WorldWideScience

Sample records for chemical spills

  1. Brazilian oil spills chemical characterization : case studies

    International Nuclear Information System (INIS)

    The Petrobras Research Centre has been active in responding to some significant oil spills in Brazil in the past decade. The centre has characterized spilled oil, monitored the affected ecosystems and determined the fate of oil in the environment. This paper described the use of some advanced chemical analytical techniques used in Brazilian oil spill studies to determine fractions and individual petroleum hydrocarbons in water, groundwater, sediment, sand, fish and the spilled oil itself. Some of the most recent oil spill cases were discussed in terms of chemical characterization of the spilled oil and the environmental samples from different matrices of the affected ecosystems for determining the fate of the oil in the environment and to assess environmental damage. In particular, methods such as gas chromatography/flame ionization detector, P and T/GC/PID and gas chromatography/mass spectrometry have been used to examine crude and fuel oil spills in Guanabara Bay, Barigui and Iguassu Rivers, and the Sao Sebastiao Channel. The chemical analytical methods are used to determine total petroleum hydrocarbons, n-alkanes, isoprenoids, unresolved complex mixtures, volatile monoaromatic compounds such as BTEX (benzene, toluene, ethylbenzene and xylenes), as well as parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH) and terpanes and steranes. Acute ecotoxicity data for water and sediment samples was also included. It was determined that with certain limitations, PAH ratios can help determine the origin of hydrocarbons as being either petrogenic or pyrolytic. However, alkylated PAH homologues and parent compounds such as dibenzothiophene and perylene give more precise interpretation of the data. 30 refs., 9 tabs., 11 figs

  2. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    International Nuclear Information System (INIS)

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs

  3. Chemical spill response during the Ievoli Sun incident

    International Nuclear Information System (INIS)

    The Ievoli Sun was an Italian chemical tanker that sank off the north west coast of France on October 30, 2000, leaving behind a chemical spill of 4412 m3 of styrene, 1254 m3 of methyl ethyl ketone and 1268 m3 of isopropyl alcohol as well as 180 m3 of intermediate fuel oil and 62 m3 of marine gas oil. The incident provided a major test for the marine chemical response capabilities in the United Kingdom and France and underlined the need for 24 hour access to expert advice on the fate and hazards of marine chemical spills. During the incident the National Chemical Emergency Centre carried out assessments of chemical hazards, undertook numerical modelling to evaluate the fate of the chemical and oil spills, analyzed samples and mobilized atmospheric monitoring equipment. In the initial stages, the main focus was on the safety of response crews and local populations. Mathematical models were used to help in the preparation of a spill response. In particular, the ChemSIS model, a validated tool that can be used for marine chemical spills, was used to predict the environmental behaviour of the chemicals. The safety critical nature of the operational decisions made using such tools places much importance on the need for appropriate field validation. 12 refs., 2 tabs., 9 figs

  4. Chemical spill response during the Ievoli Sun incident

    Energy Technology Data Exchange (ETDEWEB)

    Corps, J.M.; Davies, L. [National Chemical Emergency Centre, Abingdon, Oxon (United Kingdom)

    2001-07-01

    The Ievoli Sun was an Italian chemical tanker that sank off the north west coast of France on October 30, 2000, leaving behind a chemical spill of 4412 m{sup 3} of styrene, 1254 m{sup 3} of methyl ethyl ketone and 1268 m{sup 3} of isopropyl alcohol as well as 180 m{sup 3} of intermediate fuel oil and 62 m{sup 3} of marine gas oil. The incident provided a major test for the marine chemical response capabilities in the United Kingdom and France and underlined the need for 24 hour access to expert advice on the fate and hazards of marine chemical spills. During the incident the National Chemical Emergency Centre carried out assessments of chemical hazards, undertook numerical modelling to evaluate the fate of the chemical and oil spills, analyzed samples and mobilized atmospheric monitoring equipment. In the initial stages, the main focus was on the safety of response crews and local populations. Mathematical models were used to help in the preparation of a spill response. In particular, the ChemSIS model, a validated tool that can be used for marine chemical spills, was used to predict the environmental behaviour of the chemicals. The safety critical nature of the operational decisions made using such tools places much importance on the need for appropriate field validation. 12 refs., 2 tabs., 9 figs.

  5. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  6. French technologies for oil spill response by chemicals

    International Nuclear Information System (INIS)

    This paper reports that for minimizing adverse ecological impacts, treatment chemicals are an important tool, but the success depends on understanding their action and respecting their limitations. Three types of chemical compounds can be used: dispersants, anti emulsifying and biodegrading agents. Emulsion inhibition prevents mousse formation and promote further natural dispersion into the water column. Offshore dispersal of oil prevents the pollution from standing as a slick and thereby reduces damage to marine life, coastal habitats and facilities. The simultaneous processes of dispersion and emulsification compete to determine the ultimate fate of oil; therefore an application of a combination of chemicals, to the freshly spilled oil, could be practical

  7. Probabilistic Approach to Risk Analysis of Chemical Spills at Sea

    Institute of Scientific and Technical Information of China (English)

    Magda Bogalecka; Krzysztof Kolowrocki

    2006-01-01

    Risk analysis of chemical spills at sea and their consequences for sea environment are discussed. Mutual interactions between the process of the sea accident initiating events, the process of the sea environment threats, and the process of the sea environment degradation are investigated. To describe these three particular processes, the separate semi-Markov models are built. Furthermore, these models are jointed into one general model of these processes interactions.Moreover, some comments on the method for statistical identification of the considered models are proposed.

  8. Two-dimensional numerical and eco-toxicological modeling of chemical spills

    Institute of Scientific and Technical Information of China (English)

    Suiliang HUANG; Yafei JIA; Sam S. Y. WANG

    2009-01-01

    The effects of chemical spills on aquatic nontarget organisms were evaluated in this study. Based on a review of three types of current eco-toxicological models of chemicals, i.e., ACQUATOX model of the US-EPA, Hudson River Model of PCBs, and critical body residual (CBR) model and dynamic energy budget (DEBtox)model, this paper presents an uncoupled numerical ecotoxicological model. The transport and transformation of spilled chemicals were simulated by a chemical transport model (including flow and sediment transport), and the mortalities of an organism caused by the chemicals were simulated by the extended threshold damage model,separately. Due to extreme scarcity of data, this model was applied to two hypothetical cases of chemical spills happening upstream of a lake. Theoretical analysis and simulated results indicated that this model is capable of reasonably predicting the acute effects of chemical spills on aquatic ecosystems or organism killings.

  9. NOAA's Office of Response and Restoration: Historical Oil and Chemical Spill Incidents Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Incidents database contains reports and images from oil and chemical spills that occurred between 1968 and 2002. The database includes reports on...

  10. Environmental Impact on Chemical/Oil Spill in the Persian Gulf

    OpenAIRE

    Haeger, Steven D.; Ward, Mathew; Peter C. Chu; Williams, Charles L.; Clem, Travis

    2008-01-01

    Seventh International Symposium on Environmental Problems in Coastal Regions An attack on, or chemical spill near, Iraq’s oil terminals could have disastrous effects on economy. The impact from chemical spill is highly dependent upon environmental conditions that can either adversely affect continued operations or hinder the safety of personnel. Operational planners’ ability to create legitimate scenarios to train and combat these situations is the key to continued safe ...

  11. Chemical spill responder's use of website data bases

    International Nuclear Information System (INIS)

    The Emergency Response Team (ERT) of the US Environmental Protection Agency provides technical assistance to state and local government agencies. It has also provided hazardous waste and emergency response assistance to countries in North America, Central America, South America, Europe, Africa and Asia. In order to address the increased level of involvement in multi-governmental response activities and counter terrorist incidents, ERT has developed a responder's technical assistance website. The site contains 6 links that can be divided into the following three information support areas: (1) generation information about ERT, (2) a response resources site which provides information regarding air sampling, monitoring plans, phytoremediation, and information related to oil spill incidents where physical and chemical properties of specific petroleum products are needed. The health and safety section of this site links to the Environment Canada Emergencies Science Division (ESD) website. The ESD site has a document entitled Properties of Crude Oils and Oil Products which provides information on Louisiana crude. This site also provides links to all Federal agency websites that have hazardous waste operations and emergency response requirements or guidelines, and (3) the Weather Information Program (WIP) and Response Operation and Validation Retriever (ROVR) service which provides interactive response pages for Federal on-scene coordinators, remedial project managers and the general public. This paper also described the next generation of ROVR and WIP interactive function involving real-time on-site air plume modeling

  12. Chemical spill model (CHEMMAP) for forecasts/hindcasts and environmental risk assessment

    International Nuclear Information System (INIS)

    CHEMMAP is a newly developed three-dimensional, chemical spill model that is used to predict the trajectory and fate of a wide variety of chemical products including floating, sinking, soluble and insoluble chemicals and product mixtures. The model, which was developed by Applied Science Associates Inc., also provides a powerful quantitative tool for estimating the potential impacts of chemical releases. The model incorporates the following components: (1) simulation of the initial release for surface and subsurface spills, (2) slick spreading, transport and entrainment of floating materials, (3) transport of dissolved and particulate materials in three dimensions, (4) evaporation and volatilization, (5) dissolution and adsorption, (6) sedimentation and resuspension, and (7) degradation. The fate of chemical spills are predicted by analyzing physical-chemical properties such as density, vapor pressure, water solubility, environmental degradation rates, adsorbed/dissolved partitioning coefficients, viscosity and surface tension. The distribution of chemicals on the water surface, on shorelines, in the water column and in the sediments can also be estimated. The model can separately track surface slicks, entrained droplets or particles of pure chemical, chemical adsorbed to suspended particulates, and dissolved chemicals. It can be used for forecasting expected water concentrations and atmospheric flux for real events and stochastic applications for ecological risk assessment of chemical spills associated with oil and gas operations in the Gulf of Mexico. 16 refs., 4 tabs., 16 figs

  13. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

    Directory of Open Access Journals (Sweden)

    Jennifer C. Black

    2016-08-01

    Full Text Available Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are

  14. Calculations of protective action distance for toxic chemical spills using nomographs

    International Nuclear Information System (INIS)

    This document was produced for emergency use following a spill of liquid gas or finely divided solid (<100 micron) toxic chemicals. The information on the next few pages was kept deliberately terse and is limited to data and graphic aids needed for calculation of plume distance (protective action distance). All supporting material is provided as Appendices

  15. Calculations of protective action distance for toxic chemical spills using nomographs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.G.; Vail, J.A.; Gibeault, G.L.

    1995-04-01

    This document was produced for emergency use following a spill of liquid gas or finely divided solid (<100 micron) toxic chemicals. The information on the next few pages was kept deliberately terse and is limited to data and graphic aids needed for calculation of plume distance (protective action distance). All supporting material is provided as Appendices.

  16. Modelling system for simulating the transport of oil and chemical spills in the sea

    International Nuclear Information System (INIS)

    The building, functioning and benefit of an easy-to-use simulation and forecasting system are described. The user cam simulate the transport of an oil or chemical spill by the wind and currents in order to plan sanitation and containment actions

  17. Ural River benthic communities response on the chemical spill

    International Nuclear Information System (INIS)

    The Ural River is the second river of the North Caspian basin, on the north-west border of the Kazakhstan and Russian. The middle flow of the Ural River is limited by the dam of Iriklin water reservoirs (about 80 km up from Orsk town, Orenburg district) to the mouth of Barbastay River (about 45 km down from Ural'sk town). On 13--17 November 1991, after an industrial incident in Orsk oil refinery enterprise effluent polluted the Ural River. An assessment of the Middle flow Ural River benthic communities by oil and phenols spill response is described. The paper is based on a study of the short-term response of benthic biocenosises compared with natural transformation of the community structure before pollution

  18. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    Science.gov (United States)

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  19. Chemical spill characteristics in the San Diego Bay

    OpenAIRE

    Kyriakidis, Kleanthis; Peter C. Chu

    2011-01-01

    Marine Technology Society Journal, 45 (2), 52-58 Dispersion of ocean pollutants in estuarine environments and bays (such as San 46 Diego Bay) depends on the location of the source of the pollutants relative to the 47 mouth and the tidal excursion, which is the net horizontal distance over which a 48 pollutant particle moves during one tidal cycle offlood and ebb. Pollutant dispersion 49 was investigated using a coupled hydrodynamic and chemical discharge model in 50 this stud...

  20. Aquatic toxicity of forty industrial chemicals: Testing in support of hazardous substance spill prevention regulation

    Science.gov (United States)

    Curtis, M. W.; Ward, C. H.

    1981-05-01

    The U.S. Environmental Protection Agency is presently developing hazardous substance spill regulations to help prevent water pollution. Aquatic animal toxicity data are used as criteria for the designation and categorization of substances as hazardous, even though this type of data is not available for many industrial chemicals. Static 96-hr. toxicity tests were conducted with 40 such chemicals to provide basic toxicity data for regulatory decision making. Thirty-two of the 40 chemicals tested were hazardous to aquatic life as determined by 96-hr. LC 50's less than or equal to 500 mg/l. All 40 chemicals were tested with the fresh-water fathead minnow, Pimephales promelas, and ten chemicals were also tested with the salt-water grass shrimp, Palaemonetes pugio.

  1. Proceedings of the 24. Arctic and Marine Oilspill Program (AMOP) Technical Seminar, including the 18. Technical Seminar on Chemical Spills (TSOCS) and the 3. Phytoremediation/Biotechnology Solutions for Spills (PHYTO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The 59 papers presented at this conference discussed the latest technologies regarding marine oil spills. The conference was divided into 11 sessions entitled: (1) physical and chemical properties, (2) contingency planning and activity updates, (3) biological effects, biodegradation and PHYTO, (4) containment and recovery, (5) Louisiana special session, (6) detection, tracking and remote sensing, (7) oil spill treating agents, (8) spill modelling, (9) shoreline protection and cleanup, (10) in-situ burning, and (11) technical seminar on chemical spills. A poster session was also included. The major objective of this conference was to help emergency response personnel better understand the process of oil in water interactions. In addition, the conference was aimed at optimizing response functions such as oil spill notification, situation analysis, strategy development for marine oil spill response, site safety, equipment deployment, containment, recovery, shoreline assessment, cleanup, communications, and decontamination of polluted waters. All 59 papers were processed separately for inclusion in the database. refs., tabs., figs.

  2. Experimental studies on the weathering of chemicals in a field trial to predict their behaviour in case of a spill

    International Nuclear Information System (INIS)

    Most of the world's production of vegetable oil is transported by sea. In 2001, nearly 850,000 tons of vegetable oil entered and left harbours in France. This trend increases the risk of accidental spills at sea. The physical state of vegetable oil changes when it is spilled at sea, turning this non-toxic product into a pollutant that damages the marine ecosystem. This study demonstrated how vegetable oil could react when spilled at sea. A series of field studies were conducted to obtain experimental data on the behaviour of vegetable oil both on the surface of water and in the water column. Castor oil, soybean oil, oleic acid and dioctylphtalate were released at sea and the dispersion of the oil in the water was monitored with a fluorimeter. Measurements were taken to a depth of 1 metre. Emulsification and viscosity kinetics were monitored. The study showed that the behaviour of the 4 products depends on the nature of the product and weather conditions such as wind and sea surface state. Vegetable oil spilled at sea behaves differently from spilled chemical products in terms of solubility. It was suggested that in the case of an accidental spill at sea, emergency responders should first pump the oil and then use dispersants. 6 refs., 2 tabs., 11 figs

  3. Analysis of marine ecological compensation for environmental risk caused by chemical spill based on game theory

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiwei; Yang Zhifeng; Huang Xinyu

    2009-01-01

    The problem of marine environmental risk is ultimately the result of game theory between the marine environmental managers and the enterprise of potential environmental risk.This paper analyzes the internal economic relationship that whether the "protection" policy is applied between the protection action of marine environmental managers and the chemical enterprise, The result shows that the key factor whether the enterprise adopt the "protection" policy or not is the amount of penalty and the government's cost of execution, and the compulsive ecological compensation is obligatory from the angle of stimulating the enterprise of canontcal action and adopting the "protection" policy.To build the ecological compensation mechanism based on the environmental risk will effectively improve the level of management in sea area and decrease the probability of chemical spill.

  4. Subtleties of human exposure and response to chemical mixtures from spills.

    Science.gov (United States)

    Phetxumphou, Katherine; Dietrich, Andrea M; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Gallagher, Daniel L

    2016-07-01

    Worldwide, chemical spills degrade drinking water quality and threaten human health through ingestion and inhalation. Spills are often mixtures of chemicals; thus, understanding the interaction of chemical and biological properties of the major and minor components is critical to assessing human exposure. The crude (4-methylcyclohexyl)methanol (MCHM) spill provides an opportunity to assess such subtleties. This research determined the relative amounts, volatilization, and biological odor properties of minor components cis- and trans-methyl-4-methylcyclohexanecarboxylate (MMCHC) isomers and major components cis- and trans-4-MCHM, then compared properties and human exposure differences among them. (1)H nuclear magnetic resonance and chromatography revealed that the minor MMCHC isomers were about 1% of the major MCHM isomers. At typical showering temperature of 40 °C, Henry's law constants were 1.50 × 10(-2) and 2.23 × 10(-2) for cis- and trans-MMCHC, respectively, which is 20-50 fold higher than for 4-MCHM isomers. The odor thresholds were 1.83 and 0.02 ppb-v air for cis- and trans-MMCHC, which were both described as predominantly sweet. These data are compared to the higher 120 ppb-v air and 0.06 ppb-v odor thresholds for cis- and trans-4-MCHM, for which the trans-isomer had a dominant licorice descriptor. Application of a shower model demonstrated that while MMCHC isomers are only about 1% of the MCHM isomers, during showering, the MMCHC isomers are 13.8% by volume (16.3% by mass) because of their higher volatility. Trans-4-MCHM contributed about 82% of the odor because of higher volatility and lower odor threshold, trans-MMCHC, which represents 0.3% of the mass, contributed 18% of the odor. This study, with its unique human sensory component to assess exposure, reaffirmed that hazard assessment must not be based solely on relative concentration, but also consider the chemical fate, transport, and biological properties to determine the actual levels of

  5. Chemical and toxicological characterisation of water accommodated fractions relevant for oil spill situations

    International Nuclear Information System (INIS)

    The laboratory methodology and preliminary findings from an ongoing characterisation study of Water Accommodated Fraction solutions (WAF) (water systems with dissolved oil components, which is essentially free of dispersed oil droplets) derived from standardised low energy mixing of oils in seawater is presented. The study emphasises a tight connection between chemical characterisation and toxicological testing of WAF, and aims at obtaining improved and realistic data on potential environmental effects in the water column after an oil spill situation. Various oil types and the aspect of weathering (evaporative loss and photolysis) of oil is incorporated in the study. Preliminary results have identified large variation in the composition and toxicity of WAFs depending on the type of crude, oil loading rate (oil:water ratio) and weathering degree of the oils. Data from the study will be used for improving algorithms in present fate and effect models, which again will be used as quantitative tools in future damage assessment studies and in Net Environmental Benefit Analysis of response alternatives in various spill scenarios. (author)

  6. Potentially beneficial spill-related effects of chemicals routinely added to crude oils

    International Nuclear Information System (INIS)

    Amoco Trinidad Oil Company produces 60,000 bbl/d of oil from the Trinidadian offshore. The oil is pipelined ashore where it is processed and returned offshore to a buoy mooring for transport up Trinidad's east coast. Amoco Trinidad has developed comprehensive oil spill contingency plans, starting from computer models of spill scenarios. The models used initially assumed that the oils would emulsify quickly and the spills would become highly viscous and persistent, reaching the shoreline in 15-24 h. Such behavior would render ineffective the use of dispersants as a spill countermeasure. Studies showed a poor potential capability of physical recovery systems for spills off the Trinidad east coast due to high sea states, strong winds, and other factors. These results led to questioning of the spill model's assumptions, and laboratory tests were conducted to study the actual behavior of the crude oils. It was found that the oil was difficult to emulsify and highly prone to breakup and dispersion. These surprising results were explained by the presence of surfactants added during processing. A revised modelling exercise showed that if the surfactants stay with the oil, spills up to 100,000 bbl will dissipate in 15 h or less at average wind conditions. To guard against the possibility that the surfactants may not stay with the spilled oil, and to help accelerate dispersion of oil spills, Amoco Trinidad has developed a dispersant-use capacity for its spill contingency plan. It is suggested that additives normally added to crude oils during production and processing in other areas may also be providing spill cleanup benefits similar to those found in the Trinidad case. 9 refs., 1 fig., 4 tabs

  7. Development of short, acute exposure hazard estimates: a tool for assessing the effects of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K

    2013-08-01

    Management decisions aimed at protecting aquatic resources following accidental chemical spills into rivers and coastal estuaries require estimates of toxic thresholds derived from realistic spill conditions: acute pulse exposures of short duration (h), information which often is unavailable. Most existing toxicity data (median lethal concentration or median effective concentration) come from tests performed under constant exposure concentrations and exposure durations in the 24-h to 96-h range, conditions not typical of most chemical spills. Short-exposure hazard concentration estimates were derived for selected chemicals using empirical toxicity data. Chemical-specific 5th percentile hazard concentrations (HC5) of species sensitivity distributions (SSD) from individual exposure durations (6-96 h) were derived via bootstrap resampling and were plotted against their original exposure durations to estimate HC5s and 95% confidence intervals (CIs) at shorter exposures (1, 2, and 4 h). This approach allowed the development of short-exposure HC5s for 12 chemicals. Model verification showed agreement between observed and estimated short-exposure HC5s (r(2) adjusted = 0.95, p overprotective, these were derived from environmentally realistic exposure durations, providing risk-assessors with a tool to manage field decisions. Environ Toxicol Chem 2013;32:1918-1927. © 2013 SETAC. PMID:23625642

  8. Public health risks associated with oil and chemical spills in cold freshwater environments: a simulation exercise involving a phenol and diesel spill in the St. Lawrence River

    International Nuclear Information System (INIS)

    The St. Lawrence River is the source of drinking water for some 45 per cent of the population in the Province of Quebec, hence contamination of the river by oil or chemical spills is a matter of great public health importance. Project SHORES was developed by the Quebec Environmental Health Committee through the St. Lawrence 'Vision 2000' Action Plan. As part of this project, a simulation exercise involving phenol and diesel fuel was carried out. The exercise included development of a computerized dispersion model which was then used to evaluate the migration of phenol in critical areas of the St. Lawrence River. Main public health risks to nearby populations, with emphasis on drinking water contamination, were assessed based on the simulation results. 18 refs., 2 tabs. 1 fig

  9. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Science.gov (United States)

    Patowary, Manoj; Ananthakrishnan, Rajakumar; Pathak, Khanindra

    2014-11-01

    The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  10. Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms

    International Nuclear Information System (INIS)

    Toxicity of oil and diesel fuel to freshwater biota may be increased by use of oil spill cleaning agents. - Toxicity and temporal changes in toxicity of freshwater-marsh-microcosms containing South Louisiana Crude (SLC) or diesel fuel and treated with a cleaner or dispersant, were investigated using Chironomus tentans, Daphnia pulex, and Oryzias latipes. Bioassays used microcosm water (for D. pulex and O. latipes) or soil slurry (for C. tentans) taken 1,7, 31, and 186 days after treatment. SLC was less toxic than diesel, chemical additives enhanced oil toxicity, the dispersant was more toxic than the cleaner, and toxicities were greatly reduced by day 186. Toxicities were higher in the bioassay with the benthic species than in those with the two water-column species. A separate experiment showed that C. tentans' sensitivity was intermediate to that of Tubifex tubifex and Hyallela azteca. Freshwater organisms, especially benthic invertebrates, thus appear seriously effected by oil under the worst-case-scenario of our microcosms. Moreover, the cleaner and dispersant tested were poor response options under those conditions

  11. Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Klerks, P.L.; Nyman, J.A

    2003-04-01

    Toxicity of oil and diesel fuel to freshwater biota may be increased by use of oil spill cleaning agents. - Toxicity and temporal changes in toxicity of freshwater-marsh-microcosms containing South Louisiana Crude (SLC) or diesel fuel and treated with a cleaner or dispersant, were investigated using Chironomus tentans, Daphnia pulex, and Oryzias latipes. Bioassays used microcosm water (for D. pulex and O. latipes) or soil slurry (for C. tentans) taken 1,7, 31, and 186 days after treatment. SLC was less toxic than diesel, chemical additives enhanced oil toxicity, the dispersant was more toxic than the cleaner, and toxicities were greatly reduced by day 186. Toxicities were higher in the bioassay with the benthic species than in those with the two water-column species. A separate experiment showed that C. tentans' sensitivity was intermediate to that of Tubifex tubifex and Hyallela azteca. Freshwater organisms, especially benthic invertebrates, thus appear seriously effected by oil under the worst-case-scenario of our microcosms. Moreover, the cleaner and dispersant tested were poor response options under those conditions.

  12. Preparedness activities regarding the protection of public health in case of a major oil or chemical spill on the St-Lawrence River

    International Nuclear Information System (INIS)

    A project was initiated to protect the health of people living in the St-Lawrence basin from contaminants associated with an oil or chemical spill. Between 1980 and 1990, more than 240 chemical spills and 300 oil spills were recorded in the region which has prompted concerns regarding the possible contamination of drinking water sources. 45% of Quebec's population relies on the St-Lawrence River as a source of drinking water. Thus far, the project has identified the major chemical and oil products transported on the St-Lawrence River, and the main health risks associated with these products. Computerized dispersion models which can determine the migration of the contaminants in water, are available. Simulation exercises have been carried out to train personnel in the event of an actual spill. 1 ref

  13. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation

  14. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Energy Technology Data Exchange (ETDEWEB)

    Patowary, Manoj [Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Ananthakrishnan, Rajakumar, E-mail: raja.iitchem@yahoo.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Khanindra [Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2014-11-30

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  15. Accidental pollution in the ocean: besides crude oil, chemicals and other spills

    International Nuclear Information System (INIS)

    Accidental pollution of the seas is usually illustrated by the shipwreck of tankers carrying crude oil. We must look beyond this image since such accidents spill substances other than petrochemicals. We need but mention the Levoli Sun's accident near the Cotentin peninsula, France, one year after the Erika went down. And what about spills of agricultural and food products? An accidental spill as apparently harmless as wheat might have serious effects on not just the environment but also human health. In all cases, two major series of questions crop up: 1) Is it necessary to intervene? If so, are we able to? And if we can, how to fight against spills? 2) What are the short- and long-term effects on the environment and on all human activities related to the sea (fishing, fish-farming, salt production, tourism, salt-water cures, etc.)? These two questions have a common denominator: the need to know how spilled products react. This knowledge conditions both the operational response for fighting against pollution and the assessment of the impact on the maritime environment. (author)

  16. Oil Spill!

    Science.gov (United States)

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  17. Chemical and toxicological evaluation of water quality following the exxon Valdez oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Neff, J.M. [Battelle Ocean Sciences, Duxbury, MA (United States); Stubblefield, W.A. [ENSR Consulting and Engineering, Fort Collins, CO (United States)

    1995-12-31

    As part of a comprehensive water-quality assessment program performed in Prince William Sound and the western Gulf of Alaska following the Exxon Valdez oil spill of March 24, 1989, water samples were collected from 417 locations, most of them in areas through which the oil drifted, to assess the distribution and concentrations of petroleum hydrocarbons in the water column. Over 5,000 water samples were analyzed for individual and total petroleum alkanes and for aromatic hydrocarbons by very sensitive gas chromatographic techniques. A total of 2,461 of these samples were analyzed for polycyclic aromatic hydrocarbons (PAHs). Concurrent with some of these samples, an additional 123 water samples were collected in April 1989 (a week to a month after the spill) at 32 offshore locations and in June 1989 at 7 nearshore sites in Prince William Sound to determine the toxicity of the water to representative species of marine organisms. The toxicity of Prince William Sound water was assessed with standard Environmental Protection Agency (EPA) and American Society for Testing and materials (ASTM) marine toxicity tests with representative species of three taxonomic groups: (1) Skeletonema costatum (a marine diatom), (2) Mysidopsis bahia (a crustacean), and (3) larval/juvenile Cyprinodon variegatus (a fish, the sheepshead minnow). 58 refs., 11 figs., 3 tabs.

  18. Chemical and toxicological evaluation of water quality following the exxon Valdez oil spill

    International Nuclear Information System (INIS)

    As part of a comprehensive water-quality assessment program performed in Prince William Sound and the western Gulf of Alaska following the Exxon Valdez oil spill of March 24, 1989, water samples were collected from 417 locations, most of them in areas through which the oil drifted, to assess the distribution and concentrations of petroleum hydrocarbons in the water column. Over 5,000 water samples were analyzed for individual and total petroleum alkanes and for aromatic hydrocarbons by very sensitive gas chromatographic techniques. A total of 2,461 of these samples were analyzed for polycyclic aromatic hydrocarbons (PAHs). Concurrent with some of these samples, an additional 123 water samples were collected in April 1989 (a week to a month after the spill) at 32 offshore locations and in June 1989 at 7 nearshore sites in Prince William Sound to determine the toxicity of the water to representative species of marine organisms. The toxicity of Prince William Sound water was assessed with standard Environmental Protection Agency (EPA) and American Society for Testing and materials (ASTM) marine toxicity tests with representative species of three taxonomic groups: (1) Skeletonema costatum (a marine diatom), (2) Mysidopsis bahia (a crustacean), and (3) larval/juvenile Cyprinodon variegatus (a fish, the sheepshead minnow). 58 refs., 11 figs., 3 tabs

  19. Dispersion of spilled oil in freshwater systems: field trial of a chemical dispersant

    International Nuclear Information System (INIS)

    The impacts of oil and dispersed oil in freshwater ecosystems were examined in a field experiment conducted as part of the Freshwater Oil Spill Research Program. In July 1985, 3 m3 of Normal Wells crude oil were spilled on each of two fen lakes. The slick on one lake was treated with the dispersant Corexit 9550. Corexit 9550 was effective in removing the oil from the water surface even though wave energy was very low. The oil or dispersed oil had little detectable short or long term impact on all water quality parameters measured or in the microbial populations and activities in the water column and sediments of both lakes. Untreated oil caused more damage than the dispersed oil to floating aquatic plants and the shoreline vegetation, but new growth within the affected areas was observed one month after treatment. Seasonal regrowth of vegetation in all areas affected by the treatments appeared normal. Our results suggest that the best response to oil contamination in isolated fen lakes is no action at all. However, floating oil or oil washed ashore could pose a significant threat to indigenous wildlife or its habitats. Under these conditions dispersion may prove to be an advantage. (author)

  20. Oil Spills

    Science.gov (United States)

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil ...

  1. Oil spill response

    International Nuclear Information System (INIS)

    An outline is given of oil spill contingency planning and response, with examples from Canadian practice. Effective planning and response operations require a method of evaluating effects of oil spills on important coastal resources in order to assign priorities for preventing or minimizing potential damage. Components of such a method would include determination of shoreline sensitivity indices from pre-spill studies. Logistics and operational constraints also have to be considered, notably in Canada where large segments of shorelines are remote or otherwise difficult to access. Environmental constraints may include extreme sea state conditions, ice, and the presence of ecologically sensitive areas or endangered species. Accurate information on shoreline and spill conditions is also necessary, and the Shoreline Cleanup Assessment Team (SCAT) concept developed during the Exxon Valdez and Nestucca spills is described as one such kind of systematic and comprehensive method of data collection. SCAT can serve in a technical support capacity to the spill response organization, provide information and documentation to regulators and landowners or managers, and generate a data base to assist planning and implementation. Finally, techniques for shoreline protection and spill cleanup are described, according to the type of shoreline to be treated. These include the use of booms, onshore ditch/dyke systems, washing, physical removal, bioremediation, and chemical treatment. Environmental impacts of cleanup operations and methods of managing wastes resulting from those operations are included. 22 figs., 10 tabs

  2. PEPEC : a response guide dealing with protecting public health in case of drinking water contamination by an oil or chemical spill on the St. Lawrence river

    International Nuclear Information System (INIS)

    Major oil or chemical spills in other regions of the world have caused the officials of the Quebec Regional Public Health Departments to develop a risk management tool to provide assistance in the event of a spill on the St. Lawrence River, and reduce exposure to polluted drinking water. Two areas were considered especially vulnerable: the stretch between Lake Ontario and Lake Saint-Pierre and the estuary between Pointe-du-Lac and the eastern part of Orleans Island. The navigation on the longest inland waterway in the world proved to be often difficult with several vessels carrying chemicals and oil products. Accidents occurred, like the Czantoria, a tanker containing 320 tons of light crude which polluted almost 100 km of shoreline in the vicinity of Quebec City in 1988 when it spilled its content. In Quebec, almost half of the population depends on the St. Lawrence for its drinking water. The river also provided water for agriculture, industry and domestic uses, in addition to fire fighting. Less than one per cent of the 400 litres of water per person per day is used for drinking. Since accidental spills of dangerous products already cause problems for drinking water on other rivers, preparedness is considered to be essential. 4 refs., 1 tab

  3. Effects of chemical dispersants on oil spill drift paths in the German Bight—probabilistic assessment based on numerical ensemble simulations

    Science.gov (United States)

    Schwichtenberg, Fabian; Callies, Ulrich; Groll, Nikolaus; Maßmann, Silvia

    2016-06-01

    Oil dispersed in the water column remains sheltered from wind forcing, so that an altered drift path is a key consequence of using chemical dispersants. In this study, ensemble simulations were conducted based on 7 years of simulated atmospheric and marine conditions, evaluating 2,190 hypothetical spills from each of 636 cells of a regular grid covering the inner German Bight (SE North Sea). Each simulation compares two idealized setups assuming either undispersed or fully dispersed oil. Differences are summarized in a spatial map of probabilities that chemical dispersant applications would help prevent oil pollution from entering intertidal coastal areas of the Wadden Sea. High probabilities of success overlap strongly with coastal regions between 10 m and 20 m water depth, where the use of chemical dispersants for oil spill response is a particularly contentious topic. The present study prepares the ground for a more detailed net environmental benefit analysis (NEBA) accounting also for toxic effects.

  4. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  5. Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation.

    Science.gov (United States)

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  6. Chemometrics as a tool to analyse complex chemical mixtures: environmental forensics and fate of oil spills

    OpenAIRE

    Christensen, Jan H.

    2005-01-01

    Chemical characterisation of contaminant mixtures is important for environmental forensics and risk assessment. The great challenge in future research lies in developing suitable, rapid, reliable and objective methods for analysis of the composition of complex chemical mixtures. This thesis describes the development of such methods for assessing the identity (chemical fingerprinting) and fate (e.g. biodegradation) of petroleum hydrocarbon mixtures. The methods comply with the g...

  7. Ecological Impacts during the Deepwater Horizon Oil Spill

    Science.gov (United States)

    The Deepwater Horizon (DWH) oil spill was the largest spill and response effort in United States history. Nearly 800 million L of oil was spilled in the Gulf of Mexico, and nearly 7 million L of chemical dispersants were applied in at the ocean surface and subsea1. The DWH spill ...

  8. Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species.

    Science.gov (United States)

    Hansen, Bjørn Henrik; Altin, Dag; Bonaunet, Kristin; Overjordet, Ida Beathe

    2014-01-01

    The objectives of this study were to (1) determine the acute toxicity of selected shoreline washing agents (SWA) and dispersants, and (2) assess interspecies differences in sensitivity to the products. Eight shoreline washing agents (Hela saneringsvæske, Bios, Bioversal, Absorrep K212, and Corexit 9580) and chemical dispersants (Corexit 9500, Dasic NS, and Gamlen OD4000) were tested on five marine species, algae Skeletonema costatum, planktonic copepod species Acartia tonsa (temperate species), Calanus finmarchicus (boreal species) and Calanus glacialis (Arctic species), and benthic amphipod Corophium volutator. For most products, A. tonsa was the most sensitive species, whereas C. volutator was the least sensitive; however, these species were exposed through different media (water/sediment). In general, all copepod species displayed a relatively similar sensitivity to all products. However, A. tonsa was somewhat more sensitive than other copepods to most of the tested products. Thus, A. tonsa appears to be a candidate species for boreal and Arctic copepods for acute toxicity testing, and data generated on this species may be used as to provide conservative estimates. The benthic species (C. volutator) had a different sensitivity pattern relative to pelagic species, displaying higher sensitivity to solvent-based SWA than to water-based SWA. Comparing product toxicity, the dispersants were in general most toxic while the solvent-based SWA were least toxic to pelagic species. PMID:24754387

  9. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    Science.gov (United States)

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination. PMID:27171137

  10. Recovery of oil spills by dispersants in marine arctic regions

    OpenAIRE

    Shata, Asmaa Ali Mahmoud

    2010-01-01

    The initial appearance of dispersants was 1960s and 1970s; oil spill dispersants have been the topic of significant research, testing, and debate. In spite of published reports about dispersant toxicity and effectiveness vary greatly, most spill response experts agree that oil spill dispersants are a valuable tool for responding to marine oil spills. Dispersants are oil spill response chemicals that are used to disperse floating oil into the water column. Dispersant cause a temporary incre...

  11. Persistence of crude oil spills on open water

    International Nuclear Information System (INIS)

    A survey of reports on oil spill incidents around the world was conducted. A Microsoft access database was then compiled in which spill information parameters were identified. These include general information about when and where the spill occurred, weather, sea conditions, oil properties and cleanup methods. The available information was assessed to determine statistically significant relationships between spill persistence, spill size and spill persistence factors. The objective was to identify links between dissipation times for spills and spill size. Another objective was to determine quantitative relationships between on-water spill persistence and associated environmental factors; physical and chemical properties of the spilled oil; and, response effort parameters. A mathematical description of the persistence of crude oil spills at sea was developed using historical spill data. The results are used by the Minerals Management Services (MMS) to estimate probable durations for spill trajectories in the MMS Oil Spill Risk Analysis for Alaska Outer Continental Shelf (OCS) waters. This study also refined the spill-size/spill-persistence correlation in terms of other variables such as oil type, weather and sea conditions and spill type. Correlation analyses were conducted on 3 data sets, indicating the importance of different variables and their dependencies. 3 refs., 8 tabs., 15 figs

  12. Oil Spills and Spills of Hazardous Substances.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The stated purpose of this publication is to describe some of the more significant spill incidents and the mechanisms, both managerial and technological, to deal with them. This publication is targeted for school, general public, and other such audiences. Sections include effects of spills, prevention of spills, responding to spills, spill…

  13. Bioremediation of oil spills

    OpenAIRE

    Sánchez-Palencia González, Yolanda

    2011-01-01

    Due to the increasing demand of petroleum everywhere, and the great amount of spills, accidents and disasters, there is an urgent need to find an effective, non-cost and harmless method to clean up the affected areas. There are microorganisms in nature (bacteria and fungi, mainly) that feed on hydrocarbons and transform them into others harmless chemical substances. These bacteria produce enzymes that degrade oil very effectively. This natural process can be accelerated by adding more bacteri...

  14. 预防泄漏:工程化降低无控制化学品泄漏的危险性%Spill Prevention:Engineering Decreased Risk of Uncontained Chemical Spills

    Institute of Scientific and Technical Information of China (English)

    Vincent W. CARUSO; Edward C. BROWN; John P. KAY; Michael A. MANCINI; James A. WESTRA; Philip E. KEYES

    2011-01-01

    In pharmaceutical research laboratories, automated purification systems are a core component of instrumental services provided in support of drug discovery. These systems consume a large volume of solvent to perform the necessary separations relative to the amount of compound introduced. To supply solvent to these systems, anything from 4-L bottles to 56-L reservoirs or kegs, often containing hazardous liquids, are typically employed. The potential exists for fire and chemical exposure to scientists and support staff due to accidental spills, leaks, or overflow of solvent waste containers. Use of a universal, chemically inert, and intrinsically safe liquid sensor installed within the secondary containment vessel for liquid waste will help to provide a safer work environment.%在药物研究实验室中,自动化纯化系统是仪器的核心部分,它有助于药物的发现。该系统消耗大量的溶剂,以实现对采用的一定量的混合物进行必要的分离。为了给这些系统提供溶剂,通常采用4L溶剂瓶到56L贮液器或小桶,里面往往包含有害液体。因此存在着不少潜在危险,例如火灾,由于意外溢出、泄漏或从溶剂废液瓶中溢出而使接触化学品的科学家和后勤人员受伤。使用通用的、化学惰性的、本质安全的液体传感器安装在二次防漏容器中为废液收集提供了一个相对安全的工作环境。

  15. Dillingham plan attacks oil spill cleanup problem

    Energy Technology Data Exchange (ETDEWEB)

    1970-07-27

    A detailed scheme has been proposed for combating oil spills in U.S. offshore waters, hopefully moving oil spill control out of its infancy and at least into the toddler stage. In a comprehensive one-year systems study for the American Petroleum Institute (API), the results of which were released this week, Dillingham Environmental Co., studied major past oil spills and analyzed equipment and control techniques currently available to deal with them. The project director and his 5-man group recommend a multicomponent scheme including booms, absorbents, sinking agents, and chemical dispersants for oil containment and cleanup. The first phase, definition of the nature and scope of the problem, includes analysis of past oil spills to determine the basic characteristics of major oil spills; delineation of geographic regions where oil spills are likely to occur; and analysis of how oil spills affect, and are affected by the environment. The Dillingham report examines the effect of past oil spills on the environment. It concludes that isolated oil spills do not appear to present a major environmental threat resulting in lasting damage.

  16. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  17. Oil spills and their cleanup

    International Nuclear Information System (INIS)

    Oil spills are an unfortunately common occurrence in the world's seas and can have extensive damaging environmental consequences. This article examines various methods of cleaning up oil spills, evaluates their effectiveness in various situations, and identifies areas where, current methods being inadequate, further research is needed. Containment, mechanical removal, shoreline cleanup, chemical treating agents, in situ burning, natural recovery and enhanced bioremediation are all assessed. The cleanup method must be selected to match environmental conditions. Results are good in quiet, sheltered waters, but need extensive development in open waters and high seas. (UK)

  18. A Tale of Two Recent Spills—Comparison of 2014 Galveston Bay and 2010 Deepwater Horizon Oil Spill Residues

    OpenAIRE

    Yin, Fang; Hayworth, Joel S.; Clement, T. Prabhakar

    2015-01-01

    Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemi...

