamination after exposure is difficult to achieve and there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against CWAs poisoning would benefit from a broad-spectrum multipotent molecule. Melatonin, a versatile and ubiquitous antioxidant molecule, originally discovered as a hormone synthesized mainly in the pineal gland, has low toxicity and high efficacy in reducing oxidative damage, anti-inflammatory effects by regulation of multiple cellular pathways and properties to prevent excitotoxicity, among others. The purpose of this review is to show the multiple and diverse properties of melatonin, as a pleiotropic indole derivative, and its marked potential for improving human health against the most widely used chemical weapons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Toxicity and utilization of chemical weapons: does toxicity and venom utilization contribute to the formation of species communities?

    Science.gov (United States)

    Westermann, Fabian L; McPherson, Iain S; Jones, Tappey H; Milicich, Lesley; Lester, Philip J

    2015-08-01

    Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.

  20. A Novel Approach: Chemical Relational Databases, and the Role of the ISSCAN Database on Assessing Chemical Carcinogenity

    Science.gov (United States)

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did no...

  1. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil.

    Science.gov (United States)

    Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa

    2015-01-01

    Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Chemical composition of EOVAC was analyzed using gas chromatography - mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. EOVAC (s.c.) and morphine (i.p.) significantly (pVitex agnus-castus essential oil in these models of pain in rats.

  2. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil

    Directory of Open Access Journals (Sweden)

    Emad Khalilzadeh

    2015-04-01

    Full Text Available Objective: Vitex agnus-castus (VAC and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography – mass spectrometry (GC-MS and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. Results: EOVAC (s.c. and morphine (i.p. significantly (p

  3. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull. 2007; 6(4: 227-232

  4. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull 2007; 6(4.000: 227-232

  5. Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint

    International Nuclear Information System (INIS)

    Loureiro, Susana; Amorim, Monica J.B.; Campos, Bruno; Rodrigues, Sandra M.G.; Soares, Amadeu M.V.M.

    2009-01-01

    Contamination problems are often characterized by complex mixtures of chemicals. There are two conceptual models usually used to evaluate patterns of mixture toxicity: Concentration Addition (CA) and Independent Action (IA). Deviations from these models as synergism, antagonism and dose dependency also occur. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were tested in Porcellionides pruinosus and Enchytraeus albidus, using avoidance as test parameter. For both species patterns of antagonism were found when exposed to dimethoate and atrazine, synergism for lindane and dimethoate exposures (with the exception of lower doses in the isopod case study) and concentration addition for cadmium and zinc occurred, while the exposure to cadmium and dimethoate showed dissimilar patterns. This study highlights the importance of dose dependencies when testing chemical mixtures and that avoidance tests can also be used to asses the effects of mixture toxicity. - Avoidance behaviour to binary mixtures of chemicals in two edaphic species

  6. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    Science.gov (United States)

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Physical and toxic properties of hazardous chemicals regularly stored and transported in the vicinity of nuclear installations

    International Nuclear Information System (INIS)

    1976-03-01

    This report gives a compilation of data based on information assembled by the US Nuclear Regulatory Commission and completed by the Safety and Reliability Directorate of the UK AEA, the Dutch Reactor Safety Commission, the French Atomic Energy Commission, and the CSNI Secretariat. Data sheets for a large number of hazardous chemicals are presented (from acetaldehyde to xylene), giving details of their physical and toxic properties such as: molecular weight, boiling point, vapor density, heat of vaporization, toxic concentration in air, flammability limits, toxic effects, vapor pressure data, etc.

  8. Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth.

    Science.gov (United States)

    de Lima, Rachel; Guex, Camille Gaube; da Silva, Andreia Regina Haas; Lhamas, Cibele Lima; Dos Santos Moreira, Karen Luise; Casoti, Rosana; Dornelles, Rafaela Castro; Marques da Rocha, Maria Izabel Ugalde; da Veiga, Marcelo Leite; de Freitas Bauermann, Liliane; Manfron, Melânia Palermo

    2018-05-14

    Verbena litoralis Kunth is a native species of South America, popularly known as gervãozinho-do-campo ou erva-de-pai-caetano. It is used in gastrointestinal disorders, as detoxifying the organism, antifebrile properties and amidaglitis. To identify the chemical constituents of the hydroethanolic extract obtained from the aerial parts of V. litoralis and to evaluate the acute and sub-acute toxicity in male and female rats. The single dose (2000 mg/kg) of the extract was administered orally to male and female rats. In the subacute study the extract was given at doses of 100, 200 and 400mg/kg during 28 days orally. Biochemical, hematological and histological analyzes were performed, oxidative stress markers were tested and chemical constituents were identified through UHPLC-ESI-HRMS RESULTS: Six classes of metabolites were identified: iridoids glycosides, flavonoids, phenylpropanoids-derived, phenylethanoid-derived, cinnamic acid-derived and triterpenes. In the acute treatment, the extract was classified as safe (category 5), according to the OECD guide. Our results demonstrated that subacute administration of the crude extract of V. litoralis at 400mg/kg resulted in an increase in AST in males, whereas ALT enzyme showed a small increase in males that received 200mg/kg and 400mg/kg of the extract. The extract of the aerial parts of Verbena litoralis did not present significant toxicity when administered a single dose. However, when different doses were administered for 28 days, were observed changes in hematological, biochemical and histological parameters in rats. Copyright © 2018. Published by Elsevier B.V.

  9. Introducing Toxics

    Directory of Open Access Journals (Sweden)

    David C. Bellinger

    2013-04-01

    Full Text Available With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present their work in as much detail as they wish. Toxics will publish original research papers, conventional reviews, meta-analyses, short communications, theoretical papers, case reports, commentaries and policy perspectives, and book reviews (Book reviews will be solicited and should not be submitted without invitation. Toxins and toxicants concern individuals from a wide range of disciplines, and Toxics is interested in receiving papers that represent the full range of approaches applied to their study, including in vitro studies, studies that use experimental animal or non-animal models, studies of humans or other biological populations, and mathematical modeling. We are excited to get underway and look forward to working with authors in the scientific and medical communities and providing them with a novel venue for sharing their work. [...

  10. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  11. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    Science.gov (United States)

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  12. DESIGN AND PERFORMANCE OF A XENOBIOTIC METABOLISM DATABASE MANAGER FOR METABOLIC SIMULATOR ENHANCEMENT AND CHEMICAL RISK ANALYSIS

    Science.gov (United States)

    A major uncertainty that has long been recognized in evaluating chemical toxicity is accounting for metabolic activation of chemicals resulting in increased toxicity. In silico approaches to predict chemical metabolism and to subsequently screen and prioritize chemicals for risk ...

  13. Radioisotopic methods - determination of action of toxic chemicals to food - digestion organs

    International Nuclear Information System (INIS)

    Saitmuratova, O.H.; Tursunov, E.A.

    2004-01-01

    Full text: It is known that poison chemicals used for agriculture enter in an organism of human and animal by various ways and affect key processes in cells and tissues. These processes are investigated insufficiently, nevertheless, investigating actions of chemicals on bodies and tissues it, is possible to define a degree of its toxicity. In the present work influence of defoliant drop and insecticide buldok on protein synthetic ability (PSA) of cells of digestive bodies (a liver, a stomach and duodenal gut) is investigated. Experiments carried out on white not purebred rats - males in weight 160-180 g, which entered drop in doze of 1/5 IC 50 5350 mg/kg, buldok 1/5 IC 50 400 mg/kg and 14 C-glutamine acid with the general activity 1 mk Curie (2.2*106 imp/min) in one hour up to slaughter. A control animal in parallel entered a physiological solution. In animals hammered in one hour and investigated inclusion 14 C- glutamine acids in structure of synthesized proteins of a liver, a stomach and duodenal gut. Action of preparations checked in 1, 24 and 72 hours after introduction. As have shown the received data drop suppresses PSA in cells of a liver on 14 % and 45 % in 24 and 72 hours accordingly; in a stomach - on 32 % and 34 %; in duodenal gut - on 39 % and 48 %. PSA it is more suppressed in a stomach. Further process is gradually restored in all bodies. Buldok in the same terms suppresses PSA in a liver on 4 % and 25 %; in a stomach of 4 % and 16 % and in duodenal gut on the contrary are raised with formation of protein on 27 %. The next day there is restoration PSA in all investigated bodies. From the received data it is visible, that defoliant drop as well as insecticide buldok influence on PSA cells, but action of drop is stronger, than buldok. It will be coordinated to earlier received data on change of morphological structures under influence of these pesticides. Though drop and buldok differ on dynamics of action on PSA digestive bodies, they are not strongly

  14. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  15. Graphene: chemical approaches to the synthesis and modification

    Energy Technology Data Exchange (ETDEWEB)

    Grayfer, E D; Makotchenko, V G; Nazarov, Albert S; Kim, S J; Fedorov, Vladimir E

    2011-08-31

    Published data on the new carbon nanomaterial, graphene, are described systematically from the chemist's standpoint. The attention is focused on the chemical methods of the synthesis of graphene-like materials from various precursors: natural and expanded graphite, graphite oxide, graphite intercalation compounds, etc. Approaches to the chemical modification of the graphene plane by various reagents and routes for the preparation of colloidal dispersions of graphene are considered. The bibliography includes 220 references.

  16. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  17. The toxic and radiological risk equivalence approach in UF6 transport

    International Nuclear Information System (INIS)

    Ringot, C.; Hamard, J.

    1988-12-01

    After a brief description of the safety in transport of UF 6 , we discuss the equivalence of the radioactive and chemical risks in UF 6 transport regulations. As the concept of low specific activity appears to be ill-suited for a toxic gas, we propose a quantity of material limit designated T 2 (equivalent to A 2 for radioactive substances) for packagings unable to withstand accident conditions (9 m drop, 800 0 C fire environment for 30 minutes). It is proposed that this limit be chosen for the amount of release acceptable after AIEA tests. Different possible scenarios are described, with fire assumed to be the most severe toxic risk situation

  18. Limitations of the toxic equivalency factor (TEF) approach for risk assessment of halogenated aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Safe, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Physiology and Pharmacology

    1995-12-31

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are present as complex mixtures of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in most environmental matrices. Risk management of these mixtures utilize the toxic equivalency factor (TEF) approach in which the TCDD (dioxin) or toxic equivalents of a mixture is a summation of the congener concentration (Ci) times TEF{sub i} (potency relative to TCDD) where. TEQ{sub mixture} = {Sigma}[Cil] {times} TEF{sub i}. TEQs are determined only for those HAHs which are aryl hydrocarbon (Ah) receptor agonists and this approach assumes that the toxic or biochemical effects of individual compounds in a mixture are additive. Several in vivo and in vitro laboratory and field studies with different HAH mixtures have been utilized to validate the TEF approach. For some responses, the calculated toxicities of PCDD/PCDF and PCB mixtures predict the observed toxic potencies. However, for fetal cleft palate and immunotoxicity in mice, nonadditive (antagonistic) responses are observed using complex PCB mixtures or binary mixtures containing an Ah receptor agonist with 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB153). The potential interactive effects of PCBs and other dietary Ah receptor antagonist suggest that the TEF approach for risk management of HAHs requires further refinement and should be used selectively.

  19. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Science.gov (United States)

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  20. Experimental outgassing of toxic chemicals to simulate the characteristics of hazards tainting globally shipped products.

    Directory of Open Access Journals (Sweden)

    Lygia Therese Budnik

    Full Text Available Ambient monitoring analyses may identify potential new public health hazards such as residual levels of fumigants and industrial chemicals off gassing from products and goods shipped globally. We analyzed container air with gas chromatography coupled to mass spectrometry (TD-2D-GC-MS/FPD and assessed whether the concentration of the volatiles benzene and 1,2-dichloroethane exceeded recommended exposure limits (REL. Products were taken from transport containers and analyzed for outgassing of volatiles. Furthermore, experimental outgassing was performed on packaging materials and textiles, to simulate the hazards tainting from globally shipped goods. The mean amounts of benzene in analyzed container air were 698-fold higher, and those of ethylene dichloride were 4.5-fold higher than the corresponding REL. More than 90% of all containers struck with toluene residues higher than its REL. For 1,2-dichloroethane 53% of containers, transporting shoes exceeded the REL. In standardized experimental fumigation of various products, outgassing of 1,2-dichloroethane under controlled laboratory conditions took up to several months. Globally produced transported products tainted with toxic industrial chemicals may contribute to the mixture of volatiles in indoor air as they are likely to emit for a long period. These results need to be taken into account for further evaluation of safety standards applying to workers and consumers.

  1. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  2. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m 3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m 3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  3. A novel approach: chemical relational databases, and the role of the ISSCAN database on assessing chemical carcinogenicity.