  19. A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues.

    Directory of Open Access Journals (Sweden)

    Fang Yin

    Full Text Available Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM beach systems following two recent oil spills: the 2014 Galveston Bay (GB oil spill, and the 2010 Deepwater Horizon (DWH oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts.

  20. Oil spill dispersants. Risk assessment for Swedish waters

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, C.; Lager, H.; Fejes, J.

    2001-12-01

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea.

  1. Oil spill dispersants. Risk assessment for Swedish waters

    International Nuclear Information System (INIS)

    IVL has compiled a list of the international usage of oil spill dispersants and presents the technical limitations with the use of such agents as well as the biological effects of these chemical products. IVL, has also conducted an analysis of the pros and cons to using dispersants against oil spills in waters and has applied this with a risk assessment of chemical methods to combat oil spills in the Kattegat and Skagerrak and the Baltic Sea

  2. Proceedings of the 22. Arctic and marine oil spill program technical seminar

    International Nuclear Information System (INIS)

    Vol. 1 of the Proceedings contain all papers dealing with the physical and chemical properties and behaviour of oil spills, oil spill treating agents, spill modelling, shore line protection and cleanup and oil spill detection, tracking and remote sensing, and biological effects of oil spills and biodegradation. Papers in vol. 2 deal with various disposal methods such as in-situ burning, near-shore dispersant experiments, oil spill prevention and contingency planning, containment and recovery, a paper concerning past and present spill incidents, a panel discussion of the 1997-1998 Svalbard shoreline experiment, and the papers presented in the Poster Session

  3. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  4. CHEMICAL OIL SPILL DISPERSANTS: UPDATE STATE-OF-THE- ART ON MECHANISM OF ACTION AND LABORATORY TESTING FOR PERFORMANCE

    Science.gov (United States)

    Chemical dispersants are formulations designed to facilitate dispersion of an oil slick into small droplets that disperse to non-problematic concentrations in an underlying water column. This project had two primary objectives: (1) update information on mechanisms of action of ...

  5. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    OpenAIRE

    Jin-Feng Liu; Serge Maurice Mbadinga; Shi-Zhong Yang; Ji-Dong Gu; Bo-Zhong Mu

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last tw...

  6. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  7. Aerial photography interpreted for contingency planning, spill prevention, compliance monitoring and spill surveillance

    International Nuclear Information System (INIS)

    The EPA's Environmental Monitoring and Support Laboratory in Las Vegas is producing photo interpretation keys which are aerial photographic examples of hazardous substance spills and potential spill conditions within typical chemical processing and storage facilities. Color aerial photography, acquired over a variety of chemical processing facilities along the Lower Delaware River estuary and the Baltimore Harbor area, provides the primary source of data for the keys

  8. Marine (Brander-Smith report) and non-marine spills

    International Nuclear Information System (INIS)

    Current activities related to Canada's Green Plan are reviewed in the area of research on, and response to, marine and non-marine spills. The Emergency Response section of Environment Canada's Conservation and Protection Service has had a 130% increase in funding and 50% increase in personnel resources. Two thirds of these resources are assigned to regional operations where spill incidents occur and the rest to research. The section's first priority is to improve its spill prevention program. A national standard for emergency planning for industry has been prepared and thousands of copies have been sold. A Canada-USA joint inland pollution contingency plan will be established and training programs on response to oil and hazardous chemical spills has been implemented. Resources applied to spill response have also increased 150%; a computerized communications network has been provided for spill response personnel, with the aim to develop a single national spill reporting system. In terms of policy initiatives, amendments are being made to the Canada Shipping Act that will require on-board pollution emergency plans for ships operating in Canadian waters. A liability and compensation regime for chemical spills is being considered, as well as reimposition of a levy on petroleum products that resulted in creation of a ship-source oil pollution fund. Radar-based traffic control systems for heavily congested marine areas, electronic charting, and increased inspection of ships are among the spill prevention initiatives in progress. Research is being conducted on mapping environmentally sensitive shorelines and in oil spill cleanup methods

  9. Oil spill contingency manual

    International Nuclear Information System (INIS)

    This manual is intended to provide initial spill responders with a series of specific checklists that will likely be required during the initial strategies and on-going control operations of a spill response, and checklists that will assist them with their spill control activities. The seven types of checklists covered in the Manual are: (1) a contact checklist for use in the initial stages of a spill response, (2) a spill assessment checklist, (3) containment and recovery checklist, (4) in-situ burning guidelines, (5) job descriptions for senior members of the spill response team, (6) public relations checklist, and (7) documentation checklist. Each checklist is subdivided into a series of concisely stated ACTIONS, each of these being followed by a series of clear and concise PROCEDURES. Where appropriate, PRIORITIES are also identified. This Action/Procedure/Priorities sequence is followed throughout the Manual

  10. Crude Oil Spills and Health

    Science.gov (United States)

    ... and Health Text size: s m l xl Crude Oil Spills and Health Overviews Health Information Coping with Disasters ... U.S. Fish and Wildlife Service Return to top Oil Spills and Wildlife Environmental Quality: Oil Spill Preparation and ...

  11. Gas spill emergency

    International Nuclear Information System (INIS)

    This video presentation was designed to explain the steps that should be taken in the event of a petroleum product spill on land, to keep damages and consequences to a minimum. The events that took place when an oil truck full of gasoline overturned and smashed into a house on a residential street were described to illustrate the principles involved. The following sequence of events and actions, based on general principles of bringing the situation under control during an emergency operation were depicted: (1) identification of spilled product, (2) assessment of the situation, (3) setting priorities and evacuating the endangered area, and (4) setting up a communication system. The fire fighters sprayed the area with foam because of the fire and explosion potential. Sand was used to contain the spill and to keep it out of the storm sewers. The spilled oil was recovered. Three other spill situations - a spill at a service station, a spill in a ditch, and a spill in a waterway - were also documented. It was emphasized that while it is not possible to establish a single set of rules and actions that would apply to all situations since no two accidents involving petroleum products are alike, the general principles are universal and can be applied in all situations. First priority to consider should always be human life, then property, then the environment

  12. Oil Spill Cleanup

    Science.gov (United States)

    Kauble, Christena Ann

    2011-01-01

    Several classroom activities using a model of a seashore and an oil spill demonstrate the basic properties of oil spills in oceans. Students brainstorm about how to best clean up the mess. They work in teams, and after agreeing on how they will proceed, their method is tested by measuring the amount of oil removed and by rating the cleanliness of…

  13. Pending oil spill law

    International Nuclear Information System (INIS)

    This paper summarizes results of several oil spill and tanker traffic studies conducted by environmental organizations in the last year. The paper touches upon key features of pending federal oil spill legislation, then evaluates several recommended actions to reduce the risk of tanker groundings and collisions. The paper closes with a call for adequate funding for application of available preventive measures

  14. Oil spill statistics and oil spill monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Viebahn, C. von [Greifswald Univ. (Germany). Dept. of Geography

    2001-09-01

    The main parts of the report describe the analysis and it's results of German and international oil spill data (North Sea and Baltic Sea). In order to improve the current oil spill monitoring of the Baltic Sea regarding oil spill data, the report proposes the establishment of a combined monitoring system; its suitability is shown on selected examples. This contains today's pollution control aircraft plus in-service aircraft and satellites. (orig.) [German] Der Schwerpunkt der Arbeit liegt in der Analyse von Daten ueber marine Oelschadensfaelle in deutschen und internationalen Gewaessern (Nord- und Ostsee). Um die heutige Ueberwachung der Ostsee im Hinblick auf Oelschadensfaelle zu verbessern, wird die Einrichtung eines kombinierten Ueberwachungssystems vorgeschlagen und dessen Eignung an ausgewaehlten Beispielen dargestellt. Dieses umfasst sowohl die heute eingesetzten Ueberwachungsflugzeuge sowie zusaetzlich Linienflugzeuge und Satelliten. (orig.)

  15. Effects of oil spill related chemical pollution on helminth parasites in Mexican flounder Cyclopsetta chittendeni from the Campeche Sound, Gulf of Mexico.

    Science.gov (United States)

    Centeno-Chalé, Oscar Arturo; Aguirre-Macedo, Ma Leopoldina; Gold-Bouchot, Gerardo; Vidal-Martínez, Víctor Manuel

    2015-09-01

    During an environmental impact study of an accidental oil spill in the Campeche Sound in October 2007, we examined the helminth parasites of the benthic flatfish Cyclopsetta chittendeni as well as the concentrations of hydrocarbons and heavy metals in the sediment. The aim of this study was to determine the potential effects of these contaminants on the helminth communities of the flatfish. A total of 427 hosts were examined, and 16,895 helminths, representing 17 species, were obtained from two surveys (March and July, 2008). Statistically significant negative associations were observed between the hydrocarbons and helminth parasite abundances using multivariate methods. The results suggest that in October 2007, the oil spill had a strong negative effect on these helminth communities. However, after five months, the impacted stations were re-populated by both the flatfish and helminths. The most likely explanation for this rapid recovery is the rescue effect from non-impacted habitats to impacted stations. PMID:26004356

  16. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Science.gov (United States)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  17. Summary of spill events in Canada : 1984 - 1995

    International Nuclear Information System (INIS)

    The trends in hazardous material spill events in Canada were summarized for the 12-year period 1984 to 1995. Findings were presented on the number and quantity of spills. The report includes data on the seven major sectors that incur spills. These include the chemical, government, metallurgy, mining, petroleum, pulp and paper and service industry sectors. The causes and reasons for these spills, and any environmental impacts, are described. Case histories of four significant environmental incidents were reviewed in detail. These include a warehouse fire at Canning, Nova Scotia in 1986, a tire fire at Hagersville, Ontario in 1990, a train derailment in Hervey Junction, Quebec in 1995, and the Nestucca oil spill in Gray's Harbour near Vancouver Island, British Columbia in 1988. Equipment failure and human error were pinpointed as the most common cause of spills, followed by corrosion, material failure and storm or flood. Fifty-eight per cent of all reported spills involve oil and petroleum products. Wastes and effluents account for 89 per cent of the total quantity of reported spills. These findings make the report particularly well suited for use as a tool in developing appropriate spill prevention strategies. 15 refs., 26 tabs., 42 figs

  18. Pleural spill malign

    International Nuclear Information System (INIS)

    The pleural spills are developed because of an alteration in the mechanisms that usually move between 5 and 10 liters of liquid through the space pleural every 24 hours and this is reabsorbed, only leaving 5 to 20 ml present. The causes more common of spill pleural they are: congestive heart failure, bacterial pneumonia, malign neoplasia and pulmonary clot. The causes more common of pleural spill malign in general are: cancer of the lung, cancer of the breast and lymphomas. In the man, cancer of the lung, lymphomas and gastrointestinal cancer. In the woman, cancer of the breast, gynecological cancer and lung cancer. The paper, includes their characteristics, treatments and medicines

  19. Vegetable oil spills : oil properties and behaviour

    International Nuclear Information System (INIS)

    In 1997, the United States Environmental Protection Agency conducted a thorough review of the issue regarding vegetable oil spills. Recent attention has refocused on this issue as a result of an incident where 20 tons of canola oil was spilled in the Vancouver Harbour in 2000. In the past, vegetable oils were suggested to be a useful test material because they were thought to be innocuous. It was even suggested they be used to remove petroleum oil residues from beaches. However, recent studies have shown that spills of vegetable oils can have major environmental consequences, equivalent to those of petroleum oil spills. The spills have devastating effects on birds and intertidal organisms. This paper presented a summary of historical vegetable spills from around the world. In this study, specific behaviour tests were examined for several oils including canola, soy bean, olive, castor and corn oils. Evaporation, water-in-oil emulsification and chemical dispersion were measured and were found to be nearly zero, suggesting that vegetable oil spills are not very soluble in water. The aquatic toxicity of vegetable oil is low, but their fate is quite different from petroleum. Vegetable oils do not evaporate to a significant degree, they do not form water-in-oil emulsions, nor do they disperse in water. The physical properties of vegetable oils were also measured, including density and viscosity. This paper presented the aquatic toxicity of several vegetable oils along with other environmental data including the degradation rates noted in the literature. Most environmental damage reported in the literature is by contact with birds feathers resulting in hypothermia and secondly by smothering of intertidal organisms. The effect of vegetable oil on fish has not been well studied, but it is expected that there will be little destructive effect except where smothering can occur. 35 refs., 3 tabs

  20. Spill response cost recovery : establishing a regulation under the Waste Management Act for recovering the cost of spill response by the government of British Columbia

    International Nuclear Information System (INIS)

    British Columbia's Waste Management Act has been amended to allow for spill cost recovery to ensure clean, healthy and safe land, water and air for all living things. Cost recovery for spill response provides an incentive to users of oil and hazardous materials to adopt effective spill prevention measures and it allows industry to understand the full social, environmental and economic cost of hazardous spills. The BC Ministry of the Environment responds to about 4,000 spill notifications per year pertaining to oil and chemical spills and other pollution-causing incidents. About one third of these notifications need field action by the Ministry. Under the Act, if the spiller's performance is inadequate, the Ministry takes over the management of the spill. The amendment to the Act permits the application of cost recovery, by issuing a certificate and invoice to the polluter showing the amount owed to the Provincial Government. 1 fig

  1. Spills on Flat Inclined Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Carver S.; Keller, Jason M.; Hylden, Jeff L.

    2004-03-01

    This report describes the general spill phenomenology for liquid spills occurring on relatively impermeable surfaces such as concrete or asphalt pavement and the development and application of a model to describe the time evolution of such spills. The discussion assumes evaporation and degradation are negligible and a homogeneous surface. In such an instance, the inherent interfacial properties determine the spatial extent of liquid spreading with the initial flow being controlled by the release rate of the spill and by the liquids resistance to flow as characterized by its viscosity. A variety of spill scenarios were simulated and successful implementation of the model was achieved. A linear relationship between spill area and spill volume was confirmed. The simulations showed spill rate had little effect on the final spill area. Slope had an insignificant effect on the final spill area, but did modify spill shape considerably. However, a fluid sink on the edge of the simulation domain, representing a storm drain, resulted in a substantial decrease in spill area. A bona fide effort to determine the accuracy of the model and its calculations remain, but comparison against observations from a simple experiment showed the model to correctly determine the spill area and general shape under the conditions considered. Further model verification in the form of comparison against small scale spill experiments are needed to confirm the models validity.

  2. Effects of an oil spill in a harbor assessed using biomarkers of exposure in eelpout

    OpenAIRE

    Sturve, Joachim; Balk, Lennart; Liewenborg, Birgitta; Adolfsson-Erici, Margaretha; Förlin, Lars; Carney Almroth, Bethanie

    2014-01-01

    Oil spills occur commonly, and chemical compounds originating from oil spills are widespread in the aquatic environment. In order to monitor effects of a bunker oil spill on the aquatic environment, biomarker responses were measured in eelpout (Zoarces viviparus) sampled along a gradient in Göteborg harbor where the oil spill occurred and at a reference site, 2 weeks after the oil spill. Eelpout were also exposed to the bunker oil in a laboratory study to validate field data. The results show...

  3. Spill reporting and prevention

    International Nuclear Information System (INIS)

    The actions that companies in British Columbia are required to take to comply with spill reporting requirements and with the waste management legislation of the B.C. Waste Management Act were discussed. A company's ability to respond effectively to hazardous materials spills depends on three factors: (1) understanding the regulatory requirements, (2) having an emergency response capability, and (3) having a staff trained to exercise those responsibilities. The steps involved in complying with the legislation were outlined . The types and quantities of spilled material that must be reported were listed, and advice was given on how a company can effectively incorporate emergency planning into its Environmental Health and Safety Management System. Responsibilities of the the individual designated as the on-scene commander were also spelled out. 3 tabs

  4. Oil composition and properties for oil spill modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.D.; Hollebone, B.P.; Yang, C.; Fieldhouse, B.; Fingas, M.; Landriault, M.; Gamble, L.; Peng, X. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre; Weaver, J. [National Exposure Research Laboratory, Athens, GA (United States)

    2005-07-01

    The methods and procedures for measuring the physical properties and chemical compositions of 9 commonly used crude oils that have the potential to be spilled at sea were presented. The 9 oils have API gravities ranging from 11 to 42 degrees and have large differences in their physical and chemical properties. The oils are fractioned into groups of compounds with similar structures and properties. The hydrocarbon groups include TPHCWG fractions with different carbon ranges, total petroleum hydrocarbon, total saturates, total aromatics, asphaltenes and polars. The target hydrocarbons characterized include n-alkanes, volatile BTEX and other alkyl benzenes, oil-characteristic alkylated PAH homologous series and other EPA priority PAH and biomarker compounds. This paper also presented a set of physical and chemical property data for the Cook Inlet Crude Oil. The physical and chemical properties reported were those that are most likely to determine the environmental fate and impact of spilled oil. Results of this project have been integrated into existing Environmental Protection Agency (EPA) and Environment Canada oil properties databases to advance oil spill modelling. The data will be particularly useful for an oil spill model that is being developed by the National Exposure Research Laboratory in Athens, Georgia to determine the fate and transport of oil components under a range of oil spill scenarios. The data reflects the changes to an oil over the course of a spill. 20 refs., 8 tabs., 4 figs.

  5. North Slope mobile technology and its application to spill response

    International Nuclear Information System (INIS)

    At ARCO Alaska's Prudhoe Bay operation, improved preparedness for oil spill response has been achieved by applying mobile technology according to an innovative concept. To ensure safe and efficient deployment of resources during a spill response, a rapid deployment equipment delivery system was developed. This multi-functional, modularized system was based on a previously developed chemical delivery system consisting of a primary transport truck equipped with a Dempsey Dumpster Dinosaur skid. This same modularized concept was used for spill response with the substitution of function-specific spill response vans in place of chemical transport tanks. Within this concept, skid-mounted mission-specific vans are rapidly deployed to multiple sites in a fire brigade type of response. Skid-mounted units include land and water containment, recovery, boom deployment, command center, generator skid, restroom facility, and skimmer units. 4 figs

  6. OIL SPILL CLEANUP

    Science.gov (United States)

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. uring biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic con...

  7. The 1990 Arthur Kill oil spills

    International Nuclear Information System (INIS)

    On January 1-2, 1990, Exxon discharged 567,000 gallons of No. 2 heating oil in the Arthur Kill, the strait separating Staten Island, New York from New Jersey. Lawsuits against Exxon were filed by the State of New Jersey, New York City, and the City of Elizabeth. They seek to force Exxon to reimburse the municipalities and the state for cleanup costs and to restore damaged wetlands and other natural resources. The three plaintiffs, joined by New York State and the federal government, initiated a three-tiered natural resource damage assessment study (Tier II), currently underway, includes sampling and chemical analysis of sediments and benthic invertebrates, mapping of impacted wetlands and measurement of direct impacts on water birds and their prey. The purposes of the study are to quantify the damages and determine the presence of Exxon's oil in the sediments. Since the Exxon spill, there have been two major spills and an intermediate-size spill. During the first size months of 1990, over one million gallons of petroleum products have been discharged into the Arthur Kill and nearby waters. This paper reports that a review of these incidents provides lessons for the prevention, investigation, and cleanup of spills in urban estuaries

  8. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    Science.gov (United States)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  9. Characterization and identification of Detroit River mystery oil spill (2002)

    International Nuclear Information System (INIS)

    The authors described the mysterious oil spill which occurred in the Detroit River in 2002. Advanced chemical fingerprinting and data interpretation techniques were conducted on spill samples collected by Environment Canada, Ontario Region, to determine the chemical composition of the oil and find out where it came from. The objective was to gather information concerning the nature, type, and components of the spill samples. The authors checked if the samples were identical to determine if they originated from the same source. They used a tiered analytical approach which facilitates the detailed compositional analysis by gas chromatograph-mass spectrometer (GC-MS) and GC-flame ionization detection (FID). A wide range of diagnostic ratios of source-specific marker compounds for interpreting chemical data was determined and analyzed. The results proved that: (1) the spill samples were largely composed of lube oil mixed with a smaller portion of diesel fuel, (2) sample number 3 collected from N. Boblo Island was more weathered than samples 1 and 2, (3) the oil in three samples was the same and originated from the same source, as shown by fingerprinting results, (4) most PAH compounds were from the diesel portion in the spill samples, and the biomarker compounds were mostly from the lube oil, (5) the diesel in the samples had been weathered and degraded, and the lube oil in the spill samples was waste lube oil, and (6) input of pyrogenic PAHs to the spill samples was clearly proven. The spill likely came from a place where both combustion and motor lubrication processes occur. 46 refs., 4 tabs., 6 figs

  10. Will specialized equipment and supplies needed for an oil spill response be available when you need them?

    International Nuclear Information System (INIS)

    As a consequence of recent and highly publicized oil spills, much effort and money has been expended on the development of new oil spill response technologies. Since medium to large size spills are infrequent events, however, it has historically been difficult to maintain a stable source of supplies for high-technology oil spill response methods. Examples of such methods include laser fluorosensors for spill detection, computer models for predicting spill trajectories, and bioremediation and in-situ burning of spills. Problems with spill response research is the duplication of research, relative inaccessiblity of the relevant literature, lack of continuity of staff who understand advanced spill response techniques, lack of training in new techniques, regulatory constraints on the use of new techniques, and lack of availability of the latest spill control equipment and materials. Rather than burden oil spill response funding groups with the responsibility for maintaining expensive systems for response to unlikely or infrequent events, it is suggested that oil spill technology research groups should investigate alternative users for their technologies. For example, if a chemical used for suppressing soot during oil spill burning were also applicable to pool burning of oil in sumps and test flares, there would be a commercial incentive to make it readily available. 22 refs

  11. Spreading, retention and clean-up of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr, M P

    1976-05-01

    This study reviews and assesses the technology of oil spill spreading, retention and cleanup and proposes research needs in these areas. Sources of oil spills are analyzed and the difficulty of gathering meaningful statistics is discussed. Barrier technology is reviewed and problem areas analyzed. Natural and forced biodegradation and natural and chemical dispersion of oil spills are considered. Research recommendations are categorized under the following two headings (1) Preventive techniques and (2) Containment, Cleanup and Dispersion.

  12. GEOCHEMICAL RECOGNITION OF SPILLED SEDIMENTS USED IN NUMERICAL MODEL VALIDATION

    Institute of Scientific and Technical Information of China (English)

    Jens R.VALEUR; Steen LOMHOLT; Christian KNUDSEN

    2004-01-01

    A fixed link (tunnel and bridge,in total 16 km) was constructed between Sweden and Denmark during 1995-2000.As part of the work,approximately 16 million tonnes of seabed materials (limestone and clay till) were dredged,and about 0.6 million tonnes of these were spilled in the water.Modelling of the spreading and sedimentation of the spilled sediments took place as part of the environmental monitoring of the construction activities.In order to verify the results of the numerical modelling of sediment spreading and sedimentation,a new method with the purpose of distinguishing between the spilled sediments and the naturally occurring sediments was developed.Because the spilled sediments tend to accumulate at the seabed in areas with natural sediments of the same size,it is difficult to separate these based purely on the physical properties.The new method is based on the geo-chemical differences between the natural sediment in the area and the spill.The basic properties used are the higher content of calcium carbonate material in the spill as compared to the natural sediments and the higher Ca/Sr ratio in the spill compared to shell fragments dominating the natural calcium carbonate deposition in the area.The reason for these differences is that carbonate derived from recent shell debris can be discriminated from Danien limestone,which is the material in which the majority of the dredging took place,on the basis of the Ca/Sr ratio being 488 in Danien Limestone and 237 in shell debris.The geochemical recognition of the origin of the sediments proved useful in separating the spilled from the naturally occurring sediments.Without this separation,validation of the modelling of accumulation of spilled sediments would not have been possible.The method has general validity and can be used in many situations where the origin ora given sediment is sought.

  13. Dam spills and fishes

    International Nuclear Information System (INIS)

    This short paper reports the main topics discussed during the two days of the annual colloquium of the Hydro-ecology Committee of EdF. The first day was devoted to the presentation of the joint works carried out by EdF, the Paul-Sabatier University (Toulouse), the Provence St-Charles University (Marseille), the ENSAT (Toulouse) and the CEMAGREF (Lyon and Aix-en-Provence) about the environmental impact of dam spills on the aquatic flora and fauna downstream. A synthesis and recommendations were presented for the selection and characterization of future sites. The second day was devoted to the hydro-ecology study of the dam reservoir of Petit-Saut (French Guyana): water reoxygenation, quality evolution, organic matter, plankton, invertebrates and fishes. The 134 French dams concerned by water spills have been classified according to the frequency of spills, the variations of flow rates created, and their impacts on fishing, walking, irrigation, industry, drinking water, navigation, bathing. Particular studies on different sites have demonstrated the complexity of the phenomena involved concerning the impact on the ecosystems and the water quality. (J.S.)

  14. Environmental implications of oil spills from shipping accidents.

    Science.gov (United States)

    Rogowska, Justyna; Namieśnik, Jacek

    2010-01-01

    Since ancient times, ships have sunk during storms, either as a result of collisions with other vessels or running onto rocks. However, the ever-increasing importance of crude oil in the twentieth century and the corresponding growth in the world's tanker fleet have drawn attention to the negative implications of sea transport. Disasters involving tankers like the Torrey Canyon or the Amoco Cadiz have shown how dramatic the consequences of such an accident may be. The effects of oil spills at sea depend on numerous factors, such as the physicochemical parameters of the oil, the characteristics of the environment affected, and the physical, chemical, and biological processes occurring there, such as evaporation, dissolution, dispersion, emulsification, photo-oxidation, biodegradation, and sedimentation. The combination of these processes reduces the concentrations of hydrocarbons in sediments and water and alters the chemical composition of spilled oils. In every case, oil spills pose a danger to fauna and flora and cause damage to sea and shores ecosystems. Many of the petroleum-related chemicals that are spilled are toxic, otherwise carcinogenic or can be bioaccumulated in the tissues of marine organisms. Such chemicals may then be biomagnified up the marine food chain from phytoplankton to fish, then to seals and other carnivorous sea mammals. Moreover, oil products can be accumulated and immobilized in bottom deposits for long periods of time. Oil spills are particularly dangerous when they occur in small inland seas that have intense sea traffic, e.g., the Baltic Sea. PMID:20652670

  15. THE PROBLEM OF OIL SPILLS

    OpenAIRE

    Nguen, T.; Kochegarova, N.

    2011-01-01

    An oil spill is a release of a liquid petroleum hydrocarbon into the environment due to human activity, and is a form of pollution. The term often refers to marine oil spills, where oil is released into the ocean or coastal waters. Oil spills include releases of crude oil from tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products (such as gasoline, diesel) and their by-products, and heavier fuels used by large ships such as bunker fuel, or the s...

  16. Bacterial consortia for crude oil spill remediation

    International Nuclear Information System (INIS)

    Oil spills generate enormous public concern and highlight the need for cost effective ad environmentally acceptable mitigation technologies. Physico-chemical methods are not completely effective after a spill. Hence, there is a need for improved and alternative technologies. Bioremediation is the most environmentally sound technology for clean up. This report intends to determine the potential of a bacterial consortium for degradation of Gulf and Bombay High crude oil. A four membered consortium was designed that could degrade 70% of the crude oil. A member of consortium produced a biosurfactant, rhamnolipid, that emulsified crude oil efficiently for effective degradation by the other members of consortium. The wide range of hydrocarbonoclastic capabilities of the selected members of bacterial consortium leads to the degradation of both aromatic and aliphatic fractions of crude oil in 72 hours. (Author)

  17. Final report of the accident phenomenology and consequence (APAC) methodology evaluation. Spills Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.; Shinn, J. [Lawrence Livermore National Lab., CA (United States); Hesse, D [Battelle Columbus Labs., OH (United States); Kaninich, D. [Westinghouse Savannah River Co., Aiken, SC (United States); Lazaro, M. [Argonne National Lab., IL (United States); Mubayi, V. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01

    The Spills Working Group was one of six working groups established under the Accident Phenomenology and Consequence (APAC) methodology evaluation program. The objectives of APAC were to assess methodologies available in the accident phenomenology and consequence analysis area and to evaluate their adequacy for use in preparing DOE facility safety basis documentation, such as Basis for Interim Operation (BIO), Justification for Continued Operation (JCO), Hazard Analysis Documents, and Safety Analysis Reports (SARs). Additional objectives of APAC were to identify development needs and to define standard practices to be followed in the analyses supporting facility safety basis documentation. The Spills Working Group focused on methodologies for estimating four types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills.

  18. Marine oil spill response organizations

    International Nuclear Information System (INIS)

    The obligations under the law relative to the prevention of marine oil spills and the type of emergency plans needed to mitigate any adverse effects caused by a marine oil spill were discussed. The organizational structure, spill response resources and operational management capabilities of Canada's newly created Response Organizations (ROs) were described. The overall range of oil spill response services that the RO provides to the domestic oil handling, oil transportation and the international shipping industries were reviewed. Amendments to the Canada Shipping Act which require that certain ships and oil handling facilities take oil spill preparedness and response measures, including having an arrangement with an RO certified by the Canadian Coast Guard, were outlined. Canadians now benefit from five ROs established to provide coast-to-coast oil spill response coverage. These include the Western Canada Marine Response Corporation, the Canadian Marine Response Management Corporation, the Great Lakes Response Corporation, the Eastern Canada Response Corporation and the Atlantic Emergency Response Team Ltd. ROs have the expertise necessary to organize and manage marine oil spill response services. They can provide equipment, personnel and operational management for the containment, recovery and cleanup of oil spilled on water

  19. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    For some years now UK and European oil spill response agencies, together with oil companies having an exploration or production interest in the European area, have been developing interest in the possible use of bioremediation techniques in combatting oil spills. The interest has accelerated in the aftermath of Exxon Valdez but there is significant scepticism over the actual value of the technique. The promise of increased rates of oil degradation, using bacteria or nutrients, does not yet appear to have been properly validated and there is concern over possible knock-on environmental effects. In consequence the response agencies are reluctant to bring the technique into their current combat armory. Some of the questions raised are: What efficacious techniques are available and how were they proven? On what type of oils can they be used? What is the scope for their use (at sea, type of coastline, temperature limitations, etc.)? What are the short and long term effects? Does bioremediation really work and offer a potential tool for oil spill clean-up? How do cleaning rates compare with natural recovery? There are many others. The view of the European Commission is that there should be a coordinated effort to answer these questions, but that effort should be properly targeted. I concur strongly with this view. The tasks are too large and varied for piecemeal attention. The European Commission wishes to initiate appropriate coordinated work, directed at the needs of European nations but which will subsequently inform the international response community through the International Maritime Organization and its Oil Pollution Preparedness and Response Cooperation initiative

  20. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.

    Science.gov (United States)

    Faksness, Liv-Guri; Altin, Dag; Nordtug, Trond; Daling, Per S; Hansen, Bjørn Henrik

    2015-02-15

    Two Source oils and five field collected oil residues from the Deepwater Horizon incident were chemically characterized. Water accommodated fractions (WAFs) of the Source oils and two of the field-weathered oils were prepared to evaluate the impact of natural weathering on the chemical composition and the acute toxicity of the WAFs. Toxicity test species representing different tropic levels were used (the primary producer Skeletonema costatum (algae) and the herbivorous copepod Acartia tonsa). The results suggest that the potential for acute toxicity is higher in WAFs from non-weathered oils than WAFs from the field weathered oils. The Source oils contained a large fraction of soluble and bioavailable components (such as BTEX (benzene, toluene, ethyl benzene, xylenes) and naphthalene), whereas in the surface collected oils these components were depleted by dissolution into the water column as the oil rose to the surface and by evaporative loss after reaching the sea surface. PMID:25534626

  1. Oil Spill Cleanup

    Science.gov (United States)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  2. Oil spill stranding processes

    OpenAIRE

    Korenika, Romina

    2015-01-01

    In the thesis, we discuss the processes of stranding and release of oil on the coast and off the coast in the case of an oil spill. We presented different ways of determining the maximum oil–holding capacity of the beach, and established that the retention mainly depends on the types of coastline and type of oil. Based on the classification of the coastline types in Slovenia, we chose a section of sandy and gravelly coastline as an example. For these types of coastlines, we calcul...

  3. Oil spill clean up

    International Nuclear Information System (INIS)

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. During biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic constituents to toxic species. Also, toxic compounds refractory to biological degradation may compromise the effectiveness of the treatment technique. In the study, the Salmonella mutagenicity assay showed that both the Prudhoe Bay crude oil and its weathered counterpart collected from oil-impacted water were weakly mutagenic. Results also showed that the mutagenic components were depleted at a faster rate than the overall content of organic material

  4. The North Cape oil spill assessment: PAHs in oil

    International Nuclear Information System (INIS)

    The North Cape oil spill in January 1996 resulted in the release of an estimated 827,000 gallons of No. 2 home heating oil into the nearshore turbulent waters of coastal Rhode Island. The oil was mixed into the water column and was transported on the surface as well as below the surface. Some of the spilled oil entered the coastal ponds behind the beaches. Sampling and chemical analysis for detailed suites of petroleum saturated and polycyclic aromatic hydrocarbons (PAHs) was undertaken as part of the assessment of the fate of the oil spill and of the exposure to the marine environment. The ponds were found to contain significant quantities of background petroleum hydrocarbons, including petrogenic PAHs and combustion PAHs. Initial assessment pointed (incorrectly as it turned out) to widespread contamination due only to the North Cape spill. Application of advanced chemical fingerprinting approaches, and geochemical biomarker data illustrated that many of the PAHs consisted of combustion-related 4- and 5-ringed PAHs, attributable to diesel fuel used routinely by boats in the area. The analysis demonstrated that the use of non-specific total PAH data and insufficient fingerprinting and allocation of petrogenic residues has the potential to overestimate contamination and hence injury to the environment in similar oil spill situations

  5. Evolution of Environment Canada's Spill Response System : two decades of development

    Energy Technology Data Exchange (ETDEWEB)

    Goldthorp, M.; Lambert, P.; Fingas, M.F. [Environment Canada, Ottawa, ON (Canada)

    2002-07-01

    This paper reviewed and summarized the 20 years of development of Environment Canada's chemical spill response program which was initially created to identify the most commonly spilled hazardous chemicals so that responders could quantify them. It was noted that the analytical instruments which were commonly used in the early days of the program are still used today. The paper described the following instruments along with their detection capability: the portable XRF, 4-gas multi-gas meter, 5-gas multi-gas meter, the portable gas chromatograph-mass spectrometer, the portable gas chromatograph, the spectrophotometer, the PID/flame ionization detector, the PID, particulate monitors, detector tube system, chemical identification system, immunoassay kits and chemical tape meters. It was noted that there has been significant increase in response capability since the initiation of the program. Improvements in instrumentation have made it possible for responders to obtain real-time analytical assessments to help with on-site decision making. Environment Canada's spill response program has maintained a leadership role in the assessment, development and implementation of response technologies. The projects under the directorship of the program have been the subject of more than 50 papers dealing with spill instrumentation, spill trends, method development, spill countermeasures, and database development. The Emergency Science and Technology Division of Environment Canada operates 4 vehicles for emergency response for chemical spills, including 1 mobile, 2 general response trucks, and 1 towable laboratory. 20 refs., 1 tab.

  6. A local oil spill revisited

    International Nuclear Information System (INIS)

    In October 1969 George Hampson and Howard Sanders (Woods Hole Oceanographic Institution) described a 'Local Oil Spill' in Oceanus. The spill had occurred a month before when the barge Florida, loaded with no. 2 fuel oil, ran into some rocks in Buzzards Bay off West Falmouth, Massachusetts. In the summer of 1989, almost 20 years later, They visited the Wild Harbor marsh area that had suffered the greatest impact from the spill to see if any traces of the event in the marsh ecosystem could be found. During those 20 years, the site has been visited by graduate students in marine ecology, by reporters seeking information about current oil spills but also interested in seeing the effects of the Wild Harbor spill, and by visiting scientists curious about one of the world's best-studied oil spills. For more than a decade after the spill, an oil sheen appeared on the surface of the water when mud from the most heavily oiled parts of the marsh was disturbed. During the second decade, the marsh's appearance returned to normal

  7. Remediation Technologies for Marine Oil Spills: A Critical Review and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    D. Dave

    2011-01-01

    Full Text Available Problem statement: Anthropogenic activities pollute the oceans with oil through land run off, vessels accidents, periodic tanker discharges and bilge discharges. Oil spills are environmental disasters that impact human, plants and wild life including birds, fish and mammals. Approach: In this study, the International Guidelines for Preventing Oils Spills and Response to Disasters were reviewed and the characteristics of oil spills were discussed. The advantages and disadvantages of various oil spill response methods were evaluated. A comparative analysis were performed on the currently available remediation technologies using 10 evaluation criteria that included cost, efficiency, time, impact on wild life, reliability, level of difficulty, oil recovery, weather, effect on physical/chemical characteristics of oil and the need for further treatment. The advantages and disadvantages of each response method were used to determine the score assigned to that method. Results: There are many government regualtions for individual countries that serve as prevention mesures for oil spills in the offshore environment. They have to do with the design of equipment and machinery used in the offshore environment and performing the necessary safety inspections. The primary objectives of response to oil spill are: to prevent the spill from moving onto shore, reduce the impact on marine life and speed the degradation of any unrecovered oil. There are several physical, chemical, thermal and biological remediation technologies for oil spills including booms, skimmers, sorbents, dispersants, in-situ burning and bioremediation. Each technique has its advantages and disadvantages and the choice of a particular technique will depend on: type of oil, physical, biological and economical characteristics of the spill, location, weather and sea conditions, amount spilled and rate of spillage, depth of water column, time of the year and effectiveness of technique. Coclusion

  8. A Model of Endogeneous Oil Spill Regulation

    OpenAIRE

    Ayla Ogus

    2005-01-01

    This paper presents a model of endogenous oil spill regulation where the severity of regulations is shown to be a function of the size of recent spills. The regulator chooses how much to regulate in order to maximize political capital when regulations are rigid downwards and the distribution of spills is not known with certainty. Very large spills are shown to cause large increases in the regulation level. In the event that an unlikely disastrous spill is realized, major regulatory reform may...

  9. SORBENTS FOR EXTRACTION OF SPILLED FUEL-LUBRICATE MATERIALS

    Directory of Open Access Journals (Sweden)

    Natalya V. Mashinskaya

    2009-04-01

    Full Text Available  Properties of absorbents of biological structure have been researched in the work. Its main advantages in comparison with chemical and polymeric sorbents have been shown. The offered Canadian peat-moss can be used in Ukraine as sorbent for oil products spill liquidation.

  10. Assessment of treated vs untreated oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.P.

    1981-02-01

    The results of a series of studies conducted to determine the practicability and feasibility of using dispersants to mitigate the impact of an oil spill on the environment are described. The method of approach is holistic in that it combines the physical, chemical, microbial and macro-fauna response to a spill treated with dispersants and compares this with spills that are left untreated. The program integrates mathematical, laboratory, meso-scale (three 20 foot high by three feet in diameter tanks, in-situ experiments and analyses to determine if the use of dispersants is an effective oil spill control agent. In summary, it appears viable to use dispersants as determined on a case by case basis. The case for using dispersants has to be based on whether or not their use will mitigate the environmental impact of the spill. In the case of an open ocean spill that is being driven into a rich inter-tidal community, the use of dispersants could greatly reduce the environmental impact. Even in the highly productive George's Bank area at the height of the cod spawning season, the impact of the use of dispersants is well within the limits of natural variability when the threshold toxicity level is assumed to be as low as 100 ppB, a level which is often found in the open ocean. Thus, it appears that dispersants can and should be used when it is evident that their use will mitigate the impacts of the spill. Their use in areas where there is poor circulation and therefore little possibility of rapid dilution is more questionable and should be a subject of future studies.

  11. Cost accounting and oil spills

    International Nuclear Information System (INIS)

    Financial costs of an oil spill were considered. The control measures taken by Maritime Bureau Inc., in the San Juan oil spill were used as an example of how chaotic influences were minimized, how stability to the management team, structured under the Incident Command System (ICS) model, was provided, and how as a result of these actions, effective cost control was established. The importance of precise knowledge of operating costs was stressed as a basis for taking policy measures and for the evaluation of the short-term success of an oil spill clean-up operation. Staff responsibilities and management needs were described. Performance evaluation, as an important part of crisis cost accounting, was highlighted. Incident costs and response effectiveness comparisons were given for 13 oil spill incidents, including the EXXON VALDEZ affair. 4 tabs., 2 figs

  12. Spills on the Arthur Kill and the Kill Van Kull

    International Nuclear Information System (INIS)

    The Arthur Kill between Staten Island, New York City, and New Jersey is a heavily industrialized corridor, the site of major petroleum refineries and chemical processing facilities. New York Harbor is a busy port, second largest in the U.S. on a tonnage basis. Six thousand vessels call on the port annually, including 1700 tankers. eighteen billion gallons of petroleum are delivered annually, of which 2/3 are handled on the Kills. In this interplay of wildlife, oil and marine based transfer operations, New York harbor COTP area experiences oil spills, releasing 250,000 average total annual volume. In the first three months of 1990 the volume of oil spilled approximately 750,000 gallons was released, threefold the annual average. The three major spills which caused this large release, and the governmental response, from the subject of this paper

  13. Oil spill research program, U. S. Minerals Management Service

    International Nuclear Information System (INIS)

    The oil spill prevention and response research program of the U.S. Minerals Management Service was described including its goals and objectives, some recently funded projects, and future research directions. As it is now the trend in most research organizations, a large part of the program is carried out in cooperation with other major research centers to leverage funds and to maximize study results. For example, joint research with Environment Canada focuses on the physical and chemical properties of dispersants, remote sensing and mapping oil slicks and shoreline cleanup strategies. Similarly, cooperative projects are underway with the National Institute of Standards and Technology in assessing the capabilities of in-situ burning as an oil spill response tool. Research capabilities of OHMSETT - The National Oil Spill Response Test Facility were also reviewed. A series of tables listed titles of research projects completed during 1995-1996. 5 tabs.,

  14. Alaska, Gulf spills share similarities

    International Nuclear Information System (INIS)

    The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide

  15. Environmental effects of acute oil spills. Marine environment

    International Nuclear Information System (INIS)

    Biological effects as result of acute oil spill pollution may be considered as a product of: the existing biophysical conditions; occurrence and appearance of organisms in time and space; the fate of the oil in time and space; the vulnerability of the various organisms for oil and oil derivatives in a three-dimensional perspective. In general, it seems as every individual oil spill has its own nature and dynamics, inter alia because the physical, chemical and biological conditions never are the same. This means that the properties of the recipients often are more important than the amount of oil that is spilled. This may be exemplified by two oil spills in recent time. Exxon Valdez (1989), where 35000 ton oil were released in a partly closed sea area, caused considerable effects. From Braer (1993) the double amount of oil was spilled, but in an open sea area and at a time where the presence of dense concentrations of environmental components was limited, and the physical conditions favorable with respect to evaporation and dilution. Preliminary results show that the environmental effects were very limited. 311 refs., 32 figs., 10 tabs

  16. Regional contingency planning using the OSCAR oil spill contingency and response model

    International Nuclear Information System (INIS)

    A model for Oil Spill Contingency and Response (OSCAR) has been used to evaluate the first line oil spill response strategies for different fields in the Norwegian sector of the North Sea. The system provides a 3-D model of the physical and chemical behaviour and fate of spilled oil. It also provides an oil spill response simulation of currently available mechanical recovery and dispersant application systems. The response can be dimensioned based on physical or biological characteristics of the region. Comparative costs and environmental benefits of the options can also be calculated. Regional analyses, in which environmental impacts are balanced against regionally based response costs, represent a rational and responsible approach to oil spill response planning. The OSCAR model makes this exercise relatively easy to put in place. 16 refs., 12 figs

  17. Advanced management of oil spills. A three-year program for development of operational tools for oil spill contingency planning

    International Nuclear Information System (INIS)

    A three-year research program, known as AMOS, to develop advanced operational tools for quantifying environmental consequences and effectiveness of various oil spill response methods is described. The AMOS program will document the fate, weathering, behaviour and potential biological effects on marine organisms of different oil types in the marine environment. A related program, OSCAR 2000, is also in the works. It is designed to facilitate oil spill contingency plans for offshore exploration drilling and production, and for onshore pipeline terminals and refineries. AMOS will supply the biological and chemical documentation that are necessary for the development of OSCAR 2000, which in turn is a tool for Net Environmental Benefit Analysis (NEBA), a technique used to quantify environmental benefits of alternate oil spill combat methods. 5 refs., 1 fig

  18. Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the DeepWater Horizon (DWH) oil spill.

    Science.gov (United States)

    Bentivegna, Carolyn S; Cooper, Keith R; Olson, Gregory; Pena, Edwin A; Millemann, Daniel R; Portier, Ralph J

    2015-12-01

    Body burdens of PAHs were compared to histological effects in menhaden (Family: Clupeidae, Genus: Brevoortia) collected in fall 2010 from Barataria Bay, LA (BBLA) and Delaware Bay, NJ (DBNJ). Barataria Bay was heavily oiled during the DeepWater Horizon (DWH) oil spill, while Delaware Bay although urbanized had no reported recent oil spills. GCMS analyses of pre-spill 2009, BBLA and DBNJ fish found predominantly C2/C3 phenanthrene (1.28-6.52 ng/mg). However, BBLA also contained five higher molecular weight PAHs (0.06-0.34 ng/mg DW). Fluorescent aromatic compound spectroscopy (FACS) of gastrointestinal (GI) tract tissue showed statistically higher levels of hydroxypyrene-like PAHs in DBNJ than BBLA fish. Histopathologic lesions were more prevalent in BBLA than DBNJ fish. The lesion prevalence (gill, trunk kidney, epidermis, stomach) in the BBLA menhaden were significantly higher and more severe than observed in the DBNJ menhaden. Reversible lesions included gill lamellar hyperplasia, adhesions, edema, and epidermal hyperplasia. The increased pigmented macrophage centers were indicative of activated macrophages responding to connective tissue damage or other antigens. The liver hepatic necrosis and renal tissue mineralization may well have undergone repair, but damage to the kidney nephrons and hepatic/biliary regions of the liver would be slower to resolve and apparently remained after elimination of PAHs. Therefore, a direct cause and effect between DWH oil spill and increased lesion prevalence in BBLA menhaden could not be established. PMID:26385175

  19. Oil spills worry Newfoundland

    International Nuclear Information System (INIS)

    The increasing frequency of oil spills and the likelihood of collision between tankers plying Placentia Bay and fishing boats operating in the same area, are the subject of increasing concern to the Newfoundland government. Some 500 oil tankers each year are conveying crude to a terminal at Whiffen Head from oilfields on Newfoundland and Labrador's Grand Banks; adding to that the hundreds of small fishing boats fishing for snow crabs in Placentia and St. Mary's Bay, augmented by the large number of vessels transporting crude from around the globe to the nearby Come-by-Chance refinery. The 'we-will-leave-it-alone-until-something-happens' attitude of the industry is a concern that is well-founded. The quality of communication between the regulatory agency (the Canada-Newfoundland Offshore Petroleum Board) and the public is also a subject of concern, with veiled charges that the regulators are becoming creatures of the companies that they regulate. To respond to the rising tide of complaints and concerns, the provincial Minister of Natural Resources is encouraging the Board to improve its public relations and communications, and create greater awareness of how it works on behalf of the people of the province, and what it does to protect their interests and safety

  20. Identification of Oil Spills by GC/MS Fingerprinting in Relation to the Danish Maritime Oil Spill Response

    DEFF Research Database (Denmark)

    Hansen, A. B.; Christensen, J. H.; Avnskjold, J.; Andersen, I.; Rasmussen, C. Aa.

    From the Second International Conference on Oil and Hydrocarbon Spills. Modelling, Analysis and Control : OIL SPILL 2000.......From the Second International Conference on Oil and Hydrocarbon Spills. Modelling, Analysis and Control : OIL SPILL 2000....

  1. Oil Spills - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Oil Spills URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Oil Spills - Multiple Languages To use the sharing features on ...

  2. Oil Spill Incident Tracking [ds394

    Data.gov (United States)

    California Department of Resources — The Office of Spill Prevention and Response (OSPR) Incident Tracking Database is a statewide oil spill tracking information system. The data are collected by OSPR...

  3. Photoenhanced toxicity of oil in spill response and impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barron, M.G. [P.E.A.K. Research, Longmont, CO (United States)

    2003-07-01

    Photoenhanced toxicity is described as the increase in chemical toxicity to aquatic organisms that have also been exposed to light sources containing ultraviolet radiation (UV). When tested under natural sunlight or laboratory sources of UV, fresh and weathered crude oils and spill products exhibit phototoxicity. These same products do not exhibit phototoxicity under standard testing with fluorescent lighting. Spill water from the North Cape fuel oil spill and Alaska North Slope crude oil dispersed with the chemical agent Corexit 9527 exhibited phototoxicity when tested under UV light sources. The greatest potential hazard of photoenhanced toxicity is expected to be felt by embryo and larval stages of aquatic organisms inhabiting the photic zone of the water column and intertidal areas because they are relatively translucent to UV. The author suggested that assessment of oil spill impacts should take into consideration photoenhanced toxicity since it may have an impact on the estimates of spatial and temporal extent of injury to aquatic organisms. In addition, the degree of photoenhanced toxicity may be influenced by the choice of remedial action and oil removal operations. 22 refs., 1 tab., 4 figs.

  4. Photoenhanced toxicity of oil in spill response and impact assessment

    International Nuclear Information System (INIS)

    Photoenhanced toxicity is described as the increase in chemical toxicity to aquatic organisms that have also been exposed to light sources containing ultraviolet radiation (UV). When tested under natural sunlight or laboratory sources of UV, fresh and weathered crude oils and spill products exhibit phototoxicity. These same products do not exhibit phototoxicity under standard testing with fluorescent lighting. Spill water from the North Cape fuel oil spill and Alaska North Slope crude oil dispersed with the chemical agent Corexit 9527 exhibited phototoxicity when tested under UV light sources. The greatest potential hazard of photoenhanced toxicity is expected to be felt by embryo and larval stages of aquatic organisms inhabiting the photic zone of the water column and intertidal areas because they are relatively translucent to UV. The author suggested that assessment of oil spill impacts should take into consideration photoenhanced toxicity since it may have an impact on the estimates of spatial and temporal extent of injury to aquatic organisms. In addition, the degree of photoenhanced toxicity may be influenced by the choice of remedial action and oil removal operations. 22 refs., 1 tab., 4 figs

  5. Application of biosurfactant in oil spill management

    International Nuclear Information System (INIS)

    Surfactants are surface active agents which reduce surface tension and interfacial tension between two immiscible phases and help in emulsification. Toxicity, nonbiodegradability, and limited structural types of chemical surfactants have initiated the need for effective substitutes. Biosurfactants, which are synthesized by specific microbial cultures, have surface active properties comparable to chemical surfactants. They are compounds that can help in oil spill cleanup operations without presenting the problem posed by chemical surfactants. Two bacterial cultures were isolated from oil-contaminated soil and were used for biosurfactant production. The biosurfactants produced by Bacillus licheniformis, BS1, and Pseudomonas aeruginosa, BS2, in mineral media containing glucose as the carbon source belong to the class of lipoprotein and glycolipid, respectively. They were found to reduce the surface and interfacial tension of water and water-hexadecane system from 72 dynes/cm and 40 dynes/cm to 28 to 30 dynes/cm and 1 to 3 dynes/cm, respectively. These results were comparable with chemical surfactants with respect to surface tension reduction (Slic Gone 34 dynes/ cm and Castrol 30 dynes/cm). The low interfacial tension allows the formation of stable emulsion. The two cultures were grown on different substrates, namely, glucose, mannitol, glycerol, hexadecane, oily sludge, and crude oil. Emulsion formation of hexadecane in water was tested with the cell-free broth containing biosurfactant from the respective substrate broths. Emulsions of 56% stability to 100% stability were obtained from these biosurfactant-containing broths. Both biosurfactants were able to emulsify crude oil. A surfactant's ability to form a stable emulsion is the first step in oil spill cleanup. The emulsified oil can then be acted upon very easily by the microorganism under study

  6. Successful oil spill response

    International Nuclear Information System (INIS)

    A freighter in the process of loading rock for the Quebec Iron and Titanium Mining Company near Havre-St. Pierre on the extreme north shore of the St. Lawrence River, was suddenly tossed against the dock by rough waters on the night of March 23, 1999, and spilled 49 tonnes of bunker fuel oil into the river. This article describes how the crew of the ship, trained by Environmental Accident Protection Inc., based in Petrolia, Ontario, averted disaster by responding to the accident quickly and effectively. Their first action was to notify the appropriate environmental and regulatory authorities and to put in place containment booms which corralled about 17 tonnes of oil. The oil contained by the booms were removed by trained personnel under the guidance of Eastern Canada Response Corporation of Corunna, Ontario, and Response Systems Inc. of Neshanic, New Jersey, in approximately three hours with only minimum disruption to the environment. Further cleanup of the area, often hindered by bad weather, freezing rain, ice, and 100 km/hr winds, was done by the cooperative efforts of governments, industry and the local fishermen's association. The work included scrubbing the shore with wire brushes and scrapers and handbathing some 1000 migratory birds. The cleanup job was completed in about three weeks and the Mingan Archipelago National Park Reserve and other nearby habitats for migrating birds were saved the devastation that would have occurred, except for the quick and knowledgeable intervention of a trained crew and an outstanding example of public-private sector and community cooperation. 2 photos

  7. Improved and standardized methodology for oil spill fingerprinting

    International Nuclear Information System (INIS)

    For the past decade, the Nordtest methodology for oil spill identification has been an important tool for identifying oil spills and suspected sources in Scandinavian countries, the Netherlands, the United Kingdom, Ireland, Canada and the United States. A joint project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute in the United States is aimed at refining the existing Nordtest methodology into a technically more robust and defensible oil spill identification tool that can quantify diagnostic indices. The Revision of the Nordtest Methodology for Oil Spill Identification is also designed to set guidelines for the Nordtest method for Standardization for the European Committee. This paper presented the recommended techniques for the analytical oil spill identification part. It does not include sampling methods and handling of oil samples and background samples prior to their arrival at the environmental forensic laboratory. In addition to oil exploration field experience and production geochemistry, analytical methods were improved with the use of a gas chromatographic-flame ionization detector and a gas chromatographic-mass spectrometer. The paper described sample preparation, recommended sample clean up methodology, and analytical instrumental parameters. It was noted that a good understanding of weathering processes such as evaporation, dissolution, photo-chemical oxidation, and microbial degradation can influence analytical results. The authors described how to check for weathered n-alkanes, and how to determine biomarker compounds and polycyclic aromatic hydrocarbons (PAH). Different categories now represent degrees of differences between analyses of two oils according to present criteria. These include a positive match, probable match, inconclusive or a non-match. It was noted that 12 different laboratories conducted Round Robin tests using this method. The results are presented

  8. Managing an oil spill response

    International Nuclear Information System (INIS)

    In the oil spill response business everything starts with a plan. When planning is set at only middle and top management levels before being chiseled into corporate marble, the result is all too often a plan for failure. For any chance at success, the plan must make sense to, and solve the problems of, the people at the ''business'' end of the business. In the case of Marine Spill Response Corporation (MSRC), that means highly trained responders are put at sea or along coastlines to remove oil from the water, or to deflect oil away from environmentally sensitive areas. They are fortunate in MSRC, and especially in the Gulf Coast Region, to have on their staff, some of the most knowledgeable and experienced oil spill responders in the world. The company relies on them to help build their plans, and to poke holes wherever their plans are inconsistent with getting the job done right

  9. Spill pleural: Clinical and cytological characteristics

    International Nuclear Information System (INIS)

    The spill pleural is a frequent entity in congestive heart failure. The congestive heart failure, is probable that the cause more common of pleural spill, an analysis of the spill causes is made, the pathology is revised from the clinical point of view, highlighting the most excellent characteristics in each entity and an cytological analysis is made

  10. Marine oil spill contingency planning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the practice researching and formulating "The Oil Spill Contingency Plan of South Chinese Sea", this paper analyses and discusses the structure, functions and main contents of marine oil spill contingency planning, programs the organizing and commanding system and emergency response system, and advances the planning and researching method to coordinate comprehensively and to design practically the detailed emergency response steps until to formulate the ease operating programs for the plan implementation (PPI) and the PPI to apply high-techniques supporting emergency administrations and response.

  11. Abundance and size of Gulf shrimp in Louisiana's coastal estuaries following the Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Joris L van der Ham

    Full Text Available The Deepwater Horizon oil spill impacted Louisiana's coastal estuaries physically, chemically, and biologically. To better understand the ecological consequences of this oil spill on Louisiana estuaries, we compared the abundance and size of two Gulf shrimp species (Farfantepeneus aztecus and Litopeneus setiferus in heavily affected and relatively unaffected estuaries, before and after the oil spill. Two datasets were used to conduct this study: data on shrimp abundance and size before the spill were available from Louisiana Department of Wildlife and Fisheries (LDWF. Data on shrimp abundance and size from after the spill were independently collected by the authors and by LDWF. Using a Before-After-Control-Impact with Paired sampling (BACIP design with monthly samples of two selected basins, we found brown shrimp to become more abundant and the mean size of white shrimp to become smaller. Using a BACIP with data on successive shrimp year-classes of multiple basins, we found both species to become more abundant in basins that were affected by the spill, while mean shrimp size either not change after the spill, or increased in both affected and unaffected basins. We conclude that following the oil spill abundances of both species increased within affected estuaries, whereas mean size may have been unaffected. We propose two factors that may have caused these results: 1 exposure to polycyclic aromatic hydrocarbons (PAHs may have reduced the growth rate of shrimp, resulting in a delayed movement of shrimp to offshore habitats, and an increase of within-estuary shrimp abundance, and 2 fishing closures established immediately after the spill, may have resulted in decreased fishing effort and an increase in shrimp abundance. This study accentuates the complexities in determining ecological effects of oil spills, and the need of studies on the organismal level to reveal cause-and-effect relationships of such events.

  12. Estimating the Size of Oil Tanker Spills

    OpenAIRE

    Ayla Ogus

    2005-01-01

    This paper estimates the determinants of the size of oil tanker spills. In the lit- erature, spill size has been estimated but the results are not very strong. A review of the existing results is provided and the determinants of spill size using a sample selection model are estimated. Estimates from a Tobit regressions are also given to serve as a basis of comparison with the earlier work. One important nding is that groundings and collisions result in larger spills if there is a spill, but t...

  13. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  14. Lecithins - promising oil spill cleaner?

    International Nuclear Information System (INIS)

    A new, non-polluting method of cleaning up oil spills at sea as well as on land has been developed by researchers at the Hebrew University of Jerusalem. Their technique is based on the use of lecithins, a byproduct of producing edible oils from plants. Lecithin molecules are hydrophyllic at one end and lipophilic at their tail ends. When they come into contact with water, they organize themselves into bilayers whose heads all face the water and whose tails are all directed towards each other. These bilayers form particles called liposomes that, when spread on water fouled by oil spills, change the properties of the oil thereby stopping the spreading and breaking it down into sticky droplets that continue to float on the surface and can be easily collected. The treatment is said to be effective in both fresh and salt water and is almost temperature and pH independent. Another beneficial effect is that the physical change generated by liposomes in the spilled oil improves the ability of oil-eating bacteria in the water to remove some of the spill by bioremediation

  15. The INCOTUR model : estimation of losses in the tourism sector in Alcudia due to a hydrocarbon spill

    International Nuclear Information System (INIS)

    This paper presented a computer model that calculates the economic losses incurred by a hydrocarbon spill on a coastal area. In particular, it focused on the Balearic Islands in the Bay of Alcudia where the economy depends mainly on tourism. A large number of oil tankers carrying crude oil and petroleum products pass through the Balearic Sea. Any pollution resulting from a fuel spill can have a significant economic impact on both the tourism sector and the Balearic society in general. This study focused on the simulation of 18 spills of Jet A1 fuel oil, unleaded gasoline and Bunker C fuel oil. Simulations of the study area were produced with OILMAP, MIKE21, GNOME and ADIOS models which estimated the trajectories of various spills and the amount of oil washed ashore. The change in physical and chemical properties of the spilled hydrocarbons was also determined. The simulation models considered the trajectory followed by spills according to the type and amount of spill, weather conditions prevailing during the spill and the period immediately following the spill. The INCOTUR model was then used to calculate the economic losses resulting from an oil spill by considering the number of tonnes of oil washed ashore; number of days needed to organize cleanup; the percentage of tourism that will be maintained despite the effects of the spill; number of hotel beds; percentage of hotel occupancy by month; cost of package holidays; petty cash expenses; and, cost of advertising campaign for the affected area. With this data, the model can determine the number of days needed to clean and restore the coastline; monthly rate of recovery in tourism levels; and, losses in tourism sector. According to the INCOTUR model, the total losses incurred by a spill of 40,000 tonnes of Bunker C fuel, was estimated at 472 million Euros. 9 refs., 2 tabs., 12 figs

  16. Oil spill contingency planning in the Ivory coast

    International Nuclear Information System (INIS)

    The administrative center in charge of handling oil spill pollution situations on the Ivory Coast, West Africa, is named Centre Ivoirien Antipollution (CIAPOL). Its organizational structure has been reshuffled recently. CIAPOL now has three divisions: a laboratory division, a division for cleaning up oil and chemical pollution at sea, and an administrative division. The risk for oil pollution is known: within the past ten years five spills have been reported. All of these have been connected to operations relating to the refinery in Abidjan. More than 2,000 ships call at the port of Abidjan every year. Minor oil slicks are found almost permanently in the harbor and the lagoons around the harbor. Lumps of tar are rather common on the beaches all along the country's coast. This paper focuses on the background investigation in sensitive areas and risk analysis that led to a revision of the oil spill contingency plan, Plan Pollumar, and the recent purchase of oil spill cleanup equipment. The creation of a regional oil pollution response center at CIAPOL for all of the countries in West Africa, is proposed

  17. Application of a Step-by-Step Fingerprinting Identification Method on a Spilled Oil Accident in the Bohai Sea Area

    Institute of Scientific and Technical Information of China (English)

    SUN Peiyan; GAO Zhenhui; CAO Lixin; WANG Xinping; ZHOU Qing; ZHAO Yuhui; LI Guangmei

    2011-01-01

    In recent years, oil spill accidents occur frequently in the marine area of China. Finding out the spilled oil source is a key step in the relevant investigation. In this paper, a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002. Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples. The original gas chromatography -flame ionization detection (GC-FID) chromatogram of saturated hydrocarbons was compared. The gas chromatography-mass spectrometry (GC/MS)chromatograms of aromatic hydrocarbons terpane and sterane, n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed. The correlation analysis on diagnostic ratios was performed with Student's t-test. It is found that the oil fingerprinting of the spilled oil (designated as szl) from the polluted sand beach was identical with the suspected oil (designated as kyl) from a nearby crude oil refinery factory. They both showed the fingerprinting character of mixed oil. The oil fingerprinting of the spilled oil (designated as msl) collected from the port was significantly different from oil kyl and oil szl and was with a lubricating oil fingerprint character. The identification result not only gave support for the spilled oil investigation, but also served as an example for studying spilled oil accidents.

  18. Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area

    Science.gov (United States)

    Sun, Peiyan; Gao, Zhenhui; Cao, Lixin; Wang, Xinping; Zhou, Qing; Zhao, Yuhui; Li, Guangmei

    2011-03-01

    In recent years, oil spill accidents occur frequently in the marine area of China. Finding out the spilled oil source is a key step in the relevant investigation. In this paper, a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002. Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples. The original gas chromatography -flame ionization detection (GC-FID) chromatogram of saturated hydrocarbons was compared. The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane, n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed. The correlation analysis on diagnostic ratios was performed with Student's t-test. It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory. They both showed the fingerprinting character of mixed oil. The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character. The identification result not only gave support for the spilled oil investigation, but also served as an example for studying spilled oil accidents.

  19. Aspects of chemistry and toxicity of the North Cape oil spill

    International Nuclear Information System (INIS)

    On January 19, 1996, 820,000 gallons of Number 2 home heating oil were spilled from a barge into the waters off the south shore of Rhode Island. Number 2 oil is toxic to many marine organisms and especially affects the benthic community. Petroleum toxicity is caused primarily by a wide array of polycyclic aromatic hydrocarbons (PAHs), such as fluorenes, phenanthrenes, and naphthalenes. Furthermore, populations of benthic organisms exposed to PAHs at sublethal levels may experience dramatic mortalities following subsequently exposure to UV radiation. To evaluate possible impacts of this spill, sediment and water samples were collected from sites in the vicinity of the barge at 2, 6, 13, 33, and 62 days following the event. Sediment extracts were chemically analyzed using GC/MS for characterization and measurement of PAHs. Sediment toxicity tests were conducted using the 96-hour amphipod mortality test with Ampelisca abdita, and phototoxicity tests were performed using the bivalve embryo/larval development test with Mulinia lateralis. Initial chemical and toxicological analyses revealed that the most significantly affected area was inside the Harbor of Refuge, 3 miles east of the actual spill. High PAH concentrations and toxicity remained in at least one area of the Harbor of Refuge 62 days after the spill. Additionally, M. lateralis exposed to seawater from the spill indicated that phototoxicity was present shortly after the spill. Measurements will continue to be made in the Harbor of Refuge and surrounding sites to monitor further changes in PAH concentrations and toxicity

  20. Identification of oil spill's sources

    International Nuclear Information System (INIS)

    Identifying the source of a marine oil spill is complicated because of the rapid modifications (weathering) undergone by oil as soon as it reaches the sea. Deciding if differences occurring between an oil sample collected after the spill and the original oil can be attributed to weathering involves not only adoption of sophisticated analytical methods but also correct sampling techniques and strict adherence to a chain-of-custody procedure. The method described in this paper, largely based on those adopted by some northern European countries, establishes the identity or non-identity of two samples by exploiting differences rather than similarities between them. It increases the efficiency of the method because it is sufficient to establish that there exists only one difference for deciding that two samples are different

  1. Ohmsett trains oil spill responders

    International Nuclear Information System (INIS)

    The services that the Ohmsett Facility in New Jersey has to offer were discussed. The facility is operated by the United States Minerals Management Services and is used by the public and private sector for the evaluation of oil spill response equipment such as containment booms, skimmer systems, oil/water separators, remote sensing equipment and temporary storage devices on a cost reimbursable basis. The facility is also used for oil behavior and characteristics research as well as for the performance and evaluation of fire resistance of containment booms. The facility consists of a 203 meter concrete tank filled with about 10 million litres of brackish water where ocean conditions can be simulated with a wave generating system and a wave dampening artificial beach. Various types of training are conducted at Ohmsett including training conducted through the United States Coast Guard, the United States Navy, and Texas University Corpus Christi National Spill Control School. 2 tabs., 16 figs

  2. Oil spill science: the Louisiana perspective

    International Nuclear Information System (INIS)

    A research program under Louisiana legislation to underwrite oil spill research is described. The program came into being in 1993, following the Exxon Valdez spill. To date it has granted 52 awards in support of 32 projects covering topics as widespread as oil spill awareness through geoscience education and the effects of crude oil and spill-response options on microbial functions and oil disappearance in salt marsh soils. The program is administered by the Louisiana Applied and Educational Oil Spill Research and Development Program (OSRADP) and promotes projects of relatively short duration (one to two years), usually of an applied nature, and designed to take advantage of synergies. This paper outlines the development of oil spill research in Louisiana, the structure, mandate and project selection procedures of the OSRADP, and briefly reviews the projects funded since the inception of the program. 18 refs

  3. Oil spill contingency planning for OCS operations

    International Nuclear Information System (INIS)

    This paper reports that oil-spill preparedness and response have been an important part of the Mineral Management Service (MMS) regulatory program since the Santa Barbara spill in 1069. The focus of the spill response program is on contingency planning, response training, and deployment exercises and drills. Oil-spill contingency planning requirements pertain to trajectory analyses, response times, response equipment and strategies, dispersant use, equipment maintenance and inspection, designation of response teams notifications and communications, monitoring spill movement, and disposal of recovered materials. The training requirements are intended to assure that the designated response personnel are properly trained to perform their assigned functions, as outlined in the contingency plan. The MMS considers surprise response drills to be a particularly important way of evaluating response preparedness. Efforts are being made to tailor spill response requirement sot specific facilities and locations and to incorporate research data into the contingency planning process

  4. OILMAP: A global approach to spill modeling

    International Nuclear Information System (INIS)

    OILMAP is an oil spill model system suitable for use in both rapid response mode and long-range contingency planning. It was developed for a personal computer and employs full-color graphics to enter data, set up spill scenarios, and view model predictions. The major components of OILMAP include environmental data entry and viewing capabilities, the oil spill models, and model prediction display capabilities. Graphic routines are provided for entering wind data, currents, and any type of geographically referenced data. Several modes of the spill model are available. The surface trajectory mode is intended for quick spill response. The weathering model includes the spreading, evaporation, entrainment, emulsification, and shoreline interaction of oil. The stochastic and receptor models simulate a large number of trajectories from a single site for generating probability statistics. Each model and the algorithms they use are described. Several additional capabilities are planned for OILMAP, including simulation of tactical spill response and subsurface oil transport. 8 refs

  5. Eliciting Spill: A methodological note

    Directory of Open Access Journals (Sweden)

    Alvita Nathaniel, Ph.D.

    2008-03-01

    Full Text Available Classic grounded theory is an inductive process that focuses on the experiences and perceptions of research participants (Glaser, 1978, 1998. Although grounded theorists may utilize other types of data, most are likely to gather information through qualitative interviews. The theorist seeks to understand what is going on as people resolve their main concern in a given substantive area. People know what is important to them and most want to tell their stories. They feel encouraged to talk when they recognize that their stories are valued. Once the informant realizes that he or she is being heard, the story flows. This is what Glaser refers to as “spill.” When this occurs, the theorist becomes a vessel to receive the story. As Glaser describes it, “The researcher will become a ‘big ear’ to pour into incessantly” (1998, p. 124. But, as easy as this seems, the researcher must overcome certain positivist tendencies to allow this to happen. Rather than asking a list of pre-planned questions, the grounded theorist will try to develop one question that will trigger the telling of a story. Eliciting spill requires a deliberate process that employs a deep understanding of the fundamentals of classic grounded theory. Derived from Glaser’s writings, the following are suggestions intended to help the novice grounded theorist to elicit spill.

  6. New techniques on oil spill modelling applied in the Eastern Mediterranean sea

    Science.gov (United States)

    Zodiatis, George; Kokinou, Eleni; Alves, Tiago; Lardner, Robin

    2016-04-01

    Small or large oil spills resulting from accidents on oil and gas platforms or due to the maritime traffic comprise a major environmental threat for all marine and coastal systems, and they are responsible for huge economic losses concerning the human infrastructures and the tourism. This work aims at presenting the integration of oil-spill model, bathymetric, meteorological, oceanographic, geomorphological and geological data to assess the impact of oil spills in maritime regions such as bays, as well as in the open sea, carried out in the Eastern Mediterranean Sea within the frame of NEREIDs, MEDESS-4MS and RAOP-Med EU projects. The MEDSLIK oil spill predictions are successfully combined with bathymetric analyses, the shoreline susceptibility and hazard mapping to predict the oil slick trajectories and the extend of the coastal areas affected. Based on MEDSLIK results, oil spill spreading and dispersion scenarios are produced both for non-mitigated and mitigated oil spills. MEDSLIK model considers three response combating methods of floating oil spills: a) mechanical recovery using skimmers or similar mechanisms; b) destruction by fire, c) use of dispersants or other bio-chemical means and deployment of booms. Shoreline susceptibility map can be compiled for the study areas based on the Environmental Susceptibility Index. The ESI classification considers a range of values between 1 and 9, with level 1 (ESI 1) representing areas of low susceptibility, impermeable to oil spilt during accidents, such as linear shorelines with rocky cliffs. In contrast, ESI 9 shores are highly vulnerable, and often coincide with natural reserves and special protected areas. Additionally, hazard maps of the maritime and coastal areas, possibly exposed to the danger on an oil spill, evaluate and categorize the hazard in levels from low to very high. This is important because a) Prior to an oil spill accident, hazard and shoreline susceptibility maps are made available to design

  7. MEDSLIK oil spill model recent developments

    Science.gov (United States)

    Lardner, Robin; Zodiatis, George

    2016-04-01

    MEDSLIK oil spill model recent developments Robin Lardner and George Zodiatis Oceanography Center, University of Cyprus, 1678 Nicosia, Cyprus MEDSLIK is a well established 3D oil spill model that predicts the transport, fate and weathering of oil spills and is used by several response agencies and institutions around the Mediterranean, the Black seas and worldwide. MEDSLIK has been used operationally for real oil spill accidents and for preparedness in contingency planning within the framework of pilot projects with REMPEC-Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea and EMSA-European Maritime Safety Agency. MEDSLIK has been implemented in many EU funded projects regarding oil spill predictions using the operational ocean forecasts, as for example the ECOOP, NEREIDs, RAOP-Med, EMODNET MedSea Check Point. Within the frame of MEDESS4MS project, MEDSLIK is at the heart of the MEDESS4MS multi model oil spill prediction system. The MEDSLIK oil spill model contains among other, the following features: a built-in database with 240 different oil types characteristics, assimilation of oil slick observations from in-situ or aerial, to correct the predictions, virtual deployment of oil booms and/or oil skimmers/dispersants, continuous or instantaneous oil spills from moving or drifting ships whose slicks merge can be modelled together, multiple oil spill predictions from different locations, backward simulations for tracking the source of oil spill pollution, integration with AIS data upon the availability of AIS data, sub-surface oil spills at any given water depth, coupling with SAR satellite data. The MEDSLIK can be used for operational intervention for any user-selected region in the world if the appropriate coastline, bathymetry and meteo-ocean forecast files are provided. MEDSLIK oil spill model has been extensively validated in the Mediterranean Sea, both in real oil spill incidents (i.e. during the Lebanese oil pollution crisis in

  8. Stochastic models of oil spill processes

    International Nuclear Information System (INIS)

    This paper models the occurrence of an environmental accident as a stochastic event. In particular, the situation of an oil spill is explored. Characteristics of the ship operator, and the different types of the ship's operating environment determine a stochastic process governing the time patterns and size of spills. It is shown that both the time distribution of different types of oil spill and the distribution of spill size are affected by pollution control instruments such as fines, by enforcement effort, and by the alert level of the operating personnel. (Author)

  9. Oil spill contingency planning in tropical areas

    International Nuclear Information System (INIS)

    This paper reports that oil spills can result in significant environmental damages, particularly in highly sensitive and poorly accessible tropical regions. The overall effects of spills can, however, be significantly reduced through proper prespill planning. In addition to facilitating effective response prior to the incident becoming too large to manage, such planning reduces the potential for misapplication of technologies and resultant unnecessary damage. Planning concepts discussed include development of realistic planning objectives (probable spill scenarios), spill trajectory and fate modeling, identification of sensitive areas, interpretation of persistence and impacts, and identification of environmentally acceptable response technologies. procedures for environmental data collection and information handling are also addressed

  10. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 2A. DISPERSANT EFFECTIVENESS DATA FOR A SUITE OF ENVIRONMENTAL CONDITIONS - THE EFFECTS OF TEMPERATURE, VOLATILIZATION, AND ENERGY

    Science.gov (United States)

    Chemical dispersants are used in oil spill response operations to enhance the dispersion of oil slicks at sea as small oil droplets in the water column. To assess the impacts of dispersant usage on oil spills, US EPA is developing a simulation model called the EPA Research Object...

  11. Assessment of the use of dispersants on oil spills in California marine waters

    International Nuclear Information System (INIS)

    The technical issues regarding the use of dispersants to clean up oil spills from offshore production sources and transportation sources in California were assessed in this study which examined both operational and environmental issues. The operational issues included the dispersibility of produced and imported oils, along with the capabilities of California response resources to deal with typical spills and limiting environmental impacts to offshore environments. The environmental issues include the risks associated with typical spills and potential net environmental benefit of chemically dispersing oil spills. Most crude oils produced offshore California are heavy and border on the undispersable range, but the imported crudes are somewhat lighter. Modeling has shown that most produced oils and some imported oils emulsify quickly and weather more quickly to the point where they are no longer dispersible. There is a very narrow window of time for chemical dispersions to be used effectively. The net environmental benefit analysis demonstrates that the use of dispersants lessens the total environmental impact of spill scenarios. It was emphasized that it is necessary to act quickly if chemical dispersion is to be effective. Rapid response strategies are needed, including locally based vessel and helicopter spraying systems. 19 refs., 8 tabs., 1 fig

  12. Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil

    Science.gov (United States)

    Kim, Taewoo; Lee, Jeong Seok; Lee, Geonhui; Seo, Dong Kyun; Baek, Youngbin; Yoon, Jeyong; Oh, Seung M.; Kang, Tae June; Lee, Hong H.; Kim, Yong Hyup

    2016-02-01

    Despite remarkable strides in science and technology, the strategy for spilled oil collection has remained almost the same since the 1969 Santa Barbara oil spill. The graphene vessel devised here can bring about an important yet basic change in the strategy for spilled oil collection. When it is placed on the oil-covered seawater, the graphene vessel selectively separates the oil, then collects and stores the collected oil in the vessel all by itself without any external power inputs. Capillarity and gravity work together to fill this proto-type graphene vessel with the spilled oil at a rate that is higher than 20,000 liters per square meter per hour (LMH) with oil purity better than 99.9%, and allow the vessel to withstand a water head of 0.5 m. The vessel also has a superb chemical stability and recyclability. An expanded oil contact area, considerably greater than the thickness of the oil layer, forms at the reduced graphene oxide (rGO) foam interface upon contact with the spilled oil. This expanded contact area does not change much even when the oil layer thins out. As a result, the high oil collection rate is maintained throughout the recovery of spilled oil.

  13. Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil.

    Science.gov (United States)

    Kim, Taewoo; Lee, Jeong Seok; Lee, Geonhui; Seo, Dong Kyun; Baek, Youngbin; Yoon, Jeyong; Oh, Seung M; Kang, Tae June; Lee, Hong H; Kim, Yong Hyup

    2016-01-01

    Despite remarkable strides in science and technology, the strategy for spilled oil collection has remained almost the same since the 1969 Santa Barbara oil spill. The graphene vessel devised here can bring about an important yet basic change in the strategy for spilled oil collection. When it is placed on the oil-covered seawater, the graphene vessel selectively separates the oil, then collects and stores the collected oil in the vessel all by itself without any external power inputs. Capillarity and gravity work together to fill this proto-type graphene vessel with the spilled oil at a rate that is higher than 20,000 liters per square meter per hour (LMH) with oil purity better than 99.9%, and allow the vessel to withstand a water head of 0.5 m. The vessel also has a superb chemical stability and recyclability. An expanded oil contact area, considerably greater than the thickness of the oil layer, forms at the reduced graphene oxide (rGO) foam interface upon contact with the spilled oil. This expanded contact area does not change much even when the oil layer thins out. As a result, the high oil collection rate is maintained throughout the recovery of spilled oil. PMID:26923622

  14. Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil

    Science.gov (United States)

    Kim, Taewoo; Lee, Jeong Seok; Lee, Geonhui; Seo, Dong Kyun; Baek, Youngbin; Yoon, Jeyong; Oh, Seung M.; Kang, Tae June; Lee, Hong H.; Kim, Yong Hyup

    2016-01-01

    Despite remarkable strides in science and technology, the strategy for spilled oil collection has remained almost the same since the 1969 Santa Barbara oil spill. The graphene vessel devised here can bring about an important yet basic change in the strategy for spilled oil collection. When it is placed on the oil-covered seawater, the graphene vessel selectively separates the oil, then collects and stores the collected oil in the vessel all by itself without any external power inputs. Capillarity and gravity work together to fill this proto-type graphene vessel with the spilled oil at a rate that is higher than 20,000 liters per square meter per hour (LMH) with oil purity better than 99.9%, and allow the vessel to withstand a water head of 0.5 m. The vessel also has a superb chemical stability and recyclability. An expanded oil contact area, considerably greater than the thickness of the oil layer, forms at the reduced graphene oxide (rGO) foam interface upon contact with the spilled oil. This expanded contact area does not change much even when the oil layer thins out. As a result, the high oil collection rate is maintained throughout the recovery of spilled oil. PMID:26923622

  15. Responding effectively to fuel spills at airports

    International Nuclear Information System (INIS)

    Fuel spills are among the most frequent causes of emergency calls faced by airport firefighters. Most fuel spills are a result of human error and careless procedures. They always constitute an emergency and require fast, efficient action to prevent disaster. A fuel spill is an accidental release of fuel, in this case, from an aircraft fuel system, refueling vehicle or refueling system. A normal release of a few drops of fuel associated with a disconnection or other regular fueling operations should not be classified as a fuel spill. However, anytime fuel must be cleaned up and removed from an area, a fuel spill has occurred. Volatile fuels pose significant threats to people, equipment, facilities and cargo when they are released. Anyone near a spill, including ramp workers, fueling personnel and aircraft occupants, are in danger if the fuel ignites. Buildings and equipment in a spill area, such as terminals, hangars, aircraft, fuel trucks and service equipment also are at risk. An often neglected point is that aircraft cargo also is threatened by fuel spills

  16. The Worldwide Oil Spill Model (WOSM)

    International Nuclear Information System (INIS)

    The Worldwide Oil Spill Model (WOSM) is a standalone microcomputer-based state-of-the-art oil spill model system for use in oil spill response decision support, planning, research, training, and contingency planning. WOSM was developed under support provided by a consortium of oil companies and government agencies. WOSM represents the next generation of oil spill model beyond the OILMAP modelling system (Spaulding et al, 1992). WOSM is designed in a shell architecture in which the only parameters that change are those that describe the area in which the spill model is to be applied. A limited function geographic information system (GIS) is integrated within the model system, and the spill modelling shell has been extended to include interfaces to other GIS systems and digital data. WOSM contains all the databases, data manipulation and graphical display tools, and models to simulate any type of oil spill. The user has control over which weathering processes are to be modelled, and WOSM data input tools enable continual refinement of model predictions as more refined data is imported. Use of WOSM is described and illustrated, showing sample screens and applications. WOSM algorithms and file structure are also outlined. An example test case of a spill in the Juan de Fuca strait is included. 29 refs., 7 figs., 1 tab

  17. Physical oceanography of oil spills

    International Nuclear Information System (INIS)

    The introduction of petroleum products and crude oil from ship accidents and damaged platforms into the ocean remains a significant problem. Weather systems of nearly all sizes and time scales may have strong effects on oil slick movement and dispersal. Thunderstorms, local weather systems, mid-latitude high- and low-pressure systems, tropical cyclones, and the trade winds and prevailing westerlies of the planetary wind system are all potentially important agents in the movement and dispersal of oil slicks. Currents driven by these wind systems are influenced by the rotation of the earth, which causes them to veer to the right of the wind in the northern hemisphere. Wind shifts or sudden decreases in wind stress induce circular or inertial oscillations whose period varies with latitude. Near the shore these effects are severely damped by the blocking action of the coast, causing the flow to run more or less parallel to the coastal boundary. All these effects will in turn exert significant control over the movement of entrained oil slicks. In the near-field region of an oil spill tidal currents can also be of considerable importance. Rotary currents, characteristic of open-shelf waters and effective dispersal agents of oil, arise from the influence of the rotation of the earth on the tidal current. Another such interaction between rotation of the earth and the tide produces Kelvin waves, which result in unusually high tidal ranges along the coast to the right of the tidal wave propagation. Both effects have been important in recent oil spills. All these oceanographic processes, reviewed in this talk, have played key roles in major spills over the last 15 years from the Torrey Canyon to the Mega-Borg

  18. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  19. Star Enterprise spill response management system

    International Nuclear Information System (INIS)

    Federal and state regulations require a quick and effective response to an environmental incident. Cost data collected by third party consultants for oil spills that have occurred within the last few years indicate that the cost for cleanup, fines, natural resource damage assessments and third party claims can range from $2,000 to greater than $10,000 per bbl. of product spilled. A large portion of this cost is attributable to natural resource damage and third party claims. A quick, effective, and efficient response to an environmental incident can help minimize the high costs associated with spill cleanup, natural resource damages and third party claims. Development of computer resources for spill response teams to use during spill response, as well as training exercises, will facilitate achieving the desired response capability

  20. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Laboratory and field investigations have now demonstrated that the effective, sustained combustion of spilled oil on water requires that the oil being burned be at least 2-3 mm thick. This requires a properly manipulated fire containment boom to keep the spilled oil thick enough to support combustion. There are numerous situations where controlled in-situ burning of spilled oil can be carried out quickly, safely, and effectively. Some of the more significant burn experiences, the basics of controlled burning, and several different spill scenarios in which burning could be used as an effective response technique are presented. These scenarios include offshore exploration and production operations, marine pipeline accidents, tanker accidents, and spills into rivers and streams. Environmental constraints on in-situ burning are discussed. Nomograms are included which can be used to calculate the boom capacities and burn rates. 15 refs., 10 figs

  1. Tanker self-help spill recovery systems

    International Nuclear Information System (INIS)

    An investigation was conducted of the circumstances in which oil spills occur from tankers at sea by analyzing available historical oil spill data. A data base of marine oil spills greater than 134 tonnes occurring from 1974 and June 1990, included in an appendix, was among the information analyzed. The analysis showed that marine oil spills of 5,000 tonnes and greater account for 39.4% of the accidents yet 94.7% of the total spilled quantity; 84% of those spills occur in vessels of 20,000 deadweight tonnes and larger. Of spills over 5,000 tonnes, 78.5% occur outside of harbor or pier areas where spill response equipment may not be readily available. Over 50% of spills are caused by groundings or collisions where the vessel crew might be able to respond in mitigating and controlling the outflow of oil. The review suggested that tanker self-help systems warrant serious consideration. Potential self-help systems are described, ranging from additives such as bioremediation, dispersants, and solidifiers to equipment such as portable pumps, booms, and skimmers. Candidate systems were examined in terms of their safety, ease of operation, practicability, and effectiveness. Their possible performance was then assessed for the case of major marine oil spills that have occurred in Canadian waters. Four systems are identified as potential candidates for further evaluation and possible implementation: internal oil transfer, hydrostatic loading, external oil lightering, and contingency planning. A system design is evaluated and its benefits and possible implementation are outlined, based on integration of the preferred attributes of the above four options. Recommendations for implementation are also provided. 28 refs., 6 figs., 33 tabs

  2. Bioremediation efficacy in Marrow Marsh following the Apex oil spill, Galveston Bay, Texas

    International Nuclear Information System (INIS)

    Samples taken from Marrow Marsh in Galveston Bay, Texas were taken to assess the efficacy of the August 5, 1990 bioremediation treatment in the marsh following the Apex barges oil spill on July 28, 1990. The bioremediation treatment combined a lyophilized bacterial mixture and a nutrient mix containing phosphorus and nitrogen. Samples from the marsh had been collected over a 96 h period from both treated and untreated oiled sites. Oil fingerprinting, fatty acid analysis, polynuclear aromatic hydrocarbons analysis, and total petroleum hydrocarbons analysis were performed to evaluate changes in the chemical characteristics of spilled oil. Results of analyses, although not statistically reliable, failed to support the occurrence of any definite chemical alteration in the spilled oil that could be attributed to the bioremediation treatment. The relatively short sampling period and the number of samples taken, however, may have been insufficient to document the efficacy of the overall bioremediation effect. 13 refs., 6 figs., 4 tabs

  3. Bioremediation of Oil Spills in Cold Environments: A Review

    Institute of Scientific and Technical Information of China (English)

    YANG Si-Zhong; JIN Hui-Jun; WEI Zhi; HE Rui-Xia; JI Yan-Jun; LI Xiu-Mei; YU Shao-Peng

    2009-01-01

    Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation,transportation,storage,and accidental leakage of oil.Several techniques,including physical,chemical,and biological methods,are used to recover spilled oil from the environment.Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages.However,it is a relatively slow process in cold regions and the degree of success depends on a number of factors,including the properties and fate of oil spilled in cold environments,and the major microbial and environmental limitations of bioremediation.The microbial factors include bioavailability of hydrocarbons,mass transfer through the cell membrane,and metabolic limitations.As for the environmental limitations in the cold regions,the emphasis is on soil temperatures,freeze-thaw processes,oxygen and nutrients availability,toxicity,and electron acceptors.There have been several cases of success in the polar regions,particularly in the Arctic and sub-Arctic regions.However,the challenges and constraints for bioremediation in cold environments remain large.