    Science.gov (United States)

    Benigni, Romualdo; Bossa, Cecilia; Richard, Ann M; Yang, Chihae

    2008-01-01

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did not contain chemical structures. Concepts and technologies originated from the structure-activity relationships science have provided powerful tools to create new types of databases, where the effective linkage of chemical toxicity with chemical structure can facilitate and greatly enhance data gathering and hypothesis generation, by permitting: a) exploration across both chemical and biological domains; and b) structure-searchability through the data. This paper reviews the main public databases, together with the progress in the field of chemical relational databases, and presents the ISSCAN database on experimental chemical carcinogens.

  4. Linkage of genomic biomarkers to whole organism endpoints in a Toxicity Identification Evaluation (TIE).

    Science.gov (United States)

    Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on ...

  5. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    Science.gov (United States)

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  6. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    International Nuclear Information System (INIS)

    Kleinstreuer, N.C.; Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R.; Weir-Hauptman, A.M.; Palmer, J.A.; Knudsen, T.B.; Dix, D.J.; Donley, E.L.R.; Cezar, G.G.

    2011-01-01

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: ► We tested 11 environmental compounds in a hESC metabolomics platform. ► Significant changes in secreted small molecule metabolites were observed. ► Perturbed mass features map to pathways critical for normal development and pregnancy. ► Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.

  7. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov [NCCT, US EPA, RTP, NC 27711 (United States); Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Weir-Hauptman, A.M. [Covance, Inc., Madison, WI 53704 (United States); Palmer, J.A. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Knudsen, T.B.; Dix, D.J. [NCCT, US EPA, RTP, NC 27711 (United States); Donley, E.L.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Cezar, G.G. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal

  8. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L.

    Science.gov (United States)

    El Jemli, Meryem; Kamal, Rabie; Marmouzi, Ilias; Doukkali, Zouhra; Bouidida, El Houcine; Touati, Driss; Nejjari, Rachid; El Guessabi, Lahcen; Cherrah, Yahia; Alaoui, Katim

    2017-07-01

    Hydro-distilled essential oil (EO) from the leaves of the western Mediterranean and Moroccan endemic plant Tetraclinis articulata was analyzed by GC/MS and examined for its acute toxicity on mice, in order to establish the safe doses. Furthermore, the anti-Inflammatory activity was evaluated based on carrageenan and trauma induced rats paw edema and the antioxidant potential has been investigated using different methods including DPPH radical-scavenging assay, Trolox equivalent antioxidant capacity (TEAC) and Ferric-reducing antioxidant power assay (FRAP). The major identified compounds in GC/MS analysis were bornyl acetate (26.81%), camphor (22.40%) and α-pinene (7.16%), with 25 other minor constituents. No mortalities in acute toxicity were observed, indicating that the LD 50 of T. articulata essential oil is highest than 5 g/kg. In the anti-inflammatory test based on chemical and mechanical induced trauma, the EO demonstrated an effective reduce swelling by 64.71 ± 9.38% and 69.09 ± 6.02% respectively obtained 6 h after administration at the dose of 200 mg/kg when compared to the control groups. Moreover in the antioxidant testing battery, T. articulata essential oil showed a promising scavenging effect measured by DPPH, TEAC and ferric-reducing power assays with IC 50 values of 12.05 ± 0.24 mg/mL, 8.90 ± 0.17 mg/mL and 0.15 ± 0.01 mg/mL respectively. These results suggest that, the EO from the leaves of T. articulata constitutes a valuable source of anti-inflammatory and antioxidant metabolites. These findings argue for the possible integration of this oil in pharmaceutical, cosmetic and food industries.

  9. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L.

    Directory of Open Access Journals (Sweden)

    Meryem El Jemli

    2017-07-01

    Full Text Available Hydro-distilled essential oil (EO from the leaves of the western Mediterranean and Moroccan endemic plant Tetraclinis articulata was analyzed by GC/MS and examined for its acute toxicity on mice, in order to establish the safe doses. Furthermore, the anti-Inflammatory activity was evaluated based on carrageenan and trauma induced rats paw edema and the antioxidant potential has been investigated using different methods including DPPH radical-scavenging assay, Trolox equivalent antioxidant capacity (TEAC and Ferric-reducing antioxidant power assay (FRAP. The major identified compounds in GC/MS analysis were bornyl acetate (26.81%, camphor (22.40% and α-pinene (7.16%, with 25 other minor constituents. No mortalities in acute toxicity were observed, indicating that the LD50 of T. articulata essential oil is highest than 5 g/kg. In the anti-inflammatory test based on chemical and mechanical induced trauma, the EO demonstrated an effective reduce swelling by 64.71 ± 9.38% and 69.09 ± 6.02% respectively obtained 6 h after administration at the dose of 200 mg/kg when compared to the control groups. Moreover in the antioxidant testing battery, T. articulata essential oil showed a promising scavenging effect measured by DPPH, TEAC and ferric-reducing power assays with IC50 values of 12.05 ± 0.24 mg/mL, 8.90 ± 0.17 mg/mL and 0.15 ± 0.01 mg/mL respectively. These results suggest that, the EO from the leaves of T. articulata constitutes a valuable source of anti-inflammatory and antioxidant metabolites. These findings argue for the possible integration of this oil in pharmaceutical, cosmetic and food industries.

  10. Evaluation of a novel automated water analyzer for continuous monitoring of toxicity and chemical parameters in municipal water supply.

    Science.gov (United States)

    Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo

    2018-08-15

    A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory

    NARCIS (Netherlands)

    Lopez-Fiuza, J.; Buys, B.; Mosquera-Corral, A.; Omil, F.; Mendez, R.

    2002-01-01

    The toxic effects caused by the chemicals contained in wastewaters generated by laboratories involved in raw milk analyses were assessed using batch assays. These assays were carried out separately with methanogenic, ammonium-oxidizing, nitrite-oxidizing and denitrifying bacteria. Since sodium azide

  12. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  13. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    Science.gov (United States)

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  14. Acute sensitivity of freshwater mollusks and commonly tested invertebrates to select chemicals with different toxic models of action

    Science.gov (United States)

    Previous studies indicate that freshwater mollusks are more sensitive than commonly tested organisms to some chemicals, such as copper and ammonia. Nevertheless, mollusks are generally under-represented in toxicity databases. Studies are needed to generate data with which to comp...

  15. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  16. Membrane alterations following toxic chemical insult. Research progress report No. 3 (Final), 15 July 1984-31 January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Liss, A.

    1988-03-10

    A procaryotic cell system was developed that can be used to determine the toxic action of chemicals acting at the level of the eucaryotic or procaryotic cytoplasmic membrane. Cell wall-less microbes known as mycoplasmas were used. In this current study, two perfluorinated fatty acids (CB and C10) were found to inhibit the growth of the test mycoplasmas. Two apparent activities, cytotoxicity and cytolysis, were observed. At high concentrations (>10 mM), a detergent-like action was noted. At low concentrations (<10 mM), cell death was observed without detectable cell lysis. Altering the cell membrane (the presumed target of the toxic compounds) resulted in altered levels to toxicity. Similar results were obtained when human or murine B-cells were used as the target organism. The toxic action of the perfluorinated fatty acids apparently involves some interaction with the membrane of the cells being treated.

  17. Physico-chemical evaluation and toxicity risk assessment of the urban rivers of Metro Cebu, Philippines

    International Nuclear Information System (INIS)

    Ramal, Allan; Santos, Alfredo; Florentino, Nathaniel; Castanares, Josephine; Suico, Ma. Ligaya; Koyama, Jiro

    2013-01-01

    Three prominent urban rivers in Metro Cebu were samples and analysed for their physico-chemical properties and their toxicity as to surfactant levels was evaluated using tilapia (Oreochromis niloticus L.). Surfactants in rivers, particularly the linear alkylbenzene sulfonates (LAS), ammonia (NH 3 ), nitrate, nitrite and phosphate were determined colorimetrically using UV-Vis spectrophotometer. Physical parameters such as conductivity, salinity, temperature, pH and Dissolved Oxygen (DO) were determined in situ using a Multi-probe digital meter. Winkler Method was carried out to confirm the levels of DO in water samples. Results revealed that Guadalupe, Mahiga and Butuanon Downstream contain DO levels lower than 5 ppm, which is level needed to support aquatic life. This result further correlates the levels of NH 3 in the samples with Guadalupe containing the highest NH 3 level of 13.09 ppm, followed by, Butuanon Dowstream (8.20 ppm), Mahiga (5.95ppm) and Butuanon Upstream (1.22 ppm) which are all beyond the DENR standard limit of 0.5 ppm. The LAS levels were found high in Butuanon Downstream (3.35 ppm), Guadalupe River (1.51 ppm), followed by Mahiga (1.02 ppm), and Butuanon Upstream (0.42 ppm). All of the river water samples except for Butuanon Upstream were beyond the tolerable limit for surfactants as prescribed by the DENR for surface water which is 0.5 ppm. Nitrate and nitrite levels for all river samples were below the DEBR standard limit of 10.0 ppm. Only Guadalupe (0.91 ppm) and Mahiga (0.52 ppm) failed to meet the DENR standard of 0.4 ppm for phosphate. Definitive Test for toxicity of LAS to Tilapia juveniles after 96 h showed an LC 5 0 of 7.6 ppm. This result was used for risk assessment of the three river systems for LAS. Toxicity Test of river samples showed 100% mortality for Guadalupe, Mahiga and Butuanon Downstream. Predicted Environment Concentrations (PEC) to Predicted No Effect Concentration (PNEC) ratio revealed that all river systems were at

  18. Human exposure assessment: Approaches for chemicals (REACH) and biocides (BPD)

    NARCIS (Netherlands)

    Hemmen, J.J. van; Gerritsen-Ebben, R.

    2008-01-01

    The approaches that are indicated in the various guidance documents for the assessment of human exposure for chemicals and biocides are summarised. This reflects the TNsG (Technical notes for Guidance) version 2: human exposure assessment for biocidal products (1) under the BPD (Biocidal Products

  19. The Conceptual Change Approach to Teaching Chemical Equilibrium

    Science.gov (United States)

    Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…

  20. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH).

    NARCIS (Netherlands)

    Sobanska, Marta; Scholz, Stefan; Nyman, Anna-Maija; Cesnaitis, Romanas; Gutierrez Alonso, Simon; Klüver, Nils; Kühne, Ralph; Tyle, Henrik; de Knecht, Joop; Dang, Zhichao; Lundbergh, Ivar; Carlon, Claudio; De Coen, Wim

    In 2013 the Organisation for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity (FET) was adopted. It determines the acute toxicity of chemicals to embryonic fish. Previous studies show a good correlation of FET with the standard acute fish toxicity

  1. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  2. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  3. Evaluating chemical toxicity of surface disposal of LILW-SL in Belgium

    International Nuclear Information System (INIS)

    Mallants, D.; Wang, L.; Weetjens, E.; Cool, W.

    2008-01-01

    ONDRAF/NIRAS is developing and evaluating a surface disposal concept for low and intermediate level short-lived radioactive waste (LILW-SL) at Dessel (Belgium)). In support of ONDRAF/NIRAS's assignment, SCK/CEN carried out long-term performance assessment calculations for the inorganic non-radioactive components that are present in LILW-SL. This paper summarizes the results obtained from calculations that were done for a heavily engineered surface disposal facility at the nuclear zone of Mol/Dessel. The calculations address the migration of chemo-toxic elements from the disposed waste to groundwater. Screening calculations were performed first to decide which non-radioactive components could potentially increase concentrations in groundwater to levels above the groundwater standards. On the basis of very conservative calculations, only 6 out of 41 chemical elements could not be classified as having a negligible impact on man and environment. For each of these six elements (B, Be, Cd, Pb, Sb, and Zn), the source term was characterized in terms of its chemical form (i.e., metal, oxide, or salt), and a macroscopic transport model built that would capture the small-scale dissolution processes relevant to element release from a cementitious waste container. Furthermore, reliable transport parameters in support of the convection dispersion-retardation (CDR) transport calculations were determined. This included derivation of (1) solubility for a cementitious near field environment based on thermodynamic equilibrium calculations with The Geo-chemist's Workbench, and (2) distribution coefficients based on a compilation of literature values. Scoping calculations illustrated the effects of transport parameter uncertainty on the rates at which inorganic components in LILW-SL leach to groundwater. (authors)

  4. Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures.