  4. Effects of oil spill on marine lives and clean up way of coastal areas

    International Nuclear Information System (INIS)

    A large quantity of crude oil was released in the sea in the Gulf War, and unprecedented sea pollution was caused, consequently the environmental destruction due to the crude oil and the countermeasures for disposing the crude oil have become to attract worldwide attention anew. In April, 1991, the symposium on the environmental effect of oil spill and the countermeasures was held. In the past, when the quantity of oil spill exceeded a certain limit, the effects of various countermeasures were not able to be expected. This limit changes according to weather, sea condition, topography, the actual state of fishery and so on. The effect that oil spill exerted to marine life is discussed. The degree of harm of oil for fishes is not necessarily high. The state of occurrence of oil pollution in the sea areas around Japan is about 600 cases in one year. It is desirable to dispose oil while it floats on sea surface, and after it reached coast, the disposal is difficult. The method of disposal is the prevention of diffusion, the collection and recovery of spilled oil, and the treatment with chemicals of remaining oil. The emulsifying and dispersing chemicals, the major cases of oil spill are described. (K.I.)

  5. Effects of the Presidente Rivera oil spill on young-of-year striped bass

    International Nuclear Information System (INIS)

    On 24, June 1989, approximately 300,000 gallons of No. 6 fuel oil was spilled from the tanker Presidente Rivera into the Delaware River. This paper reports that the spill occurred in the center of the striped bass nursery area, only six weeks after the prime spawning period. Toxic effects of the spill on young-of-year striped bass were investigated using in situ bioassay techniques. Seventy-five liter chambers, each containing 30 hatchery-reared fish, were moored at four locations within the spill zone and at one upstream references are. chemical analysis of the water was conducted on area. Chemical analysis of the water was conducted on Days 1, 4, and 13 of the experiment. Despite significant oil fouling on chambers, no dissolved aromatic hydrocarbons were detected in the water column. Acute mortality was not apparent, with greater than 90% survival at all stations after four days. After 13 days, survival at the station closest to the spill site was about 20% less than at the reference station

  6. Worldwide analysis of marine oil spill cleanup cost factors

    International Nuclear Information System (INIS)

    The many factors that influence oil spill response costs were discussed with particular emphasis on how spill responses differ around the world because of differing cultural values, socio-economic factors and labor costs. This paper presented an analysis of marine oil spill cleanup costs based on the country, proximity to shoreline, spill size, oil type, degree of shoreline oiling and cleanup methodology. The objective was to determine how each factor impacts per-unit cleanup costs. Near-shore spills and in-port spills were found to be 4-5 times more expensive to clean than offshore spills. Responses to spills of heavy fuels also cost 10 times more than for lighter crudes and diesel. Spill responses for spills under 30 tonnes are 10 times more costly than on a per-unit basis, for spills of 300 tonnes. A newly developed modelling technique that can be used on different types of marine spills was described. It is based on updated cost data acquired from case studies of more than 300 spills in 40 countries. The model determines a per-unit cleanup cost estimation by taking into consideration oil type, location, spill size, cleanup methodology, and shoreline oiling. It was concluded that the actual spill costs are totally dependent on the actual circumstances of the spill. 13 refs., 10 tabs., 3 figs

  7. Proceedings of the sixteenth Arctic and Marine Oil Spill Program (AMOP) technical seminar

    International Nuclear Information System (INIS)

    At a conference on marine and Arctic oil spills, papers were presented on the behavior and fate of spilled oil, spill contingency planning, biological effects and bioremediation, oil spill countermeasures, spill modelling, in-situ burning of spilled oil, oil spill treatment agents, remote sensing, and shoreline protection and cleanup. Separate abstracts have been prepared for 66 papers from this conference

  8. Oil spill response: Countdown to readiness

    International Nuclear Information System (INIS)

    In the wake of the Exxon Valdez oil spill, a task force representing America's oil industry set about studying the existing resources across the nation for responding to catastrophic oil spills. In June 1989 the task force reported that the capability did not exist in either government or industry to respond to a spill the magnitude of the one in Alaska. As a result of task force recommendations, 20 companies began the process that led to the creation of both the Marine Preservation Association (MPA) and the Marine Spill Response Corp. (MS-RC). The latter is headquartered in Washington, D.C., with 5 regional response centers around the US. Under the direction of the US Coast Guard, each of MSRC's five regions will provide a best-effort response to cleaning up spill of persistent (crude) oils that are beyond the capabilities of local spill response organizations. MSRC will work closely with both cooperatives and independent, commercial responders to maximize spill response effectiveness. The MPA and its member companies have committed more than $400 million for the acquisition of capital equipment for MSRC, an unprecedented record in American business history. MSRC is also involved in research programs concerning remote sensing, in-situ burning, dispersants, handling of recovered material, and shoreline countermeasures

  9. Spill operation system decision support system

    International Nuclear Information System (INIS)

    The MSRC Spill Operation System (SOS) is a tool for the support of decision-making at the time of a catastrophic oil spill. SOS provides MSRC decision-makers with access to information about the source of the spill, the spill environment, and the availability of spill response resources. This system is designed to meet the information needs of a Response Supervisor, an Environmental Advisor, Logistics/Maintenance Supervisor, Operations Supervisor, and the MSRC Regional General Manager. The SOS project Objectives are: (1) integrate currently available data, systems, and technologies; (2) develop an application that effectively supports mobilized operations and can be adapted to support normal operations; (3) ensure that the development of computer applications is driven by user needs and not by technology; and (4) coordinate with government and other industry organizations to avoid duplication of effort. Design Objectives for SOS are: (1) centralize management information storage while decentralizing decision making capabilities; (2) boost User confidence by providing a system that is easy to learn, easy to use, and is open-quotes Sailor Proofclose quotes; and (3) use visualization technology in providing spill related information. This approach includes the use of Geographic Information System (GIS) technology for maps and geographically associated resource; and support MSRC's concept of operation which includes - a swift notification of response personnel; fast mobilization of response resources; and accurate tracking of resources during a spill. MSRC is organized into five responsibility regions

  10. Communication systems for oil spill response

    International Nuclear Information System (INIS)

    Effective spill response depends on good communication at all levels, from the initial detection of a spill until final restoration efforts are completed. Information from the initial observation of a spill must be quickly brought to the attention of spill responders and specific government agencies. Response team members must be contacted without delay and information about the spill must be conveyed to them efficiently. Persons responding at the scene of a spill must have instant communication with others, sometimes over a considerable distance. Spill response managers must be able to communicate with government permit authorities and with individuals and teams in the field. Coordination of transportation, material support, equipment repair, and other logistics matters require good communication. Systems for handling these complex communication matters are described, including voice transmission, telephone systems, marine radio, channels in the Petroleum Radio Service, radio repeaters, paging services, and single sideband radio. The use of small computers in aiding communications is noted. Some areas where standardization efforts might facilitate communications during a response emergency are suggested. 4 refs., 2 figs

  11. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  12. Update of comparative occurrence rates for offshore oil spills

    International Nuclear Information System (INIS)

    Estimates of occurrence rates for offshore oil spills are useful for analyzing potential oil-spill impacts and for oil-spill response contingency planning. With the implementation of the Oil Pollution Act of 1990 (US Public Law 101-380, August 18, 1990), estimates of oil-spill occurrence became even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil-spill occurrence rate estimates have been revised based on US Outer Continental Shelf (US OCS) platform and pipeline spill data (1964 through 1999), worldwide tanker spill data (1974 through 1999), and barge spill data for US waters (1974 - 1999). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. All estimates of spill occurrence rates were restricted to spills greater than or equal to 1000 barrels (159 m3, 159 kl, 136 metric tonnes, 42,000 US gallons). The revisions compared to the previously published rates calculated through 1992 (Anderson and LaBelle, 1994) indicate that estimates for the US OCS platform spill occurrence rates continue to decline, primarily because no spills have occurred since 1980. The US OCS pipeline spill occurrence rates for spills greater than or equal to 1000 barrels remained essentially unchanged. However, the rate for larger OCS pipeline spills (greater than or equal to 10,000 barrels) has decreased significantly. Worldwide tanker spill rates, rates for tanker spills in US waters, and rates for barge spills in US waters decreased significantly. The most recent 15-year estimates for 1985-1999 (compared to rates for the entire data series) showed that rates for US OCS platforms, tankers, and barges continued to decline. (author)

  13. Managing large oil Spills in the Mediterranean

    OpenAIRE

    Madrid, J. A. Jiménez; A. García-Olivares; Poy, J. Ballabrera; García-Ladona, E.

    2015-01-01

    For the first time a statistical analysis of oil spill beaching is applied to the whole Mediterranean Sea. A series of probability maps of beaching in case of an oil spill incident are proposed as a complementary tool to vulnerability analysis and risk assessment in the whole basin. As a first approach a set of spill source points are selected along the main paths of tankers and a few points of special interest related with hot spot areas or oil platforms. Probability of beaching on coastal s...

  14. Characterization and identification of a 'mystery' oil spill from Quebec (1999)

    International Nuclear Information System (INIS)

    The chemical composition of an unknown oil spill on the river banks of the St. Lawrence River in 1999 was characterized using advanced chemical fingerprinting and diagnostic ratios of a series of source-specific marker compounds. In order to determine the responsibility for the cleanup and the legal liability, the source of the unknown oil spill was determined using the same techniques which incorporated a tiered analytical approach using gas chromatography/mass spectrometry (GC/MS) and gas chromatography/flame ionization detector (GC/FID). The oil, which was suspected to originate from a nearby factory was very specific and significantly different from most crude oils in chemical composition. Several oil samples were collected from the Thermex factory. The spill sample was identified to contain a small percentage of diesel and was relatively fresh, since its chemical composition had not undergone significant alteration. It was also very high in polycyclic aromatic hydrocarbon (PAH) concentration. The data suggested that the spilled oil could be related to pyrogenic processing of some organic materials. This case was recently closed and Thermex has agreed to pay cleanup expenses. The company was producing and recycling oil from waste tires. This study demonstrates the usefulness of advanced fingerprinting and data interpretation techniques to successfully identify unknown oils. 35 refs., 4 tabs., 6 figs

  15. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota

    NARCIS (Netherlands)

    dos Santos, Henrique Fragoso; Santos Duarte, Gustavo Adolpho; da Costa Rachid, Caio TavoraCoelho; Chaloub, Ricardo Moreira; Calderon, Emiliano Nicolas; de Barros Marangoni, Laura Fernandes; Bianchini, Adalto; Nudi, Adriana Haddad; do Carmo, Flavia Lima; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Barreira e Castro, Clovis; Peixoto, Raquel Silva

    2015-01-01

    Several anthropogenic factors, including contamination by oil spills, constitute a threat to coral reef health. Current methodologies to remediate polluted marine environments are based on the use of chemical dispersants; however, these can be toxic to the coral holobiont. In this study, a probiotic

  16. Bioremediation of offshore oil spills

    International Nuclear Information System (INIS)

    This research program was directed towards the enhancement of insitu biorestoration of open sea oil spills. Bacteria possessing petroleum degrading enzymes are capable of splitting even thick, viscous oils and tars into lighter fractions. This process will occur at the oil/bacterial interface and depends upon viscosity of the oil, bacterial species, availability of ancillary nutrients, residence times and extent of mixing/oxygenation. Through the enzymatic metabolism of bacteria, a wide range of petroleum oils can be converted almost completely into CO2, water, cell mass and harmless biological waste products, usually within 60 to 90 days under favorable conditions. Specifically, this research work focused on the selection and examination of a floating medium which enhances the biodegradation process through improvement of conditions necessary for the process to occur. An additional effort was made to update previous citations of the order of magnitude of oil biodegradation rates and to compare laboratory measurements of biodegradation rates with field or mesocosm measurements

  17. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    OpenAIRE

    Yang Gao; Jason Levy; Maya Nand Jha

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensiv...

  18. Managing large oil Spills in the Mediterranean

    CERN Document Server

    Madrid, J A Jiménez; Poy, J Ballabrera; García-Ladona, E

    2015-01-01

    For the first time a statistical analysis of oil spill beaching is applied to the whole Mediterranean Sea. A series of probability maps of beaching in case of an oil spill incident are proposed as a complementary tool to vulnerability analysis and risk assessment in the whole basin. As a first approach a set of spill source points are selected along the main paths of tankers and a few points of special interest related with hot spot areas or oil platforms. Probability of beaching on coastal segments are obtained for 3 types of oil characterised by medium to highly persistence in water. The approach is based on Lagrangian simulations using particles as a proxy of oil spills evolving according the environmental conditions provided by a hincast model of the Mediterranean circulation.

  19. Computer based training for oil spill management

    International Nuclear Information System (INIS)

    Large oil spills are infrequent occurrences, which poses a particular problem for training oil spill response staff and for maintaining a high level of response readiness. Conventional training methods involve table-top simulations to develop tactical and strategic response skills and boom-deployment exercises to maintain operational readiness. Both forms of training are quite effective, but they are very time-consuming to organize, are expensive to conduct, and tend to become repetitious. To provide a variety of response experiences, a computer-based system of oil spill response training has been developed which can supplement a table-top training program. Using a graphic interface, a realistic and challenging computerized oil spill response simulation has been produced. Integral to the system is a program editing tool which allows the teacher to develop a custom training exercise for the area of interest to the student. 1 ref

  20. Modelling of oil spills in confined maritime basins: The case for early response in the Eastern Mediterranean Sea.

    Science.gov (United States)

    Alves, Tiago M; Kokinou, Eleni; Zodiatis, George; Lardner, Robin; Panagiotakis, Costas; Radhakrishnan, Hari

    2015-11-01

    Oil spill models are combined with bathymetric, meteorological, oceanographic, and geomorphological data to model a series of oil spill accidents in the Eastern Mediterranean Sea. A total of 104 oil spill simulations, computed for 11 different locations in the Levantine Basin, show that oil slicks will reach the coast of Cyprus in four (4) to seven (7) days in summer conditions. Oil slick trajectories are controlled by prevailing winds and current eddies. Based on these results, we support the use of chemical dispersants in the very few hours after large accidental oil spills. As a corollary, we show shoreline susceptibility to vary depending on: a) differences in coastline morphology and exposure to wave action, b) the existence of uplifted wave-cut platforms, coastal lagoons and pools, and c) the presence of tourist and protected environmental areas. Mitigation work should take into account the relatively high susceptibility of parts of the Eastern Mediterranean. PMID:26253313

  1. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  2. Are OSR (oil spill research) and OSR (oil spill response) two solitudes?

    International Nuclear Information System (INIS)

    The application of past research results to recent spill responses was examined with particular reference to the information that has been gathered for the past 30 years since the Torrey Canyon spill off the south-west coast of England in 1967. At the time, industrial cleaners were used to remove the oil from beaches and the water surfaces. While effective, the toxicity of the cleaners caused major and lethal impact on marine organisms. This lead to the initiation of major oil-spill research programs in England, the United States and Canada. The authors demonstrate that there has been only limited use of research results in recent spill response efforts. The reasons for lack of application of research were presented along with recommendations to improve the linkage of research to remedial action. Within the general industrial model, research and development is used to improve product lines. It was noted that oil-spill research does not fit the common industrial model because researchers and users are from different organizations. The limitation in the flow of research findings from the research groups to the oil-spill response community is greatest when research involves high technology. The paper reviewed recent research and development into booms and skimmers, dispersants, in-situ burning, high technology systems for oil-spill response, oil-spill trajectory models, and remote sensing of oils spills. Environmental impacts, shoreline cleaning and the dissemination of oil-spill research results were also outlined. It was emphasized that specialized equipment, skills and training are required to used computer-based trajectory models or remote sensing. It was also recommended that the results of new developments in oil-spill response methods must be communicated in a more effective manner to regulators and to response organizations

  3. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities

    International Nuclear Information System (INIS)

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco's refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R ampersand D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ''unit cost'' portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible' to estimate the likely future impacts, costs, and sources of oil spills

  4. Calibration and testing of IKU's oil spill contingency and response (OSCAR) model system

    International Nuclear Information System (INIS)

    A computer modeling system entitled Oil Spill Contingency and Response (OSCAR), was calibrated and tested using a variety of field observations. The objective of the exercise was to establish model credibility and increase confidence in efforts to compare alternate oil spill response strategies, while maintaining a balance between response costs and environmental protection. The key components of the system are IKU's data-based oil weathering model, a three dimensional oil trajectory and chemical fates model, an oil spill combat model, and exposure models for fish, ichthyoplankton, birds, and marine mammals. Most modelled calculations were in good agreement with field observations. One discrepancy was found which could be attributed to an underestimation of wind drift in the current model. 21 refs., 4 tabs., 32 figs

  5. OSCAR2000 : a multi-component 3-dimensional oil spill contingency and response model

    International Nuclear Information System (INIS)

    Researchers at SINTEF in Norway have studied the weathering of surface oil. They developed a realistic model to analyze alternative spill response strategies. The model represented the formation and composition of the water-accommodated fraction (WAF) of oil for both treated and untreated oil spills. As many as 25 components, pseudo-components, or metabolites were allowed for the specification of oil. Calculations effected using OSCAR were verified in great detail on numerous occasions. The model made it possible to determine rather realistically the dissolution, transformation, and toxicology of dispersed oil clouds, as well as evaporation, emulsification, and natural dispersion. OSCAR comprised a data-based oil weathering model, a three-dimensional oil trajectory and chemical fates model, an oil spill combat model, exposure models for birds, marine mammals, fish and ichthyoplankton. 17 refs., 1 tab., 11 figs

  6. Real-time petroleum spill detection system

    International Nuclear Information System (INIS)

    A real-time autonomous oil and fuel spill detection system has been developed to rapidly detect of a wide range of petroleum products floating on, or suspended in water. The system consists of an array of spill detection buoys distributed within the area to be monitored. The buoys are composed of a float and a multispectral fluorometer, which looks up through the top 5 cm of water to detect floating and suspended petroleum products. The buoys communicate to a base station computer that controls the sampling of the buoys and analyses the data from each buoy to determine if a spill has occurred. If statistically significant background petroleum levels are detected, the system raises an oil spill alarm. The system is useful because early detection of a marine oil spill allows for faster containment, thereby minimizing the contaminated area and reducing cleanup costs. This paper also provided test results for biofouling, various petroleum product detection, water turbidity and wave tolerance. The technology has been successfully demonstrated. The UV light source keeps the optic window free from biofouling, and the electronics are fully submerged so there is no risk that the unit could ignite the vapours of a potential oil spill. The system can also tolerate moderately turbid waters and can therefore be used in many rivers, harbours, water intakes and sumps. The system can detect petroleum products with an average thickness of less than 3 micrometers floating on the water surface. 3 refs., 15 figs

  7. The Alyeska tactical oil spill model

    International Nuclear Information System (INIS)

    Applied Science Associates, Inc. (ASA) is creating a state-of-the-art oil spill model system for Prince William Sound (PWS) region for Alyeska Pipeline Service Company (Alyeska). This paper reports that the model system is designed to assist Alyeska in responding to oil spills and minimizing the associated environmental impact. The model system is designed to assist Alyeska in responding to oil spills and minimizing the associated environmental impact. The model system includes modules to simulate the surface and subsurface movement of oil, the tactics, operational constraints, and effectiveness of spill response (dispersant, mechanical cleanup, burning), and the environmental impact of the spill on the biota of the Sound. The model system is implemented in a personal compute workstation environment with a graphical interface including mouse-driven menus, color overlay mapping, and animations of model predictions. A commercial data base system is employed to organize and present information on spill response resources, shoreline types, and biological resources. Water surface, water column, and shoreline biota are included in the biological data base, as are critical habitats for these organisms. A mesoscale meteorological model which explicitly includes orographic effects is employed to predict wind fields. A three dimensional hydrodynamic model estimates the tide, wind and density induced circulation

  8. Round robin study : oil spill identification

    International Nuclear Information System (INIS)

    As part of the ongoing project entitled the Revision of the Nordtest Methodology for Oil Spill Identification, a Round Robin test was arranged by SINTEF in co-operation with the Norwegian General Standardizing Body in which 12 laboratories from 10 countries participated. The test was part of an ongoing study to develop new guidelines for standardizing spill identification for European countries. The test involved the analysis of 7 samples, including 2 artificially weathered spill samples and 5 possible sources. Analysis was done according to recommended analytical protocols. It was noted that the Round Robin test was challenging because the two spill samples and three of the suspected sources were highly correlated to one another, having come from the same oil field in the North Sea, but from different production wells. The test checked for weathered n-alkanes, and how to determine biomarker compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the potential of this methodology as a strong and technically defensible tool in oil spill identification. It has the ability to qualitatively distinguish similar oils from a spill and any available candidate source. 13 refs., 8 tabs., 12 figs

  9. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    Science.gov (United States)

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  10. Overall system design for the Spill Modelling Artificial Reasoning Technology system (SMART)

    International Nuclear Information System (INIS)

    A project was initiated to develop an intelligent computer system to assist spill emergency personnel and spill specialists in predicting and analyzing spills as well as their environmental impacts. The system, called SMART, is described, including system objectives, functionality, operational modes, system components and the functionality of each, and data communications between components. SMART is intended to provide the following five general functions: a user-friendly interface, comprehensive inference capability, analytical capability including the ability to predict concentrations and distances of a spill occurrence, knowledge management, convenient input, and multi-form output. The types of knowledge managed in SMART include the heuristic rules needed in the reasoning of spill prediction and impacts on the environment, as well as factual knowledge contained in existing external databases accessed through a database loader. More specifically, the heuristic knowledge comprises such topics as substance behavior, environmental interactions of substances, and the container or transportation vessel. The external databases include a chemical database on fundamental substance characteristics, an environmental database, and a spatial database managed in a geographic information system. 9 refs., 82 figs

  11. Chemical, laboratory analyses, physical and profile oceanographic data collected aboard the JACK FITZ in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, laboratory analyses, physical and profile oceanographic data were collected aboard the JACK FITZ in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in...

  12. Chemical and laboratory analyses oceanographic data collected aboard the Wes Bordelon in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0074863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and laboratory analyses oceanographic data were collected aboard the Wes Bordelon in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in response to the...

  13. Chemical, physical, profile and underway oceanographic data collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-05-27 to 2010-06-04 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069067)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and underway oceanographic data were collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-05-27 to 2010-06-04 in response...

  14. Chemical, physical, profile and other oceanographic data collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-08-02 to 2010-08-08 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0070333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, laboratory analysis and underway oceanographic data were collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-08-02 to...

  15. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-13 to 2010-08-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-13 to 2010-08-17 in...

  16. Chemical, physical and profile oceanographic data collected aboard the PISCES in the Gulf of Mexico from 2010-07-05 to 2010-08-14 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the PISCES in the Gulf of Mexico from 2010-07-05 to 2010-08-14 in response to the Deepwater...

  17. Chemical, physical and profile oceanographic data collected aboard NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2010-07-25 to 2010-07-31 in response to the Deepwater Horizon Oil Spill event (NCEI Accession 0070332)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2010-07-25 to 2010-07-31 in response to...

  18. Chemical, physical, profile and underway oceanographic data collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-06-15 to 2010-06-25 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0070330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and underway oceanographic data were collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-06-15 to 2010-06-25 in response...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-07 to 2010-08-27 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-07 to 2010-08-27 in...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-30 to 2010-08-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-30 to 2010-08-03 in...

  1. Chemical, physical, profile and underway oceanographic data collected aboard NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2010-07-08 to 2010-07-16 in response to the Deepwater Horizon Oil Spill event (NCEI Accession 0070331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and underway oceanographic data were collected aboard NOAA Ship GORDON GUNTER in the Gulf of Mexico from 2010-07-08 to 2010-07-16 in...

  2. Chemical, physical, profile and underway oceanographic data collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-07-01 to 2010-07-06 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and underway oceanographic data were collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-07-01 to 2010-07-06 in response...

  3. Chemical, physical, profile and other oceanographic data collected aboard the Pisces in the Gulf of Mexico from 2010-09-25 to 2010-10-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis, sediment analysis and underway oceanographic data were collected aboard the Pisces in the Gulf of Mexico...

  4. Chemical, physical, profile and other oceanographic data collected aboard the GYRE in the Gulf of Mexico from 2010-10-01 to 2010-10-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0074906)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the GYRE in the Gulf of Mexico from...

  5. Chemical, physical, profile and other oceanographic data collected aboard the THOMAS JEFFERSON in the Gulf of Mexico from 2010-06-03 to 2010-07-18 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, tows and underway oceanographic data were collected aboard the THOMAS JEFFERSON in the Gulf of Mexico from 2010-06-03 to 2010-07-18 in...

  6. Chemical, physical and profile oceanographic data collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2010-09-09 to 2010-09-17 in response to the Deepwater Horizon Oil Spill event (NCEI Accession 0069113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard NOAA Ship Pisces in the Gulf of Mexico from 2010-09-09 to 2010-09-17 in response to the...

  7. Chemical, laboratory analyses, physical and profile oceanographic data collected aboard the BUNNY BORDELON in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, laboratory analyses, physical and profile oceanographic data were collected aboard the BUNNY BORDELON in the Gulf of Mexico from 2010-08-18 to 2010-08-23...

  8. Chemical, physical and profile oceanographic data collected aboard the CAPE HATTERAS in the Gulf of Mexico from 2010-08-21 to 2010-09-02 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the CAPE HATTERAS in the Gulf of Mexico from 2010-08-21 to 2010-09-02 in response to the...

  9. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-08-27 to 2010-09-01 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084588)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-08-27 to 2010-09-01 in response to the Deepwater Horizon Oil...

  10. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-28 to 2010-08-09 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-28 to 2010-08-09 in response to the Deepwater Horizon Oil...

  11. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-21 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-21 to 2010-07-23 in response to the Deepwater Horizon Oil...

  12. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-01 to 2010-07-09 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084581)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-01 to 2010-07-09 in response to the Deepwater Horizon Oil...

  13. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-05 to 2010-06-07 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-05 to 2010-06-07 in response to the Deepwater Horizon Oil...

  14. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-25 to 2010-07-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-25 to 2010-07-28 in response to the Deepwater Horizon Oil...

  15. Chemical, physical and profile oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-11 to 2010-07-13 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084582)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-11 to 2010-07-13 in response to the...

  16. Chemical, physical and profile oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-09 to 2010-09-15 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-09 to 2010-09-15 in response to the...

  17. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-07 to 2010-06-09 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084576)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-07 to 2010-06-09 in response to the Deepwater Horizon Oil...

  18. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-08-13 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084587)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-08-13 to 2010-08-23 in response to the Deepwater Horizon Oil...

  19. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-24 to 2010-06-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084580)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-24 to 2010-06-29 in response to the Deepwater Horizon Oil...

  20. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-09 to 2010-06-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-09 to 2010-06-16 in response to the Deepwater Horizon Oil...

  1. Chemical, physical and profile oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-04 to 2010-09-08 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-04 to 2010-09-08 in response to the...

  2. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-18 to 2010-06-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-06-18 to 2010-06-23 in response to the Deepwater Horizon Oil...

  3. Chemical oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-14 to 2010-07-19 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0084583)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-07-14 to 2010-07-19 in response to the Deepwater Horizon Oil...

  4. Chemical, physical and profile oceanographic data collected aboard the Pisces in the Gulf of Mexico from 2010-08-18 to 2010-09-02 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069112)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the Pisces in the Gulf of Mexico from 2010-08-18 to 2010-09-02 in response to the Deepwater...

  5. Chemical, physical, profile and other oceanographic data collected aboard the GYRE in the Gulf of Mexico from 2010-09-25 to 2010-09-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0074905)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the GYRE in the Gulf of Mexico from...

  6. Chemical, physical, profile and other oceanographic data collected aboard the GYRE in the Gulf of Mexico from 2010-09-19 to 2010-09-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0074904)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the GYRE in the Gulf of Mexico from...

  7. Chemical, physical and profile oceanographic data collected aboard the PELICAN in the Gulf of Mexico from 2010-05-10 to 2010-07-21 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the PELICAN in the Gulf of Mexico from 2010-05-10 to 2010-07-21 in response to the Deepwater...

  8. Chemical, physical and profile oceanographic data collected aboard the THOMAS JEFFERSON in the Gulf of Mexico from 2010-06-15 to 2010-06-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069083)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the THOMAS JEFFERSON in the Gulf of Mexico from 2010-06-15 to 2010-06-28 in response to the...

  9. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-26 to 2010-07-29...

  10. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-07 to 2010-07-11...

  11. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-19 to 2010-07-23...

  12. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-03 to 2010-09-07...

  13. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-25 to 2010-07-30 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-25 to 2010-07-30 in...

  14. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-25 to 2010-06-29...

  15. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-29 to 2010-07-05...

  16. Chemical, physical, profile and other oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-22 to 2010-10-24 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069615)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico...

  17. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-18 to 2010-08-23 in...

  18. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069104)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-12 to 2010-08-16...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-18 to 2010-08-22...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-19 to 2010-06-23...

  1. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-13 to 2010-06-17...

  2. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-23 to 2010-09-28 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-23 to 2010-09-28 in...

  3. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-07-31 to 2010-08-03...

  4. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-25 to 2010-08-29...

  5. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-07 to 2010-10-16...

  6. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-07 to 2010-06-11...

  7. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-01 to 2010-06-05...

  8. Chemical, physical and profile oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-05-26 to 2010-05-30 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-05-26 to 2010-05-30 in response to the...

  9. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069107)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-30 to 2010-09-03...

  10. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-09-11 to 2010-09-13...

  11. Chemical, physical, profile and other oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-10-07 to 2010-10-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from...

  12. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-08-03 to 2010-08-11 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-08-03 to 2010-08-11 in...

  13. Chemical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-03 to 2010-07-07 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0074854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-03 to 2010-07-07 in response to the...

  14. Chemical, physical and profile oceanographic data collected aboard the CAPE HATTERAS in the Gulf of Mexico from 2010-09-04 to 2010-09-15 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the CAPE HATTERAS in the Gulf of Mexico from 2010-09-04 to 2010-09-15 in response to the...

  15. Chemical, laboratory analyses, physical and profile oceanographic data collected aboard the JACK FITZ in the Gulf of Mexico from 2010-06-12 to 2010-06-20 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, laboratory analyses, physical and profile oceanographic data were collected aboard the JACK FITZ in the Gulf of Mexico from 2010-06-12 to 2010-06-20 in...

  16. Chemical, physical, profile and other oceanographic data collected aboard the GORDON GUNTER in the Gulf of Mexico from 2010-08-24 to 2010-09-10 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0070532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, meteorological, navigational and underway oceanographic data were collected aboard the GORDON GUNTER in the Gulf of Mexico from...

  17. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-06-23 to 2010-07-17...

  18. Chemical, physical, profile and other oceanographic data collected aboard the GYRE in the Gulf of Mexico from 2010-10-07 to 2010-10-20 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069127)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile, imagery, laboratory analysis and sediment analysis oceanographic data were collected aboard the GYRE in the Gulf of Mexico from...

  19. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-06 to 2010-08-10 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the OCEAN VERITAS in the Gulf of Mexico from 2010-08-06 to 2010-08-10...

  20. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-15 to 2010-09-22 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the RYAN CHOUEST in the Gulf of Mexico from 2010-09-15 to 2010-09-22 in...

  1. Chemical, physical and profile oceanographic data collected aboard NOAA Ship HENRY B. BIGELOW in the Gulf of Mexico from 2010-08-13 to 2010-08-22 in response to the Deepwater Horizon Oil Spill event (NCEI Accession 0068954)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard NOAA Ship HENRY B. BIGELOW in the Gulf of Mexico from 2010-08-13 to 2010-08-22 in response...

  2. Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Ferrel in the Gulf of Mexico from 2010-07-15 to 2010-07-23 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Ferrel in the Gulf of Mexico from 2010-07-15 to 2010-07-23 in...

  3. Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China

    International Nuclear Information System (INIS)

    Highlights: • Discuss the weathering characteristics of spilled oil in the natural coastal zone environments of Dalian Bay. • Determine the effects of natural weathering processes on the isotopic composition of individual n-alkanes. • A variety of diagnostic ratios were developed and evaluated for spill source identification and differentiation. -- Abstract: In an attempt to analyze the chemical characterization of oil residues and examine the suitability of chemical fingerprinting methods in oil spill investigations, multiple parameters sensitive to both sources and degree of weathering were used to characterize oil residues from “7–16” Dalian oil spill, China. Oil residues collected 90 days to 120 days after the spill showed a weathering pattern where significant amounts of light to middle molecular weight normal alkanes were depleted with pristane and phytane as dominant peaks. Diagnostic ratios developed from n-alkane and selected isoprenoids (e.g. Pr/Ph, n-C17/Pr, n-C18/Ph, carbon preference index, LMW/HMW-alkanes ratio), all display obvious changes over weathering time, indicating that these ratios are not valid for oil source identification. Furthermore, the biomarker ratios of hopanes and steranes with relative standard deviations (RSDs) of 0.88–4.08% were useful for source identification even for severely weathered oil residues. In addition, RSD of δ13C values of individual n-alkanes in oil residue varied from 0.07% to 0.20%, which suggest that stable carbon isotope profile of n-alkanes can also be a useful tool for tracing the source of an oil spill

  4. How vulnerable is Indian coast to oil spills? Impact of MV Ocean Seraya oil spill

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.; George, A.; Ingole, B.S.

    hydrocarbon in the sediment. A review of the oil spill data indicates that accidental spills have shown a decline globally, in contrast to increase in maritime transport. However, a reverse trend was observed along the Indian coast for the Arabian Sea. Further...

  5. Minimizing risks from spilled oil to ecosystem services using influence diagrams: the Deepwater Horizon spill response.

    Science.gov (United States)

    Carriger, John F; Barron, Mace G

    2011-09-15

    Decision science tools can be used in evaluating response options and making inferences on risks to ecosystem services (ES) from ecological disasters. Influence diagrams (IDs) are probabilistic networks that explicitly represent the decisions related to a problem and their influence on desired or undesired outcomes. To examine how IDs might be useful in probabilistic risk management for spill response efforts, an ID was constructed to display the potential interactions between exposure events and the trade-offs between costs and ES impacts from spilled oil and response decisions in the DWH spill event. Quantitative knowledge was not formally incorporated but an ID platform for doing this was examined. Probabilities were assigned for conditional relationships in the ID and scenarios examining the impact of different response actions on components of spilled oil were investigated in hypothetical scenarios. Given the structure of the ID, potential knowledge gaps included understanding of the movement of oil, the ecological risk of different spill-related stressors to key receptors (e.g., endangered species, fisheries), and the need for stakeholder valuation of the ES benefits that could be impacted by a spill. Framing the Deepwater Horizon problem domain in an ID conceptualized important variables and relationships that could be optimally accounted for in preparing and managing responses in future spills. These features of the developed IDs may assist in better investigating the uncertainty, costs, and the trade-offs if large-scale, deep ocean spills were to occur again. PMID:21875054

  6. Oil spill model development and application for emergency response system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper introduces systematically the developing principle ofCWCM 1.0 oil spill model based on Lagrange system and oil spill fate processes in environment, reviews two oil spill incidents of "East Ambassador" in Jiaozhou Bay and "Min Fuel 2" in the mouth of Pearl River, and designs the predict system simulating oil spill applied in contingency plans. It is indicated that CWCM 1.0 has met preliminarily the demands for functions of precision simulating and oil spill predicting, and can plan an important role to support oil spill response.

  7. Hydrocarbon-Degrading Bacteria and Paraffin from Polluted Seashores 9 Years after the Nakhodka Oil Spill in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9-year bioremediation.

  8. Technology assessment of the use of dispersants on spills from drilling and production facilities in the Gulf of Mexico outer continental shelf

    International Nuclear Information System (INIS)

    The operational and environmental issues associated with dispersant use to clean up oil spills in the Gulf of Mexico (GOM) was assessed. The assessment included an examination of the dispersibility of oils plus the capabilities and limitations of spray platforms as well as the net environmental benefit of dispersing spills. Spill scenarios involving typical spill types, oil types, sizes, locations and environment were also analyzed. Gulf oils are typically light and apparently dispersible when they are fresh. The impact of weathering on dispersibility of GOM oils was assessed by analyzing oil spill scenarios. The time window (TW) for dispersion was estimated by oil fate modeling. Only 28 per cent of the oils produced in the GOM have been sufficiently characterized to allow for modeling. The majority of oils produced in the GOM have TW of a few days or longer, and are therefore amenable to chemical dispersion. The maximum theoretical dispersant delivery capacities of a range of spraying platforms were estimated using spreadsheet models. The environmental benefits of using dispersants were greatest in situations involving spills of manageable size, with persistent but dispersible oils and with a TW of more than 24 hours. This is because the oils would otherwise persist long enough to reach the shorelines where they would pose a threat. This analysis also suggested that the net environmental benefit is greater in a blowout spill than in a comparable batch spill. 23 refs., 5 tabs., 2 figs

  9. Chemical, physical and profile oceanographic data collected aboard the HENRY B. BIGELOW in the Gulf of Mexico from 2010-07-28 to 2010-08-10 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the HENRY B. BIGELOW in the Gulf of Mexico from 2010-07-28 to 2010-08-10 in response to the...

  10. Chemical, physical and profile oceanographic data collected aboard the F. G. Walton Smith in the Gulf of Mexico from 2010-06-01 to 2010-06-06 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical and profile oceanographic data were collected aboard the F. G. Walton Smith in the Gulf of Mexico from 2010-06-01 to 2010-06-06 in response to...

  11. Occupational-health aspects of marine oil-spill response

    International Nuclear Information System (INIS)

    This paper with 108 references examines the effect on oil spill cleanup workers of exposure to the crude oil via inhalation and dermal contact, and discusses exposure and the nature of crude oil, routes and magnitudes of exposure, and special cases such as the formation of aerosols, and the effect of in-situ burning of the oil on the chemical hazards associated with cleanup. The acute and chronic health effects of inhalation exposure, and the effect of exposure to oil mists and aerosols are considered. The acute and chronic health effects of dermal exposure are addressed, and some epidemiologic studies on petroleum refinery and petrochemical workers are listed with details of the methodology used and the study findings given. The chemical and physical properties of two crude oils are tabulated. (UK)

  12. Oil spill trajectory uncertainty and response decisions

    International Nuclear Information System (INIS)

    Oil spill trajectory modeling is an important component of the oil spill response effort. Despite many shortcomings, not the least of which is the appearance of reliability and accuracy greater than what is justified by the underlying input and algorithms, oil spill modelling continues to be the best tool for forecasting the trajectory and fate of spilled oil. This paper discusses the limitations of trajectory model input, its effect on the model output, and ways of incorporating model uncertainty into response decisions. The best approach at present is to present the various scenarios in one simple graphic in such a way that the uncertainty or confidence in the forecast overlies the best guess estimate on the base map. The National Oceanographic and Atmospheric Administration (NOAA) wants to make sure that the trajectory analysis product is available to the wider spill response community in an electronic format for use in e-mail, Internet and geographical information systems (GIS). To facilitate this, NOAA has proposed a simplified public domain format to share the graphic elements digitally. Research into this and other new strategies for automatically including uncertainty into the trajectory model continues, and new developments will be incorporated into future modifications of NOAA's trajectory models. 15 refs., 4 figs

  13. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  14. BP Spill in the Gulf of Mexico Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — In response to the BP oil spill, EPA monitored water near the spill. While emergency response data collection has ended, results continue to be available on this...

  15. Waste Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  16. BP Spill in the Gulf of Mexico Sediment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — In response to the BP oil spill, EPA monitored sediment near the spill. While emergency response data collection has ended, results continue to be available on this...

  17. Sediment Sampling Data for BP Spill/Deepwater Horizon

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following...

  18. Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China.

    Science.gov (United States)

    Wang, Chuanyuan; Chen, Bing; Zhang, Baiyu; He, Shijie; Zhao, Mingming

    2013-06-15

    In an attempt to analyze the chemical characterization of oil residues and examine the suitability of chemical fingerprinting methods in oil spill investigations, multiple parameters sensitive to both sources and degree of weathering were used to characterize oil residues from "7-16" Dalian oil spill, China. Oil residues collected 90 days to 120 days after the spill showed a weathering pattern where significant amounts of light to middle molecular weight normal alkanes were depleted with pristane and phytane as dominant peaks. Diagnostic ratios developed from n-alkane and selected isoprenoids (e.g. Pr/Ph, n-C17/Pr, n-C18/Ph, carbon preference index, LMW/HMW-alkanes ratio), all display obvious changes over weathering time, indicating that these ratios are not valid for oil source identification. Furthermore, the biomarker ratios of hopanes and steranes with relative standard deviations (RSDs) of 0.88-4.08% were useful for source identification even for severely weathered oil residues. In addition, RSD of δ(13)C values of individual n-alkanes in oil residue varied from 0.07% to 0.20%, which suggest that stable carbon isotope profile of n-alkanes can also be a useful tool for tracing the source of an oil spill. PMID:23623662

  19. Forensic fingerprinting and source identification of the 2008 Lake Temiskaming (Quebec) oil spill

    International Nuclear Information System (INIS)

    Many of the advances that have occurred in recent years in chemical fingerprinting of petroleum and hydrocarbons for environmental forensic processes have followed advances in petroleum geochemistry. This paper presented a practical case study which demonstrated the utility of detailed and integrated multi-criterion analytical approaches for fingerprinting, correlating and identifying suspected spills. In particular, the source of a waterborne oil spill of unknown origin on Lake Temiskaming, Quebec was identified by combining forensic fingerprinting and data interpretation techniques to characterize the chemical compositions of the spill. The product type was first identified by recognizing distribution patterns of bulk hydrocarbon groups such as oil n-alkanes and unresolved complex mixtures. Biomarker and extended suite of parent and alkylated polycyclic aromatic hydrocarbon (PAH) compounds were then quantified and their distribution profiles were compared. The conclusions were verified by determining several diagnostic ratios of source-specific marker compounds, in particular diagnostic ratios of target biomarker compounds. The input of background pyrogenic PAHs to the suspected spill source samples were identified. It was concluded that some water and soil samples were contaminated by a heavy diesel type fuel. The differences in fingerprints were attributed to weathering effects and input of pyrogenic PAHs. 37 refs., 6 tabs., 8 figs

  20. Investigating SAR algorithm for spaceborne interferometric oil spill detection

    OpenAIRE

    Lawal, Abdul Duane; Radice, Gianmarco; Ceriotti, Matteo; Makarfi, Abubakar Umar

    2016-01-01

    The environmental damages and recovery of terrestrial ecosystems from oil spills can last decades. Oil spills have been responsible for loss of aquamarine lives, organisms, trees, vegetation, birds and wildlife. Although there are several methods through which oil spills can be detected, it can be argued that remote sensing via the use of spaceborne platforms provides enormous benefits. This paper will provide more efficient means and methods that can assist in improving oil spill responses. ...

  1. Bioremediation of crude oil spills in marine and terrestrial environments

    International Nuclear Information System (INIS)

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work

  2. Spill response : an exercise in teamwork

    International Nuclear Information System (INIS)

    An offshore oil spill response exercise was conducted at Hibernia to demonstrate to the Canada-Newfoundland Offshore Petroleum Board the emergency response capabilities that are in place in the event of large offshore spills. The Canadian Coast Guard, Eastern Canada Response Corporation Ltd., Hibernia, Husky Oil Operations Ltd., Jeanne d'Arc Basin Operators Group and the Terra Nova Project team participated in the exercise. The exercise was a success in that it demonstrated that the emergency response teams have the capability of containing and recovering large and small offshore oil spills. The two systems that were tested during the exercise were the large wide-swath boom system and a smaller side-sweep system. Two supply vessels worked in tandem. 11 figs

  3. A review of experimental shoreline oil spills

    International Nuclear Information System (INIS)

    Oil spill research and development has involved a large number of experiments to evaluate the effectiveness and the effects of marine shoreline protection and cleanup techniques. Considerable knowledge has accumulated from laboratory and wave tank studies, and there have also been a number of field experiments, in which oil was intentionally spilled on shorelines under controlled conditions. This review summarizes those field experiments, which are grouped in five major habitat types: rocky intertidal, cobble pebble gravel, sand mud, salt marshes, and mangroves/sea grasses. Tables included in the paper itemize the oil type and volume, location and substrate character, number and size of plots, response techniques tested, and referenced publications. This information is then used to combine understanding of the effectiveness of cleanup with understanding of the ecological effects of cleanup methods, compared with those of untreated oil. It is very difficult to achieve this type of information and understanding from toxicity testing or from spills of opportunity

  4. Current predictions for oil spill models

    International Nuclear Information System (INIS)

    Development and application of a background field of surface currents and a wind response model for oil spill software programs to predict the motion of an oil spill is described. The model determines the surface, seasonal and baroclinic currents. It uses input from all observed profiles of ocean density data for (in this case) the British Columbia coast. An objective analysis routine is used to prepare the spatially continuous, gridded fields of temperature and salinity from surface to ocean bottom. The model is evaluated by interpolating the wind field from weather buoy observations made in 1991, and a field of surface currents computed from tracks of Loran-C drifters deployed at the same time. Although the combined least squares fit does not fully explain the current variance, it does provide useful prediction based on parameters that can be embedded in search and rescue and oil spill prediction software. 14 refs., 2 tabs., 12 figs

  5. Introducing Western Canadian Spill Services Ltd

    International Nuclear Information System (INIS)

    This special issue of OSCAR introduced the newly created Western Canadian Spill Services Ltd. (WCSS). The organizations known as PROSCARAC and the oil spill co-ops WCOC have been dissolved and their operations have merged into the WCSS. The history of PROSCARAC and the WCOC, the process leading to their merger, and the new organization's plans to increase the petroleum industry's spill response capabilities were described. WCSS is run by a board of directors representing the Canadian Association of Petroleum Producers, the Small Explorers and Producers Association of Canada, the Canadian Petroleum Products Association, Trans Mountain Pipe Line Company Ltd., and Interprovincial Pipe Line Inc. Organizations with similar objectives in Manitoba and Saskatchewan have been invited to join

  6. Response to a spill of national significance

    International Nuclear Information System (INIS)

    Responding to a spill of national significance (SONS), such as the 1989 Exxon Valdez spill, requires an augmenting organization to support the local response organization. The US Coast Guard has developed SONS protocol to be better prepared to respond to these infrequent catastrophic spills. A flag-level Coast Guard officer assumes the role of national incident commander (NIC) and federal on-scene coordinator (OSC), and is supported by a national incident task force (NITF). The major role of the NITF is to develop a national response strategy, acquire response resources and allocate them efficiently, and effectively deal with many peripheral national issues. Unified command concepts have been incorporated into the NITF and its primary organizational elements. In addition, frequent training and exercising is essential to keep the SONS protocol's preparedness at an acceptable level

  7. Responding to the Sea Empress oil spill

    International Nuclear Information System (INIS)

    The Ministry of Agriculture, Fisheries and Food (MAFF) is a government department which has responsibility in England and in Wales (acting on behalf of the Secretary of State for Wales) for controlling deposits in the sea, including approving the use of dispersants in oil spill response. MAFF also has responsibility in relation to the management of sustainable commercial fish and shellfish fisheries. Following the grounding of the tanker Sea Empress on 15 February 1996, over 72,000 tonnes of crude oil and bunker fuel was lost. This paper summarises the involvement of MAFF staff in the response phase, and in the subsequent assessment of the environmental impact of the oil spill and the associated clean up operations on commercial fisheries. After two and a half years of environmental monitoring and complementary research, it is concluded that the oil spill has had an insignificant impact on these fisheries beyond their closure during the incident response phase. Suggestions for further work are discussed. (author)

  8. Oil Spill! Student Guide and Teacher Guide. OEAGLS Investigation 17.

    Science.gov (United States)

    Fortner, Rosanne W.; Ihle, Stephanie

    Presented in this unit are three activities concerning the causes and effects of oil spills and methods used to clean up these spills in the oceans and Great Lakes. Students construct and interpret a graph showing oil pollution sources. The students create and try to clean up a small-scale oil spill in a pan, and they compare the water quality of…

  9. New umbrella group handles marine spills

    International Nuclear Information System (INIS)

    In April 1995, the Canadian Marine Response Management Corporation (CMRMC) came into being with the mandate to provide expertise and equipment coordination for oil spills in Canada's ocean waters, the St. Lawrence River and the Great Lakes. Three regional operations are operating under the umbrella of the the CMRMC, i.e., the Eastern Canada Response Corporation, the Great Lakes Response Corporation and the Western Canada Response Corporation. Ships in Canadian waters will be required to have an oil pollution emergency plan (OPEP) similar to the emergency response plans of prairie oil spill responders

  10. Oil spill cleanup method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, F.M.

    1980-06-24

    A method for removing oil from the surface of water where an oil spill has occurred, particularly in obstructed or shallow areas, which comprises partially surrounding a hovercraft with a floating oil-collecting barrier, there being no barrier at the front of the hovercraft, moving the oil-barrier-surrounded-hovercraft into oil contaminated water, and collecting oil gathered within the barrier behind the hovercraft through a suction line which carries the oil to a storage tank aboard the hovercraft. The invention also embodies the hovercraft adapted to effect an oil spill cleanup.

  11. 300 Area Spill Prevention, Control, and Countermeasures Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, G.W.

    1990-11-01

    This Spill Prevention, Control, and Countermeasures (SPCC) Plan is designed to describe measures that must be taken to prevent, control, and handle spills of bulk storage chemicals or oils at Westinghouse Hanford Company (Westinghouse Hanford) facilities located in the Hanford Site 300 Area. The SPCC Plan is designed to satisfy the requirement from US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` which is intended to minimize risk to the environment or public health, and to anticipate and address potential environmental problems before they pose a threat to the quality of the environment or the public welfare. The SPCC Plan identifies practices employed by Westinghouse Hanford to prevent a reportable quantity (RQ) of a hazardous substance [as defined in Title 40, Code of Federal regulations, Part 302 (40 CFR 302)] from being released to the environment. This SPCC Plan fulfills the requirement cited in WHC-CM-7-5, Part T, which establishes Westinghouse Hanford policy for required SPCC Plans, and references 40 CFR 112, ``Environmental Protection Agency Regulations on Oil Pollution Prevention,`` as a basis for contents of the SPCC Plan. Upon completion of the SPCC Plan, a copy will be kept on file at all 300 Area facilities described in the SPCC Plan. Additional copies will also be placed with the 300 Area Industrial Safety and Fire Protection management, and with other environmental oversight, and emergency preparedness, and response personnel as necessary. 1 fig.

  12. Do oil dispersants make spilled oil more toxic to fish?

    International Nuclear Information System (INIS)

    The Deepwater Horizon blowout in the Gulf of Mexico was the world's largest oil spill in terms of duration and volume spilled. Clean-up operations, which involved the continuous and wide-spread use of oil dispersant at the surface and at the seabed discharge point at 1500 metres depth, gave rise to public concern about dispersant toxicity. Reports from the United States Environmental Protection Agency (EPA) claimed little difference in acute toxicity to marine fish and invertebrate species among commonly available dispersants and between dispersed and non-dispersed Louisiana Sweet Crude. Technically, the toxicity of waterborne hydrocarbons does not vary with chemical dispersion. However, the EPA omitted any consideration of loading, and misled the public about the risks of dispersant use in oil clean-up. This study examined the chronic toxicity of dispersed oil to fish embryos. The study revealed that toxicity expressed as oil loading increases by a factor of 10 to 1000 times with dispersion, largely because 10 to 1000 times more oil enters the water column. Since the action of dispersant is on the exposure component of the risk equation, not on the potency of the toxic components of oil, then the risk of oil toxicity to fish increases an equivalent amount.

  13. The vegetable oil spill that wasn't

    International Nuclear Information System (INIS)

    Initial reports of a yellow, waxy spill on the coastline of Anglesey, N. Wales in the United Kingdom stated that the material which had been washed ashore was vegetable oil. A sampling visit was made to the affected region on July 22, 2001, one day after the spill occurred. Local authorities estimated that 10 tonnes of material had washed ashore along a 20 km stretch of north facing beaches. Samples of the small, yellow, waxy globules with no odour were collected in glass pots for analysis. The samples were dissolved in 20 per cent DCM hexane. Large amounts of water was released from the samples, along with sand grains. The organic fraction was drawn off the top of the mixture and dried for further analysis in a gas chromatograph-mass spectrometer. The material was also analyzed for radioactive components, key metals and detergents, all of which proved negative, but the initial supposition that the material was a vegetable oil was found to be incorrect. It is suggested that the material is likely slack wax based on its chemical composition. This is essentially a series of aliphatic hydrocarbons. There were no additives typical of lubricating oils or grease products present. The material probably came from a leak from a heated tank or from steam cleaning of tanks or pipework. However, the large quantity of the material suggests it was a planned loss rather than an accidental leak. 1 ref., 5 figs

  14. Managing a modern fleet of oil spill recovery vessels

    International Nuclear Information System (INIS)

    The lessons of the catastrophic Prince Williams Sound oil spill in 1989 and the progress that has been made since then, were recounted. The adoption of the Incident Command System, a project management system for oil spill response, has been one of the major steps taken to improve preparedness for combatting oil spills and to maximize the on-water oil recovery. Various recent oil spills in the U.S. have been studied in order to assess equipment, training and management capabilities. Experience indicates marked improvement in managing on-water recovery and other spill cleaning activities

  15. In Situ burning of Arctic marine oil spills

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne

    Oil spills in ice filled and Arctic waters pose other challenges for oil spill response compared to open and temperate waters. In situ burning has been proven to be an effective oil spill response method for oil spills in ice filled waters. This thesis presents results from laboratory and field...... experiments where the ignitability of oil spill as a function of oil type and weathering conditions (time/ice) was tested. The results show that the composition of the oil and the ice cover is important for the in situ burning time-window. The results were used to develop an algorithm that was implemented in...

  16. Environmental surveillance: An integral part of the spill contingency plan

    International Nuclear Information System (INIS)

    Typically, the initial response to spills is directed at containing, controlling, and stopping the flow of spilled materials. The primary goal of such a response is to limit the spread and further impact of spilled material, and to initiate timely cleanup and recovery of affected areas. Surveillance of actual spill impacts has often followed an after the fact approach, using only immediately available resources. Surveillance may occur quickly after a spill, but in most incidents its occurs as a follow-up action after initial response and containment have been achieved. Insufficient planning may produce spill surveillance that inadequately assesses impacts, fails to incorporate baseline data, and does not clearly identify a cleanup recovery and endpoint. The management and operations contractor for the US Dept. of Energy's Strategic Petroleum Reserve (SPR) conducts environmental surveillance activities in response to spill incidents when they occur at these facilities. These surveillance activities, when conducted as part of the response, are useful instruments in the initial assessment of spill incidents, management of spill response, containment, and cleanup activities, and for monitoring and documenting postspill impacts and recovery. An Environmental Surveillance Plan (ESP) incorporated in the SPR Spill Contingency Plan provides for initiation of environmental surveillance as part of the spill response. The ESP outlines, through alogic tree, conditions for activating the plan, key indicator parameters for evaluation, detailed methods for establishing surveillance stations, lists of key personnel, locations of equipment necessary to perform surveillance, and conditions for termination of environmental surveillance

  17. Allee effect from parasite spill-back.

    Science.gov (United States)

    Krkošek, Martin; Ashander, Jaime; Frazer, L Neil; Lewis, Mark A

    2013-11-01

    The exchange of native pathogens between wild and domesticated animals can lead to novel disease threats to wildlife. However, the dynamics of wild host-parasite systems exposed to a reservoir of domesticated hosts are not well understood. A simple mathematical model reveals that the spill-back of native parasites from domestic to wild hosts may cause a demographic Allee effect in the wild host population. A second model is tailored to the particulars of pink salmon (Oncorhynchus gorbuscha) and salmon lice (Lepeophtheirus salmonis), for which parasite spill-back is a conservation and fishery concern. In both models, parasite spill-back weakens the coupling of parasite and wild host abundance-particularly at low host abundance-causing parasites per host to increase as a wild host population declines. These findings show that parasites shared across host populations have effects analogous to those of generalist predators and can similarly cause an unstable equilibrium in a focal host population that separates persistence and extirpation. Allee effects in wildlife arising from parasite spill-back are likely to be most pronounced in systems where the magnitude of transmission from domestic to wild host populations is high because of high parasite abundance in domestic hosts, prolonged sympatry of domestic and wild hosts, a high transmission coefficient for parasites, long-lived parasite larvae, and proximity of domesticated populations to wildlife migration corridors. PMID:24107371

  18. Marine Oil Spill Expert Systems (MOSES)

    International Nuclear Information System (INIS)

    The marine oil response community is international by nature. With two-thirds of the world's oil supply crossing oceans, a spill could occur anywhere at any time. Advances in information technology make it possible to retrieve information instantaneously. The information is critical in formulating a response operation. Computers are an indispensable tool on location. They can operate off-site, with information being sent from the spill site to the place where the computer is located. Expert systems are an excellent means to capture and store knowledge on the computer for rapid retrieval when needed. They are very useful in cases where timing is critical and decision-making is complex. Expert systems can be a cost-effective response tool, but it was suggested that in order to take greater advantage of this tool, more effort should be devoted to improving the decision-making of expert systems to marine oil spill response operations. The authors pointed out that expert systems will never replace human judgement, but with the current generation of response experts nearing retirement, it is important to preserve the bank of knowledge acquired by these experts. The lessons learned by these experts can be transferred to the computer for easy access, retrieval and application during a spill event. 6 refs

  19. How Not to Handle An Oil Spill

    Institute of Scientific and Technical Information of China (English)

    NICOLAS LORIS

    2010-01-01

    @@ In his June remarks from the Oval Office,U.S. President Barack Obama called the Gulf of Mexico oil spill "the worst environmental disaster America has ever faced." But his administration sure didn't act like it. Instead the federal government responded to the crisis in the gulf with ineptitude and inattention.

  20. Guide to oil spill exercise planning

    International Nuclear Information System (INIS)

    The International Convention on Oil Pollution Preparedness, Response and Cooperation (OPRC Convention) foresees a future in which all at risk states have national oil spill preparedness and response plans. The Convention also encourages the idea that national plans be developed in cooperation with oil and shipping industries. The ultimate test of any contingency plan is measured by performance in a real emergency. It is vital, therefore, that any programme for developing a national contingency plan must include an ongoing programme to test the plan through realistic exercises. An exercise programme must progressively prepare the Oil Spill Energy Response Team to perform effectively in realistic representations of the risks that the contingency plan has been designed to meet. This report has been designed to guide all those in government or industry who are faced with the responsibility of developing and managing oil spill response exercises at all levels. It carries with it the authority that derives from peer review by many centres of oil spill response excellence around the world. It is well-illustrated with brief case histories of exercises that have been carried out by many IPIECA member companies. Each of those companies has indicated its preparedness to share more information by providing contact name and address details within this report. (author)

  1. Planning for the Human Dimensions of Oil Spills and Spill Response

    Science.gov (United States)

    Webler, Thomas; Lord, Fabienne

    2010-04-01

    Oil spill contingency planners need an improved approach to understanding and planning for the human dimensions of oil spills. Drawing on existing literature in social impact assessment, natural hazards, human ecology, adaptive management, global change and sustainability, we develop an integrative approach to understanding and portraying the human dimensions impacts of stressors associated with oil spill events. Our approach is based on three fundamental conclusions that are drawn from this literature review. First, it is productive to acknowledge that, while stressors can produce human impacts directly, they mainly affect intermediary processes and changes to these processes produce human impacts. Second, causal chain modeling taken from hazard management literature provides a means to document how oil spill stressors change processes and produce human impacts. Third, concepts from the global change literature on vulnerability enrich causal models in ways that make more obvious how management interventions lessen hazards and mitigate associated harm. Using examples from recent spill events, we illustrate how these conclusions can be used to diagrammatically portray the human dimensions of oil spills.

  2. Development of an oil spill forecast system for offshore China

    Science.gov (United States)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2016-07-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  3. Development of an oil spill forecast system for offshore China

    Science.gov (United States)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2015-12-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  4. Oil spills and other issues in the aftermath of Hurricanes Katrina and Rita : an overview

    International Nuclear Information System (INIS)

    The aftermath of Hurricane Katrina revealed weaknesses in the command, control, communications, and information dissemination functions within a variety of emergency response systems. This paper gave an outline of clean-up procedures involving hazardous materials. To date, clean-up crews have disposed of 8.0 million tonnes of an estimated 22.0 million tonnes of debris. The clean-up involved more than 1.3 million containerized hazardous materials; more than 230,000 damaged white goods; and nearly 43,000 damaged electronic goods. More than 3,400 samples of water, soil and air have been collected. Nearly 75 chemistry laboratories in schools have been inspected, and an additional 1500 emergency assessments of potential chemical releases were investigated. The floodwaters carried nearly 4.1 million litres of oil from a Chalmette refinery. Between September and the end of 2005, the Louisiana Oil Spill Coordinator's Office logged in 81 spill events in southwest Louisiana involving 22,000 bbls of crude. Six major, 3 medium and 131 minor events have occurred in southeast Louisiana. More than 3000 offshore platforms were shut down or damaged during the 2005 hurricane season. At least 115 platforms were destroyed and 52 were damaged. Onshore spills of concern included incidents at Murphy Oil Refinery; Bass Enterprise Production Company; Chevron at Port Fourchon; Venice Energy Services Company; Shell Pipeline; and Sundown Energy. It was concluded work done by the spill community will result in the development of more effective response plans. 23 refs

  5. The Tenyo Maru oil spill: A multi-spectral scanning and sea-truth experiment

    International Nuclear Information System (INIS)

    The sinking of the Tenyo Maru fish processing ship off the Washington state coast caused an initial oil spill of ca 100,000 gal. After response operations had contained and removed most of the spill, continued leakage from the sunken wreck provided an offshore source of freshly spilled oil at a known location. Remote sensing overflights, coordinated with the collection of sea-surface slick samples, were conducted in an effort to test whether a multi-spectral scanner could accurately image a marine oil spill. Oil content in the sea truth samples ranged from undetectable to 180 mg, depending on slick thickness. This variability was readily apparent in both the infrared and ultraviolet bands of the scanner data and was detectable on a scale of meters. Chemical analysis identified two unique oils in the slick, one containing enhanced concentrations of toxic polycyclic aromatic hydrocarbons. However, distinct signatures for these oils were not successfully extracted from scanner data. An integration of the data from multiple flight paths provided an overview of the distribution of thick and thin slick components in the vicinity of the wreck and illustrated the effect of an oceanographic front on controlling the dispersion of the slick. 5 figs

  6. Characterization of solidifiers used for oil spill remediation.

    Science.gov (United States)

    Sundaravadivelu, Devi; Suidan, Makram T; Venosa, Albert D; Rosales, Pablo I

    2016-02-01

    The physical characteristics and chemical composition of oil spill solidifiers were studied, and correlation of these properties with product effectiveness enabled determination of characteristics that are desirable in a good solidifier. The analyses revealed that the commercial products were primarily comprised of organic polymers and a few trace elements. A natural sorbent, which was composed entirely of plant based matter, was also evaluated, and it had the highest oil removal capacity, but it did not produce a solid mat-like final product. Generally, solidifiers with a carbonate group, pore size greater than 5 μm, and bulk densities lower than 0.3 g cm(-3) were found to have better efficiency and produced a cohesive rubbery final product that facilitated removal compared to sorbents. The importance of bulk density and pore size in the performance of the solidifier suggest that the primary mechanism of action was likely physical sorption. PMID:26498096

  7. Technology cottons on to oil spill clean-ups

    International Nuclear Information System (INIS)

    Characteristics of Oil Gator(TM) a plant fibre absorbent, chemically modified to encourage biodegradation of hydrocarbons by indigenous bacteria are discussed. The petrophyllic bacteria are safe to humans and animals and are environmentally benign. They utilize hydrocarbons as a food source when activated by air or moisture. Oil Gator(TM) works by encapsulating the oil; ammonium sulphate, an effective delayed-reaction nitrogen source, renders the absorbed oil less flammable. The cotton-based raw material is readily available, which is another advantage over peat or clay which require mining and stripping. Oil Gator(TM) can also be incinerated, and is designed to allow safe handing and begin neutralization of most acid spills quickly and efficiently. Disposal of the saturated Acid Gator has to be carried out in compliance with the appropriate government regulations for the particular acids absorbed

  8. On-line numerical modeling in Danish spill contingency planning

    International Nuclear Information System (INIS)

    Denmark is located between the North Sea and the Baltic Sea with major offshore oil activities and heavy traffic of vessels with crude oil, refinery products and potentially dangerous chemicals. Although small in area, Denmark has a very long coastline, more than 7,000 kilometers. This coastline is extremely vulnerable towards accidents at sea. This paper describes the Danish contingency planning procedures with specific focus on the use of advanced on-line numerical models in the management of spills. The complexity of the tidal and wind driven flows - in particular in the inner Danish waters - leads to specific requirements to the models applied in terms of the quality of the modeling of the hydrodynamics and in terms of very fast response. The paper describes how these requirements have been met and how the resulting system has been tailored for use by operators with limited background within modeling, operating the system under extreme pressure of an emergency situation

  9. Deepwater Horizon oil spill impacts on Alabama beaches

    Directory of Open Access Journals (Sweden)

    J. S. Hayworth

    2011-12-01

    Full Text Available From mid June 2010 to early August 2010, the white sandy beaches along Alabama's Gulf coast were inundated with crude oil discharged from the Deepwater Horizon well. The long-term consequences of this environmental catastrophe are still unfolding. Although BP has attempted to clean up some of these beaches, there still exist many unanswered questions regarding the physical, chemical, and ecological state of the oil contaminated beach system. In this paper, we present our understanding of what is known and known to be unknown with regard to the current state of Alabama's beaches in the aftermath of the Deepwater Horizon disaster. Motivated by our observations of the evolving distribution of oil in Alabama's beaches and BP's clean-up activities, we offer our thoughts on the lessons learned from this oil spill disaster.

  10. Deepwater Horizon oil spill impacts on Alabama beaches

    Directory of Open Access Journals (Sweden)

    J. S. Hayworth

    2011-07-01

    Full Text Available From mid June 2010 to early August 2010, the white sandy beaches along Alabama's Gulf coast were inundated with crude oil discharged from the Deepwater Horizon well. The long-term consequences of this environmental catastrophe are still unfolding. Although BP has attempted to clean up some of these beaches, there still exist many unanswered questions regarding the physical, chemical, and ecological state of the oil contaminated beach system. In this paper, we present our understanding of what is known and known to be unknown with regard to the current state of Alabama's beaches in the aftermath of the Deepwater Horizon disaster. Motivated by our observations of the evolving distribution of oil in Alabama's beaches and BP's clean-up activities, we offer our thoughts on the lessons learned from this oil spill disaster.

  11. Dispersant use as a response to oil spills: toxicological effects on fish cardiac performance

    OpenAIRE

    Milinkovitch, Thomas; Thomas-Guyon, Hélène; Lefrançois, Christel; Imbert, Nathalie

    2013-01-01

    Dispersant use is a controversial technique used to respond to oil spills in nearshore areas. In order to assess the toxicity of this technique, this study evaluated the cardiac toxicological effects on juvenile golden grey mullets Liza aurata exposed for 48 h to either dispersant alone, chemically dispersed oil, mechanically dispersed oil, the water soluble fraction of oil or to a control condition. Following exposure, the positive inotropic effects of adrenaline were assessed in order to ev...

  12. Quantifying environmental implications of alternative oil spill contingency and response plans

    International Nuclear Information System (INIS)

    This paper suggests some simple and robust physical, chemical, and toxicological measures of mitigation success. More in-depth measures and analyses for unusually sensitive environmental issues can then support these first-order measures. Example applications are carried out with the SINTEF Oil Spill Contingency and Response (OSCARI) model system. The methodology supplies an objective basis for net environmental analysis of planned response strategies. (author)

  13. Cost-effectiveness criteria for marine oil spill preventive measures

    International Nuclear Information System (INIS)

    Oil tanker accidents resulting in large quantities of oil spills and severe pollution have occurred in the past, leading to major public attention and an international focus on finding solutions for minimising the risks related to such events. This paper proposes a novel approach for evaluating measures for prevention and control of marine oil spills, based on considerations of oil spill risk and cost effectiveness. A cost model that incorporates all costs of a shipping accident has been established and oil tanker spill accidents have been further elaborated as a special case of such accidents. Utilising this model, novel implementation criteria, in terms of the Cost of Averting a Tonne of oil Spilt (CATS), for risk control options aiming at mitigating the environmental risk of accidental oil spills, are proposed. The paper presents a review of previous studies on the costs associated with oil spills from shipping, which is a function of many factors such as location of spill, spill amount, type of oil, etc. However, ships are designed for global trade, transporting different oil qualities. Therefore, globally applicable criteria must average over most of these factors, and the spill amount is the remaining factor that will be used to measure cost effectiveness against. A weighted, global average cleanup cost of USD 16,000/tonne of oil spilt has been calculated, considering the distribution of oil tanker traffic densities. Finally, the criteria are compared with some existing regulations for oil spill prevention, response and compensation (OPA 90)

  14. Washington's marine oil spill compensation schedule - simplified resource damage assessment

    International Nuclear Information System (INIS)

    The Washington State Preassessment Screening and Oil Spill Compensation Schedule Rule (Chapter 173-183 Washington Administrative Code), which simplifies natural resource damage assessment for many oil spill cases, became effective in May 1992. The approach described in the rule incorporates a number of preconstructed rankings that rate environmental sensitivity and the propensity of spilled oil to cause environmental harm. The rule also provides guidance regarding how damages calculated under the schedule should be reduced to take into account actions taken by the responsible party that reduce environmental injury. To apply the compensation schedule to marine estuarine spills, the resource trustees need only collect a limited amount of information such as type of product spilled, number of gallons spilled, compensation schedule subregions the spill entered, season of greatest spill impact, percent coverage of habitats affected by the spill, and actions taken by the responsible party. The result of adding a simplified tool to the existing assortment of damage assessment approaches is that resource trustees will now be able to assess damages for most oil spill cases and shift more effort than was possible in the past to resource restoration

  15. Australia's tyranny of distance in oil spill response

    International Nuclear Information System (INIS)

    In view of the quantity of oil spilled, smaller spills generally receive less attention than headline grabbing incidents such as the 'Amoco Cadiz', 'Exxon Valdez', 'Braer' and 'Sea Empress'. The latter incidents involve the loss of significant quantities of oil, the establishment of relatively complex spill response management structures and the involvement of significant numbers of personnel and equipment. As such, large spills from tankers have the potential to create problem areas, for example in establishing and maintaining effective communications, logistics and resource management systems. In general terms spill response personnel are well aware that large spills come complete with significant operational and administrative problems, however what may not be so well recognised is that smaller spills also have the potential to present response personnel with their own unique problems. One of the major problems to be overcome when responding to spills in Australia is the 'tyranny of distance'. In quite a few responses, Australian oil spill response managers have had to move personnel and equipment thousands of kilometres to provide an effective outcome. This paper outlines a range of problems that have been encountered by Australian personnel over the years. These include health and safety, communications, logistics and equipment issues. For the purpose of this paper a 'smaller' spill has been defined as one involving a discharge of less than 1000 tonnes of oil. (Author)

  16. Influence of electron acceptor in the remediation of underground waters contaminated with gasoline spills; Influencia do receptor de eletrons na bioremediacao de aguas subterraneas contaminadas por derramamento de gasolina

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, Henry Xavier [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Sanitaria e Ambiental

    1994-12-31

    Gasolines spills have been causing major contamination problems in underground waters. Among the chemical compounds in gasoline, benzene, toluene, ethyl benzene and xylenes are those which cause greater environmental damages due to their characteristics such was water solubility. One of the most studies techniques for remediation of such spills is in-situ bio-remediation. This work discusses the above mentioned issue giving special emphasis to electron acceptors chemical species which are necessary in the process 7 refs., 4 figs.

  17. Assessment of the impact of oil spill on Mumbai harbor bay

    International Nuclear Information System (INIS)

    On 7 th August, 2010 two cargo ships MSC Chitra and MV Khalijia collided off Mumbai coast causing an oil spill that spread quickly through Maharashtra's coastline. MSC Chitra ruptured its tank when it hit incoming MV Khalijia. MSC Chitra tilted to about 80 degrees soon after the collision, spilling an estimated 400 to 500 tonnes of oil. The ship was loaded with an estimated 2,600 tonnes of oil, 300 tonnes of diesel and 70 tonnes of lubricating oil at the time of the accident. The oil spill has spreaded over an area of 25 square kilometers. MSC Chitra was carrying 1219 containers out of which 31 had hazardous chemicals like organophosphate pesticides. After the collision about 400 containers fall off into to the sea from the deck of MSC Chitra. The oil spill has resulted in severe environmental damage along the Mumbai coastline as well as to the marine life. In order to assess the impact of oil spill on the marine environment daily monitoring of oil and grease levels has been carried out at CIRUS Jetty. Additionally three field surveys have been carried out along the coast line of Mumbai harbor bay from Vashi Jetty to Uran collecting sea water samples. The samples collected at CIRUS Jetty and Mumbai harbor bay are analyzed for various water quality parameters apart from oil and grease. The results indicate the oil and grease levels in sea water at CIRUS Jetty reduced to background levels within 15 days. The filed survey along Mumbai harbor bay also shows a decreasing trend in the oil and grease levels in seawater. (author)

  18. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.; Martin, F.; Ortiz, I.; Garcia, I.; Fernandez, J.; Fernandez, E.; Dorronsoro, C.; Aguilar, J. [Dpto. de Edafologia y Quimica Agricola, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2001-11-12

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km{sup 2}. In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  19. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    International Nuclear Information System (INIS)

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km2. In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  20. Comparing sediment quality in Spanish littoral areas affected by acute (Prestige, 2002) and chronic (Bay of Algeciras) oil spills

    International Nuclear Information System (INIS)

    The quality of sediments collected from two areas of the Spanish coast affected by different sources of contaminants has been compared in this study. The areas studied are the coast of Galicia affected by the oil spill from the tanker Prestige (November 2002) and the Gulf of Cadiz which suffers continuous inputs of contaminants from industries located in the area and from oil spills. Contamination by several chemicals (metals, PCBs and PAHs) that bind to sediments was analyzed, and two toxicity tests (Microtox[reg]) and amphipod 10-day bioassay) were conducted. PAHs were identified as the compounds responsible for the toxic effects. Results show differences between an acute impact related to the sinking of the tanker Prestige and the chronic impact associated with continuous oil spills associated with the maritime and industrial activities in the Bay of Algeciras, this being the most polluted part of the two coastal areas studied in this work. - Littoral sediments affected by low or moderated but continuous oil spills are more polluted than those affected by accidental oil spills such as the Prestige

  1. Taming the oil spill paperwork beast : the Alaska spill response permits project

    International Nuclear Information System (INIS)

    This paper addressed the issue of the intense paperwork associated with an oil spill event. The permits, forms and applications needed to carry out an effective oil spill response can slow down progress or lead to confusion. In the State of Alaska where permitting authorities have been transferred, some forms appear unnecessary in the response effort and may even be carryovers from other venues. In response to this problem, the Alaska Spill Response Permits project was initiated to facilitate the process of identifying, filling out and filing spill response forms with the appropriate agency. This paper described the progress of the Alaska permits project and presented lessons learned that may be useful for other jurisdictions seeking to minimize the paperwork burden. The project was initiated by the Cook Inlet Regional Citizens Advisory Council. Representatives from the Alaska oil industry, state and federal agencies and response organizations helped in updating the list of required permits and the actual permit forms. A computer-based tool was developed to sort, fill out, file and organize the permits during an oil spill remediation effort. 1 ref., 3 figs

  2. Integration of Web-GIS and oil spill simulation applications for environmental management of near-shore spill accidents

    International Nuclear Information System (INIS)

    In the event of a near-shore oil spill, the use of a web-based Geographic Information System (GIS) can greatly improve emergency response management and oil recovery operations by providing real-time information support. This paper presented a Web-GIS that is used in combination with an oil spill simulation model. The structure and content of the system was defined after the Nakhodka vessel spilled oil in the Sea of Japan in January 1997, leaving serious environmental damage to the coastal area of the Ishikawa prefecture. The Web-GIS provides a wide range of environmental and oil spill related information, presented in a geographical form. The system also consolidates spill and environmental damage related information from different sources and provides links to the specialized environmental and socio-economical information of other GIS databases. The oil spill modeling subsystem is part of an application for protection planning and oil recovery operations. With this system, oil-drift simulation begins at the onset of any oil spill and then remote sensing data are used to estimate the position and state of the spilled oil. The spill information is then assimilated into the spill model and the observed simulated results are uploaded to the Web page for public information. The applicability of the Web-GIS is extended by support for information gathering from the public and the responsible agencies. The relative simplicity of the system interface is an added advantage. 9 refs., 4 figs

  3. IT - OSRA: applying ensemble simulations to estimate the oil spill hazard associated to operational and accidental oil spills

    Science.gov (United States)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; martins, Flavio

    2016-04-01

    Every year, 270,000 tonnes of oil are estimated to be spilled in the ocean by vessel operations (e.g. tank washing, leakage of lubricants) and the so called operational spills are typically associated with small volumes and high occurrence rate. Vessel-related accidental spills (e.g. collisions, explosions) seldom occur and usually involve high volumes of oil, accounting for about 100,000 tonnes/year. The occurrence of accidental spills and their impacts have been well documented in the available literature. On the other hand, occurrence rates of operational spills and the effects they have on the marine and coastal environments remain very uncertain due to insufficient sampling effort and methodological limitations. Trying to foresee when and where an oil spill will occur in a certain area, its characteristics and impacts is, at present, impossible. Oil spill risk assessments (OSRAs) have been employed in several parts of the globe in order to deal with such uncertainties and protect the marine environment. In the present work, we computed the oil spill risk applying ensemble oil spill simulations following an ISO-31000 compliant OSRA methodology (Sepp Neves et al. , 2015). The ensemble experiment was carried out for the Algarve coast (southern Portugal) generating a unique data set of 51,200 numerical oil spill simulations covering the main sources of uncertainties (i.e. where and when the spill will happen and oil spill model configuration). From the generated data set, the risk due to accidental and operational spills was mapped for the Algarve municipalities based on the frequency and magnitude (i.e. concentrations) of beaching events and the main sources of risk were identified. The socioeconomic and environmental dimensions of the risk were treated separately. Seasonal changes in the risk index proposed due to the variability of meteo-oceanographic variables (i.e. currents and waves) were also quantified.

  4. Operational approach for oil spill monitoring

    Science.gov (United States)

    Franca, Gutemberg B.; Landau, Luiz; Tores, Audalio R., Jr.; Drumond, Jose A. L.; Fragoso, Mauricio R.; De Almeida, Ricardo C.; Cunha, Gerson G.; Pedroso, Enrico C.; Beisl, Carlos H.