    Science.gov (United States)

    Gallo, Frederic; Fossi, Cristina; Weber, Roland; Santillo, David; Sousa, Joao; Ingram, Imogen; Nadal, Angel; Romano, Dolores

    2018-01-01

    Persistent plastics, with an estimated lifetime for degradation of hundreds of years in marine conditions, can break up into micro- and nanoplastics over shorter timescales, thus facilitating their uptake by marine biota throughout the food chain. These polymers may contain chemical additives and contaminants, including some known endocrine disruptors that may be harmful at extremely low concentrations for marine biota, thus posing potential risks to marine ecosystems, biodiversity and food availability. Although there is still need to carry out focused scientific research to fill the knowledge gaps about the impacts of plastic litter in the marine environment (Wagner et al. in Environ Sci Eur 26:9, 2014), the food chain and human health, existing scientific evidence and concerns are already sufficient to support actions by the scientific, industry, policy and civil society communities to curb the ongoing flow of plastics and the toxic chemicals they contain into the marine environment. Without immediate strong preventive measures, the environmental impacts and the economic costs are set only to become worse, even in the short term. Continued increases in plastic production and consumption, combined with wasteful uses, inefficient waste collection infrastructures and insufficient waste management facilities, especially in developing countries, mean that even achieving already established objectives for reductions in marine litter remains a huge challenge, and one unlikely to be met without a fundamental rethink of the ways in which we consume plastics. This document was prepared by a working group of Regional Centres of the Stockholm and Basel Conventions and related colleagues intended to be a background document for discussion in the 2017 Conference of the Parties (COP) of the Basel Convention on hazardous wastes and the Stockholm Convention on persistent organic pollutants (POPs). The COP finally approved that the issue of plastic waste could be dealt by its

  5. 1995 Toxic chemical release inventory: Emergency Planning and Community Right-to-Know Act of 1986, Section 313

    International Nuclear Information System (INIS)

    Mincey, S.L.

    1996-08-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) requires the annual submittal of toxic chemical release information to the U.S. Environmental Protection Agency.Executive Order 12856, 'Federal Compliance With Right-to-Know Laws and Pollution Prevention Requirements' extends the requirements of EPCRA to all Federal agencies. The following document is the August 1996 submittal of the Hanford Site Toxic Chemical Release Inventory report. Included is a Form R for ethylene glycol, the sole chemical used in excess of the established regulatory thresholds at the Hanford Site by the U.S. Department of Energy, Richland Operations Office and its contractors during Calendar Year 1995

  6. Reproductive toxicity: Male and female reproductive systems as targets for chemical injury

    Energy Technology Data Exchange (ETDEWEB)

    Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.; Al-Juburi, A.Z.; Gandy, J.; Malek, A. (Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1990-03-01

    On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation or ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.

  7. Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials

    International Nuclear Information System (INIS)

    Hoover, M.D.; Mewhinney, C.J.; Newton, G.J.

    1999-01-01

    Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures

  8. Chemical constituents and fumigant toxicity of essential oil from Carum copticum against two stored product beetles

    Institute of Scientific and Technical Information of China (English)

    BIBI ZAHRA SAHAF; SAEID MOHARRAMIPOUR; MOHAMMAD HADI MESHKATALSADAT

    2007-01-01

    Plant secondary metabolites play an important role in plant-insect interactions and therefore such compounds may have insecticidal or antifeedant activity against insects. Carum copticum C. B. Clarke (Apiaceae) is one of these plants that have medicinal effects on humans. The chemical composition of the essential oil from dry seeds of C. copticum was studied by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Thymol (41.34%), α-terpinolene (17.46%) and ρ-cymene (11.76%) were found to be the major constituents of the oil. In fumigant toxicity tests with the essential oil against adults of Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) at 27 +-1℃ and 60%+-5% RH, it was observed that S. oryzae (LC50= 0.91 μL/L) were significantly susceptible than T. castaneum (LC50= 33.14 μL/L). The mortalities of the insect species reached 100% at concentrations higher than 185.2 μL/L and 12-h exposure time. The findings indicate the strong insecticidal activity of C. copticum oil and its potential role as a fumigant for storedproduct insects.

  9. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi.

    Science.gov (United States)

    Machado, Levi Pompermayer; Matsumoto, Silvia Tamie; Jamal, Claudia Masrouah; da Silva, Marcelo Barreto; Centeno, Danilo da Cruz; Colepicolo Neto, Pio; de Carvalho, Luciana Retz; Yokoya, Nair S

    2014-07-01

    Banana and papaya are among the most important crops in the tropics, with a value amounting to millions of dollars per year. However, these fruits suffer significant losses due to anthracnose, a fungal disease. It is well known that certain seaweed extracts possess antifungal activity, but no published data appear to exist on the practical application of this property. In the present study, five organic Brazilian seaweed extracts were screened for their activity against banana and papaya anthracnose fungi. Furthermore, cytotoxic and mutagenic effects of the extracts were evaluated by the brine shrimp lethality assay and the Allium cepa root-tip mutagenicity test respectively, while their major components were identified by gas chromatography/mass spectrometry. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea extracts were observed on both papaya (100 and 98% respectively) and banana (89 and 78% respectively). This impressive activity could be associated with halogenated terpenes, the major components of both extracts. Only Hypnea musciformis extract showed cytotoxic and mutagenic effects. The results of this study suggest the potential use of seaweed extracts as a source of antifungal agents with low toxicity to control anthracnose in papaya and banana during storage. © 2013 Society of Chemical Industry.

  10. Toxicity of Chevron Escravos crude oil and chemical dispersant on guinea pig testicular function.

    Science.gov (United States)

    Afonne, Onyenmechi Johnson; Onyiaorah, Igwebuike Victor; Orisakwe, Orish Ebere

    2013-01-01

    Chemical contaminants have been found to affect reproductive functions in mammals. This study investigated the effect of Chevron Escravos crude oil and Emulsol L.W. dispersant on the testicular functions of guinea pig. Eight groups of seven sexually mature male guinea pigs each were given 1250, 2500, or 5000 mg/kg of crude oil and dispersant for 7 days. The fluid and food intake and body weight of the animals were measured daily throughout the study. After the exposure period, sperm quality analysis was carried out, and fructose and lactate dehydrogenase were analyzed in tissue homogenate, while testosterone and estradiol were assayed in blood. The right testis was also processed for histological analysis. The epididymal sperm number and fructose level of treated animals showed a significant dose-dependent decrease (pguinea pigs. The possible mechanism of toxicity is suggested to be by stimulation of hormone production from the adrenal cortex, causing a negative feedback on gonadotropin-releasing hormone in the pituitary gland to suppress spermatogenesis.

  11. A computational approach to chemical etiologies of diabetes

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Brunak, Søren; Grandjean, Philippe

    2013-01-01

    Computational meta-analysis can link environmental chemicals to genes and proteins involved in human diseases, thereby elucidating possible etiologies and pathogeneses of non-communicable diseases. We used an integrated computational systems biology approach to examine possible pathogenetic...... linkages in type 2 diabetes (T2D) through genome-wide associations, disease similarities, and published empirical evidence. Ten environmental chemicals were found to be potentially linked to T2D, the highest scores were observed for arsenic, 2,3,7,8-tetrachlorodibenzo-p-dioxin, hexachlorobenzene...

  12. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors

    International Nuclear Information System (INIS)

    Kar, Supratik; Roy, Kunal

    2010-01-01

    One of the major economic alternatives to experimental toxicity testing is the use of quantitative structure-activity relationships (QSARs) which are used in formulating regulatory decisions of environmental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional (3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices) descriptors along with physicochemical parameter log K o/w (n-octanol/water partition coefficient) and structural descriptors were used as predictor variables. The QSAR models were developed by stepwise multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and genetic PLS (G/PLS). All the models were validated internally and externally. Among several models developed using different chemometric tools, the best model based on both internal and external validation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8% leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage, hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals. The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to achieve better ecotoxicological management and prevent adverse health consequences.

  13. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Supratik [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India); Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India)

    2010-05-15

    One of the major economic alternatives to experimental toxicity testing is the use of quantitative structure-activity relationships (QSARs) which are used in formulating regulatory decisions of environmental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional (3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices) descriptors along with physicochemical parameter log K{sub o/w} (n-octanol/water partition coefficient) and structural descriptors were used as predictor variables. The QSAR models were developed by stepwise multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and genetic PLS (G/PLS). All the models were validated internally and externally. Among several models developed using different chemometric tools, the best model based on both internal and external validation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8% leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage, hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals. The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to achieve better ecotoxicological management and prevent adverse health consequences.

  14. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors.

    Science.gov (United States)

    Ginebreda, Antoni; Kuzmanovic, Maja; Guasch, Helena; de Alda, Miren López; López-Doval, Julio C; Muñoz, Isabel; Ricart, Marta; Romaní, Anna M; Sabater, Sergi; Barceló, Damià

    2014-01-15

    Chemical pollution is typically characterized by exposure to multiple rather than to single or a limited number of compounds. Parent compounds, transformation products and other non-targeted compounds yield mixtures whose composition can only be partially identified by monitoring, while a substantial proportion remains unknown. In this context, risk assessment based on the application of additive ecotoxicity models, such as concentration addition (CA), is rendered somewhat misleading. Here, we show that ecotoxicity risk information can be better understood upon consideration of the probabilistic distribution of risk among the different compounds. Toxic units of the compounds identified in a sample fit a lognormal probability distribution. The parameters characterizing this distribution (mean and standard deviation) provide information which can be tentatively interpreted as a measure of the toxic load and its apportionment among the constituents in the mixture (here interpreted as mixture complexity). Furthermore, they provide information for compound prioritization tailored to each site and enable prediction of some of the functional and structural biological variables associated with the receiving ecosystem. The proposed approach was tested in the Llobregat River basin (NE Spain) using exposure and toxicity data (algae and Daphnia) corresponding to 29 pharmaceuticals and 22 pesticides, and 5 structural and functional biological descriptors related to benthic macroinvertebrates (diversity, biomass) and biofilm metrics (diatom quality, chlorophyll-a content and photosynthetic capacity). Aggregated toxic units based on Daphnia and algae bioassays provided a good indication of the pollution pattern of the Llobregat River basin. Relative contribution of pesticides and pharmaceuticals to total toxic load was variable and highly site dependent, the latter group tending to increase its contribution in urban areas. Contaminated sites' toxic load was typically dominated by

  15. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.D. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  16. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    International Nuclear Information System (INIS)

    Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.; Stedman, Donald B.; Wang, Huijun; Will, Yvonne

    2013-01-01

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary

  17. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    Energy Technology Data Exchange (ETDEWEB)

    Nadanaciva, Sashi [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States); Aleo, Michael D. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Strock, Christopher J. [Cyprotex US, Watertown, MA 02472 (United States); Stedman, Donald B. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Wang, Huijun [Computational Sciences, Pfizer Inc., Groton, CT 06340 (United States); Will, Yvonne, E-mail: yvonne.will@pfizer.com [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States)

    2013-10-15

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.

  18. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  19. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  20. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches

    Directory of Open Access Journals (Sweden)

    Ashok K. Sharma

    2017-11-01

    Full Text Available The experimental methods for the prediction of molecular toxicity are tedious and time-consuming tasks. Thus, the computational approaches could be used to develop alternative methods for toxicity prediction. We have developed a tool for the prediction of molecular toxicity along with the aqueous solubility and permeability of any molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a training set, the different chemical and structural based features such as descriptors and fingerprints were exploited for feature selection, optimization and development of machine learning based classification and regression models. The compositional differences in the distribution of atoms were apparent between toxins and non-toxins, and hence, the molecular features were used for the classification and regression. On 10-fold cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification models showed similar accuracy (93% and Matthews's correlation coefficient (0.84. The performances of all the three models were comparable (Matthews's correlation coefficient = 0.84–0.87 on the blind dataset. In addition, the regression-based models using descriptors as input features were also compared and evaluated on the blind dataset. Random forest based regression model for the prediction of solubility performed better (R2 = 0.84 than the multi-linear regression (MLR and partial least square regression (PLSR models, whereas, the partial least squares based regression model for the prediction of permeability (caco-2 performed better (R2 = 0.68 in comparison to the random forest and MLR based regression models. The performance of final classification and regression models was evaluated using the two validation datasets including the known toxins and commonly used constituents of health products, which attests to its accuracy. The ToxiM web server would be a highly useful and reliable tool for the prediction of toxicity

  1. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    Science.gov (United States)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  2. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  3. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment

    OpenAIRE

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Background Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) appro...

  4. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    OpenAIRE

    Adrian Jinich; Dmitrij Rappoport; Ian Dunn; Benjamin Sanchez-Lengeling; Roberto Olivares-Amaya; Elad Noor; Arren Bar Even; Alán Aspuru-Guzik

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfe...