    2003-05-01

    This paper presents the methodological approach of the oil spill monitoring system that is being put into operation by the National Petroleum Agency (NPA) in Brazil. The methodology is based on integrated analysis of multi-sensor data which includes satellites products, such as, GOES and AVHRR Sea Surface Temperature (SST), SeaWiFs chlorophyll concentration, QuikScat near sea surface wind field, GOES and AVHRR convective rain areas, and Synthetic Aperture RADAR (SAR) data from RADARSAT-1 satellite. The methodology is implemented by means of a system composed by four subsystems called, data reception (SAR, GOES, NOAA and QuikScat), Integrator, hydrodynamic model and database. The methodology was applied to the accidental oil spill caused by PETROBRAS oil rig P-36. A RADARSAT-1 image was acquired during accident period at 21:07 (GMT) on 22nd of March 2001 and used. The results are presented and discussed.

  5. Cotton for removal of aquatic oil spills

    International Nuclear Information System (INIS)

    Raw cotton has considerable potential for selective removal of spilled oil and oil products from surface waters, since the natural waxes on the raw cotton make it preferentially oil wet. This potential was recognized in the early seventies at Texas Tech University. More recently other research workers have considered cotton as an adsorbent for spilled oil. The adsorbent market is now dominated by synthetic materials, such as air-blown polypropylene fiber, inorganic clays, and recycled paper and paper products. This paper further examines the potential of cotton in relation to these other adsorbents. Emphasis is placed on the potential for complete biodegradation of oil-soaked cotton adsorbents as a means avoiding the expense for incineration and/or the long-term environmental risk associated with placing the used adsorbents in landfills

  6. The Galeta oil spill: Pt. 1

    International Nuclear Information System (INIS)

    In April 1986, more than 75 000 barrels (1.5 x 107 l) of medium-weight crude oil spilled into Bahia las Minas on the central Caribbean coast of Panama. Changes in the physical structure of the mangrove fringe after oiling were documented over time. These included defoliation, limb loss and eventual collapse of dead trees. By 5 years after the spill, the length of shore fringed by mangroves was reduced at oiled sites relative to unoiled sites. Surviving trees at oiled sites had fewer and shorter submerged prop roots and a higher proportion of dead roots than trees at unoiled sites. These changes reduced the surface area of submerged prop roots by 33% on oiled open coast, 38% in channels and 74% in streams. (author)

  7. Saudis map $450 million gulf spill cleanup

    International Nuclear Information System (INIS)

    This paper reports on Saudi Arabia which has earmarked about $450 million to clean up Persian Gulf beaches polluted by history's worst oil spills, created during the Persian Gulf crisis. Details of the proposed cleanup measures were outlined by Saudi environmental officials at a seminar on the environment in Dubai, OPEC News Agency reported. The seminar was sponsored by the Gulf Area Oil Companies Mutual Aid Organization, an environmental cooperative agency set up by Persian Gulf governments. Meantime, a Saudi government report has outlined early efforts designed to contain the massive oil spills that hit the Saudi coast before oil could contaminate water intakes at the huge desalination plants serving Riyadh and cooling water facilities at Al Jubail

  8. The significance of oil spill dispersants

    International Nuclear Information System (INIS)

    There is growing acceptance worldwide that use of dispersants to counter the effects of an oil spill offers many advantages and can often result in a net environmental benefit when considered in relation to other response options. A major reason for this growing support and increased reliance on dispersants is the advent of improved dispersant products that are low in toxicity to marine life and more effective at dispersing heavy and weathered oils - oils previously believed to be undispersible. This capability has been demonstrated through extensive laboratory testing, field trials, and dispersant application on actual spills. This paper summarises recent advances in dispersant R and D and reviews the implications of technology advances. (Author)

  9. Bioremediation as an oil spill response tool

    International Nuclear Information System (INIS)

    In the long run, biodegradation is the principal removal mechanism for spilled oil that cannot be collected or burnt. Stimulating biodegradation is thus an important option for maximising the removal of oil from the environment, and minimising the environmental impact of a spill. While oil is still floating on the sea, dispersants maximise the surface area available for microbial attack, and stimulate biodegradation. If oil reaches a shoreline where physical removal is difficult, beach cleaners can aid washing technologies, and minimise the residual oil remaining for biodegradation to remove. Since oils lack nitrogen and phosphorus, the careful application of fertiliser stimulates the biodegradation of residual beach oil in environments where nitrogen and phosphorus are limiting. Taken together, these approaches epitomise modern environmental technologies; working with natural processes to minimise undesirable environmental impacts. (Author)

  10. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  11. A perspective on sorbents: responding to a bunker oil spill

    International Nuclear Information System (INIS)

    Some practical guidelines for the selection of sorbents for use in oil spill cleanup are provided. Sorbents may be classified as selective or oleophilic, and non-selective or universal. Oleophilic sorbents are water-repelling, i.e. they will soak up oil spills and leave water behind. Universal sorbents will soak up most liquids. Sorbents come in such forms as booms, pads, socks, pillows, and loose particulates for spills on land. A case history involving a spill of Bunker C oil in a drainage ditch was provided to illustrate the variety of sorbents that may have to be employed to contain a particular spill. Since unexpected situations during a cleanup effort are the rule more than the exception, it is wise to use a sorbent supplier company that can fulfill a variety of spill response needs

  12. Cyber Physical Intelligence for Oil Spills (CPI)

    Science.gov (United States)

    Lary, D. J.

    2015-12-01

    The National Academy of Sciences estimate 1.7 to 8.8 million tons of oil are released into global waters every year. The effects of these spills include dead wildlife, oil covered marshlands and contaminated water. Deepwater horizon cost approximately $50 billion and severely challenged response capabilities. In such large spills optimizing a coordinated response is a particular challenge. This challenge can be met in a revolutionary new way by using an objectively optimized Cyber Physical Decision Making System (CPS) for rapid response products and a framework for objectively optimized decision-making in an uncertain environment. The CPS utilizes machine learning for the processing of the massive real-time streams of Big Data from comprehensive hyperspectral remote sensing acquired by a team of low-cost robotic aerial vehicles, providing a real-time aerial view and stream of hyperspectral imagery from the near UV to the thermal infrared, and a characterization of oil thickness, oil type and oil weathering. The objective decision making paradigm is modeled on the human brain and provides the optimal course trajectory for response vessels to achieve the most expeditious cleanup of oil spills using the available resources. In addition, oil spill cleanups often involve surface oil burns that can lead to air quality issues. The aerial vehicles comprehensively characterize air quality in real-time, streaming location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S) and the full size distribution of airborne particulates. This CPS can be readily applied to other systems in agriculture, water conversation, monitoring of stream quality, air quality, diagnosing risk of wild fires, etc..

  13. Perspective microwave methods of oil spill response

    OpenAIRE

    Ahtyamov, R. A.; Gallyamov, N. H.; Morozov, Gennadiy A.; Morozov, Oleg G.; Shakirov, A. S.

    2011-01-01

    The detailed survey of works devoted to the processing of the crude oil containing a water oil emulsion is carried out. Results of this analysis lead to a conclusion that there are promising perspectives of using of the microwave processing technology at work on oil spill response. The technique and results of calculation of key parameters of a microwave unit of liquidation of emergency floods of oil are presented.

  14. Designing an oil spill information management system

    International Nuclear Information System (INIS)

    This paper presents the architectural design of OSIMS, an Oil Spill Information Management System, which is an integrated information management tool that consists of an object-relational database management system, an adaptive decision support system, an advanced visualization system (AVS) and a geographic information system (GIS). OSIMS will handle large and diverse databases of environmental, ecological, geographical, engineering, and regulatory information and will be used for risk analysis and contingency planning

  15. Field evaluations of marine oil spill bioremediation.

    OpenAIRE

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environ...

  16. Assessing natural resource damages from oil spills

    International Nuclear Information System (INIS)

    The Comprehensive Environmental response, Compensation and Liability Act of 1980 (CERCLA) required that the U. S. Department of the Interior develop rules for determining the natural resource damages resulting from a spill of hazardous substances, including oil. Thus, in developing those rules, these questions have been and are continuing to be addressed in detail with respect to damages in compensation to the public. Natural resources which are valued by the public include those where there are consumptive uses (fisheries and hunting of wildlife), non-consumptive uses (Wildlife viewing, shoreline recreation, boating, education), and existence and option values. Private interests would center on use values where a profit is made from those uses. This paper reports that there are two ways natural resource injuries following a spill might be quantified: by measuring the injury in the field and by utilizing a numerical model to estimate the expected injury given the circumstances and location of the spill. The CERCLA rules for damage assessment include these two options, termed type B and type A, respectively

  17. Combustion: an oil spill mitigation tool

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The technical feasibility of using combustion as an oil spill mitigation tool was studied. Part I of the two-part report is a practical guide oriented toward the needs of potential users, while Part II is the research or resource document from which the practical guidance was drawn. The study included theoretical evaluations of combustion of petroleum pool fires under the effects of weathering and an oil classification system related to combustion potential. The theoretical analysis of combustion is balanced by practical experience of oil burning and case history information. Decision elements are provided which can be used as a guide for technical evaluations of a particular oil spill situation. The rationale for assessing technical feasibility is given in the context of other alternatives available for response to an oil spill. A series of research and technology development concepts are included for future research. The ethics of using oil burning are discussed as issues, concerns, and tradeoffs. A detailed annotated bibliography is appended along with a capsule review of a decade of oil burning studies and other support information.

  18. The Exxon-Valdez oil spill

    International Nuclear Information System (INIS)

    This paper reports that satellite images were used to investigate the Exxon Valdez oil spill after the tanker ran aground on Bligh Reef, Alaska 24 March 1989. Since that time, over 11 million gallons of crude oil have circulated through the western Prince William Sound region of Alaska, oiling many of its beaches. A good deal of this oil subsequently entered the Gulf of Alaska with some transported beyond Kodiak Island, 500 km to the southwest. Satellite imagery of the spill was recorded by the NOAA Advanced Very High Resolution Radiometer, the Landsat Thematic Mapper, the SPOT Panchromatic Scanner and the SPOT Multispectral Scanner. Images from all four of these sources have been analyzed to help ascertain the extent of the spill and monitor its trajectory along the Alaskan coast. Digital image processing techniques have been utilized to emphasize spectral responses related to oil on the water surface and on teaches. Turbidity and sea surface temperature data have been enhanced to provide information on the circulation and distribution of surface water bodies. In addition to the satellite imagery, airborne visual observations with aerial photography, Side-Looking Airborne Radar, and other airborne sensors as well as shipboard sightings and samples were acquired

  19. Oil spill detection by means of synthetic aperture radar

    OpenAIRE

    Gambardella, Attilio

    2007-01-01

    In this thesis work a new approach to observe sea oil spills by means of remotely sensed SAR data and physical scattering modeling has been developed. First the mahematical problem of the oil spill detection has looked for the objective definition of the feature space and of the nature of the classification problem. The oil spill classification problem is formulated as a one-class classification problem and an approach to perform a qualitatively analysis and to objectively select among the cl...

  20. New problems and opportunities of oil spill monitoring systems

    OpenAIRE

    Barenboim, G. M.; Borisov, V. M.; Golosov, V. N.; Saveca, A. Yu.

    2015-01-01

    Emergency oil and oil products spills represent a great danger to the environment, including ecosystems, and to the population. New problems of such dangerous spills and methods of early detection are discussed in this paper. It is proposed to conduct assessment of biological hazards of such spills on the basis of data on the distribution of individual oil hydrocarbons within the column of the water body and computer predictions of their toxicity. Oil radioactivity, which is associated with u...

  1. Spreading of Oil Spill on Placid Aquatic Medium

    OpenAIRE

    Derrick O. NJOBUENWU; Millionaire F. N. ABOWEI

    2008-01-01

    Continuous research in the development of suitable predictive model is vital as the input of oil spills into the aquatic environment particularly in the Niger Delta area of Nigeria is alarming due to frequent oil spills. This eventually affects aquatic organisms and shoreline activities. This work developed an semi-empirical expression that can predict the horizontal spreading of Niger Delta Oil Spills (NDOS) on a placid water body using simple physical coefficients of the oil and the aquatic...

  2. Inadequacy of federal forum for resolution of oil spill damages

    International Nuclear Information System (INIS)

    This paper presents a barrister's observations of how the determination of liability and damage following an oil spill might be made more manageable. The author concludes that standard trial in Federal Court, with traditional right to a jury and existing rules of evidence, is not an appropriate forum for the adjudication of massive oil spill cases. Rather, a special multi-destruct panel should be created to deal specifically with oil spill damage cases

  3. Fish and wildlife contingency plan for oil and hazardous materials spills in South Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Spill responders should become familiar with the contacts and other information contained in this Contingency Plan before a spill occurs. Spill cleanup methods vary...

  4. Oil spills: Is the perception worse than the reality?

    International Nuclear Information System (INIS)

    Most people form their perceptions of oil spills from television pictures immediately after the spill occurs. But the real environmental impact of the spill will not be felt until later, long after the TV crews have left and public attention has focused elsewhere. And the good news, says Mielke, is that the long-term damages may be less than initially perceived. Nature operates a very effective cleaning service. The perceived impact of an oil spill may be only vaguely related to what ultimately happens to the oil or to the oils interaction with the affected area, Mielke says. This was the case with two large spills in the 1970s - the Arco Merchant spill off Massachusetts in 1976 and the Amoco Cadiz spill off Brittany, France, in 1978. And it may be the case with the Exxon Valdez spill in Prince William Sound in Alaska in the spring of 1989, he adds. Human efforts to clean up the spills are less effective than nature's own processes, he says, and, in some cases, can actually delay the natural ecological restoration. This raises the question of whether the cost to society of massive physical clean-up efforts is equal to the social and environmental benefit

  5. Shoreline impacts in the Gulf of Alaska region following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Forty-eight sites in the Gulf of Alaska region (GOA-Kodiak Island, Kenai Peninsula, and Alaska Peninsula) were sampled in July/August 1989 to assess the impact of the March 24, 1989, Exxon Valdez oil spill on shoreline chemistry and biological communities hundreds of miles from the spill origin. In a 1990 companion study, 5 of the Kensai sites and 13 of the Kodiak and Alaska Peninsula sites were sampled 16 months after the spill. Oiling levels at each site were estimated visually and/or quantified by chemical analysis. The chemical analyses were performed on sediment and/or rock wipe samples collected with the biological samples. Additional sediment samples were collected for laboratory amphipod toxicity tests. Mussels were also collected and analyzed for hydrocarbon content to assess hydrocarbon bioavailability. Biological investigations at these GOA sites focused on intertidal infauna, epifauna, and macroalgae by means of a variety of common ecological techniques. For rock sites the percentage of hard substratum covered by biota was quantified. At each site, up to 5 biological samples (scrapes of rock surfaces or sediment cores) were collected intertidally along each of 3 transects, spanning tide levels from the high intertidal to mean-lowest-low-water (zero tidal datum). Organisms (down to 1.0 mm in size) from these samples were sorted and identified. Community parameters including organism abundance, species richness, and Shannon diversity were calculated for each sample. 43 refs., 13 figs., 3 tabs

  6. Measuring efficacy of bioremediation of oil spills: Monitoring, observations, and lessons from the apex oil spill experience

    International Nuclear Information System (INIS)

    Bioremediation treatment and monitoring were observed at an oiled marsh in upper Galveston Bay, Texas, August 5 to 8, 1990, during response to the oil spill created by the collision of three Apex barges and the tanker Shinoussa. Samples of oil from treated and untreated sites were collected and independently analyzed for evidence of biodegradation. Required monitoring protocols for water and sediment quality and acquisition of samples for chemical analysis were expertly adhered to. Visual observations indicated that the treated oil experienced color changes. However, after several days there were no significant visual differences in oil appearance in treated and untreated plots. Chemical analyses from samples collected by observers (independent of the required monitoring program) indicated that there were also no apparent chemical differences in petroleum hydrocarbon patterns between treated and untreated plots. Water from one or both of two treated sites was toxic to mysid shrimp; it is possible that micronutrients (trace elements) in the nutrient mix may have contributed to that toxicity. Increased monitoring is needed to demonstrate the efficacy and effects of bioremediation

  7. Salt marsh recovery from a crude oil spill: Vegetation, oil weathering, and response

    International Nuclear Information System (INIS)

    When a spill of Prudhoe Bay crude oil covered a fringing Salicornia virginica marsh in Fidalgo Bay, Washington (northern Puget Sound) in February 1991, response personnel used several low-impact techniques to remove oil from the marsh, and minimized access by cleanup workers. Following the response, a monitoring program was established to track marsh recovery, and to document the effectiveness of the response techniques used and their impacts on the marsh. Through monthly sampling over a 16-month period, vegetative growth was monitored and chemical degradation of remaining oil was tracked. Sampling was conducted along transects located in four areas affected in different ways by the spill, including an oiled, trampled section; an oiled, vacuumed section; and an oiled, washed, and vacuumed section. In addition, a control transect was established in an unoiled adjacent marsh. The study included both biological and chemical components. Biological measurements included percent cover of live vegetation (sampled monthly) and below-ground plant biomass (sampled at the beginning of each growing season in April 1991 and April 1992). Sediment samples included surface sediment (monthly) and core samples collected at the beginning and end of the growing seasons. Sediment samples were analyzed using gas chromatography/mass spectroscopy, and indicator compounds were tracked to determine rates of oil degradation. Results from 16 months of post-spill monitoring show that foot trampling was most detrimental to marsh plants, while washing with vacuuming removed the most oil and minimized adverse impacts to vegetation. Dense clay substrate helped prevent oil from penetrating the sediment, thus minimizing acute toxic effects from oil exposure to marsh plant rootstock. By the second growing season post-spill, Salicornia and other marsh plants were growing in all areas except one heavily oiled patch

  8. Overview of environmental investigations and remediations of leaks and spills in oil and gas fields

    International Nuclear Information System (INIS)

    Historic and current leaks and spills in oil and gas fields can involve a variety of hazardous compounds, can be located virtually anywhere on site, and may significantly degrade soils and groundwater quality. Environmental evaluation of historic and current leaks and spills in oil and gas fields occurs in the investigative stage, characterized by a site assessment and field evaluation. The site assessment includes a site survey, aerial photo interpretation, review of regulatory agency records, operators' records, previous work by consultants, and interviews with knowledgeable persons. The field evaluation, designed to examine the lateral and vertical extent of the spill or leak, could include a soil gas survey, cone penetrometer, trenching, and drilling. Using these techniques, collected soil or groundwater samples can be analyzed in a laboratory to differentiate the various hazardous compounds on-site. Once an environmental investigation has been performed to define the vertical and lateral extent of a spill and the potential pathways that the hazardous compound will move to expose a given population, then remediation options can be designed. Remedial programs for hazardous compounds commonly found in oil and gas fields include the following in-situ technologies: volatilization, biodegradation, leaching and chemical reaction, vitrification, passive remediation, and isolation/containment. Non-in-situ technologies include land farming, incineration, asphalt incorporation, solidification/stabilization, groundwater extraction and treatment, chemical extraction, and excavation and offsite disposal. Factors affecting remedial measures are cost of technology, time available to finish remediation, technical feasibility, regulatory acceptance, and accessibility and availability of space in the remediation area

  9. Enhancing spill prevention and response preparedness through quality control techniques

    International Nuclear Information System (INIS)

    The year 1990 saw passage of federal and state oil spill legislation directing the US Environmental Protection Agency and the Florida Department of Environmental Regulation to require on shore bulk petroleum storage facilities to improve their oil spill response and prevention capabilities. The Florida Power ampersand Light Company (FPL), to address concerns arising out of several recent significant spills which had occurred worldwide, and to examine its current situation with regard compliance with the new laws, formed a quality improvement interdepartmental task team in July 1989. Its mission was to reduce the potential for oil spills during waterborne transportation between FPL's fuel oil terminals and its power plants and during transfer and storage of oil at these facilities. Another objective of the team was to enhance the company's spill response preparedness. Using quality control tools and reliability techniques, the team conducted a detailed analysis of seven coastal power plants and five fuel oil terminal facilities. This analysis began with the development of cause-and-effect diagrams designed to identify the root causes of spills so that corrective and preventive actions could be taken. These diagram are constructed by listing possible causes of oil spills under various major categories of possible system breakdown, such as man, method, equipment, and materials. Next, potential root causes are identified and then verified. The team identified the occurrence of surface water oil spill and reduced spill response capability as primary concerns and accordingly constructed cause-and-effect diagrams for both components. Lack of proper procedures, failure of control equipment, and inadequate facility design were identified as potential root causes leading to surface water oil spills. Lack of proper procedures, an inconsistent training program, and response equipment limitations were identified as potential root causes affecting oil spill response capabilities

  10. OIL SPILL BIOREMEDIATION: EXPERIENCES, LESSONS AND RESULTS FROM THE EXXON VALDEZ OIL SPILL IN ALASKA

    Science.gov (United States)

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  11. Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay - RJ - Brazil Caracterização química e microbiológica de sedimentos de manguezal após um grande derramamento de óleo na Baia de Guanabara, RJ, Brasil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Maciel-Souza

    2006-09-01

    Full Text Available Seventeen months after a 1,3 million L oil spill into Guanabara Bay, analyses of mangrove sediments showed that the three sites closest to the spill remain highly polluted (>10 µg-g-1 polyaromatic hydrocarbons. A fourth site was less polluted, from which most hydrocarbon degrading bacteria were isolated.Dezessete meses após um derramamento de 1,3 milhões de litros de óleo na Baía de Guanabara, análises de sedimento do manguezal mostraram que os três pontos de amostragem mais próximos do local do acidente permanecem altamente poluídos (>10 µg-g-1 hidrocarbonetos poliaromáticos. Do quarto ponto de amostragem, o menos poluído, foi isolada a maioria das bactérias degradadoras de hidrocarbonetos.

  12. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  13. Phytoplankton dynamic responses to oil spill in Mumbai Harbour

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ram, A.; Rokade, M.A.; Karangutkar, S.H.; Yengal, B.; Dalvi, S.; Acharya, D.; Sharma, S.; Gajbhiye, S.N.

    always >1 (2.7- 8.0) before oil spill which decreased to <1 (0.8-0.9) during the period of oil spill indicating an unhealthy condition of phytoplankton cells. Thus significantly high oil contamination in the region resulted in degradation of pigments...

  14. Ecological Impacts During the Deepwater Horizon Oil Spill Response

    Science.gov (United States)

    The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U.S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilo...

  15. Ecological impacts of the Deepwater Horizon oil spill

    Science.gov (United States)

    The Deepwater Horizon oil spill (DWH) was the largest environmental disaster and response effort in United States history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep ocean communities and over 1...

  16. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    Science.gov (United States)

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  17. Statistics of extremes in oil spill risk analysis.

    Science.gov (United States)

    Ji, Zhen-Gang; Johnson, Walter R; Wikel, Geoffrey L

    2014-09-01

    The Deepwater Horizon oil spill (DWH) in 2010 in the Gulf of Mexico is the largest accidental marine oil spill in the history of the petroleum industry. After DWH, key questions were asked: What is the likelihood that a similar catastrophic oil spill (with a volume over 1 million barrels) will happen again? Is DWH an extreme event or will it happen frequently in the future? The extreme value theory (EVT) has been widely used in studying rare events, including damage from hurricanes, stock market crashes, insurance claims, flooding, and earthquakes. In this paper, the EVT is applied to analyze oil spills in the U.S. outer continental shelf (OCS). Incorporating the 49 years (1964-2012) of OCS oil spill data, the EVT is capable of describing the oil spills reasonably well. The return period of a catastrophic oil spill in OCS areas is estimated to be 165 years, with a 95% confidence interval between 41 years and more than 500 years. Sensitivity tests indicate that the EVT results are relatively stable. The results of this study are very useful for oil spill risk assessment, contingency planning, and environmental impact statements on oil exploration, development, and production. PMID:25109900

  18. Trends in oil spills from tanker ships 1995-2004

    International Nuclear Information System (INIS)

    The trends in oil spills around the world over from 1995 to 2004 were examined and analyzed for possible influences on spill volumes and frequencies for incidents of 3 spill size classes. The International Tanker Owners Pollution Federation (ITOPF) has maintained a database since 1974 of all oil spills from tankers, combined carriers and barges. The number of oil spills has decreased significantly in the last 30 years despite a steady increase in maritime oil trade since the 1980s. The recent trends were identified by causes, locations, oil type, and shipping legislation. The causes include ship loading/discharging, bunkering, collisions, groundings, hull failures and fires. The types of oil spilt include bunker, crude, cargo fuel, white product and some unknowns. It was concluded that the decline in oil spills is due to a range of initiatives taken by governments and the shipping industry rather than any one factor. Some notable influences towards reduced number of spills include: the international convention for the prevention of pollution from ships of 1972, as modified by the Protocol of 1978; the international convention for the safety of life at sea of 1974; and the Oil Pollution Act of 1990. Results of investigations into the causes of spills serve the purpose of informing the international process to further prevent and reduce marine oil pollution due to tankers. 7 refs., 5 tabs., 12 figs

  19. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  20. Seaweeds and the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    A three-year study, initiated in 1989, has evaluated the response of subtidal and intertidal seaweed communities to the Exxon Valdez oil spill and subsequent cleanup activities. The project was part of the coastal habitat injury assessment research sanctioned under the natural resource damage assessment program. A stratified random design was used to select oiled sites for the study. Paired control (unoiled) sites were then matched to the oiled sites. The most consistent effect found in subtidal populations in Prince William Sound was the higher relative abundance of small-size classes of kelps at the oiled sites, indicating the prior disappearance of larger plants. This disappearance was possibly caused by activities associated with the cleanup operations. Intertidal populations of algae were affected by the spill and cleanup in all three major areas studied: Prince William Sound, Cook Inlet-Kenai, and Kodiak-Alaskan Peninsula. The most obvious effect was a significant removal of the dominant intertidal plant Fucus gardneri from the mid and upper intertidal zones. The limited dispersal of this plant combined with the relatively harsh conditions of the upper intertidal will cause a slow recovery of the upper intertidal zone in the affected areas. Effects of the spill extended to other algal species. Species such as Cladophora, Myelophycus, Odonthalia, Palmaria, and Polysiphonia showed decreases in their percent cover at oiled sites. Only Gloiopeltis populations appeared to increase in percent cover in oiled areas. In both the Cook Inlet-Kenai and the Kodiak-Alaskan Peninsula areas Fucus populations appeared to be enhanced in the lower intertidal zone - between 2 and 3 meters below the high-tide mark - in 1991

  1. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  2. Oil spill in Bombay high marine impacts

    Digital Repository Service at National Institute of Oceanography (India)

    ecology due to oil pollution. As a follow-up of the decision of the Government, research vessel Sagar Kanya with a team of scientists proceeded to the spill area on 20th May 1993. Subsequently a joint aerial survey by a team drawn from NIO and ONGC... coast within, 3 to 5 days with the shore of Murud as the most likely landfall area. During joint discussion among Director, NIO; Chairman, Central Pollution Control Board; Member Secretary, Maharashtra Pollution Control Board (MPCB); Dy. G.M. ONGC...

  3. Bacteria Provide Cleanup of Oil Spills, Wastewater

    Science.gov (United States)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  4. Regional economic impact of oil spills

    International Nuclear Information System (INIS)

    An approach is demonstrated of coupling an environmental model to input-output analysis which aims to quantify the regional economic impact of an environmental accident. The model is implemented with the data of a potential oil spill interacting with the salmon aquaculture industry in Northern Norway. The production loss in salmon aquaculture and the regional income impact is computed and discussed. The approach used in this article could be a model for estimating the regional socio-economic impact of environmental factors like water and air pollution. 1 fig., 4 tabs., 19 refs

  5. Estimating Potential Effects of Hypothetical Oil Spills on Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Durner, G.M.; McDonald, T.L.; Johnson, W.R.

    2006-01-01

    Much is known about the transport and fate of oil spilled into the sea and its toxicity to exposed wildlife. Previously, however, there has been no way to quantify the probability that wildlife dispersed over the seascape would be exposed to spilled oil. Polar bears, the apical predator of the arctic, are widely dispersed near the continental shelves of the Arctic Ocean, an area also undergoing considerable hydrocarbon exploration and development. We used 15,308 satellite locations from 194 radiocollared polar bears to estimate the probability that polar bears could be exposed to hypothetical oil spills. We used a true 2 dimensional Gausian kernel density estimator, to estimate the number of bears likely to occur in each 1.00 km2 cell of a grid superimposed over near shore areas surrounding 2 oil production facilities: the existing Northstar oil production facility, and the proposed offshore site for the Liberty production facility. We estimated the standard errors of bear numbers per cell with bootstrapping. Simulated oil spill footprints for September and October, the times during which we hypothesized effects of an oil-spill would be worst, were estimated using real wind and current data collected between 1980 and 1996. We used ARC/Info software to calculate overlap (numbers of bears oiled) between simulated oil-spill footprints and polar bear grid-cell values. Numbers of bears potentially oiled by a hypothetical 5912 barrel spill (the largest spill thought probable from a pipeline breach) ranged from 0 to 27 polar bears for September open water conditions, and from 0 to 74 polar bears in October mixed ice conditions. Median numbers oiled by the 5912 barrel hypothetical spill from the Liberty simulation in September and October were 1 and 3 bears, equivalent values for the Northstar simulation were 3 and 11 bears. In October, 75% of trajectories from the 5912 barrel simulated spill at Liberty oiled 9 or fewer bears while 75% of the trajectories affected 20 or

  6. Waste minimization concepts applied to oil spill response

    International Nuclear Information System (INIS)

    Oil Pollution Act 1990 requires bulk oil cargo vessels and facilities' owners and operators to formulate oil spill response plans for U.S. Coast Guard approval. The industry-based plans should provide specific enhancement to localized, general plans being developed by a team of federal, state, and local agency representatives, including industry participation. This group planning process is referred to as Area Contingency Plans. Although the intensive response planning probably will improve marine oil spill preparedness, current oil spill management practices and regulatory guidelines do not encourage waste minimization - type environmental accountability. This paper provides a waste minimization analysis of the available oil spill response technologies and strategies, offering an environmental management overview on how to best protect the environment after a marine oil spill

  7. Laser cleaning of oil spill on coastal rocks

    Science.gov (United States)

    Kittiboonanan, Phumipat; Rattanarojpan, Jidapa; Ratanavis, Amarin

    2015-07-01

    In recent years, oil spills have become a significant environmental problem in Thailand. This paper presents a laser treatment for controlled-clean up oil spill from coastal rocks. The cleaning of various types of coastal rocks polluted by the spill was investigated by using a quasi CW diode laser operating at 808 nm. The laser power was attempted from 1 W to 70 W. The result is shown to lead to the laser removal of oil spill, without damaging the underlying rocks. In addition, the cleaning efficiency is evaluated using an optical microscope. This study shows that the laser technology would provide an attractive alternative to current cleaning methods to remove oil spill from coastal rocks.

  8. British Columbia marine oil spill response plan. Rev. ed.

    International Nuclear Information System (INIS)

    The scope and structure of British Columbia's involvement in response to a major oil spill was defined in this document. Emergency preparedness and response management in the case of an oil spill in British Columbia is the responsibility of the Ministry of Water, Land and Air Protection. The Incident Command Post is a marine oil spill response plan that focuses on a response at the spill site. This marine oil spill response plan was designed to be operated concurrently and in cooperation with the plans in place by other responding jurisdictions and companies. The plan discusses: provincial response strategy; incident notification, escalation and support; response organization; checklist of individual duties; ministry roles and services; and provincial support. 27 refs., 6 figs

  9. Airborne laser sensors for oil spill remote sensing

    International Nuclear Information System (INIS)

    The use of remote sensing technology as an effective tool in oil spill response measures was discussed. Environment Canada is currently developing airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF), and the Laser Ultrasonic Remote Sensing of Oil Thickness (LURSOT). Each remote sensor is designed to respond to specific roles in oil spill response. The SLEAF is designed to detect and map oil spills in complicated shoreline environments. The LURSOT will provide an absolute measurement of oil thickness from an airborne platform. The information provided is necessary to determine which countermeasures should be taken, such as dispersant application or in-situ burning. A new measuring technique has also been developed in which the thickness of oil spill on water can be accurately measured. 1 fig

  10. Feature Extraction and Classification of Oil Spills in SAR Imagery

    Directory of Open Access Journals (Sweden)

    Radhika V

    2011-09-01

    Full Text Available Synthetic Aperture RADAR (SAR imaging system is used to monitor the marine system. Oil spill pollution plays a significant role in damaging marine ecosystem. One main advantages of SAR is that it can generate imagery under all weather conditions. In a SAR image dark spots can be generated by number of phenomena. The dark spots may be of algae, low wind areas, coastal areas and oil spills. The detected dark spots are then classified based on the features. The features of dark spot are extracted to discriminate oil spill from look-alikes. The textural and statistical features are extracted and analyzed for oil spill identification. This paper discusses about the different feature extraction and classification method for oil spill detection and their preliminary results.

  11. OSIS: A PC-based oil spill information system

    International Nuclear Information System (INIS)

    Warren Spring Laboratory and BMT Ceemaid Ltd. are cooperating to produce an Oil Spill Information System (OSIS) that will have worldwide application. OSIS is based on EUROSPILL, a spill simulation model originally developed under programs sponsored by the European Commission and the Marine Pollution Control Unit of the United Kingdom government's Department of Transport. OSIS is implemented in the Microsoft Windows 3.x graphical environment on a personal computer. A variety of options enables the user to input information on continuous or instantaneous spills of different types of oil under variable environmental conditions, to simulate the fate of oil and the trajectory of a spill. Model results are presented in the forms of maps, charts, graphs, and tables, displayed in multiple windows on a color monitor. Color hard copy can be produced, and OSIS can be linked to other Windows software packages, providing the opportunity to create a suite of spill incident management tools

  12. Recovery from Ashland oil spill illustrates nature's resiliency

    International Nuclear Information System (INIS)

    Data indicate that, except for some oil residues in the sediments of the upper Monongahela River, all traces have disappeared of the oil spill that happened January 2, 1988 when Ashland Oil Company's steel tank burst. The spill, that sent 700,000 gal of the number-sign 2 diesel oil into the river, was called a disaster. Concentrations of oil in the river sediments have since approached pre-spill levels, hatchings of water birds have returned to normal and healthy catches of sauger and walleye have been reported. Lack of baseline data has made it difficult to assess the impact of the spill on the ecology but funds from the Ashland Oil Company's settlement with the Commonwealth of Pennsylvania have been earmarked for a comprehensive recreational and ecological survey of the upper Ohio River basin. The survey is expected to provide baseline data to assess future spill impacts and to guide river management

  13. Oil spill risks for Copper River Delta in Alaska

    International Nuclear Information System (INIS)

    The oil spills which occurred at Prince William Sound and at Hinchinbrook Entrance in the northern Gulf of Alaska were discussed. Oil spill simulations were conducted to determine if the spilled oil could be carried to the Copper River Delta from these two sites. The study included both stochastic simulations showing the most probable path of the oil, and trajectory and fate simulations showing individual trajectories. Wind records were obtained from the National Oceanographic Data Center's stored wind observations. Previous hydrodynamic model results from other simulations which had been stored, were retrieved for use as input in the oil spill model simulation. It was concluded that westerly winds are not persistent enough to transport the oil from the spill sites to the Copper River. The available data suggests that oiling of the Copper River Delta is highly unlikely. 17 refs., 2 tabs., 10 figs

  14. Synthetic aperture radar sensors : viable for marine oil spill response?

    International Nuclear Information System (INIS)

    The movement of marine oil spills has been observed and tracked for several years using space borne Synthetic Aperture Radars (SAR). The advantages of SAR for monitoring oil spills include wide field-of-view, foul weather independence, and day/night capabilities. However, SAR displays several shortcomings such as low spatial resolution, long revisit times, no positive means of oil detection, confusion with numerous false targets, and a limited wind speed window in which to observe the oil spill. The authors reviewed the history behind the use of SAR sensors in their capacity as marine oil spill response tools. They presented case studies to better illustrate the benefits of using SAR imagery, in light of the new generation of SAR sensors currently emerging. It is expected that the new SAR sensors coming on stream will enable oil response teams to use the information gathered in a tactical oil spill response. 20 refs., 3 tabs., 5 figs

  15. Use of SURFACE CHEMKIN to model multiphase atmospheric chemistry: Application to nitrogen tetroxide spills

    Science.gov (United States)

    Brady, Brian B.; Robbin Martin, L.

    SURFACE CHEMKIN is a widely available computer program developed for kinetic modeling of chemical vapor deposition. We show that it may be adapted for kinetic modeling of multiphase chemistry in the atmosphere, with broad capability to deal with complex chemistry and physics. It can deal with multiple phases having different reaction manifolds in each phase, it deals with gas, surface, and bulk reactions and mass transfer rates, it keeps track of the phase equilibria with realistic activities, and it can operate in an adiabatic mode to include the effect of heat release on the system. The adapted model is applied here to the problem of a nitrogen tetroxide spill in the troposphere. The model is able to predict the formation of a nitric acid/water aerosol and to follow the chemistry taking place in both the gas and liquid phases as the spill dilutes in the surrounding atmosphere. The model predicts that in such a spill, most (70-90%) of the nitrogen oxides released are converted to nitric acid over a wide range of relative humidity.

  16. Monitoring the degree of biodegradation of oil spill in marine environment with NIR spectroscopy

    International Nuclear Information System (INIS)

    An analytical technique for oil analysis using near-infrared (NIR) spectroscopy was presented and the feasibility of using NIR spectroscopy in oil spill incidents was discussed. In the event of a marine oil spill, rapid decisions must be made about which control measures should be taken to contain the spill and which types of procedures should be followed to reduce the environmental impact of the oil. In order to make the most appropriate decision, it is crucial for the on-site coordinator to have knowledge of the physical and chemical state of the oil (such as how much it has biodegraded). NIR spectroscopy can quickly determine the degree of biodegradation of oil and requires very little, if any, sample preparation, thereby offering fast and simple analyses. Oil-containing samples were taken from two biodegradation experiments and multivariate calibration models were established for the C17/pristane and C18/phytane ratios, and for hydrocarbon content. 16 refs., 1 tab., 5 figs

  17. Characterization and evaporation of Pina crude oil spilled at sea and on beach sand

    International Nuclear Information System (INIS)

    The physical and chemical properties of Pina crude oil are analyzed, and the evaporation of this same crude oil spilled at sea and on calcareous type beach sand is described. The properties were analyzed for future uses in simulations of oil spills at sea. Among the parameters used in the characterization are specific gravity, viscosity, flash point, hydrocarbon groups, sulphur content, distillation, and interfacial and surface tension. In the evaporation process, the influence of layer thickness of crude oil and the influence of the height of the air chamber for the same thickness of crude oil at different wind velocities and conditions was of particular interest. The evaporated fraction was also correlated with the time and qualitative and quantitative variation of the components of the crude oil were studied by gas chromatography. The maximum per cent of evaporation over a 28 day period was 39 per cent at sea and 35.4 per cent when the same crude was spilled on sand. 5 refs., 6 figs

  18. Application of knowledge based systems technology to the management of accidental spills

    International Nuclear Information System (INIS)

    The AIDA personal computer based expert system has been developed to assist electric utility personnel in the case of a hydrocarbon chemical spill in a transformer yard. The types of accidents which could result in such a spill are described, and the role of expert systems in managing such an accident is explained. The stages of conceptual analysis and computer implementation of the AIDA expert system are then reviewed. To date, the AIDA system includes more than 600 rules and procedures which refer to over 450 variables or different facts. The architecture of the system is composed of four distinct rule bases, each associated with one of four stages of problem resolution (determination of the possible flow paths of pollutant if no action is taken, visual reconnaissance, selection and prioritization of locations where intervention should occur, and determination of the means of intervention appropriate for each location). Uniform procedures for reading of data and output of results allow each rule base to operate independently and only to recover the information that each requires. The AIDA man-machine interface is designed to allow the user to visualize the propagation of the pollutant in the environment, the management of the spill, and the necessary or useful information for understanding the reasoning behind the recommendations proposed by the expert system. 7 refs., 3 figs

  19. An assessment of travel time for spills management - using HEC-RAS water quality analysis

    International Nuclear Information System (INIS)

    In order to mitigate the detrimental effects that contaminants such as petrochemical and chemical spills may have on the environment it is critical to understand their transport. This paper presented an assessment of travel time for spills management using HEC-RAS water quality analysis on the Credit River Watershed. It is a 1000 km2 area of urban and rural landscapes drained by 90 km of the main Credit River. The study focused on the mixing characteristics of 5 stream reaches in the Credit River watershed. Dye tracing was done under three different flow conditions to obtain a longitudinal dispersion coefficient, which is a necessary parameter for predicting and modelling time concentration curves downstream of a spill. The longitudinal dispersion coefficient was input into the US Army Corp of Engineers, Hydrologic Engineering Centers River Analysis System (HEC RAS) to predict time concentration curves. The HEC RAS model produced average travel time close to those measured in the field after final calibration was completed.

  20. The development of laboratory methods for assessing the efficacy and toxicity of oil spill bioremediation agents

    International Nuclear Information System (INIS)

    Environment Canada has recently developed interim guidelines and methods for a screening-level laboratory evaluation of the efficacy and toxicity of oil spill bioremediation agents (OSBAs) or products. Ten different OSBAs have been tested to aid in protocol validation and assessment. The efficacy of each OSBA is assessed by comparing its ability to bring about changes in the chemical composition of a standard test oil with that obtained using a standard solution of nutrients and/or a standard mixture of hydrocarbon degrading bacteria. The efficacy tests involve the use of the shaker flask incubation technique using either a marine or a fresh water medium. The aquatic toxicity of each OSBA is assessed by measuring its capacity to cause adverse toxic effects on selected species of aquatic organisms. To date, the toxicity assessments have utilized rainbow trout and daphnid acute lethality tests and Microtox. OSBAs which satisfy the requirements and meet the criteria set in the guidelines are considered to have potential application for their intended use. The results from the testing and other data submitted will be made available to various operational and spill response personnel to assist them in assessing the conditions and acceptability for use of that product in response to an oil spill in the environment. 5 refs., 5 figs

  1. Effects of COREXIT EC9500A on bacterial communities influenced by the Deepwater Horizon oil spill

    Science.gov (United States)

    Fulmer, P. A.; Hamdan, L. J.