  5. [DIFFERENT APPROACHES FOR CHEMICAL RISK ASSESSMENT IN LABORATORIES].

    Science.gov (United States)

    Caporossi, Lidia; Papaleo, Bruno; Capanna, Silvia; Calicchia, Sara; Marcellini, Laura; De Rosa, Mariangela; Castellano, Paola

    2015-01-01

    The aim of this study was to compare the different approaches used for chemical risk assessment, in relation to the perception of riskfor operators, in some research laboratories of a hospital in Rome. All information regarding the chemicals used for the application of three algorithmic models for chemical risk assessment ("Movarisch", "Inforisk", "Archimede") were collected. An environmental and biological monitoring and a study on the combined exposure to multiple chemicals using the World Health Organization proposed steps were carried out. A questionnaire was prepared for the identification of risk perception. An estimation of chemical risk with algorithms was compared with data from monitoring: findings showed that estimated risk was higher than those identified with airborne or urine concentrations, always under their limit values. The study of multiple exposure showed a possible cumulative risk, in some cases, but the conditions of use (volume and time) often bring to a reduced one. The perception of risk attributed to the monitored hazardous substances showed a correct perception in all laboratories and for all workers, with regard to the substances manipulated.

  6. Predicting the carcinogenicity of chemicals with alternative approaches: recent advances.

    Science.gov (United States)

    Benigni, Romualdo

    2014-09-01

    Alternative approaches to the rodent bioassay are necessary for early identification of problematic drugs and biocides during the development process, and are the only practicable tool for assessing environmental chemicals with no or adequate safety documentation. This review informs on: i) the traditional prescreening through genotoxicity testing; ii) an integrative approach that assesses DNA-reactivity and ability to disorganize tissues; iii) new applications of omics technologies (ToxCast/Tox21 project); iv) a pragmatic approach aimed at filling data gaps by intrapolating/extrapolating from similar chemicals (read-across, category formation). The review also approaches the issue of the concerns about false-positive and false-negative results that prevents a wider acceptance and use of alternatives. The review addresses strengths and limitations of various proposals, and concludes on the need of differential approaches to the issue of false negatives and false positives. False negatives can be eliminated or reduced below the variability of the animal assay with conservative quantitative structure-activity relationships or in vitro tests; false positives can be cleared with ad hoc mechanistically based follow-ups. This framework can permit a reduction of animal testing and a better protection of human health.

  7. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    Science.gov (United States)

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21 st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19 th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20 th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  8. Mapping of QTLs for Seed Phorbol Esters, a Toxic Chemical in Jatropha curcas (L.).

    Science.gov (United States)

    Amkul, Kitiya; Laosatit, Kularb; Somta, Prakit; Shim, Sangrea; Lee, Suk-Ha; Tanya, Patcharin; Srinives, Peerasak

    2017-08-18

    Jatropha ( Jatropha curcas L.) is an oil-bearing plant that has potential to be cultivated as a biodiesel crop. The seed cake after oil extraction has 40-50% protein that can be used in animal feeds. A major limitation in utilizing the cake is the presence of phorbol esters (PE), a heat-tolerant toxic chemical. To identify the quantitative trait loci (QTLs) for PE, we constructed a genetic linkage map from an F₂ population of 95 individuals from a cross "Chai Nat" × "M10" using 143 simple sequence repeat (SSR) markers. M10 is low in seed PE while Chai Nat is high. Seeds from each F₂ individual were quantified for PE content by high performance liquid chromatography. A single marker analysis revealed five markers from linkage group 3 (LG3) and nine markers from LG8 associated with seed PE. Inclusive composite interval mapping identified two QTLs, each on LG3 ( qPE3.1 ) and LG8 ( qPE8.1 ) responsible for the PE. qPE3.1 and qPE8.1 accounted for 14.10%, and 15.49% of total variation in seed PE, respectively. Alelle(s) from M10 at qPE3.1 increased seed PE, while at qPE8.1 decreased seed PE. qPE3.1 is a new loci for PE, while qPE8.1 is the same locus with that reported recently for PE.

  9. The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective.

    Science.gov (United States)

    Sewell, Fiona; Aggarwal, Manoj; Bachler, Gerald; Broadmeadow, Alan; Gellatly, Nichola; Moore, Emma; Robinson, Sally; Rooseboom, Martijn; Stevens, Alexander; Terry, Claire; Burden, Natalie

    2017-08-15

    For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-01

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments

  11. Why the toxic substances control act needs an overhaul, and how to strengthen oversight of chemicals in the interim.

    Science.gov (United States)

    Vogel, Sarah A; Roberts, Jody A

    2011-05-01

    The Toxic Substances Control Act gives the Environmental Protection Agency (EPA) the authority to regulate industrial chemicals not covered by other statutes. Today there are more than 83,000 such chemicals. However, the law is widely perceived as weak and outdated, and various stakeholders have called for its reform, citing the EPA's inability to regulate the use of asbestos, among other substances. We analyze the flaws in the act and suggest ways in which the EPA might better position itself to manage chemical risks and protect the public's health. In addition to the new tools and technologies it is adopting, the agency needs new allies-both inside and outside the government-in its efforts to identify and control hazardous chemicals.

  12. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level.

    Science.gov (United States)

    Castañeda-Arriaga, Romina; Galano, Annia

    2017-06-19

    Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.

  13. Accelerating cocaine metabolism as an approach to the treatment of cocaine abuse and toxicity

    Science.gov (United States)

    Schindler, Charles W; Goldberg, Steven R

    2012-01-01

    One pharmacokinetic approach to the treatment of cocaine abuse and toxicity involves the development of compounds that can be safely administered to humans and that accelerate the metabolism of cocaine to inactive components. Catalytic antibodies have been developed and shown to accelerate cocaine metabolism, but their catalytic efficiency for cocaine is relatively low. Mutations of human butyrylcholinesterase and a bacterial cocaine esterase found in the soil of coca plants have also been developed. These compounds accelerate cocaine metabolism and antagonize the behavioral and toxic effects of cocaine in animal models. Of these two approaches, the human butyrylcholinesterase mutants show the most immediate promise as they would not be expected to evoke an immune response in humans. PMID:22300096

  14. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.

    Science.gov (United States)

    He, Xiaojia; Aker, Winfred G; Leszczynski, Jerzy; Hwang, Huey-Min

    2014-03-01

    In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano-bio-eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes. Copyright © 2014. Published by Elsevier B.V.

  15. Toxicity of proton-metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, Anthony [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, Stephen [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Ormerod, Stephen J. [Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US (United Kingdom); Clements, William H. [Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523 (United States); Blust, Ronny [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2010-10-01

    Understanding metal and proton toxicity under field conditions requires consideration of the complex nature of chemicals in mixtures. Here, we demonstrate a novel method that relates streamwater concentrations of cationic metallic species and protons to a field ecological index of biodiversity. The model WHAM-F{sub TOX} postulates that cation binding sites of aquatic macroinvertebrates can be represented by the functional groups of natural organic matter (humic acid), as described by the Windermere Humic Aqueous Model (WHAM6), and supporting field evidence is presented. We define a toxicity function (F{sub TOX}) by summing the products: (amount of invertebrate-bound cation) x (cation-specific toxicity coefficient, {alpha}{sub i}). Species richness data for Ephemeroptera, Plecoptera and Trichoptera (EPT), are then described with a lower threshold of F{sub TOX}, below which all organisms are present and toxic effects are absent, and an upper threshold above which organisms are absent. Between the thresholds the number of species declines linearly with F{sub TOX}. We parameterised the model with chemistry and EPT data for low-order streamwaters affected by acid deposition and/or abandoned mines, representing a total of 412 sites across three continents. The fitting made use of quantile regression, to take into account reduced species richness caused by (unknown) factors other than cation toxicity. Parameters were derived for the four most common or abundant cations, with values of {alpha}{sub i} following the sequence (increasing toxicity) H{sup +} < Al < Zn < Cu. For waters affected mainly by H{sup +} and Al, F{sub TOX} shows a steady decline with increasing pH, crossing the lower threshold near to pH 7. Competition effects among cations mean that toxicity due to Cu and Zn is rare at lower pH values, and occurs mostly between pH 6 and 8.

  16. A strategy for systemic toxicity assessment based on non-animal approaches: The Cosmetics Europe Long Range Science Strategy programme.

    Science.gov (United States)

    Desprez, Bertrand; Dent, Matt; Keller, Detlef; Klaric, Martina; Ouédraogo, Gladys; Cubberley, Richard; Duplan, Hélène; Eilstein, Joan; Ellison, Corie; Grégoire, Sébastien; Hewitt, Nicola J; Jacques-Jamin, Carine; Lange, Daniela; Roe, Amy; Rothe, Helga; Blaauboer, Bas J; Schepky, Andreas; Mahony, Catherine

    2018-03-02

    When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical. Copyright © 2018. Published by Elsevier Ltd.

  17. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.

    Science.gov (United States)

    Strikwold, Marije; Spenkelink, Bert; Woutersen, Ruud A; Rietjens, Ivonne M C M; Punt, Ans

    2017-06-01

    With our recently developed in vitro physiologically based kinetic (PBK) modelling approach, we could extrapolate in vitro toxicity data to human toxicity values applying PBK-based reverse dosimetry. Ideally information on kinetic differences among human individuals within a population should be considered. In the present study, we demonstrated a modelling approach that integrated in vitro toxicity data, PBK modelling and Monte Carlo simulations to obtain insight in interindividual human kinetic variation and derive chemical specific adjustment factors (CSAFs) for phenol-induced developmental toxicity. The present study revealed that UGT1A6 is the primary enzyme responsible for the glucuronidation of phenol in humans followed by UGT1A9. Monte Carlo simulations were performed taking into account interindividual variation in glucuronidation by these specific UGTs and in the oral absorption coefficient. Linking Monte Carlo simulations with PBK modelling, population variability in the maximum plasma concentration of phenol for the human population could be predicted. This approach provided a CSAF for interindividual variation of 2.0 which covers the 99th percentile of the population, which is lower than the default safety factor of 3.16 for interindividual human kinetic differences. Dividing the dose-response curve data obtained with in vitro PBK-based reverse dosimetry, with the CSAF provided a dose-response curve that reflects the consequences of the interindividual variability in phenol kinetics for the developmental toxicity of phenol. The strength of the presented approach is that it provides insight in the effect of interindividual variation in kinetics for phenol-induced developmental toxicity, based on only in vitro and in silico testing. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    Science.gov (United States)

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evaluating chemical and other agent exposures for reproductive and developmental toxicity

    National Research Council Canada - National Science Library

    Subcommittee on Reproductive and Developmental Toxicity, Committee on Toxicology, Board on Environmental Studies and Toxicology, National Research Council

    2001-01-01

    .... As part of its efforts to reduce or eliminate exposure of Naval personnel and their families to reproductive and developmental toxicants, the Navy requested that the National Research Council (NRC...

  1. ABILITY OF ECOSAR, TOPKAT, NEURAL NETWORKS, AND ASTER TO PREDICT TOXICITY OF CHEMICALS TO AQUATIC BIOTA

    Science.gov (United States)

    The Canadian Environmental Protection Act (CEPA) which provides the basis for assessing and managing toxic substances in Canada, is being revised. Several new mandates have been introduced in the Act...

  2. Predicting In Vivo Effect Levels for Repeat Dose Systemic Toxicity using Chemical, Biological, Kinetic and Study Covariates

    Science.gov (United States)

    In an effort to ensure chemical safety while reducing reliance on animal testing, USEPA and L’Oréal have collaborated to address a major challenge in chemical safety assessment using alternative approaches: the prediction of points-of-departure (POD) of systemic effects. Systemic...

  3. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  4. Integrating exposure into chemical alternatives assessment using a qualitative approach

    DEFF Research Database (Denmark)

    Greggs, Bill; Arnold, Scott; Burns, T. E.

    2016-01-01

    , other attributes beyond hazard are also important, including exposure, risk, life-cycle impacts, performance, cost, and social responsibility. Building on the 2014 recommendations by the U.S. National Academy of Sciences to improve AA decisions by including comparative exposure assessment, the HESI...... Sustainable Chemical Alternatives Technical Committee, which consists of scientists from academia, industry, government, and NGOs, has developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher human or environmental...... not necessarily reflect the views or policies of the U.S. Environmental Protection Agency....

  5. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.

    Science.gov (United States)

    Abbasitabar, Fatemeh; Zare-Shahabadi, Vahid

    2017-04-01

    Risk assessment of chemicals is an important issue in environmental protection; however, there is a huge lack of experimental data for a large number of end-points. The experimental determination of toxicity of chemicals involves high costs and time-consuming process. In silico tools such as quantitative structure-toxicity relationship (QSTR) models, which are constructed on the basis of computational molecular descriptors, can predict missing data for toxic end-points for existing or even not yet synthesized chemicals. Phenol derivatives are known to be aquatic pollutants. With this background, we aimed to develop an accurate and reliable QSTR model for the prediction of toxicity of 206 phenols to Tetrahymena pyriformis. A multiple linear regression (MLR)-based QSTR was obtained using a powerful descriptor selection tool named Memorized_ACO algorithm. Statistical parameters of the model were 0.72 and 0.68 for R training 2 and R test 2 , respectively. To develop a high-quality QSTR model, classification and regression tree (CART) was employed. Two approaches were considered: (1) phenols were classified into different modes of action using CART and (2) the phenols in the training set were partitioned to several subsets by a tree in such a manner that in each subset, a high-quality MLR could be developed. For the first approach, the statistical parameters of the resultant QSTR model were improved to 0.83 and 0.75 for R training 2 and R test 2 , respectively. Genetic algorithm was employed in the second approach to obtain an optimal tree, and it was shown that the final QSTR model provided excellent prediction accuracy for the training and test sets (R training 2 and R test 2 were 0.91 and 0.93, respectively). The mean absolute error for the test set was computed as 0.1615. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Exposure to different toxic chemicals: a threat to environment and human health in mining sites in Tanzania

    International Nuclear Information System (INIS)

    Magduala, J.J.

    2009-01-01

    The mining activities in Tanzania have been existed since time immemorial whereby traditional mining was practiced. However until now the country is still endowed with abundant mineral resources including gold, tanzanite diamonds, iron ore, salt, gypsum, gemstones, natural gas, phosphate, coal, cobalt and nickel. The country's major gold fields are located in Geita, Musoma, Tarime, Chunya and Mpanda. During the last decade, local and foreign investors intensified their mining activities in Tanzania. This resulted in increased use of hazardous chemicals like mercury and cyanide which are harmful and toxic. In this report, the extent and impact to long term exposure of such chemicals to both natural environment and animals including human beings will be discussed. Recommendations to local and international investors and policy markers regarding the safe and sustainable use of harmful chemicals will also be discussed.(author)

  7. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  8. AMAZON RAINFOREST COSMETICS: CHEMICAL APPROACH FOR QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Mariko Funasaki

    2016-02-01

    Full Text Available The market for natural cosmetics featuring ingredients derived from Amazon natural resources is growing worldwide. However, there is neither enough scientific basis nor quality control of these ingredients. This paper is an account of the chemical constituents and their biological activities of fourteen Amazonian species used in cosmetic industry, including açaí (Euterpe oleracea, andiroba (Carapa guianensis, bacuri (Platonia insignis, Brazil nut (Bertholletia excelsa, buriti (Mauritia vinifera or M. flexuosa, cumaru (Dipteryx odorata, cupuaçu (Theobroma grandiflorum, guarana (Paullinia cupana, mulateiro (Calycophyllum spruceanum, murumuru (Astrocaryum murumuru, patawa (Oenocarpus bataua or Jessenia bataua, pracaxi (Pentaclethra macroloba, rosewood (Aniba rosaeodora, and ucuuba (Virola sebifera. Based on the reviewed articles, we selected chemical markers for the quality control purpose and evaluated analytical methods. Even though chromatographic and spectroscopic methods are major analytical techniques in the studies of these species, molecular approaches will also be important as used in food and medicine traceability. Only a little phytochemical study is available about most of the Amazonian species and some species such as açaí and andiroba have many reports on chemical constituents, but studies on biological activities of isolated compounds and sampling with geographical variation are limited.

  9. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms

    International Nuclear Information System (INIS)

    Pesce, Stephane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas

    2011-01-01

    Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Research highlights: → Polar organic chemical integrative samplers (POCIS) were used for monitoring polar organic pesticides in a contaminated river. → The acute effects of POCIS extracts were tested on natural phototrophic biofilm communities. → POCIS pesticide mixtures affected chlorophyll a fluorescence, photosynthetic efficiency and community structure. → Biofilm responses differed according to origin of the biofilms tested, revealing variations in the sensitivity of natural communities. → Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Pesticide mixtures extracted from POCIS can affect chl a fluorescence, photosynthetic efficiency and community structure of natural biofilms.

  10. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  11. Introducing Toxics

    OpenAIRE

    David C. Bellinger

    2013-01-01

    With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present ...

  12. Materials safety data sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, N. E.; Ketchen, E. E.; Porter, W. E.; Hunt, C. L.

    1977-05-01

    For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability, toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.

  13. Materials safety data sheets the basis for control of toxic chemicals. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, N. E.; Ketchen, E. E.; Porter, W. E.; Hunt, C. L.

    1977-05-01

    For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability, toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.

  14. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review.

    Science.gov (United States)

    Hosseini, Azar; Hosseinzadeh, Hossein

    2018-03-01

    Curcuma longa is a rhizomatous perennial herb that belongs to the family Zingiberaceae, native to South Asia and is commonly known as turmeric. It is used as herbal remedy due to the prevalent belief that the plant has medical properties. C. longa possesses different effects such as antioxidant, anti-tumor, antimicrobial, anti-inflammatory, wound healing, and gastroprotective activities. The recent studies have shown that C. longa and curcumin, its important active ingredient, have protective effects against toxic agents. In this review article, we collected in vitro and animal studies which are related to protective effects of turmeric and its active ingredient against natural and chemical toxic agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  16. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    International Nuclear Information System (INIS)

    Vedani, Angelo; Dobler, Max; Smieško, Martin

    2012-01-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  17. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    Science.gov (United States)

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  18. Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea.

    Science.gov (United States)

    Cegłowska, Marta; Toruńska-Sitarz, Anna; Kowalewska, Grażyna; Mazur-Marzec, Hanna

    2018-04-04

    In the Baltic Sea, diazotrophic cyanobacteria have been present for thousands of years, over the whole brackish water phase of the ecosystem. However, our knowledge about the species composition of the cyanobacterial community is limited to the last several decades. In the current study, the presence of species-specific chemical and genetic markers in deep sediments were analyzed to increase the existing knowledge on the history of toxic Nodularia spumigena blooms in the Baltic Sea. As chemical markers, three cyclic nonribosomal peptides were applied: the hepatotoxic nodularin, which in the sea was detected solely in N. spumigena , and two anabaenopeptins (AP827 and AP883a) characteristic of two different chemotypes of this species. From the same sediment samples, DNA was isolated and the gene involved in biosynthesis of nodularin, as well as the phycocyanin intergenic spacer region (PC-IGS), were amplified. The results of chemical and genetic analyses proved for the first time the thousands-year presence of toxic N. spumigena in the Baltic Sea. They also indicated that through all this time, the same two sub-populations of the species co-existed.

  19. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing.

    Science.gov (United States)

    Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L

    2017-02-01

    Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.

  20. Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance

    Science.gov (United States)

    2017-05-07

    who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD)18. The work shows...Joshua J. Phillips, Jennifer R. Soliz, and Adam J. Hauser, “XMCD and Impedance Analysis of Fe2O3 Nanoparticles for Explosive and Chemical Warfare ...Virender K Sharma,"Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite" Journal of hazardous

  1. Decontamination and Detoxification of Toxic Chemical Warfare Agents Using Polyurethane Sponges

    National Research Council Canada - National Science Library

    Gordon, Richard K; Gunduz, Alper T; Askins, LaTawnya Y; Strating, Simon J; Doctor, Bhupendra P; Clarkson, Edward D; Mitchelree, Larry W; Lukey, Brian; Railer, Roy; Schulz, Susan

    2003-01-01

    .... Another serious problem that may be encountered while caring for personnel contaminated with organophosphorus chemical warfare nerve agents is the possibility that there will be cross-contamination...

  2. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures.

    Science.gov (United States)

    Belanger, Scott; Barron, Mace; Craig, Peter; Dyer, Scott; Galay-Burgos, Malyka; Hamer, Mick; Marshall, Stuart; Posthuma, Leo; Raimondo, Sandy; Whitehouse, Paul

    2017-07-01

    A species sensitivity distribution (SSD) is a probability model of the variation of species sensitivities to a stressor, in particular chemical exposure. The SSD approach has been used as a decision support tool in environmental protection and management since the 1980s, and the ecotoxicological, statistical, and regulatory basis and applications continue to evolve. This article summarizes the findings of a 2014 workshop held by the European Centre for Toxicology and Ecotoxicology of Chemicals and the UK Environment Agency in Amsterdam, The Netherlands, on the ecological relevance, statistical basis, and regulatory applications of SSDs. An array of research recommendations categorized under the topical areas of use of SSDs, ecological considerations, guideline considerations, method development and validation, toxicity data, mechanistic understanding, and uncertainty were identified and prioritized. A rationale for the most critical research needs identified in the workshop is provided. The workshop reviewed the technical basis and historical development and application of SSDs, described approaches to estimating generic and scenario-specific SSD-based thresholds, evaluated utility and application of SSDs as diagnostic tools, and presented new statistical approaches to formulate SSDs. Collectively, these address many of the research needs to expand and improve their application. The highest priority work, from a pragmatic regulatory point of view, is to develop a guidance of best practices that could act as a basis for global harmonization and discussions regarding the SSD methodology and tools. Integr Environ Assess Manag 2017;13:664-674. © 2016 SETAC. © 2016 SETAC.

  3. 78 FR 37176 - Addition of Nonylphenol Category; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2013-06-20

    ... species of marine animals; the blue mussel (Mytilus edulis), the three-spined stickleback fish...., A. Bergman, A. Granmo, and M. Berggren. 1990. Bioaccumulation of 4-nonylphenol in marine animals--A... previously peer reviewed (Ref. 3). A. Acute Toxicity to Aquatic Animals 1. Freshwater Species. The acute...

  4. 78 FR 73787 - Chlorsulfuron; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2013-12-09

    ... identified as the minor metabolic pathway. No additional information on the absorption, distribution... aquatic plants the toxicity of chlorsulfuron is very high. (Ref. 3). Duckweed (Lemna gibba) was the most... (cell density); 120 hr capricornutum). NOEC = 0.0094 mg/L (cell density). Lemna gibba Freshwater...

  5. IMPROVING STRUCTURE-LINKED ACCESS TO PUBLICLY AVAILABLE CHEMICAL TOXICITY INFORMATION

    Science.gov (United States)

    Hepatotoxicity of the Herbicide Alachlor Associated with Glutathione Depletion, Oxidative Damage and Protein S-Cysteinyl Adduction.Toxicity of the herbicide alachlor (2-chloro-2',6'-diethtl-N-[methoxtmethtl]-acetanilide) has been attributed to cytochrome P450-dependent me...

  6. Toxicity of White Snakeroot (Ageratina altissima) and chemical extracts of White Snakeroot in goats

    Science.gov (United States)

    White snakeroot (Ageratina altissima) is a sporadically toxic plant that causes trembles in livestock and milk sickness in humans that drink tainted milk. The putative toxin in white snakeroot is tremetone and possibly other benzofuran ketones even though it has not been demonstrated in vivo. Toxi...

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  9. Mitochondrial Toxicity in Human Pregnancy: An Update on Clinical and Experimental Approaches in the Last 10 Years

    Directory of Open Access Journals (Sweden)

    Constanza Morén

    2014-09-01

    Full Text Available Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.

  10. Distributed Structure Searchable Toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data....

  11. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells

    International Nuclear Information System (INIS)

    Noor, Fozia; Niklas, Jens; Mueller-Vieira, Ursula; Heinzle, Elmar

    2009-01-01

    Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicty is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC 50 values 100 μM or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.

  12. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L.

    OpenAIRE

    El Jemli, Meryem; Kamal, Rabie; Marmouzi, Ilias; Doukkali, Zouhra; Bouidida, El Houcine; Touati, Driss; Nejjari, Rachid; El Guessabi, Lahcen; Cherrah, Yahia; Alaoui, Katim

    2016-01-01

    Hydro-distilled essential oil (EO) from the leaves of the western Mediterranean and Moroccan endemic plant Tetraclinis articulata was analyzed by GC/MS and examined for its acute toxicity on mice, in order to establish the safe doses. Furthermore, the anti-Inflammatory activity was evaluated based on carrageenan and trauma induced rats paw edema and the antioxidant potential has been investigated using different methods including DPPH radical-scavenging assay, Trolox equivalent antioxidant ca...