    2010-12-01

    Hydrocarbon-degrading bacteria are important to controlling the fate of natural and anthropogenic hydrocarbons in the marine environment and will be an important component to the natural attenuation of the Deepwater Horizon spill. The chemical dispersant COREXIT®EC9500A was widely deployed during the Deepwater Horizon response. Although toxicity tests confirm that COREXIT®EC9500A does not pose a significant threat to invertebrate and adult fish populations, there is limited information on its effect on microbial communities. Microbial community composition was determined in freshly deposited oil on a beach in Louisiana, resulting from the spill. Secondary heterotrophic production and viability in cultures obtained from oil samples was determined in the presence and absence of COREXIT®EC9500A . Vibrio isolates were abundant in length heterogeneity-PCR fingerprints of oil samples along with hydrocarbon-degrading isolates affiliated with Acinetobacter and Marinobacter. Significant reductions in Acinetobacter and Marinobacter production and viability in the presence of the dispersant compared to controls were observed. Marinobacter is most sensitive to the dispersant as evidenced by a near 100% reduction in viability and production as a result of exposure to environmentally relevant concentrations of the dispersant. Significantly, at the same dispersant concentration, non-hydrocarbon-degrading Vibrio isolates proliferate. These data suggest that hydrocarbon-degrading bacteria are inhibited by this dispersants and that it’s use could potentially diminish the capacity of environmental microbial communities to bioremediate the spill.

  2. Improved oil spill recovery using polypropylene fabric

    International Nuclear Information System (INIS)

    An active boom for recovering oil spills was tested in a tank with diesel fuel, a motor oil, and a heavy crude oil. The boom consisted of a porous pipe wrapped in a polypropylene fabric to which a vacuum was applied. The diesel was recovered at a rate of 29 gal/h per ft2 of fabric surface area (GHPF) using a vacuum of 17 in. of water without any entrained water. The motor oil was recovered at a rate of 2.5 GHPF using a vacuum of 20 in. of water without any entrained water. The crude oil test at a vacuum of 8 in. Hg also resulted in a fluid recovery rate of 2.5 GHPF, but half of the recovered fluid was water. The results suggest that a device presenting a large surface area of polypropylene fabric to a spill of light or medium oil will separate the oil from the water. Uses for the device extend to other situations where oil-water separation is required. 1 ref., 4 figs., 3 tabs

  3. Combating oil spill problem using plastic waste

    International Nuclear Information System (INIS)

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy

  4. The Congressional response to oil spills

    International Nuclear Information System (INIS)

    March 24, 1989, ushered in a new era for oil spill reform legislation. Once the Exxon Valdez ran aground Bligh Reef and gusher over 11 million gallons of crude oil into pristine waters of Prince William Sound, Alaska, Congressional debate on comprehensive federal legislation would never be the same. Stalemate and frustration marked much of the B.V. (Before Valdez) period. Oil spill bills typically died quiet deaths at the end of each Congress. A flurry of legislation and debate has marked the new A.V. (After Valdez) era, however. Spurred by public outrage, members championed far-reaching proposals. For the first time in almost twenty years, both houses passed similar comprehensive reform bills. Some bills even reached the President's desk to become public law. This paper describes previous Congressional responses as well as the 101st Congress's ongoing efforts and highlights specific provisions, issues and recurring themes in proposed comprehensive legislation (S.686 and H.R. 1465). The paper concludes with general observations on the legislation's prospects and impacts

  5. Bioremediation: A countermeasure for marine oil spills

    International Nuclear Information System (INIS)

    Three main types of bioremediation techniques are currently being developed or used for treatment of oil spills: adding nutrients to oiled shorelines; adding microbes to oiled shorelines; and addition of nutrients and/or microbes to open water oil slicks. Since all these technologies attempt to accelerate biodegradation, the processes of biodegradation of oil are summarized. Some of the potential uses of this technology are discussed, including specific instances where bioremediation has been applied at oil spills. Guidelines for evaluating and monitoring bioremediation applications are presented. Of the three types of bioremediation discussed, nutrient addition seems to hold the most immediate promise, especially for use in areas that would be adversely affected by physical or other removal methods. Environments where nutrient addition may play an important role in shoreline treatment include sheltered shorelines that are heavily oiled, shorelines with subsurface oil, and sensitive environments, especially wetlands. Nutrient additions are less likely to be effective in environments that are already nutrient-rich and for short-term, immediate response actions. 41 refs., 1 tab

  6. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  7. Combating oil spill problem using plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Junaid, E-mail: junaidupm@gmail.com [Department of Chemical Engineering, University of Karachi (Pakistan); Ning, Chao; Barford, John [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); McKay, Gordon [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  8. Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills

    International Nuclear Information System (INIS)

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  9. Evaluation of methods for assessing toxicity of oil spill treating agents

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Hollebone, B.P. [Environment Canada, Ottawa, ON (Canada); Harrison, S. [SAIC Canada, Ottawa, ON (Canada)

    2007-07-01

    The first counter-measure considered during an oil spill is the mechanical removal of the spilled oil, but this rarely collects more than 20 per cent of the spilled oil. When mechanical means are insufficient, it is advisable to use spill treating agents (STAs). The potential impact of STAs on the environment is estimated by assessing their in-vitro toxicity to sensitive or sentinel organisms. The typical endpoint in animal exposure models is acute lethality LC{sub 50}, which is the concentration that will be fatal to 50 per cent of the test population. The range of STAs include dispersants; shoreline washing agents; de-emulsifiers or emulsion inhibitors; herding agents; recovery agents; solidifiers or gelling agents; biodegradation agents; and, sinking agents. However, a thorough understanding of the overall toxicity of the agent to the environment must be determined along with the net environmental benefit. The agents must undergo rigorous toxicity evaluations to meet the requirements of the New Substances Notification or Significant New Activity Notification sections of the Canadian Environmental Protection Act of 1999. Environment Canada's guidelines for the use and acceptability of dispersants also address toxicity issues. In particular, emphasis has been on evaluating toxicity by the 96-hour rainbow trout lethality test. This paper presented challenges to the current test protocols and recommended that Environment Canada's guidelines for the use of oil STAs should be modified to include a broader definition of toxicity. The toxicity of a dispersant should be less than the toxicity of the water soluble fraction of an oil slick. However, sublethal effects of dispersant exposure, such as endocrine disruption, organ toxicity, mutagenicity and geotoxicity must be better understood. It was argued that testing on one fish species in an enclosed system does not adequately address a diverse marine environment. It was recommended that testing procedures

  10. Oil spills and other issues in the aftermath of Hurricanes Katrina and Rita : an overview

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.W. [Lousiana Applied and Educational Research and Development Program, Baton Rouge, LA (United States)

    2006-07-01

    The aftermath of Hurricane Katrina revealed weaknesses in the command, control, communications, and information dissemination functions within a variety of emergency response systems. This paper gave an outline of clean-up procedures involving hazardous materials. To date, clean-up crews have disposed of 8.0 million tonnes of an estimated 22.0 million tonnes of debris. The clean-up involved more than 1.3 million containerized hazardous materials; more than 230,000 damaged white goods; and nearly 43,000 damaged electronic goods. More than 3,400 samples of water, soil and air have been collected. Nearly 75 chemistry laboratories in schools have been inspected, and an additional 1500 emergency assessments of potential chemical releases were investigated. The floodwaters carried nearly 4.1 million litres of oil from a Chalmette refinery. Between September and the end of 2005, the Louisiana Oil Spill Coordinator's Office logged in 81 spill events in southwest Louisiana involving 22,000 bbls of crude. Six major, 3 medium and 131 minor events have occurred in southeast Louisiana. More than 3000 offshore platforms were shut down or damaged during the 2005 hurricane season. At least 115 platforms were destroyed and 52 were damaged. Onshore spills of concern included incidents at Murphy Oil Refinery; Bass Enterprise Production Company; Chevron at Port Fourchon; Venice Energy Services Company; Shell Pipeline; and Sundown Energy. It was concluded work done by the spill community will result in the development of more effective response plans. 23 refs.

  11. Detection of oil spill and natural film in the marine environment by spaceborne Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the understanding of spaceborne SAR imaging of surface slicks, and subsequently to develop a method for classification of such slicks, including oil spill and natural chemical-biological film. Building up an extensive database of SAR imagery containing dark slicks, oil spills and its look-alikes have been studied and classified according to SAR image expression, backscatter, geographical occurrence and weather limitations. Natural film was identified as the look-alike most frequently difficult to distinguish from oil spills in the SAR imagery. During two experiments, major effort went into natural film sampling, documenting its composition, behaviour and SAR imaging characteristics. The results show that in general the concentration of fatty acids in natural films were an order of magnitude greater than outside the films. Coastal films had smaller fatty acid molecules, indicating marine sources, compared to the terrestrial sources of fjord films. The fjord films also gave a slightly higher damping in the SAR imagery than the coastal films. This was probably caused by differences in organic composition and concentration. A method was developed for using wind history in slick age estimation. Some trends in slick properties were discovered for oil films and natural films, but no one-to-one relationships were found. The supervised slick discrimination algorithm was developed and tested on 124 slicks in SAR imagery. Two look-alikes were classified as oil. They were both caused by other pollution spilled from oil platforms when wind history could not aid in age estimation. The expected problem with natural films being classified as oil was not reflected in the results, probably because the test data set does not include doubtful cases. 241 refs., 98 figs., 17 tabs

  12. Manure Spills in Streams: Current Practices and Remediation Methods to Minimize Water Quality Degradation

    Science.gov (United States)

    Manure spills into streams are an all too common byproduct of animal production. With greater numbers of animals raised on fewer farms, manure spills become greater problems due to the volume of manure spilled into aquatic ecosystems. This book chapter reviews why manure spills occur, and the curren...

  13. 75 FR 37783 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Science.gov (United States)

    2010-06-30

    ... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department of... meeting of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (the... spill and develop options to guard against, and mitigate the impact of, any oil spills associated...

  14. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    Science.gov (United States)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  15. Damage cost of the Dan River coal ash spill

    International Nuclear Information System (INIS)

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. - Highlights: • Six-month post-spill damage cost exceeded $295,000,000. • Components of cost include ecological, recreational, human health, property, and aesthetic values. • Attempts by the electric utility to “clean” the river left over 95% of coal ash behind. • Long-term impacts will likely drive the total damage cost much higher. - Damage costs of the Dan River coal ash spill are extensive and growing. The 6-month cost of that spill is valued at $295,485,000, and the long-term total cost is likely to rise substantially

  16. Trajectory of an oil spill off Goa, eastern Arabian Sea: Field observations and simulations

    International Nuclear Information System (INIS)

    An oil spill occurred off Goa, west coast of India, on 23 March 2005 due to collision of two vessels. In general, fair weather with weak winds prevails along the west coast of India during March. In that case, the spill would have moved slowly and reached the coast. However, in 2005 when this event occurred, relatively stronger winds prevailed, and these winds forced the spill to move away from the coast. The spill trajectory was dominated by winds rather than currents. The MIKE21 Spill Analysis model was used to simulate the spill trajectory. The observed spill trajectory and the slick area were in agreement with the model simulations. The present study illustrates the importance of having pre-validated trajectories of spill scenarios for selecting eco-sensitive regions for preparedness and planning suitable response strategies whenever spill episodes occur. - This is the first time model results have been compared with real oil spill observations along an Indian Coast

  17. Trajectory of an oil spill off Goa, eastern Arabian Sea: Field observations and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vethamony, P. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India)]. E-mail: mony@nio.org; Sudheesh, K. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India); Babu, M.T. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India); Jayakumar, S. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India); Manimurali, R. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India); Saran, A.K. [National Institute of Oceanography, Dona Paula, Goa 403 004 (India); Sharma, L.H. [Indian Coast Guard, District HQ-11, MPT Old Admin Building, Mormugao Harbour, Goa 403 803 (India); Rajan, B. [Indian Coast Guard, District HQ-11, MPT Old Admin Building, Mormugao Harbour, Goa 403 803 (India); Srivastava, M. [Indian Coast Guard, District HQ-11, MPT Old Admin Building, Mormugao Harbour, Goa 403 803 (India)

    2007-07-15

    An oil spill occurred off Goa, west coast of India, on 23 March 2005 due to collision of two vessels. In general, fair weather with weak winds prevails along the west coast of India during March. In that case, the spill would have moved slowly and reached the coast. However, in 2005 when this event occurred, relatively stronger winds prevailed, and these winds forced the spill to move away from the coast. The spill trajectory was dominated by winds rather than currents. The MIKE21 Spill Analysis model was used to simulate the spill trajectory. The observed spill trajectory and the slick area were in agreement with the model simulations. The present study illustrates the importance of having pre-validated trajectories of spill scenarios for selecting eco-sensitive regions for preparedness and planning suitable response strategies whenever spill episodes occur. - This is the first time model results have been compared with real oil spill observations along an Indian Coast.

  18. Process of cleaning oil spills and the like

    International Nuclear Information System (INIS)

    A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick

  19. Aerosols generated by spills of viscous solutions and slurries

    International Nuclear Information System (INIS)

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 μm, and the geometric standard deviation ranged from 3.8 to 28.0

  20. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 1: Study design and methods

    International Nuclear Information System (INIS)

    This paper describes the design and analysis of a large field and laboratory program to assess shoreline recovery in Prince William Sound following the Exxon Valdez oil spill. The study was designed so that results could be generalized area-wide (biology, chemistry) or habitat-wide (toxicology) and projected forward in time (chemistry). It made use of the sediment quality triad approach, combining biological, chemical, and toxicological measurements to assess shoreline recovery. Key aspects of the study include the following: coordinated field sampling for chemical, toxicological, and biological studies; stratified random sampling (SRS) as a basis for spatial generalization; periodic sampling to assess trends, including sites with worst-case conditions; analysis of oil-spill effects on hundreds of species; statistical methods based on normal and non-normal theory, consistent with the structure of the data, including generalized linear models and multivariate correspondence analysis. 45 refs., 5 figs., 4 tabs

  1. The oil spill in Prince William Sound, Alaska

    Directory of Open Access Journals (Sweden)

    DeGrange A.R.

    1990-02-01

    Full Text Available Following the Exxon Valdez oil spill in Prince William Sound Alaska, on March 24, 1989, treatment centres for sea otters were set up at Valdez, Seward and Homer. Otter survival rates were lower at Valdez than at Seward, probably because the animals collected were closer to the spill in time and space, and oil toxicity was at a maximum. Otters collected in Prince William Sound were predominantly female and pregnant or lactating. Weathered oil persists in otter habitats throughout the spill zone - long term studies are underway to assess the effects of this.

  2. PRP: The Proven Solution for Cleaning Up Oil Spills

    Science.gov (United States)

    2006-01-01

    The basic technology behind PRP is thousands of microcapsules, tiny balls of beeswax with hollow centers. Water cannot penetrate the microcapsule s cell, but oil is absorbed right into the beeswax spheres as they float on the water s surface. This way, the contaminants, chemical compounds that originally come from crude oil such as fuels, motor oils, or petroleum hydrocarbons, are caught before they settle. PRP works well as a loose powder for cleaning up contaminants in lakes and other ecologically fragile areas. The powder can be spread over a contaminated body of water or soil, and it will absorb contaminants, contain them in isolation, and dispose of them safely. In water, it is important that PRP floats and keeps the oil on the surface, because, even if oil exposure is not immediately lethal, it can cause long-term harm if allowed to settle. Bottom-dwelling fish exposed to compounds released after oil spills may develop liver disease, in addition to reproductive and growth problems. This use of PRP is especially effective for environmental cleanup in sensitive areas like coral reefs and mangroves.

  3. Laboratory tests, experimental oil spills, models, and reality: The Braer oil spill

    International Nuclear Information System (INIS)

    The IKU Petroleum Research organization in Norway has accumulated data on the weathering behavior of spilled oils and petroleum products, mainly pertaining to North Sea crudes. Recent weathering research at IKU has been carried out in an elliptical mesoscale flume and in field tests consisting of experimental releases of crude oil. Results of these tests provided information on oil spill dispersion, evaporation, and emulsification. When the tanker Braer grounded in the Shetland Islands in January 1993 in extreme environmental conditions, the imminent release of a load of 84,000 tonnes of North Sea oil confronted response personnel with a variety of issues including the use of dispersants as a response action. Relevant information on the expected behavior of the crude was obtained within a day of the grounding as a result of close relations between IKU and Warren Spring Laboratory. The question is raised whether such information, which could have been spread between several organizations around the world, will be rapidly accessible in the event of another major spill. It is proposed to establish an electronically accessible database on the behavior and fate of specific oils and petroleum products to address this problem. 9 refs., 4 figs

  4. Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill

    International Nuclear Information System (INIS)

    The Deepwater Horizon oil spill was unprecedented in total loading of petroleum hydrocarbons accidentally released to a marine ecosystem. Controversial application of chemical dispersants presumably accelerated microbial consumption of oil components, especially in warm Gulf of Mexico surface waters. We employed δ13C as a tracer of oil-derived carbon to resolve two periods of isotopic carbon depletion in two plankton size classes. Carbon depletion was coincident with the arrival of surface oil slicks in the far northern Gulf, and demonstrated that subsurface oil carbon was incorporated into the plankton food web.

  5. A Method for Qualitative Mapping of Thick Oil Spills Using Imaging Spectroscopy

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Erik; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Kokaly, Raymond F.; Hoefen, Todd; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; Pearson, Neil; The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Team

    2010-01-01

    A method is described to create qualitative images of thick oil in oil spills on water using near-infrared imaging spectroscopy data. The method uses simple 'three-point-band depths' computed for each pixel in an imaging spectrometer image cube using the organic absorption features due to chemical bonds in aliphatic hydrocarbons at 1.2, 1.7, and 2.3 microns. The method is not quantitative because sub-pixel mixing and layering effects are not considered, which are necessary to make a quantitative volume estimate of oil.

  6. Weathering patterns of oil residues eight years after the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Eight years after the Exxon Valdez spill, oil residues in Prince William Sound, Alaska ranged from moderately to extremely weathered. The least weathered residues were found in samples collected from gravel beaches with well-established armor. There had been little to no change in weathering stage for the oil from these sites since 1994. There was evidence of some physical erosion, but little chemical change for this deeply penetrated oil. In contrast, most other oil residues have increased in weathering, compared to 1994. Only one asphalt pavement was at a moderate weathering stage. All other samples contained hydrocarbons which were at advanced or extreme weathering stages. (Author)

  7. United States Gulf of Mexico Coastal Marsh Vegetation Responses and Sensitivities to Oil Spill: A Review

    OpenAIRE

    S. Reza. Pezeshki; DeLaune, Ronald D.

    2015-01-01

    The present review summarizes the literature on the effects of oil spill on the U.S. Gulf of Mexico coastal vegetation including freshwater-, brackish-, and salt-marshes. When in contact with plant tissues, oil may have adverse impacts via physical and chemical effects. Oil may also become detrimental to plants by covering soil surfaces, leading to root oxygen stress and/or penetrate into the soil where it becomes in contact with the roots. The affected vegetation may survive the impact by pr...

  8. Review of oil spill remote sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. PMID:24759508

  9. Leaking tankers: how much oil was spilled?

    International Nuclear Information System (INIS)

    A model to estimate leak rates from tankers has been developed for use in emergency situations when more direct oil-loss estimation methods are not available. The model includes algorithms for gravity outflow and air and water ingestion. Three laboratory tests were conducted using fresh water and canola oil to evaluate the model output. Comparison with results from the laboratory experiments indicate good correlation of model results with measured data. However, it is not yet possible in the case of very large crude carriers to answer the question 'how much oil was spilled?' Sensitivity analysis and further laboratory testing were suggested to determine the effect of factors such as: pressure vacuum relief valves that prevent cavitation in the event of tank puncture; changing outside water levels due to wave and tidal action; tank and hole dimensions; and the amount and density of the product.10 refs., 4 figs

  10. Clean-up of a radioactive spill

    International Nuclear Information System (INIS)

    Bikini Atoll in the Marshall Islands of the South Pacific was extensively contaminated with radionuclides deposited by thermonuclear weapons testing in the 1940s and 1950s. In recent years, the U.S. government has attempted to restore the habitability of the islands by cleaning up the remaining radioactive material. Although the island no longer presents an acute radiation risk to inhabitants, plants growing on the island concentrate cesium-137 from the soil, presenting an unacceptable risk to the future population. The behavior of Cs-137 has proved to be an intractable problem that has major implications for the risks associated with transporting and processing high-level nuclear wastes in the U.S. Various proposed soil treatment strategies for Bikini are discussed, including ion-exchange treatments and competing-ion strategies. No fully satisfactory treatment currently exists and the problems and prospects of cleaning up after a major nuclear waste spill are presented

  11. The Galeta oil spill: Pt. 3

    International Nuclear Information System (INIS)

    The epibiota of fringing mangroves (Rhizopohora mangle L.) were examined in three habitats: (1) the shoreward margins of reef flats that fronted the open sea, (2) the edges of channels and lagoons, and (3) the banks of streams and man-made cuts that drained interior mangroves or uplands into lagoons. Each habitat was repeatedly oiled between 1986 and 1991, with petroleum residues identified as the oil spilled in 1986. There was a decline in the release of tarry oils recorded as slicks and on roots over time, but not in tissue burdens of hydrocarbons in bivalves. This suggested that the processes that released these different types of oil residues were at least partially independent and that toxic hydrocarbons were likely to be released from sediments over the long term. (author)

  12. Managing public support during oil spills

    International Nuclear Information System (INIS)

    Too often oil spill contingency plans ignore and responders overlook the problem of managing auxiliary support, that is volunteers. These may consists of Native Bands, environmental organizations, community groups and the public in general. The consequences of not managing or poorly managing public support for the response effort is an increasingly frustrated public which begins to coordinate their own response efforts, proceeding without training or supervision. such a response can pose a threat to individuals as well as to the clean-up effort in general. Preparation and effective communication, particularly with the news media are key elements in successfully managing public support. In this paper the issues to be addressed are: coordination (mobilization, assignments), safety and insurance, equipment and clothing, fatigue and stress, food and shelter, training, public information including information about potential hazards, and public expectations of response efficiency

  13. The media politics of oil spills

    International Nuclear Information System (INIS)

    This paper considers the ways in which news values shape the reporting of oil spills and the constraints under which media practitioners work. A series of oil spills since the late 1960s [including the Torrey Canyon (1967), the Exxon Valdez (1989), and the Sea Empress (1996)] have attracted considerable attention from the news media. The focus is upon the dynamics through which news sources, with their own particular vested interests, compete to secure representation of the issues. Media discourse on risk and the environment is, to a significant extent, a discourse dependent upon the voices of official ''experts''. Environmental organizations, industry, scientists and government offer their own particular competing accounts of the ''reality'' of the situation. Issues concerning differential access to the news media are crucial when considering who comes to define the event. Accordingly, the article examines the strategies adopted by the various news sources involved in influencing the symbolic representation of public issues. Media practitioners are faced with great problems in interpreting and explaining these competing claims. Relatively few journalists and broadcasters have a scientific training and perhaps one of the greatest problems is that by simplifying complex scientific information one inevitably distorts it. Frequently researchers make the assumption that it is possible to demonstrate a direct causal link between news media coverage and public attitudes. However, the paper calls for great caution in interpreting ''public opinion'' concerning environmental issues and concludes by arguing that news media representations may more usefully be viewed as the outcome of a battle among a selective range of news sources, each seeking to provide their own definition of the public representation of the issues. (author)

  14. Field evaluations of marine oil spill bioremediation.

    Science.gov (United States)

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  15. Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 2: Chemistry and toxicology

    International Nuclear Information System (INIS)

    This paper describes chemical and toxicological results of a comprehensive shoreline ecology program that was designed to assess recovery in Prince William Sound following the Exxon Valdez oil spill of March 24, 1989. The program is an application of the sediment quality triad approach, combining chemical, toxicological, and biological measurements. The study was designed so that results could be extrapolated to the entire spill zone in the sound and projected forward in time. It combined one-time sampling of 64 randomly chosen study sites representing four major habitats and four oiling levels (including unoiled reference sites), with periodic sampling at 12 subjectively chosen fixed sites. Sediment samples--or when conditions required, filter-wipes from rock surfaces--were collected in each of three intertidal zones and from subtidal stations up to 30-m deep. Oil removal was generally quite rapid: by 1991 the concentration of oil spilled from the Exxon Valdez had been dramatically reduced on the majority of shorelines by both natural processes and cleanup efforts. Acute sediment toxicity from oil (as measured by standard toxicity tests) was virtually absent by 1990--91, except at a small number of isolated locations. The petroleum residues had degraded below the threshold of acute toxic effects. Measurable polycyclic aromatic hydrocarbon (PAH) levels are, in general, well below those conservatively associated with adverse effects, and biological recovery has been considerably more rapid than the removal of the last chemical remnants. 55 refs., 15 figs., 4 tabs

  16. Oil spill response engineering and planning. Technical completion report

    International Nuclear Information System (INIS)

    Tanker and barge traffic associated with the five petroleum product terminals along the NH side of the Piscataqua River represents a constant oil spill threat to the contiguous Great Bay System, NH, an estuarine reserve. Several serious accidents have in fact taken place in the 1970's and two small spills in 1990. A major factor is that the Piscataqua channel is subject to high velocity tidal currents. Should a spill occur, problems arise in knowing where the slick will move and how to control it using booms. In the project, these problems were addressed by developing procedures for using diversion booms in high speed current environments and in revising and implementing a previously developed Oil Spill Trajectory Model

  17. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  18. Waste minimization concepts applied to oil spill response

    International Nuclear Information System (INIS)

    Lessons learned from past US oil spill response histories show that prudent waste management principles have not been a primary consideration in making decisions for tactical response to major open-water oil spills. Contingency planners (government and industry) consistently choose a mechanical response strategy usually resulting in significant shoreline impact and waste generation (secondary pollution from response actions). Generally, the Environmental Protection Agency's waste minimization hierarchy is not used when managing a major open-water oil spill, subsequent cleanup of oiled shorelines, response to oiled wildlife, and final disposal of oily waste. Contingency plans do not adequately weigh the ecological ramifications from response-generated waste and response-generated pollution when deciding how to protect the environment. This paper shows how the EPA's waste minimization hierarchy should be used during all phases of an oil spill response: strategic planning, tactical planning, and response execution

  19. Deepwater Horizon MC252 - Oil Spill: Oil Trajectories Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Trajectory maps are produced using GNOME (General NOAA Operational Modeling Environment), which is an oil spill trajectory model developed by OR and...

  20. Ottawa river nuclear spill contingency model development. Phase 2

    International Nuclear Information System (INIS)

    This manual describes the calibration and application of a series of spill model programs. The programs simulate the receiving water concentrations in rivers, resulting from discharges/spill which can vary in time as well as being intermittent. The programs incorporate computer graphic outputs of the spill distribution at given times after the beginning of the spill, and at given downstream distances as a function of time. The manual outlines the procedure to calibrate the models based on site specific data. Detailed technical discussions on various components of the models are also included. The programs have been set up in an interactive (inquiry-response) mode. The series of programs are written on Fortran 77 and run on all IBM PC and compatible computers

  1. BASIN PEAT SORBTION CAPACITY IMPROVEMENT FOR OIL SPILL RESPONSE

    Directory of Open Access Journals (Sweden)

    CHUKHAREVA N.V.

    2012-01-01

    Full Text Available This article is concerned with the investigation of basin peat sorption capacity in Tomsk field. Experimental results showed the thermal treatment efficiency of sorbent production for oil spill response.

  2. Titania: a material-based approach to oil spill remediation?

    Directory of Open Access Journals (Sweden)

    Roger Narayan

    2010-09-01

    Full Text Available The anatase phase of titania is being considered for use in oil spill remediation due to its high photocatalytic efficiency and its activity under a wide range of environmental conditions.

  3. Final report: Fuel spill cleanup at the Del Air Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the cleanup of a fuel spill on the Delair Unit of Great River NWR in 1994. Soil test results are provided, the cleanup process is summarized,...

  4. Beam spill structure feedback test in HIRFL-CSR

    International Nuclear Information System (INIS)

    HIRFL-CSR is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou and is composed of a double cooling storage ring and a radioactive beam line. The slow extraction beam from HIRFL-CSR is used in nuclear physics experiments and heavy ion therapy. 50 Hz ripple and harmonics are observed in beam spill. To improve the spill structure, the first set of control system consisting of fast Q-magnet and feedback device based FPGA is developed and installed in 2010. Spill structure feedback testing has also started. It is shown that the feedback structure has improved the spill structure, the 50 Hz ripple and its harmonics have been reduced

  5. A guide to contingency planning for oil spills on water

    International Nuclear Information System (INIS)

    An oil spill contingency plan should comprise: a strategy section, which should describe the scope of the plan, including the geographical coverage, perceived risks, division of responsibilities and role of authorities and the proposed response strategy; an action and operations section, which should set out the emergency procedures that will allow rapid mobilization of resources and an early response to the situation; and a data directory, which should contain all relevant maps, lists and data sheets required to assess an oil spill situation and conduct the response according to an agreed strategy. This guide aims to assist industry and governments in the preparation of such plans. It focuses on oil spills on water, primarily from ships or during transfer operations, but also contains information relevant to spills from exploration and production activities. It sets out an industry consensus and highlights the elements that together make up a comprehensive plan. It is not exhaustive in detail. (author)

  6. Historical buildup of oil spill response capability in Japan

    International Nuclear Information System (INIS)

    With the large oil spill that occurred in 1971 as an impetus, Japan's Maritime Pollution and Disaster Prevention Law was amended in 1973 and subsequently in 1976. The amendments required owners of vessels and petroleum facilities to retain designated quantities of boom, sorbent, dispersant, and other items to minimize impact from spills. A large oil spill caused by a ruptured crude oil storage tank in 1974 led to the enactment of additional legislation: the Petroleum Complex Disaster Prevention Law. Under this, petroleum facilities are required to maintain designated quantities of oil boom, oil boom deploying vessels, skimming boats, and the like. These legislative measures, together with voluntary efforts, have contributed to a sound buildup of the nation's oil spill response force. However, the response capability including stockpiled materials and equipment has been designed primarily to cope with incidents in closed waters such as inland seas, bays, and ports, and hence not for a oil spill in open seas as large as that from the Exxon Valdez. As one of the measures under the 1990 International Convention for Oil Spill Preparedness, Response and Cooperation, the Government of Japan has entrusted the Petroleum Association of Japan with an oil spill response capability reinforcement project to cope with a large oil spill should one occur in Japanese waters or nearby seas. Under the scheme, during the 5 year period beginning in 1991, the Petroleum Association of Japan is scheduled to build up, using subsidies from the government, stockpiles of cleanup equipment and materials and to augment the existing response capability

  7. Control and recovery of spilled oil by using ice boom

    International Nuclear Information System (INIS)

    Development of oil and natural gas deposits off Sakhalin's northern coast in the Sea of Okhotsk are currently under way. An accident involving a spill of crude oil or other effluents during the current development of the oil and natural gas deposits off the eastern coast of northern Sakhalin could be expected to affect the environment and economy of the Hokkaido's Okhotsk and Pacific coast. This paper describes a recovery method for spilled oil under the ice floes established through experiment. (author)

  8. Combating eutrophication in coastal areas at risk for oil spills

    OpenAIRE

    Hyytiäinen, Kari; Huhtala, Anni

    2011-01-01

    In this study we evaluate the profitability of nutrient abatement measures in eutrophied coastal areas exposed to a risk of frequent oil spills. The case studied is the Gulf of Finland, which forms part of the Baltic Sea.We present a dynamic model that integrates land loads of nitrogen and phosphorus, cost of nutrient abatement measures in agriculture, nutrient dynamics in the sea basins adjoining the Finnish coast, exogenous risk of oil spills, and recreational value of the sea, which faces ...

  9. Mega borg oil spill: Fate and effect studies

    International Nuclear Information System (INIS)

    The Mega Borg, a Norwegian tanker, released an estimated 5.1 million gallons (gal) of Palanca Angola crude oil into the Gulf of Mexico during a lightering accident and subsequent fire. The collection of reports was designed to provide a comprehensive overview of the spill chronology, the fate of the oil released, and subsequent studies that were conducted to assess the impacts of the oil spill on the environment and its biota

  10. Sensor for detection of liquid spills on surfaces

    Science.gov (United States)

    Davis, Brent C.; Gayle, Tom M.

    1989-07-04

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  11. Beam spill control with frequency modulation in electron synchrotron

    International Nuclear Information System (INIS)

    The new method has been applied to the beam spill control of the INS electron synchrotron. In this method, the RF operating frequency is slowly increased at the final stage of the accelerating period. Then the equilibrium orbit shrinks and the beam hits the radiator gradually, staying in the stable phase. The new method gives the uniform beam spill in the energy region below 700 MeV where the old method has not been successful enough. (author)

  12. Effectiveness of bioremediation for the Exxon Valdez oil spill

    Science.gov (United States)

    Bragg, James R.; Prince, Roger C.; Harner, E. James; Atlas, Ronald M.

    1994-03-01

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future.

  13. Effectiveness of bioremediation for the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future. (Author)

  14. Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska Waters

    International Nuclear Information System (INIS)

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV) compared to a standard laboratory test conducted with fluorescent lighting (minimal UV). Oil products, weathered oil, and specific polycyclic aromatic compounds present in oil are 2 to greater than 1000 times more toxic in the presence of UV. The photoenhanced toxicity of oil to fish and aquatic invertebrates appears to occur through a process of photosensitization, rather than photomodification of the aqueous phase oil. In photosensitization, the bioaccumulated chemical transfers light energy to other molecules causing toxicity through tissue damage rather than a narcosis mechanism. The available evidence indicates that phototoxic components of oil are specific 3-5 ring polycyclic aromatic hydrocarbons (PAHs) and heterocycles. Determinants of photoenhanced toxicity include the extent of oil bioaccumulation in aquatic organisms and the spectra and intensity of UV exposure. No studies have specifically investigated the photoenhanced toxicity of spilled oil in Alaska waters. Although there are substantial uncertainties, the results of this evaluation indicate there is potential for photoenhanced toxicity of spilled oil in Prince William Sound and the Gulf of Alaska. The potential hazard of photoenhanced toxicity may be greatest for embryo and larval stages of aquatic organisms that are relatively translucent to UV and inhabit the photic zone of the water column and intertidal areas. Photoenhanced toxicity should be considered in oil spill response because the spatial and temporal extent of injury to aquatic organisms may be underestimated if based on standard laboratory bioassays and existing toxicity databases. Additionally, the choice of counter measures and oil removal operations may influence the degree of photoenhanced toxicity. (author)

  15. Satellite observations of oil spills in Bohai Sea

    International Nuclear Information System (INIS)

    Several oil spills occurred at two oil platforms in Bohai Sea, China on June 4 and 17, 2011. The oil spills were subsequently imaged by different types of satellite sensors including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NOAA MODIS. In order to detect the oil spills more accurately, images of the former three sensors were used in this study. Oil spills were detected using the semi-supervised Texture-Classifying Neural Network Algorithm (TCNNA) in SAR images and gradient edge detection algorithm in HJ-1-B and MODIS images. The results show that, on June 11, the area of oil slicks is 31 km2 and they are observed in the vicinity and to the north of the oilfield in SAR image. The coverage of the oil spill expands dramatically to 244 km2 due to the newly released oil after June 11 in SAR image of June 14. The results on June 19 show that under a cloud-free condition, CCD and MODIS images capture the oil spills clearly while TCNNA cannot separate them from the background surface, which implies that the optical images play an important role in oil detection besides SAR images

  16. Spill response exercises and lessons learned : a response organization's perspective

    International Nuclear Information System (INIS)

    In the past five years, Burrard Clean Operations (BCO) has demonstrated its' oil spill response capabilities through different types of exercises. Such exercises are necessary for certification of Response Organizations in Canada. The exercises can be performed through actual response to spills or through simulated situations. Both can provide an opportunity to practice different levels of response to a range of conditions in various settings. They also provide the opportunity to focus on specific themes that can be part of a response and to identify areas for improvement in response actions. They also make it possible to interface with government agencies, industry and others that participate in spill responses. The exercise program for BCO is aimed at maintaining certification and to assist the Canadian Coast Guard. The exercises broaden the lessons learned and set a course for future enhancement to spill readiness should a real incident occur. The goals of the exercise program are to provide real time drills that show the operational capability of a representative sample of BCO equipment, management and trained spill responders. The response functions of the BCO exercise program are: notification, response organization activation, contractor activation, situation analysis, strategy development for marine oil spill response, site safety, equipment deployment, containment, recovery, shoreline assessment, cleanup, communications, decontamination, logistics, and financial management. The BCO experience has led to the basic conclusions that there is a need to vary the exercise design and format and that there is a need to implement follow-up actions provided during exercise evaluations. 7 refs., 3 tabs

  17. Endmember detection in marine environment with oil spill event

    Science.gov (United States)

    Andreou, Charoula; Karathanassi, Vassilia

    2011-11-01

    Oil spill events are a crucial environmental issue. Detection of oil spills is important for both oil exploration and environmental protection. In this paper, investigation of hyperspectral remote sensing is performed for the detection of oil spills and the discrimination of different oil types. Spectral signatures of different oil types are very useful, since they may serve as endmembers in unmixing and classification models. Towards this direction, an oil spectral library, resulting from spectral measurements of artificial oil spills as well as of look-alikes in marine environment was compiled. Samples of four different oil types were used; two crude oils, one marine residual fuel oil, and one light petroleum product. Lookalikes comprise sea water, river discharges, shallow water and water with algae. Spectral measurements were acquired with spectro-radiometer GER1500. Moreover, oil and look-alikes spectral signatures have been examined whether they can be served as endmembers. This was accomplished by testifying their linear independence. After that, synthetic hyperspectral images based on the relevant oil spectral library were created. Several simplex-based endmember algorithms such as sequential maximum angle convex cone (SMACC), vertex component analysis (VCA), n-finder algorithm (N-FINDR), and automatic target generation process (ATGP) were applied on the synthetic images in order to evaluate their effectiveness for detecting oil spill events occurred from different oil types. Results showed that different types of oil spills with various thicknesses can be extracted as endmembers.

  18. Aoutomatic Oil Spill Detection Using TerraSAR-X Data

    Science.gov (United States)

    Zulipiye, Kaiyoumu; Balik Sanli, Fusun

    2016-07-01

    Oil release into the ocean may affect marine ecosystems and cause environmental pollution. Thus, oil spill detection and identification becomes critical important. Characterized by synoptic view over large regions, remote sensing has been proved to be a reliable tool for oil spill detection. Synthetic Aperture Radar (SAR) imagery shows returned signal that clearly distinguish oil from oil-free surface under optimal wind conditions, which makes it the most frequent used remote sensing technique in oil spill detection. Algorithms of automatic oil spill detection has already been developed for different SAR sensors, including RADARSAT and ENVISAT. In this study, we want to apply automatic oil spill detection algorithms on TerraSAR-X data which is previously developed for ASAR data. The applied methodology includes two steps as segmentation and classification. First segmentation algorithms compiled by C# have been applied under a Bayesian framework adopting a multi-level logistic. After segmentation different classification methods such as feature selection, filter, and embedded selection have been applied. As a result the used classifiers for oil spill detection will be compared, and the complete processing chain will be evaluated.

  19. Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico

    International Nuclear Information System (INIS)

    The fluorescence excitation–emission matrix (EEM) technique coupled with parallel factor (PARAFAC) modeling and measurements of bulk organic carbon and other optical properties were used to characterize the oil components released from the Deepwater Horizon oil spill in the Gulf of Mexico and to examine the chemical evolution and transformation of oil in the water column. Seawater samples were collected from the Gulf of Mexico during October 2010 and October 2011, three months and fifteen months, respectively, after the oil spill was stopped. Together with previous results from samples collected during the oil spill in May/June 2010, these time series samples allow us to elucidate changes in the optical properties of dissolved organic matter (DOM) from the time of maximum oil impact to its recovery, 15 months after the spill. Although the oil had profoundly altered the optical properties of the DOM in the entire water column during the oil spill, naturally occurring DOM became predominant in surface waters by October 2010, three months after the spill. Anomalous DOM with high optical yields, however, still resided in deep waters even 15 months after the oil spill in October 2011, showing a persistent influence of the oil in deep waters. Based on fluorescence EEM data and PARAFAC modeling, three oil components and one natural humic-like DOM could be readily identified. The most prominent oil component had its maximum fluorescence intensity at Ex/Em 224/328 nm, and the other two centered on Ex/Em 264/324 and 232/346 nm, respectively. The humic-like DOM component had its wide emission peak from 390 to 460 nm over the excitation wavelength at ∼248 nm. We hypothesized that component-2 (264/324 nm) was mostly derived from photochemical degradation and the component-3 (232/346 nm) could be a degradation product from both microbial and photochemical degradation, although both C2 and C3 are subject to degradation at different rates. The oil component ratios, such as C2

  20. Trajectory of an oil spill off Goa, eastern Arabian Sea: field observations and simulations.

    Science.gov (United States)

    Vethamony, P; Sudheesh, K; Babu, M T; Jayakumar, S; Manimurali, R; Saran, A K; Sharma, L H; Rajan, B; Srivastava, M

    2007-07-01

    An oil spill occurred off Goa, west coast of India, on 23 March 2005 due to collision of two vessels. In general, fair weather with weak winds prevails along the west coast of India during March. In that case, the spill would have moved slowly and reached the coast. However, in 2005 when this event occurred, relatively stronger winds prevailed, and these winds forced the spill to move away from the coast. The spill trajectory was dominated by winds rather than currents. The MIKE21 Spill Analysis model was used to simulate the spill trajectory. The observed spill trajectory and the slick area were in agreement with the model simulations. The present study illustrates the importance of having pre-validated trajectories of spill scenarios for selecting eco-sensitive regions for preparedness and planning suitable response strategies whenever spill episodes occur. PMID:17291649

  1. IT-OSRA: applying ensemble simulations to estimate the oil spill risk associated to operational and accidental oil spills

    Science.gov (United States)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; Martins, Flavio

    2016-08-01

    Oil Spill Risk Assessments (OSRAs) are widely employed to support decision making regarding oil spill risks. This article adapts the ISO-compliant OSRA framework developed by Sepp Neves et al. (J Environ Manag 159:158-168, 2015) to estimate risks in a complex scenario where uncertainties related to the meteo-oceanographic conditions, where and how a spill could happen exist and the risk computation methodology is not yet well established (ensemble oil spill modeling). The improved method was applied to the Algarve coast, Portugal. Over 50,000 simulations were performed in 2 ensemble experiments to estimate the risks due to operational and accidental spill scenarios associated with maritime traffic. The level of risk was found to be important for both types of scenarios, with significant seasonal variations due to the the currents and waves variability. Higher frequency variability in the meteo-oceanographic variables were also found to contribute to the level of risk. The ensemble results show that the distribution of oil concentrations found on the coast is not Gaussian, opening up new fields of research on how to deal with oil spill risks and related uncertainties.