  13. Toxic Compounds Analysis With High Performance Liquid Chromatography Detected By Electro Chemical Detector (Ecd)

    OpenAIRE

    Hideharu Shintaniq

    2014-01-01

    The principal area of application of high performance liquid chromatography-electrochemical detector (HPLC-ECD) has been in the analysis of naturally-occurring analytes, such as catecholamines, and pharmaceuticals in biological samples, HPLC-ECD has also applied to the analysis of pesticides and other analytes of interest to the toxicologist. In this paper, toxic area is described. In these, ammatoxins, aromatic amine, nitro-compounds, algal toxins, fungal toxins, pesticides, veterinary drug ...

  14. Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.

    , GP15 and GP16) and one Pseudomonas aeruginosa (CH07) which showed comparatively higher resistance to toxic heavy metals and xenobiotics and were used in more detailed experiments. Antibiotic sensitivity of all three isolates after plasmid curing... using Nucleospin Plasmid isolation kit (Macherey Nagel, Germany) and agarose gel electrophoresis. To further confirm the presence/absence of plasmid, two different plasmid curing assays were performed to note the loss, if any, of mercury resistance...

  15. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  16. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  17. Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures

    Science.gov (United States)

    Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems...

  18. Quick, portable toxicity testing of marine or terrigenous fluids, sediments, or chemicals with bioluminescent organism

    International Nuclear Information System (INIS)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.

    1995-01-01

    A hand-held, battery-operated instrument, which measures bioluminescence inhibition of the microscopic marine dinoflagellate Pyrocystis lunula, is capable of field-testing substances for toxicity. The organism is sensitive to ppb of strong toxicants. It tolerates some solvents in concentrations necessary for testing lipophylic samples. A test consumes only micrograms of sample. This method requires no adjustments for salinity, pH, color, or turbidity. It has been used successfully to test oil-well drilling fluids, brines produced with oil, waters and sediments from streams and lakes and petroleum-plant effluents containing contaminants such as benzene. The test is non-specific; however, if the substance is known, the end-point effects a direct measurement of its concentration. One-hour toxicity screening tests in the field produce results comparable to the standard four-hour laboratory test. Keeping the sample in the dark during incubation and testing, together with shortness of the overall procedure, eliminates anomalies from light-sensitive substances. Day-to-day variation, as well as among test replicates, is less than 10%. This quick method yields results comparable with a quick test that uses Photobacterium phosphoria, and with 96-hour tests that use Mysidopsis bahia, Artemia salina, Gonyaulax polyedra, Pimephales promelas, Ceriodaphnia dubia, and Cyprinodon variegatus

  19. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...

  20. An approach for estimating toxic releases of H{sub 2}S-containing natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Jianwen, Zhang, E-mail: zhangjw@mail.buct.edu.cn [Lab of Fluid Flow and Heat Transfer, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Safety Management, Beijing University of Chemical Technology, Beijing 100029 (China); Da, Lei [Lab of Fluid Flow and Heat Transfer, Beijing University of Chemical Technology, Beijing 100029 (China); College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wenxing, Feng [Pipeline Research Center of PetroChina Company Lmited, 51 Golden Road, Langfang 065000 (China)

    2014-01-15

    Highlights: • Behavior of H{sub 2}S-containing natural gas exhibits appearance of neutral gas by CFD. • The poisoning hazards of H{sub 2}S by gas pipeline releases are successfully estimated. • An assessment method for available safe egress time is proposed. -- Abstract: China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards’ effects by two essential parameters – toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after

  1. An approach for estimating toxic releases of H2S-containing natural gas.

    Science.gov (United States)

    Jianwen, Zhang; Da, Lei; Wenxing, Feng

    2014-01-15

    China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards' effects by two essential parameters - toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after release incidents. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors-a calorimetric approach.

    Science.gov (United States)

    Bararunyeretse, Prudence; Ji, Hongbing; Yao, Jun

    2017-06-01

    The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p soil in the case of Ni while for the mineral collectors, only 5 μg g -1 soil and 50 μg g -1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p toxic effects are those of mixtures containing SIPX and PEX, respectively.

  3. Toxic Industrial Chemical Tests of Resistance to Permeation by Protective Suits

    National Research Council Canada - National Science Library

    Klemperer, Elizabeth

    2005-01-01

    A Natick program to select and test protective materials for soldiers and first responders who face a threat from chemical accidents or terrorist attacks was applied under Congressional legislation...

  4. Predictive Models and Tools for Assessing Chemicals under the Toxic Substances Control Act (TSCA)

    Science.gov (United States)

    EPA has developed databases and predictive models to help evaluate the hazard, exposure, and risk of chemicals released to the environment and how workers, the general public, and the environment may be exposed to and affected by them.

  5. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  6. Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach.

    Science.gov (United States)

    Antunes, Paula M C; Kreager, Nancy J

    2014-10-01

    In the present study, predictive measures for Pb toxicity and Lemna minor were developed from bioassays with 7 surface waters having varied chemistries (0.5-12.5 mg/L dissolved organic carbon, pH of 5.4-8.3, and water hardness of 8-266 mg/L CaCO3 ). As expected based on water quality, 10%, 20%, and 50% inhibitory concentration (IC10, IC20, and IC50, respectively) values expressed as percent net root elongation (%NRE) varied widely (e.g., IC20s ranging from 306 nM to >6920 nM total dissolved Pb), with unbounded values limited by Pb solubility. In considering chemical speciation, %NRE variability was better explained when both Pb hydroxides and the free lead ion were defined as bioavailable (i.e., f{OH} ) and colloidal Fe(III)(OH)3 precipitates were permitted to form and sorb metals (using FeOx as the binding phase). Although cause and effect could not be established because of covariance with alkalinity (p = 0.08), water hardness correlated strongly (r(2)  = 0.998, p minor and highlight the importance of chemical speciation in Pb-based risk assessments for aquatic macrophytes. © 2014 SETAC.

  7. Chemical Composition, Toxicity and Antifungal Activities of Megaphrynium macrostachyum (K. Schum Leaf Extract against Foodborne Fungi

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Oluwasola ADEOGUN

    2017-09-01

    Full Text Available This study aimed to examine the preservative potential of Megaphrynium macrostachyum on fungi responsible for the deterioration of orange juice and corn Jell-O. The phytochemicals from plants’ leaves were extracted with four solvents: acetone, aqueous, ethanol and hexane. The solvents were differently and tested against fungi isolated from orange juice and corn Jell-O using disc diffusion method. Phytochemical screening of the extracts from the leaves was carried out, and the most active extract was tested via GC-MS for the essential oils and HPLC fingerprinting. The toxicity test of the extracts against brine shrimp was carried out after exposure for 24 hours. The toxicity test showed that the extracts were non-toxic on the Brine Shrimps at LC50 (379.21μg/ml and 107.21μg/ml for aqueous and ethanol extracts. The qualitative phytochemical test reported the presence of alkaloids, tannins, saponins, flavonoids, steroids, and terpenoids in different extracts of the plant’ leaves. The quantitative phytochemical determination of the most active extract revealed alkaloids with the highest contents of 107.48mg/100g. The GC-MS analyses of the fresh leaves of the plants revealed the presence of isodecane with the highest percentage at 15.56%. The GC-MS analyses of the dried leaves revealed isodecane with the highest percentage at 10.43%. The HPLC analysis revealed the presence of various phytochemical constituents in the dried leaves. This study has been able to establish the potency of Megaphrynium macrostachyum leaves on fungi associated with the spoilage of Citrus sinensis (orange juice and Corn Jell-O (‘Eko’ which contribute to tremendous research towards the use and acknowledgment of natural antimicrobials for the preservation of food.

  8. Chemical inhibition of host toxicity as a means of overcoming tumor resistance

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Pardini, M.C.; Children's Hospital of Philadelphia, PA)

    1983-01-01

    Largely because we have accumulated so much information on WR-2721 in the past decade, we know that this drug is not a universal panacea which will solve all the problems which confront us. However, in those instances where it would appear applicable, clinical testing would appear appropriate. Thanks largely to the efforts of M.M. Kligerman, these studies have been initiated. In those instances where WR-2721 would appear inappropriate or not of sufficient activity, the information we have already accumulated should point the way to the development of qualitatively and/or quantitatively superior drugs which selectively inhibit host toxicity

  9. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  10. From basic physics to mechanisms of toxicity: the ``liquid drop'' approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles

    Science.gov (United States)

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-10-01

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the ``liquid drop'' model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were

  11. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.

    Science.gov (United States)

    Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil

    2017-09-25

    Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers.

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H

    2013-09-01

    The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evidence-Based Approaches to Improving Chemical Equilibrium Instruction

    Science.gov (United States)

    Davenport, Jodi L.; Leinhardt, Gaea; Greeno, James; Koedinger, Kenneth; Klahr, David; Karabinos, Michael; Yaron, David J.

    2014-01-01

    Two suggestions for instruction in chemical equilibrium are presented, along with the evidence that supports these suggestions. The first is to use diagrams to connect chemical reactions to the effects of reactions on concentrations. The second is the use of the majority and minority species (M&M) strategy to analyze chemical equilibrium…

  14. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.

    Science.gov (United States)

    Burden, Natalie; Maynard, Samuel K; Weltje, Lennart; Wheeler, James R

    2016-10-01

    The European Plant Protection Products Regulation 1107/2009 requires that registrants establish whether pesticide metabolites pose a risk to the environment. Fish acute toxicity assessments may be carried out to this end. Considering the total number of pesticide (re-) registrations, the number of metabolites can be considerable, and therefore this testing could use many vertebrates. EFSA's recent "Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters" outlines opportunities to apply non-testing methods, such as Quantitative Structure Activity Relationship (QSAR) models. However, a scientific evidence base is necessary to support the use of QSARs in predicting acute fish toxicity of pesticide metabolites. Widespread application and subsequent regulatory acceptance of such an approach would reduce the numbers of animals used. The work presented here intends to provide this evidence base, by means of retrospective data analysis. Experimental fish LC50 values for 150 metabolites were extracted from the Pesticide Properties Database (http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm). QSAR calculations were performed to predict fish acute toxicity values for these metabolites using the US EPA's ECOSAR software. The most conservative predicted LC50 values generated by ECOSAR were compared with experimental LC50 values. There was a significant correlation between predicted and experimental fish LC50 values (Spearman rs = 0.6304, p < 0.0001). For 62% of metabolites assessed, the QSAR predicted values are equal to or lower than their respective experimental values. Refined analysis, taking into account data quality and experimental variation considerations increases the proportion of sufficiently predictive estimates to 91%. For eight of the nine outliers, there are plausible explanation(s) for the disparity between measured and predicted LC50 values. Following detailed consideration of the robustness of

  15. Current and future perspectives on the development, evaluation and application of in silico approaches for predicting toxicity

    Science.gov (United States)

    Safety-related problems continue to be one of the major reasons of attrition in drug development. Non-testing approaches to predict toxicity could form part of the solution. This review provides a perspective of current status of non-testing approaches available for the predictio...

  16. 75 FR 72727 - Addition of National Toxicology Program Carcinogens; Community Right-to-Know Toxic Chemical...

    Science.gov (United States)

    2010-11-26

    ...; nitromethane; phenolphthalein; tetrafluoroethylene; tetranitromethane; and vinyl fluoride. In addition, the... chemicals, glycidol and vinyl fluoride out of the 16 at issue in this action. EPA notes that the commenter... included in the record. The IISRP noted that the proposed rule refers to similarities between isoprene and...

  17. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Maříková, Monika; Šubrt, Jan; Oplustil, F.; Olšanská, M.

    2004-01-01

    Roč. 2, č. 1 (2004), s. 16-33 ISSN 1644-3624 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * organometallic compounds * chemical synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.171, year: 2004

  18. Text-mining strategies to support computational research in chemical toxicity (ACS 2017 Spring meeting)

    Science.gov (United States)

    With 26 million citations, PubMed is one of the largest sources of information about the activity of chemicals in biological systems. Because this information is expressed in natural language and not stored as data, using the biomedical literature directly in computational resear...

  19. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds

    NARCIS (Netherlands)

    Freidig, A.P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; Sandt, van de J.J.M.

    2007-01-01

    Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to

  20. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    Science.gov (United States)

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  1. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    Science.gov (United States)

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  2. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    International Nuclear Information System (INIS)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  3. Chemical and radiological toxicity of iodine isotopes. Experimental study on the rat at the perinatal stage

    International Nuclear Information System (INIS)

    Bourahla, K.

    2000-01-01

    The recommended prophylactic measure in the case of an exposure to radio-iodine is an excess take of stable iodine. During the perinatal stage, the thyroid is radio-sensible but also fragile with respect to an excess of iodine. This work performed on the rat, treats of the potential thyroidal toxicity of the prophylaxy and analyzes the early radio-lesions induced by 131 I. On the basis of microscopic (optical, electronic, ionic) and dosimetric studies (TSH, T4), four aspects are considered: 1 - the perinatal morpho-functional evolution (F18, J1, J4, J10, J21, J35); 2 - the consequences of an iodine overburden at three moments of the thyroid maturation (F16, F20 and J4); 3 - the effects on the thyroid cells growth of different iodine overburdens (4 g, 20 g, 100 g); and 4 - the radio-toxic effects (after 48 h) of 131 I taken at J5 (30 Gy) and at J35 (900 Gy). This work evidences the following points: 1 - the perinatal evolution of the thyroid tissue of the rat shows ultra-structural and follicular modifications and physiological follicular destructions; 2 - the variability of the iodine overburden effects: hyperactivity for overburdens at F16, tissue destruction with compensated hypothyroidism for overburdens at J5, no recognized thyroidal anomaly for the overburden at J20; 3 - the iodated overburden inhibits the start-up of the S-phase of the cellular cycle at a lower level (1/20); 4 - the 131 I taken at J5 (30 Gy) induces a lysis of the nucleic acids content, while 131 I taken at J35 (900 Gy) induces an important inflammatory reaction and some apoptosis phenomena. In summary, the stable iodine prophylactic measure can have two conjugated effects on the rat: an interesting action of thyroid cells growth inhibition, and a toxic action leading to an hyperactivity or a follicular destruction without hypothyroidism, depending on the maturation stage. The early effects of 131 I seem to be linked with the age. (J.S.)

  4. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Lulla, Aaron [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Araujo, Jesus A., E-mail: JAraujo@mednet.ucla.edu [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Molecular Biology Institute, University of California, Los Angeles (United States)

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  5. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  6. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts.

    Science.gov (United States)

    Leite, João Jaime Giffoni; Brito, Erika Helena Salles; Cordeiro, Rossana Aguiar; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Bertini, Luciana Medeiros; Morais, Selene Maia de; Rocha, Marcos Fábio Gadelha

    2009-01-01

    The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.

  7. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.

    Science.gov (United States)

    Johnson, Andrew C; Donnachie, Rachel L; Sumpter, John P; Jürgens, Monika D; Moeckel, Claudia; Pereira, M Gloria

    2017-12-01

    This work presents a new and unbiased method of risk ranking chemicals based on the threat they pose to the aquatic environment. The study ranked 12 metals, 23 pesticides, 11 other persistent organic pollutants (POPs), 13 pharmaceuticals, 10 surfactants and similar compounds and 2 nanoparticles (total of 71) of concern against one another by comparing their median UK river water and median ecotoxicity effect concentrations. To complement this, by giving an assessment on potential wildlife impacts, risk ranking was also carried out by comparing the lowest 10th percentile of the effects data with the highest 90th percentile of the exposure data. In other words, risk was pared down to just toxicity versus exposure. Further modifications included incorporating bioconcentration factors, using only recent water measurements and excluding either lethal or sub-lethal effects. The top ten chemicals, based on the medians, which emerged as having the highest risk to organisms in UK surface waters using all the ecotoxicity data were copper, aluminium, zinc, ethinylestradiol (EE2), linear alkylbenzene sulfonate (LAS), triclosan, manganese, iron, methomyl and chlorpyrifos. By way of contrast, using current UK environmental quality standards as the comparator to median UK river water concentrations would have selected 6 different chemicals in the top ten. This approach revealed big differences in relative risk; for example, zinc presented a million times greater risk then metoprolol and LAS 550 times greater risk than nanosilver. With the exception of EE2, most pharmaceuticals were ranked as having a relatively low risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach.

    Science.gov (United States)

    Pesce, Stéphane; Lissalde, Sophie; Lavieille, Delphine; Margoum, Christelle; Mazzella, Nicolas; Roubeix, Vincent; Montuelle, Bernard

    2010-09-15

    This study assessed the single and joint acute toxicity of diuron and two of its metabolites (DCPMU and 3,4-DCA) on natural phototrophic biofilms using a PICT approach with photosynthesis bioassays. River biofilm communities were collected at three sampling stations exhibiting increasing concentrations of diuron, DCPMU and 3,4-DCA from upstream to downstream. Applied individually, the parent compound was more toxic than its metabolites, with DCPMU being more toxic than 3,4-DCA which only inhibited photosynthesis at very high concentrations (EC25 at about 5 mg/l). Sensitivity of biofilm communities to diuron and DCPMU decreased from upstream to downstream, revealing tolerance induction in contaminated sections of the river, as expected from the PICT concept. Nevertheless, PICT was not applicable for 3,4-DCA, which similarly affected upstream, intermediate and downstream biofilm communities. Chemical mixtures of diuron and DCPMU demonstrated additive effects whereas combinations with 3,4-DCA enhanced the observed effects. Our results reveal that the individual and combined presence of diuron and DCPMU in lotic ecosystems can have both short-term effects (as shown with bioassays) and long-term effects (as shown through the PICT approach) on phototrophic biofilms, whereas environmental concentrations of 3,4-DCA may not affect biofilm photosynthetic activity. 2010 Elsevier B.V. All rights reserved.

  9. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil

    OpenAIRE

    Emad Khalilzadeh; Gholamreza Vafaei Saiah; Hamideh Hasannejad; Adel Ghaderi; Shahla Ghaderi; Gholamreza Hamidian; Razzagh Mahmoudi; Davoud Eshgi; Mahsa Zangisheh

    2015-01-01

    Objective: Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography ? mass spectrom...

  10. Comparison of Steady State Evaporation Models for Toxic Chemical Spills: Development of a New Evaporation Model

    Science.gov (United States)

    1989-11-29

    for diffusivity based on theory : DVab- 0.002e6 703/2 eS/s(bPM11 t/ ,cm/s (28) ab ab 1) where DV-b a molecular diffusion coefflcient of chemical a In...24 Ugt W m -K (48)S[(/hg) + (1/h)] m- K- where ha is the coefficient of heat conduction through the ground, and hl is the liquid heat transfer

  11. 1998 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III

    International Nuclear Information System (INIS)

    Stockton, Marjorie B.

    1999-01-01

    The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 [also known as the Superfund Amendment and Reauthorization Act (SARA), Title III], as modified by Executive Order 12856, requires that all federal facilities evaluate the need to submit an annual Toxic Chemical Release Inventory report as prescribed in Title III, Section 313 of this Act. This annual report is due every July for the preceding calendar year. Owners and operators who manufacture, process, or otherwise use certain toxic chemicals above listed threshold quantities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), no EPCRA Section 313 chemicals were used in 1998 above the reportable threshold limits of 10,000 lb or 25,000 lb. Therefore LANL was not required to submit any Toxic Chemical Release Inventory reports (Form Rs) for 1998. This document was prepared to provide a detailed description of the evaluation on chemical usage and EPCRA Section 313 threshold determinations for LANL for 1998

  12. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    Science.gov (United States)

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products.

    Science.gov (United States)

    Kaur, Gurjot; Muthumalage, Thivanka; Rahman, Irfan

    2018-05-15

    Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Toxic chemical release inventory reporting form R and instructions. Revised 1992 version. Section 313 of the Emergency Planning and Community Right-to-Know Act

    International Nuclear Information System (INIS)

    1993-01-01

    Reporting is required to provide the public with information on the releases of listed toxic chemicals in their communities and to provide EPA with release information to assist the Agency in determining the need for future regulations. Facilities must report the quantities of both routine and accidental releases of listed toxic chemicals, as well as the maximum amount of the listed toxic chemical on-site during the calendar year and the amount contained in wastes transferred off-site. These instructions supplement and elaborate on the requirements in the reporting rule (40 CFR Part 372). Together with the reporting rule, they constitute the reporting requirements. All references in these instructions are to sections in the reporting rule unless otherwise indicated

  15. 2002 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    International Nuclear Information System (INIS)

    Stockton, M.

    2003-01-01

    For reporting year 2002, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds and mercury as required under the Emergency Planning and Community Right-to-Know Act (EPCRA), Section 313. No other EPCRA Section 313 chemicals were used in 2002 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical usage and threshold determinations for LANL for calendar year 2002 as well as provide background information about the data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999 EPA promulgated a final rule on Persistent Bioaccumulative Toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable under EPCRA Section 313. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R

  16. 2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group (ENV-EAQ)

    2007-12-12

    For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  17. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era.

    Science.gov (United States)

    Chiu, Weihsueh A; Euling, Susan Y; Scott, Cheryl Siegel; Subramaniam, Ravi P

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA)--i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on "augmentation" of weight of evidence--using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards "integration" of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for "expansion" of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual "reorientation" of QRA towards approaches that more directly link environmental exposures to human outcomes. Published by Elsevier Inc.

  18. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Weihsueh A., E-mail: chiu.weihsueh@epa.gov [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P. [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  19. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    International Nuclear Information System (INIS)

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-01-01

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes

  20. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  1. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  2. Description of interview data regarding Pittsburgh and confluence toxic chemical accidents

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.O.; Shumpert, B.L.; Sorensen, J.H.

    1990-11-01

    Evacuation is the protective action most often recommended in response to chemical releases in the United States. The appropriateness of a decision to evacuate depends on whether the affected areas can be cleared of residents before it is contaminated by the chemical release. In determining whether an evacuation can be completed in time, emergency officials must consider both technical and behavioral aspects. The technical components can be readily conceived and quantified. In contrast, the behavioral components are much more abstract and more difficult to estimate. This report summarizes the univariate analysis of responses to surveys conducted in two communities where evacuation was recommended following train derailments involving hazardous chemicals. The surveys were designed to identify the actions taken by residents upon receiving the emergency warning; determine when people received the warning, decided to take action, and implemented the action; and ascertain factors that might explain the nature and timing of their actions. The surveys were conducted in the Bloomfield section of Pittsburgh, Pennsylvania, and in the town of Confluence, Pennsylvania. The study confirms that compliance with an emergency warning to evacuate varies and that potentially dangerous delays can be expected. Significant differences were noted, however, in the rate and speed of compliance in the two communities. The surveys provide information on several factors that may be useful in determining the reasons for differences in the responses from the two communities as well as differences among individual respondents. Such factors include the time of day when the accident occurred, where the respondent was at the time, whether the family was together, previous disaster experience, pet ownership, the content of the warning message, and demographic characteristics. 4 refs., 4 figs., 18 tabs.

  3. The nuclear terrorist, radiological, biological, chemical threat. Medical approach

    International Nuclear Information System (INIS)

    Gourmelon, P.; Vidal, D.; Renaudeau, C.

    2005-01-01

    This book illustrates the cooperation of the civil and the military experts in the domain of the NBRC (nuclear, biological, radiological and chemical threat). The different aspects bond to the use of nuclear, biological and chemical weapons, are discussed. Al topics of each domains (NRBC) are presented: historical and fundamental aspects, diagnostic, therapeutic and prevention. (A.L.B.)

  4. Selective removal of dissolved toxic metals from groundwater by ultrafiltration in combination with chemical treatment

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; McConeghy, G.J.; Martin, J.F.

    1989-09-01

    An alternative in-place process for the removal of toxic heavy metals based on aqueous solution chemistry and treatment is being evaluated under the auspices of the Emerging Technologies Program funded through the USEPA's Superfund Innovative Technology Evaluation Program. The technique involves the contacting of aqueous solutions containing the heavy metal contaminants with low concentrations of polyelectrolytes, and then removing the polyelectrolytes from solution with ultrafiltration membranes. The first phase of the program is considered complete. Success has been achieved for the separation of soluble, heavy metal ions: cadmium, lead, and mercury even in the presence of an organic compound, toluene. Removal was successful at alkaline conditions, using any combination of membrane material or polyelectrolyte. Arsenic was removed, but not effectively, using the current polyelectrolytes, simply because arsenic is present as an anionic species rather than as a cationic species. Optimization of the process variables is nearing completion and pilot and field testing will take place in the second year of the program to verify the process under realistic conditions and to establish process economics

  5. Assessment of narghile (shisha, hookah smokers’ actual exposure to toxic chemicals requires further sound studies

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Tobacco smoking is hazardous for health. However, not all forms of tobacco use entail the same risks and the latter should be studied and compared in a sound realistic way. Smoking machines for cigarettes (which are consumed in a few minutes were early designed as a tool to evaluate the actual intake of toxic substances (‘toxicants’ by smokers. However, the yields (tar, nicotine, CO, etc. provided by such machines poorly reflect the actual human smoking behaviour known to depend on numerous factors (anxiety, emotions, anthropological situation, etc.. In the case of narghile smoking, the problems are even more complex, particularly because of the much longer duration of a session. A recent study from the US-American University of Beirut was based on a field smoking topography and claimed consistency with a laboratory smoking machine. We offer a point by point critical analysis of such methods on which most of the ‘waterpipe’ antismoking literature since 2002 is based.

  6. Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves

    Directory of Open Access Journals (Sweden)

    Henrique H. Moresco

    2012-04-01

    Full Text Available The liquid-liquid partitioning of a crude hydroalcoholic extract of Averrhoa carambola L., Oxalidaceae, leaves led to the isolation of a sterol and three flavone C-glycosides. From the n-hexane fraction β-sitosterol was isolated and from the ethyl acetate fraction apigenin-6-C-β-L-fucopyranoside (1 and apigenin6-C-(2"-O-α-L-rhamnopyranosyl-β-L-fucopyranoside (2 were obtained. Apigenin6-C-(2"-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (3 was isolated from the n-butanol fraction. Compound 3 is new, while 1 and 2 have been previously isolated from A. carambola. The antioxidant activity was measured using the DPPH radical scavenging assay and reducing power of iron (III to iron (II ions. The ethyl acetate and n-butanol fractions showed the most antioxidant activity. As evaluated by ability of the sample to scavenge DPPH the IC50 values were 90.92 and 124.48 µg/ mL, respectively. In the assay of reducing power these fractions presented 135.64 and 125.12 of ascorbic acid equivalents, respectively. The antioxidant activity exhibited a significant relationship with the phenolic content (r² = 0.997, but a poor relationship with the flavonoids content (r² = 0.424. The n-hexane fraction was the only fraction to present good toxicity using A. salina with LC50 800.2 µg/mL.

  7. Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves

    Directory of Open Access Journals (Sweden)

    Henrique H. Moresco

    2011-11-01

    Full Text Available The liquid-liquid partitioning of a crude hydroalcoholic extract of Averrhoa carambola L., Oxalidaceae, leaves led to the isolation of a sterol and three flavone C-glycosides. From the n-hexane fraction β-sitosterol was isolated and from the ethyl acetate fraction apigenin-6-C-β-L-fucopyranoside (1 and apigenin6-C-(2"-O-α-L-rhamnopyranosyl-β-L-fucopyranoside (2 were obtained. Apigenin6-C-(2"-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (3 was isolated from the n-butanol fraction. Compound 3 is new, while 1 and 2 have been previously isolated from A. carambola. The antioxidant activity was measured using the DPPH radical scavenging assay and reducing power of iron (III to iron (II ions. The ethyl acetate and n-butanol fractions showed the most antioxidant activity. As evaluated by ability of the sample to scavenge DPPH the IC50 values were 90.92 and 124.48 µg/ mL, respectively. In the assay of reducing power these fractions presented 135.64 and 125.12 of ascorbic acid equivalents, respectively. The antioxidant activity exhibited a significant relationship with the phenolic content (r² = 0.997, but a poor relationship with the flavonoids content (r² = 0.424. The n-hexane fraction was the only fraction to present good toxicity using A. salina with LC50 800.2 µg/mL.

  8. The statutory approach: the control of chemical products

    International Nuclear Information System (INIS)

    Briens, F.

    1997-01-01

    The evaluation and management of risks linked with chemical products and in particular with petroleum products is now performed using all the available tools developed by the OECD or the European Union in order to harmonize the procedures between member states. This paper describes the statutory liabilities linked to the trade of chemical products of industrial use in the case of new and of existing chemical substances (classification, labelling, risk evaluation and reduction, physico-chemical properties, toxicological and eco-toxicological studies, neutralization, limitation of trade and use, import/export, protection of the ozone layer, etc..). It refers to the legal framework (orders, by-laws, decrees, guidelines..) defined by the OECD and the European Community and recalls the organization and administration of the competent authorities for the control of chemical products. (J.S.)

  9. A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish.

    Directory of Open Access Journals (Sweden)

    Guozhu Zhang

    Full Text Available Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS of all 1,060 Toxicity Forecaster (ToxCast™ chemicals across 5 concentrations at 120 hours post-fertilization (hpf. Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses.

  10. First Chemical Evaluation and Toxicity of Casinga-cheirosa to Balb-c Male Mice

    Directory of Open Access Journals (Sweden)

    Dirce M. Estork

    2014-04-01

    Full Text Available Laetia suaveolens, known as “casinga-cheirosa”, crude extract EB719 has previously shown cytotoxic activity against prostate cancer and squamous cell carcinoma. For the first time, seven molecules were isolated from its apolar—α-tocopherol (1 and sitosterol (2—and polar—3-O-caffeoylquinic acid (3, 4-O-caffeoylquinic acid (4, 5-O-feruloylquinic acid (5, hyperoside (6, and isoquercitrin (7—fractions. Acute toxicity was determined in a two-stage experiment: (1 a reduced number of Balb-c male mice received 5000 mg/kg of EB719 to allow evaluation of general activity and other 27 parameters, plus death, up to the establishment of non-lethal dose (NLD, as well as lethal dose 50% (LD50; (2 NLD was administered and diazepam introduced as reference drug. EB719 showed LD50 = 178.0 mg/kg, and NLD 156.3 mg/kg. In stage one EB719 did not influence general activity, but provoked impairment in grasp reflexes, tail squeeze and breathing; piloerection and cyanosis were increased. In stage two, alterations occurred in auricular reflex, piloerection and breathing after diazepam administration, but not in response to EB719. Intestinal hemorrhage caused by local bleeding was observed after necropsy, and may be the main cause of animals’ death other than a systemic effect of the extract. Although the isolated compounds are biologically and pharmacologically active in both men and animal systems, it is premature to relate their occurrence in EB719 to the observed intestine hemorrhage in mice.

  11. Methods of acute biological assays in guinea-pigs for the study of toxicity and innocuity of drugs and chemicals

    Directory of Open Access Journals (Sweden)

    Gui Mi Ko

    2010-06-01

    Full Text Available In this study, 602 samples were tested by the following assays performed at the animal facilities (Cedeme of the Federal University of São Paulo (UNIFESP: 385 for dermal irritability, 90 for ocular irritability (discontinued in 1995, 31 for systemic toxicity by injection, 26 for oral acute toxicity, 15 for toxicity by intracutaneous injection, 15 for skin sensitization, 15 for toxicity of serum and vaccines for human use, 14 for toxicity by intramuscular implantation, 7 for pyrogens, 2 for acute dermal toxicity, and 2 for irritation of mucous membrane. The following agents were tested: cosmetics and related substances (42.0%, chemicals used in industry (32.9%, plastics, rubber, and other polymers (15.9%, agrotoxics (4.0%, medicines (2.7%, and vaccines (2.5%. In the present description, emphasis was given to tests of dermal irritability and sensitization. This work was conducted entirely in animal facilities, according to our general belief that animal facilities at universities, while considering ethic principles and sanitary, genetic, nutritional, and pathophysiological controls, also require laboratories specialized in areas such as transgenics, cryopreservation, ambiental physiology, functional genomics, alternative models, and mainly activities and research on methods in toxicology, as focused in this study.Descrevemos os testes usados em ensaios biológicos de curta duração para estudo de toxicidade e inocuidade de cosméticos, fármacos e outras substâncias químicas, feitos no Biotério Central/Cedeme da Unifesp, de 1986 a 2000. Testamos 602 amostras nos seguintes ensaios: 385 de irritação cutânea, 90 de irritação ocular (até 1995, 31 de toxicidade sistêmica por injeção, 26 de toxicidade oral aguda, 15 de toxicidade por aplicação intracutânea, 15 de sensibilização da pele, 15 de toxicidade de soros e vacinas de uso humano, 14 de toxicidade por implantação intramuscular, 7 de pirogênio, 2 de toxicidade dérmica aguda e

  12. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    Science.gov (United States)

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  13. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    Science.gov (United States)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  14. Evaluation of an Integrated Approach Involving Chemical and ...

    African Journals Online (AJOL)

    Chemical and bio-remediation measures for the detoxification of pollutants such as cyanide and heavy metals in mine tailings ... in treated effluent released into natural water bodies after bacterial degradation was generally within international ...

  15. Antibodies and isotopes, a chemical approach to tumour targeting

    International Nuclear Information System (INIS)

    Vaughan, A.T.M.; Yankuba, S.C.S.; Anderson, P.

    1986-01-01

    In this study, scandium-47 and yttrium-90 have been used as representatives of potential cytotoxic labels. Both isotopes have a high yield of energetic beta particles and half-lives of the same order as indium-111. In addition they are both members of Group III and so may be used as a base for chemical comparisons in the future with radiotoxic isotopes from other chemical groups

  16. Systems approach to chemical spill response information needs

    Energy Technology Data Exchange (ETDEWEB)

    Parnarouskis, M.C.; Flessner, M.F.; Potts, R.G.

    1980-01-01

    The Chemical Hazards Response Information System (CHRIS) has been specifically designed to meet the emergency needs of US Coast Guard field personnel, currently providing them with information on 900 hazardous chemicals, with methods of predicting hazards resulting from accidental discharges, and with procedures for selecting and implementing response to accident discharges. The major components of CHRIS and the computerized hazard assessment models within the Hazard Assessment Computer System are described in detail.

  17. Germ cell toxicity: significance in genetic and fertility effects of radiation and chemicals

    International Nuclear Information System (INIS)

    Oakberg, E.F.

    1983-01-01

    The response of the male and female to radiation and chemicals is different. Any loss of oocytes in the female cannot be replaced, and if severe enough, will result in a shortening of the reproductive span. In the male, a temporary sterile period may be induced owing to destruction of the differentiating spermatogonia, but the stem cells are the most resistant spermatogonial type, are capable of repopulating the seminiferous epithelium, and fertility usually returns. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby, changing both the type and frequency of genetic effects observed. 100 references, 38 figures, 7 tables

  18. Gas chromatography-mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran.

    Directory of Open Access Journals (Sweden)

    Mohana Krishna Reddy Mudiam

    Full Text Available Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil. Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.

  19. An approach to fabricating chemical sensors based on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Park, Jae Young; Song, Dong Eon; Kim, Sang Sub

    2008-01-01

    Vertically and laterally aligned ZnO nanorod arrays were synthesized on Pt-coated Si substrates by catalyst-free metal organic chemical vapor deposition. An approach to fabricating chemical sensors based on the nanorod arrays using a coating-and-etching process with a photo-resist is reported. Tests of the devices as oxygen gas sensors have been performed. Our results demonstrate that the approach holds promise for the realization of sensitive and reliable nanorod array chemical sensors

  20. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates.

    Science.gov (United States)

    Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew

    2018-02-01

    In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10  mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10  mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10  mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10  mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and

  1. Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs by chemical structure and activity: a birth cohort study

    Directory of Open Access Journals (Sweden)

    Park Hye-Youn

    2010-08-01

    Full Text Available Abstract Background Polychlorinated biphenyls (PCBs are ubiquitous environmental toxins. Although there is growing evidence to support an association between PCBs and deficits of neurodevelopment, the specific mechanisms are not well understood. The potentially different roles of specific PCB groups defined by chemical structures or hormonal activities e.g., dioxin-like, non-dioxin like, or anti-estrogenic PCBs, remain unclear. Our objective was to examine the association between prenatal exposure to defined subsets of PCBs and neurodevelopment in a cohort of infants in eastern Slovakia enrolled at birth in 2002-2004. Methods Maternal and cord serum samples were collected at delivery, and analyzed for PCBs using high-resolution gas chromatography. The Bayley Scales of Infant Development -II (BSID were administered at 16 months of age to over 750 children who also had prenatal PCB measurements. Results Based on final multivariate-adjusted linear regression model, maternal mono-ortho-substituted PCBs were significantly associated with lower scores on both the psychomotor (PDI and mental development indices (MDI. Also a significant association between cord mono-ortho-substituted PCBs and reduced PDI was observed, but the association with MDI was marginal (p = 0.05. Anti-estrogenic and di-ortho-substituted PCBs did not show any statistically significant association with cognitive scores, but a suggestive association between di-ortho-substituted PCBs measured in cord serum and poorer PDI was observed. Conclusion Children with higher prenatal mono-ortho-substituted PCB exposures performed more poorly on the Bayley Scales. Evidence from this and other studies suggests that prenatal dioxin-like PCB exposure, including mono-ortho congeners, may interfere with brain development in utero. Non-dioxin-like di-ortho-substituted PCBs require further investigation.

  2. Computational approaches to the chemical conversion of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Daojian; Negreiros, Fabio R.; Apra, Edoardo; Fortunelli, Alessandro

    2013-06-01

    The conversion of CO