  2. IT-OSRA: applying ensemble simulations to estimate the oil spill risk associated to operational and accidental oil spills

    Science.gov (United States)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; Martins, Flavio

    2016-06-01

    Oil Spill Risk Assessments (OSRAs) are widely employed to support decision making regarding oil spill risks. This article adapts the ISO-compliant OSRA framework developed by Sepp Neves et al. (J Environ Manag 159:158-168, 2015) to estimate risks in a complex scenario where uncertainties related to the meteo-oceanographic conditions, where and how a spill could happen exist and the risk computation methodology is not yet well established (ensemble oil spill modeling). The improved method was applied to the Algarve coast, Portugal. Over 50,000 simulations were performed in 2 ensemble experiments to estimate the risks due to operational and accidental spill scenarios associated with maritime traffic. The level of risk was found to be important for both types of scenarios, with significant seasonal variations due to the the currents and waves variability. Higher frequency variability in the meteo-oceanographic variables were also found to contribute to the level of risk. The ensemble results show that the distribution of oil concentrations found on the coast is not Gaussian, opening up new fields of research on how to deal with oil spill risks and related uncertainties.

  3. Remediation of sediments contaminated by oil spills

    International Nuclear Information System (INIS)

    Recent environmental legislation and increased awareness of the environmental pollution by oil spills have stimulated a demand for invention, development and implementation of effective remediation technologies. There are positive achievements in cleaning up of terrestrial ecosystems but remediation of aquatic ecosystems is still acute problem. Oil contaminated bottom sediments are the chronic contamination source for the aquatic ecosystems. General practice of most oil companies in Russia for treatment of oil spills in rivers and lakes is limited to harvesting of floating oil and treatment of spoiled shore. The pilot project on remediation of Shuchye Lake (Usinsk District, Komi Republic, Arctic European part of Russia) supported by oil production company Lukoil-Comi Ltd. is carried out by NTT Priborservice Ltd. NTT Priborservice Ltd. is R and D enterprise specialized in the contaminated soils, sediments and water remediation, and production of equipments (devices) for this. The project aimed to develop and implement cost-effective technology for cleaning up sediments contaminated by oil hydrocarbons. The technology is based on combination of physico-mechanical and biological approaches. Treatment of bottoms sediments was carried out with usage of the original devices for flotation ('Flotator') and aeration. Usage of 'Flotator' allows to extract petroleum hydrocarbons from sediments excepting mineral particles. Treatment of bottom sediments is combined with aeration of deep layers of water and supplying fertilizers to stimulate microflora, zooplankton and phytoplankton. The project consists of several steps. Survey carried out before the first step of project indicated the average depth of water was ∼4 m (max 7 m), the initial concentration of petroleum hydrocarbons in bottom sediments was ∼55 g/kg dw (max 125 g/kg dw). Total amount of bottom surface treated during the first step of the project (July-August 2004) was 4 ha. Monitoring allows to assess the

  4. Oil in nearshore subtidal sediments of Saudi Arabia from the Gulf War spill

    International Nuclear Information System (INIS)

    Detailed sedimentological and dynamic-process studies of the shallow, subtidal habitats of Dawhats ad Dafi and al Mussallamiyah and the bays at Tanaqib on the Saudi Arabian coast were carried out one year after the Gulf War oil spill. These studies were part of Leg II of the NOAA ship Mt. Mitchell cruise. Satellite imagery and space shuttle photography were used extensively to develop detailed study plans. Work accomplished during the study included deployment of three current meters, a tide gauge, and suspended sediment traps (at seven locations). Bathymetric surveys were conducted along 14 transects, and 197 bottom observation dives were carried out. More than 170 bottom sediment samples were collected for chemical and/or textural analysis. Sediment hydrocarbon screening by HPLC fluorescence was conducted on board to verify and refine the sampling plan. The results to date show no evidence of large-scale sinking of oil as a result of the spill. Subtidal oil, as sparse tar balls, was visually observed by divers at three locations, all of which were associated with the erosion of oiled sand from outer beaches. On-board chemical results showed that subtidal sediments have been contaminated at levels ranging from 20 to 2,000 mg petroleum hydrocarbons/kg, with the highest contamination up in the sheltered, muddy basins. However, the oil initially stranded in the intertidal zone does not appear to be accumulating in the nearshore subtidal region in significant quantities one year later

  5. Oil spill research : salt water and fresh water

    International Nuclear Information System (INIS)

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m3. Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  6. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  7. Cleanup standards for inland oil spills : a review

    International Nuclear Information System (INIS)

    There are a wide range of issues that should be addressed in the development of oil spill cleanup criteria and standards, yet there is currently no clear and concise decision procedure that can be applied by a spill response management team. This paper presented three inland spill cases which demonstrated different parts of the spectrum of cleanup standards. These case study examples showed that there is a progression with increasing levels of concern and increasing levels of treatment or cleanup effort. The first case study described the removal of mobile oil in a remote location. It involved a series of large crude oil spills in 1994 from sections of the Vosei-Golovnye pipeline in the Komi Republic of Russia. The second case study described multiple standards for the removal of oil residues and oiled vegetation in a populated rural region. It involved a spill of 29,000 bbl of mixed crude oil and condensate in January 2000 from the OSSA II pipeline at the Rio Desaguadero river crossing in Bolivia. The third case study described the restoration of a salmon spawning stream to a lowest effects concentration. It involved a gasoline release, explosion and fire that resulted from the Olympic Pipe Line rupture in June 1999 in Bellingham, Washington. Each of the three response operations was based on different objectives and different cleanup standards for the completion of the cleanup. The process by which criteria are developed for inland oil spills was described. The choice of treatment ranges from no treatment to a zero tolerance position. Deciding which measure is appropriate is a social and political process that is not based on science alone. While soil and water quality standards have been established by government agencies, these are intended mostly for chronic situations rather than for one-time events such as oil spills. Almost all assessments of an appropriate cleanup program consider the net environmental benefits (NEB) and risk associated with different

  8. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  9. Oil spill modeling towards the close of the 20th century: overview of the state of the art

    International Nuclear Information System (INIS)

    The state-of-the-art in oil spill modeling is summarised, focusing primarily on the years from 1990 to the present. All models seek to describe the key physical and chemical processes that transport and weather the oil on and in the sea. Current insights into the mechanisms of these processes and the availability of algorithms for describing and predicting process rates are discussed. Advances are noted in the areas of advection, spreading, evaporation, dispersion, emulsification, and interactions with ice and shorelines. Knowledge of the relationship between oil properties, and oil weathering and fate, and the development of models for the evaluation of oil spill response strategies are summarised. Specific models are used as examples where appropriate. Future directions in these and other areas are indicated. (Author)

  10. Models of oil spill dispersion stability

    International Nuclear Information System (INIS)

    This paper summarized the theory of oil-in-water emulsion stability resulting in the resurfacing of oil spill dispersion. Since most emulsions are unstable, they will break down into their constituent parts because of the many forces and processes that act on them. These include gravitational forces; surfactant interchange with water and the subsequent surfactant loss to the water column; creaming; coalescence; flocculation; Ostwald ripening; and sedimentation. Gravitational separation is the most important force that contributes to the resurfacing of oil droplets from an oil-in-water emulsion. The paper presented a newly developed model that used 4 basic processes. Initial dispersion was an input, then the dispersion was distributed over the mixing depth, as predicted by the wave height. The droplets then rise to the surface according to Stokes' law. Oil on the surface from the rising oil and undispersed oil is redispersed. The droplets in the water column are subject to coalescence as governed by the Smoluchowski equation. The dispersion in the water column therefore decreases at an exponential rate with dispersion half-lives ranging from 120 to 250 minutes. Over 200 runs were performed using variations of the models. The study showed that the most important factor is the effectiveness of the initial dispersion and the the redispersion. Increased sea energy was found to increase the amount of coalescence that occurs, resulting in an increase in resurfacing. However, increased turbulence also caused redispersion, offsetting the effect of the recoalescence slightly. 17 refs., 5 tabs., 13 figs.

  11. Models of oil spill dispersion stability

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M. [Spill Science, Edmonton, AB (Canada)

    2009-07-01

    This paper summarized the theory of oil-in-water emulsion stability resulting in the resurfacing of oil spill dispersion. Since most emulsions are unstable, they will break down into their constituent parts because of the many forces and processes that act on them. These include gravitational forces; surfactant interchange with water and the subsequent surfactant loss to the water column; creaming; coalescence; flocculation; Ostwald ripening; and sedimentation. Gravitational separation is the most important force that contributes to the resurfacing of oil droplets from an oil-in-water emulsion. The paper presented a newly developed model that used 4 basic processes. Initial dispersion was an input, then the dispersion was distributed over the mixing depth, as predicted by the wave height. The droplets then rise to the surface according to Stokes' law. Oil on the surface from the rising oil and undispersed oil is redispersed. The droplets in the water column are subject to coalescence as governed by the Smoluchowski equation. The dispersion in the water column therefore decreases at an exponential rate with dispersion half-lives ranging from 120 to 250 minutes. Over 200 runs were performed using variations of the models. The study showed that the most important factor is the effectiveness of the initial dispersion and the the redispersion. Increased sea energy was found to increase the amount of coalescence that occurs, resulting in an increase in resurfacing. However, increased turbulence also caused redispersion, offsetting the effect of the recoalescence slightly. 17 refs., 5 tabs., 13 figs.

  12. Oil spill cleanup for soft sediments

    International Nuclear Information System (INIS)

    A series of experimental trials are in progress to investigate the effectiveness and consequences of oil spill cleanup methods for areas of mud flats and salt marsh. Trials have shown that wheeled and tracked vehicles have limited utility. Field measurements of the load bearing capacity of the mud can show where such vehicles may be used. Lightweight hover craft provide a useful means of transport. Shallow-draft boats can have a useful transport role: whether such craft can be used depends on the local topography and tidal regime. The trials showed that practical problems associated with implementing low-pressure flushing operations (lack of water for flushing, recovery of the flushed oil) can be overcome - although the environmental effects have yet to be assessed. The use of straw matting as a sorbent material was also demonstrated. The objective of the first two phases of the project, reported here, was to select workable methods with a view to subsequently employing them in larger-scale trials. The environmental consequences of using the selected methods will be examined in the later trials

  13. British Columbia inland oil spill response plan

    International Nuclear Information System (INIS)

    This paper presents an outline of the organization, procedures and duties of the provincial government in response to inland oil spills stemming from pipeline or tank-farm rupture, train derailment and vehicle accidents in British Columbia. Provincial response strategies were reviewed, along with their relationships to various policies and standards. Public, infrastructure and environmental protection were identified as key factors. Incident notification procedures were detailed, including outlines of roles, event criteria and call for incident management teams. Agreements and cost recovery issues were examined. The characteristics of site response were reviewed, including details of communications, tactical planning, and unified command among local and federal governments. The role of First Nations and responsible parties was also addressed. Details of shore cleanup, wildlife rescue, decontamination, and waste handling strategies were presented. The organization, missions and duties for an incident management team were outlined, along with a summary of operational guidelines and information on team positions and the establishment of joint information centres. The involvement of cooperating agencies was examined. An incident command system was also presented, including details of planning, operations, logistics, and organization. A checklist of individual duties was provided, with details of responsibilities, safety issues and general instructions for all team members. tabs., figs

  14. Bioremediation effectiveness following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Statistical analyses of changes in the composition of oil residues remaining on beaches following the Exxon Valdez oil spill in Prince William Sound have demonstrated that bioremediation was effective in accelerating oil removal. Extensive data were obtained in a joint bioremediation monitoring program conducted during the summer of 1990 by the US Environmental Protection Agency (EPA), the State of Alaska, and Exxon. Composition changes in the oil relative to hopane, a trace oil component very resistant to biodegradation, provided the basis for accurately determining rates and extent of biodegradation. Results show that on fertilized beaches the rate of oil biodegradation was from three to more than five times faster than on adjacent, unfertilized control beaches. Further, most hydrocarbon components of the oil were biodegraded simultaneously, although at different rates. On one beach studied, about 60 percent of the total hydrocarbons detectable by gas chromatograph and 45 percent of the total PAH were biodegraded in three months. Bioremediation effectiveness was determined to depend primarily on the amount of nitrogen fertilizer delivered to the sediment per unit of oil present, time, and the extent of oil degradation prior to fertilizer application. The results suggest ways to improve future bioremediation application strategies and monitoring

  15. FUEL CONSERVATION BY THE APPLICATION OF SPILL PREVENTION AND FAILSAFE ENGINEERING (A GUIDELINE MANUAL)

    Energy Technology Data Exchange (ETDEWEB)

    Goodier, J. L.; Siclari, R. J.; Garrity, P. A.

    1980-10-30

    From a series of nationwide plant surveys dedicated to spill prevention, containment and countermeasure evaluation, coupled with spill response action activities, a need was determined for a spill prevention guideline manual. From Federally accumulated statistics for oil and hazardous substance spills, the authors culled information on spills of hydrocarbon products. In 1978, a total of 1456 oil spills were reported compared to 1451 in 1979. The 1978 spills were more severe, however, since 7;289,163 gallons of oil were accident~y discharged. In 1979, the gallons spilled was reduced to 3,663,473. These figures are derived from reported spills; it is highly possible that an equal amount was spilled and not reported. Spills effectively contained within a plant property that do not enter a n~vigational waterway need not be reported. Needless to say, there is a tremendous annual loss of oil products due to accidental spillage during transportation, cargo transfer, bulk storage and processing. As an aid to plant engineers and managers, Fe~eral workers, fire marshalls and fire and casualty insurance inspectors, the documen~ is offered as a spill prevention guide. The'manual defines state-of-the-art spill prevention practices and automation techniques that can reduce spills caused by human error. Whenever practical, the cost of implementation is provided to aid equipment acquisition and installation budgeting. To emphasize the need for spill prevention activities, historic spills are briefly described after which remedial action is defined in an appropriate section of the manual. The section on plant security goes into considerable depth since to date no Federal agency or traqe association has provided industry with guidelines on this important phase of plant operation. The intent of the document is to provide finger-tip reference material that can be used by interested parties in a nationwide effort to reduce loss of oil from preventable spills.

  16. Contained controlled burning of spilled oil during the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    During the evening of the second day following the Exxon Valdez oil spill, an estimated 57,000-114,000 liters of North Slope crude oil were eliminated using in-situ combustion. The oil was collected with 3M's Fire Boom towed in a U-shaped configuration behind two fishing boats. Working with 152 m long tow lines, a 137 m boom was moved at ca 0.26-5.2 m/s through slightly emulsified oil patches in the downwind region of the spill. A gelled fuel ignitor was used to ignite the captured oil, and the size and intensity of the blaze was controlled by adjusting the speed of the vessels. Total burn time was ca 1.25 h, however the intense part of the burn lasted for ca 45 minutes. Using several methods to estimate the total volume of oil collected, the volume resulted in ca 1136 liters of stiff, taffy-like burn residue that could be picked up easily on completion of the burn. The controlled burn thus resulted in an estimated 98% or better elimination of crude oil. It had been planned to use a helitorch to ignite the captured oil, however darkness required the use of the gelled ignitor. Had the helitorch been used, numerous ignition points could have been spread througout the contained oil, providing a much more efficient heating and ultimate ignition of the oil. 5 figs

  17. Oil Spill Public Information Center: Its role in the flow of information on the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    On March 24, 1989, the supertanker Exxon Valdez struck a sub- merged rock pinnacle at Bligh Reef, puncturing eight of its storage tanks. Within hours, 11 million gallons of crude oil were dumped into the waters of Prince William Sound. The cleanup, damage assessment, and restoration activities undertaken for this environmentally complex area presented multifaceted challenges to public and private organizations and various professional disciplines. One of these challenges was obtaining and disseminating prespill, spill, and postspill information for both the private and public sector. The Oil Spill Public Information Center (OSPIC) was created for this purpose by the US Department of Justice on behalf of the federal trustees. Its management has since been assumed by the restoration team, an arm of the state-federal Exxon Valdez Oil Spill Trustee Council. On October 8, 1991, a settlement agreement was approved in United States District Court, which required Exxon to pay $1 billion in criminal restitution and civil damages to the United States and the state of Alaska. The settlement terms specify that the Trustee Council shall establish procedures providing for meaningful public participation in the injury assessment and restoration process. Consistent with that mandate, the OSPIC is responsible for providing a repository for all material related to the Exxon Valdez oil spill, The OSPIC is a specialized library open to the public. Its function is to collect, organize, and make accessible materials generated by state and federal agencies and the private sector as a result of the cleanup, damage assessment, and restoration activities of the spill. The OSPIC staff is also identifying and collecting baseline studies in the Prince William Sound and Gulf of Alaska areas, as well as materials on cold water marine spills. The OSPIC serves a variety of patrons, including industry, the oil spill response community, state and federal agencies, scientists, etc

  18. Important considerations regarding ocean and ecosystem dynamics in assessing environmental risks from various oil spill countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    French, J. [Prince William Sound Regional Citizens' Advisory Council, Seward, AK (United States)

    2009-07-01

    Regulations in the United States state that dispersants should be used in oil spill response incidents only if it is clear that mechanical cleanup methods such as booming and skimming will not work. When choosing a response option, responders must consider the overall productivity of the ecosystem and whether additional risk to the pelagic habit will be counter-balanced by benefits to the near-shore habitat. Understanding the ecosystem involves an understanding of the composition and balance of the entire ecosystem from prey to predator. This paper compared and contrasted the ocean physics and ecosystem dynamics of the Alaska, North Pacific and North Atlantic regions. It emphasized the uniqueness of the northern Gulf of Alaska (GOA), including Prince William Sound and the Eastern Bering Sea and cautioned that assumptions for oil spill response planning must be specific for these regions. Oceanographic factors in the GOA drive bottom-up forcing as compared to the onshore-off forcing of other regions such as the Gulf of Mexico and the North Atlantic. These inherent differences in ecosystems and regional dynamics have important implications for the use of chemical dispersants or other non-mechanical counter measures in GOA or surrounding waters. The GOM, the Gulf Stream and North Atlantic Drift were contrasted with the North Pacific Current, Alaska Gyre, Alaska Stream and Alaska Coastal Current. The GOM is a principal location of oil production and transportation while the Alaska Coastal Current is the site of trade for the Trans-Alaska Pipeline System and is being considered for offshore development. It was concluded that careful preplanning regarding response options is necessary prior to the occurrence of any spill incidence. 48 refs., 6 tabs., 23 figs.

  19. Numerical modeling of oil spills in continental and estuarine waters

    International Nuclear Information System (INIS)

    The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)

  20. Lessons learned from two very different large radioactive spills

    International Nuclear Information System (INIS)

    Hard lessons in radioactive spill response, including decontamination and confinement methods, priority setting, survey techniques, and release limit determination were learned (by trial and error) from two spills which occurred recently at the Radiochemical Engineering and Development Center (REDC) at Oak Ridge National Laboratory. The responsibilities of radiological control personnel, decontamination workers, and facility management were often redefined as decontamination progressed. While each spill involved ∼1 Ci, their essential characteristics and isotopic distributions were quite different requiring innovative and pragmatic solutions. The first spill was liquid waste with water soluble fission products mixed in an organic solution of actinides. Rain, snowmelt, fog, and darkness foiled initial confinement efforts and contributed to the spread of contamination over several hundred square meters of concrete, asphalt, and floor covering. Contaminated runoff escaped into the environment until effective preventative measures were developed and put in place. The second spill happened when 224Cm and 241Am were accidentally siphoned from an in-cell product holding tank onto the floor of the Limited Access Area at the REDC. Several decontamination techniques were tried before an effective one was developed

  1. Studies on marine oil spills and their ecological damage

    Science.gov (United States)

    Mei, Hong; Yin, Yanjie

    2009-09-01

    The sources of marine oil spills are mainly from accidents of marine oil tankers or freighters, marine oil-drilling platforms, marine oil pipelines, marine oilfields, terrestrial pollution, oil-bearing atmosphere, and offshore oil production equipment. It is concluded upon analysis that there are two main reasons for marine oil spills: (I) The motive for huge economic benefits of oil industry owners and oil shipping agents far surpasses their sense of ecological risks. (II) Marine ecological safety has not become the main concern of national security. Oil spills are disasters because humans spare no efforts to get economic benefits from oil. The present paper draws another conclusion that marine ecological damage caused by oil spills can be roughly divided into two categories: damage to marine resource value (direct value) and damage to marine ecosystem service value (indirect value). Marine oil spills cause damage to marine biological, fishery, seawater, tourism and mineral resources to various extents, which contributes to the lower quality and value of marine resources.

  2. Rapid response, flow diversion saves wildlife habitat after oil spill

    International Nuclear Information System (INIS)

    Oil spills can create operational, financial and public relations nightmares for petroleum companies. Fast, effective response in the hours following a spill can minimize the impacts and ensure that biological recovery can proceed without residual effects. Such a rapid, successful response was made to one of California's largest inland oil spills by ARCO Pipe Line Co., its consultants, Kennedy/Jenks Consultants, and its contractors. The spill occurred about 70 miles north of Los Angeles in a pipeline designed to transport oil to Los angeles-area refineries from the San Joaquin Valley. The pipeline ruptured on April 6, 1993, spraying 6,200 barrels of blended crude oil onto the northbound lanes of a major freeway. The crude oil flowed through the freeway's stormwater collection system and into a nearby creek. Because response to the spill was rapid and appropriate, all cleanup activities were completed and approved by the California Department of Fish and Game within 21 days of the release. In addition, a sensitive wildlife habitat recovered quickly after floating oil, oil-contaminated soil and vegetation were removed. Follow-up soil and water samples and biological surveys confirmed that plant and animal life had suffered only short-term, localized impacts

  3. Upcoming satellites : potential applicability to oil spill remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.E.; Fingas, M.F. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div

    2001-07-01

    This paper reviewed the operating characteristics and modes of recent and upcoming satellite sensors with particular reference to their potential use in the remote sensing of oil spills. Compared to older generation sensors, new sensors have state-of-the-art capabilities that can provide information used in a tactical oil spill response operation. The Synthetic Aperture Radar (SAR) sensor will be of primary use to spill response coordinators. The next generation of SAR satellites will have improved capabilities including polarimetric modes for satellites such as Envisat and RADARSAT-2. RADARSAT-2 will be fully polarmetric, with improved resolutions which will make it easier to discriminate between oil spills and false targets common to radar imagery of coastal zones. The new design has also incorporated the ability for the sensor to look right or left, thereby reducing the time between data acquisitions over the spill location. The advanced SAR (ASAR) sensor on Envisat will follow up the successful missions of the ERS-1, -2 satellites of the European Space Agency. Many other new optical satellites will be launched over the next few years which will provide valuable information that can be used in conjunction with radar data. 24 refs., 7 tabs.

  4. Oil spill preparedness: The oil industry and the national arrangements

    International Nuclear Information System (INIS)

    It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia. This paper discusses government and industry plans to deal with oil spills. The National Plan to Combat Pollution of the Sea by Oil (National Plan) is the umbrella oil spill response plan for Australia, with state, regional and specific industry plans cascading from the National Plan. The plan is a combined effort by the Commonwealth and state governments, the oil industry and the shipping industry, all of which have a stake in ensuring that Australian waters, coastlines and harbors remain pollution free. A review of the National Plan in 1992 identified amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response. The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises. (author). 2 figs., 1 photo

  5. Efficient tools for marine operational forecast and oil spill tracking.

    Science.gov (United States)

    Marta-Almeida, Martinho; Ruiz-Villarreal, Manuel; Pereira, Janini; Otero, Pablo; Cirano, Mauro; Zhang, Xiaoqian; Hetland, Robert D

    2013-06-15

    Ocean forecasting and oil spill modelling and tracking are complex activities requiring specialised institutions. In this work we present a lighter solution based on the Operational Ocean Forecast Python Engine (OOFε) and the oil spill model General NOAA Operational Modelling Environment (GNOME). These two are robust relocatable and simple to implement and maintain. Implementations of the operational engine in three different regions with distinct oceanic systems, using the ocean model Regional Ocean Modelling System (ROMS), are described, namely the Galician region, the southeastern Brazilian waters and the Texas-Louisiana shelf. GNOME was able to simulate the fate of the Prestige oil spill (Galicia) and compared well with observations of the Krimsk accident (Texas). Scenarios of hypothetical spills in Campos Basin (Brazil) are illustrated, evidencing the sensitiveness to the dynamical system. OOFε and GNOME are proved to be valuable, efficient and low cost tools and can be seen as an intermediate stage towards more complex operational implementations of ocean forecasting and oil spill modelling strategies. PMID:23643409

  6. Studies on Marine Oil Spills and Their Ecological Damage

    Institute of Scientific and Technical Information of China (English)

    MEI Hong; YIN Yanjie

    2009-01-01

    The sources of marine oil spills are mainly from accidents of marine oil tankers or freighters, marine oil-drilling platforms, marine oil pipelines, marine oilfields, terrestrial pollution, oil-bearing atmosphere, and offshore oil production equipment. It is concluded upon analysis that there are two main reasons for marine oil spills: (Ⅰ) The motive for huge economic benefits of oil Industry owners and oil shipping agents far surpasses their sense of ecological risks. (Ⅱ) Marine ecological safety has not become the main concern of national security. Oil spills are disasters because humans spare no efforts to get economic benefits from oil. The present paper draws another conclusion that marine ecological damage caused by oil spills can be roughly divided into two categories: damage to marine resource value (direct value) and damage to marine ecosystem service value (indirect value). Marine oil spills cause damage to marine biological, fishery, seawater, tourism and mineral resources to various extents, which contributes to the lower quality and value of marine resources.

  7. Countermeasures for oil spills in cold water - In the case of Japan

    International Nuclear Information System (INIS)

    The need for Japan to develop an adequate system for dealing with large-scale oil spills on the open seas was made clear when a Russian tanker Nakhodka caused large-scale oil pollution along the coastline of Japan in early 1997. The event involved 6,000 m3 of spilled oil. It was emphasized that the much needed system to combat oil spills on the open sea should include countermeasures for dealing with oil spills in cold water. This sub-system should be part of Japan's overall system for dealing with oil spills at sea. Several recommendations were made, including the need to evaluate the effects of oil spills on the marine environment and to prepare a set of environmental sensitivity index (ESI) maps for shorelines bordering on cold water. Methods must also be developed to predict the spreading rate of spilled oil. The process of emulsification and sedimentation of spilled oil must also be studied. 5 refs

  8. Study on the accident oil spill pollution in Wanshan Archipelago sea area

    International Nuclear Information System (INIS)

    This paper uses diffusion model and transfer model of instantaneous oil spilling with static point source for forecasting and studying the accident oil spilling pollution in Wanshan Archipelago sea area. The paper also presents prevention and cure measures

  9. Oil Spill Contingency Plan for Laguna Atascosa National Wildlife Refuge, Texas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan is intended to serve as a step by step guide to emergency oil spill response in the event that such a spill threatens refuge lands and wildlife. Because...

  10. Comprehensive analytical approaches to determine the sources, fate and effects of marine oil spills

    OpenAIRE

    Radović, Jagoš

    2014-01-01

    Tesi realitzada a l'Institut de Diagnosi Ambiental i Estudis de l'Aigua (IDAEA - CSIC) In the past two decades we witnessed a decrease in both the number of oil spill incidents, and of the quantity of oil released in these incidents, which led to a diminished interest for basic oil spill science. With the introduction of more stringent oil spill legislation, much of the spill response, assessment and restoration activities were passed to governmental agencies and other stakeholders. Th...

  11. Immediate ecotoxicological effects of short-lived oil spills on marine biota

    OpenAIRE

    Brussaard, C. P. D.; Peperzak, L.; Beggah, S.; Wick, L.Y.; Wuerz, B.; Weber, J.; Arey, J.S.; Van Der BURG, B.; Jonas, A.; Huisman, J.; van der Meer, J. R.

    2016-01-01

    Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m3 of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Usin...

  12. Longer-Term Mental and Behavioral Health Effects of the Deepwater Horizon Gulf Oil Spill

    OpenAIRE

    Tonya Cross Hansel; Howard J. Osofsky; Joy D. Osofsky; Anthony Speier

    2015-01-01

    Mental health issues are a significant concern after technological disasters such as the 2010 Gulf Oil Spill; however, there is limited knowledge about the long-term effects of oil spills. The study was part of a larger research effort to improve understanding of the mental and behavioral health effects of the Deepwater Horizon Gulf Oil Spill. Data were collected immediately following the spill and the same individuals were resampled again after the second anniversary (n = 314). The results s...

  13. Consequences of oil spills: a review and framework for informing planning

    OpenAIRE

    Stephanie E. Chang; Jeremy Stone; Kyle Demes; Marina Piscitelli

    2014-01-01

    As oil transportation worldwide continues to increase, many communities are at risk of oil spill disasters and must anticipate and prepare for them. Factors that influence oil spill consequences are myriad and range from the biophysical to the social. We provide a summary literature review and overview framework to help communities systematically consider the factors and linkages that would influence consequences of a potential oil spill. The focus is on spills from oil tanker accidents. Draw...

  14. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History

    OpenAIRE

    Atlas, Ronald M.; Hazen, Terry C.

    2011-01-01

    The devastating environmental impacts of the Exxon Valdez spill in 1989 and its media notoriety made it a frequent comparison to the BP Deepwater Horizon spill in the popular press in 2010, even though the nature of the two spills and the environments impacted were vastly different. Fortunately, unlike higher organisms that are adversely impacted by oil spills, microorganisms are able to consume petroleum hydrocarbons. These oil degrading indigenous microorganisms played a significant role in...

  15. Chevron oil spill contingency response plan template

    International Nuclear Information System (INIS)

    Chevron U.S.A. Products Company is responsible for numerous facilities located in inland areas, on rivers, and in harbors throughout the continental United States and Hawaii. The federal Oil Pollution Act of 1990 (OPA 90) requires oil spill contingency response plans (CRP) for these facilities. In addition, many states have promulgated regulations that supplement the requirements of OPA 90. Chevron needed a consistent, user-friendly method to enable facility managers to prepare CRPs to meet specific site conditions in response to federal and state regulations while complying with overall Chevron U.S.A. corporate policy. The Chevron template was prepared to provide a framework with specific directions to allow facility managers to prepare facility-specific CRPs using in-house staff or outside consultants as necessary. The template will allow Chevron facilities to conform with the OPA 90 interim guidance specified by the US Coast Guard in its Navigation and Vessel Inspection Circular (NVIC 7-92) for marine transportation-related facilities. OPA 90 has also resulted in separate guidance for vessels and non-marine transportation-related facilities. Included with the template are checklists for each section to facilitate the completion of facility-specific CRPs. Whether the CRPs are completed by Chevron personnel or outside technical consultants, use of the template requires a variety of site-specific information from facility operations personnel. For efficient development of facility-specific plans, this material should be located, evaluated, and made available to the plan preparers as early in the plan completion effort as possible. A table summarizes the facility-specific information that is generally required in the preparation of a functional CRP using the template. Most of the required information is generally available in facility files or directly from interviews with operational personnel

  16. Source apportionment in oil spill remediation.

    Science.gov (United States)

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes

  17. Oil spill modeling input to the offshore environmental cost model (OECM) for US-BOEMRE's spill risk and costs evaluations

    International Nuclear Information System (INIS)

    This paper simulates the consequences of oil spills using a planning model known as the Offshore Environmental Cost Model (OECM). This study aims at creating various predictive models for possible oil spill scenarios in marine waters. A crucial part of this investigation was the SIMAP model. It analyzes the distance and the direction covered by the spill under certain test conditions, generating a regression equation that simulates the impact of the spill. Tests were run in two different regions; the Mid-Atlantic region and the Chukchi Sea. Results showed that the higher wind speeds and higher water temperature of the Mid-Atlantic region had greater impact on wildlife and the water column respectively. However, short-line impact was higher in the Chukchi area due to the multi-directional wind. It was also shown that, because of their higher diffusivity in water, lighter crude oils had more impact than heavier oils. It was suggested that this model could ultimately be applied to other oil spill scenarios happening under similar conditions.

  18. A remote oil spill detection system for early warning of spills at waterfront or land-based facilities

    International Nuclear Information System (INIS)

    Early detection of spills during loading/unloading of crude oil or products at terminals or plants is essential for quickly stopping the spill and minimizing its impact. Such detection is particularly difficult at night or in remote areas. In order to provide a reliable and inexpensive spill detection system for such an application, a joint development process was undertaken to redesign an oil spill detection buoy system which had been successfully tested in the 1970s. The sensor's operation is based on the stimulated fluorescence of oil and selective wavelength detection of this fluorescence. The prototype system consists of a flotation buoy for remote deployment of the sensor, rechargeable battery supply, a land-based computer base station, and radio signal transmitter. The oil spill detection buoy was modified in 1991 and tested in the laboratory. Field trials are under way and tests to date have confirmed the unit's ability to detect oil and to differentiate between various types of oil and/or products, particularly if the software is alerted to the type of product being transferred. 2 figs

  19. Perception or reality: oil spill risk on salmon

    International Nuclear Information System (INIS)

    There is a tendency in the American scientific community to assume the worst when it comes to the effects of oil spills on the environment. Over the several years of research following the Exxon Valdez oil spill of March 1989 in Prince William Sound, Alaska, scientists of the United States National Marine Fisheries Service and the Alaska Department of Fish and Game have reported long-term and continuing negative impacts of the spill on pink salmon. In spite of the substantial evidence to the contrary, neither reassessment of results nor analysis of alternative explanations have been considered by either agency. The motivations behind such unyielding positions are examined and explanations suggested for the singular point of view. (author)

  20. Land transportation emergency response guideline for petroleum spills

    International Nuclear Information System (INIS)

    These guidelines have been developed for transportation emergency response to land-based petroleum spills. Their objective is to ensure that emergency response measures meet environment, health and safety guiding principle No. 3 of the Canadian Petroleum Products Institute. They are also intended to help integrate plans and cost sharing with other stakeholders and set consistent response expectations. Contemporary practices for responsible management of petroleum land transportation spills were documented to promote consistent approaches and to encourage better response capability and management. This document outlines scope; emergency response code of practice; response time guidelines; response equipment for tank, truck and rail car spills; and, response personnel capability and training requirements. Standards for emergency response were also identified. refs., tabs

  1. On the Complexity of Spill Everywhere under SSA Form

    CERN Document Server

    Bouchez, Florent; Rastello, Fabrice

    2007-01-01

    Compilation for embedded processors can be either aggressive (time consuming cross-compilation) or just in time (embedded and usually dynamic). The heuristics used in dynamic compilation are highly constrained by limited resources, time and memory in particular. Recent results on the SSA form open promising directions for the design of new register allocation heuristics for embedded systems and especially for embedded compilation. In particular, heuristics based on tree scan with two separated phases -- one for spilling, then one for coloring/coalescing -- seem good candidates for designing memory-friendly, fast, and competitive register allocators. Still, also because of the side effect on power consumption, the minimization of loads and stores overhead (spilling problem) is an important issue. This paper provides an exhaustive study of the complexity of the ``spill everywhere'' problem in the context of the SSA form. Unfortunately, conversely to our initial hopes, many of the questions we raised lead to NP-...

  2. Combinative hypergraph learning on oil spill training dataset

    Science.gov (United States)

    Wei, Binghui; Cheng, Ming; Wang, Cheng; Li, Jonathan

    2016-03-01

    Detecting oil spill from open sea based on Synthetic Aperture Radar (SAR) image is a very important work. One of key issues is to distinguish oil spill from "look-alike". There are many existing methods to tackle this issue including supervised and semi-supervised learning. Recent years have witnessed a surge of interest in hypergraph-based transductive classification. This paper proposes combinative hypergraph learning (CHL) to distinguish oil spill from "look-alike". CHL captures the similarity between two samples in the same category by adding sparse hypergraph learning to conventional hypergraph learning. Experimental results have demonstrated the effectiveness of CHL in comparison to the state-of-the-art methods and showed that our proposed method is promising.

  3. Environmental aspects of contingency planning and spill response

    International Nuclear Information System (INIS)

    Alyeska Pipeline Service Company has implemented an incident command system (ICS) for crisis management within the company for response to spills at all company facilities including the Valdez Marine Terminal. The system is also used by Alyeska acting as the initial response contractor for TAPS laden tankers within Prince William Sound. During the past three years, Alyeska has undertaken a complete review of the spill prevention and response plans for these areas. This poster session focuses on the environmental aspects of the response planning efforts. Information is available on contingency planning updates in the areas of dispersant use, burning as a response tool, bioremediation of marine oil spills, waste management, permitting, coastal resource and sensitive habitat data base, and wildlife protection and management. All of these subjects are addressed in the resource documents (RD) supplementing the contingency plans. The RD revisions have been a coordinated effort, involving operators, agencies, and the public through the citizen advisory group

  4. Oil spill response, prevention and impact: lesson from Tasman spirit

    International Nuclear Information System (INIS)

    Nearly half of the world oil is transported is transported by sea. Due to high shipping density coastal water is at high risk. Oil spills in the coastal areas endanger public health, devastate natural resources, and disrupt local economy. The Pakistani coast was hit by the worst ever ecological disaster on 27th July 03, when The Greek vessel 'Tasman Spirit', carrying 67,000 tonnes of crude oil grounded at Karachi port. High concentration of oil vapours along the affected shoreline caused discomfort. The contamination and losses could further be limited by taking appropriate actions. There is a need bring in significant improvements in oil spill prevention and response planning. This paper described the risks associated with oils spill and contingency planning to meet this situation. (author)

  5. Spill transport assessments using oceanographic and anecdotal data bases

    International Nuclear Information System (INIS)

    The oil spills which occurred at Prince William Sound and at Hinchinbrook Entrance in the northern Gulf of Alaska were discussed. A study was conducted to determine the most likely conditions under which the spilled oil could be carried to the Copper River Delta and Flats from these two sites. Trajectory modeling and oil slick movement analyses are usually derived from formal oceanographic and meteorological databases and best professional judgement. A novel approach was taken in this study. Local fishermen, who have worked those waters for many years, were surveyed in order to compile a database of local anecdotal observations. They were given a closed questionnaire to minimize bias in the response. Some open ended questions allowed for their opinions. An integration and interpretation of all the available data led to the conclusion that movement of oil towards the Copper River Delta and Flats was not likely to occur from these two spill sites. 3 refs., 2 tabs., 1 fig

  6. Oil and hydrocarbon spills, modelling, analysis and control

    International Nuclear Information System (INIS)

    The transport of oil from production centres to worldwide markets is usually carried out by tankers and pipelines. With the occurrence of many oil spills in recent years has come a growing awareness of the need for prevention measures and makes oil spill research one of the most difficult challenges in the present day. At the first International Conference on oil and hydrocarbon spills, modelling analysis and control, held in July 1998, 32 papers were presented to researchers, engineers and managers from all over the world. A wide range of subjects, including applied modelling techniques, contingency and response plans, resource rehabilitation methods, laboratory and field experiments, and case studies were presented. The papers are abstracted here. (UK)

  7. A hazards analysis program for spill prevention and contingency planning

    International Nuclear Information System (INIS)

    Requirements to implement a comprehensive spill management program are discussed, using a program developed for one of the largest copper mining operations in South America, as an example. The spill management program was initiated by conducting a hazards analysis of bulk liquid and oil storage systems which yielded estimates of probability that a particular hazard would be realized. Results from the hazards analysis were used to identify areas for improved spill mitigation and prevention measures and to focus on key targets for contingency response plans. The approach developed for this operation, details of which are described in this paper, can be applied to a wide variety of operations, be they small fixed facilities or large regional distribution systems. 4 refs., 5 tabs., 4 figs

  8. Oil spill risk assessment : probability and impact analyses with future projections

    International Nuclear Information System (INIS)

    This paper described a risk assessment methodology for oil spills in Washington State. The methodology involved analyzing spill probability by source, oil type, spill volume, season, and geographic zone. The method was used to develop probability distributions for actual spill volumes and probabilistic-based potential spill volumes for current and future risk assessments. The potential impact of spills based on geographic location, season, oil type and oil volume were assessed for inland freshwater and marine locations. Impacts were quantified and applied to spill distributions in order to determine risk scores. Risk quotients for each sector were divided by the grand total of risk quotients in order to derive a percentage or proportion value of risk. The risk scores were then used to develop relative risk matrices by source type and geographic zone for actual spill volumes. A customized spill database was developed to incorporate records of oil spill incidents in Washington waters of at least 50 gallons. Potential worst-case discharge (WCD) volumes were calculated for each spill. It was concluded that the methodology provides a state-of-the-art approach to evaluate the impact of a spill. 7 refs., 16 tabs., 3 figs

  9. 75 FR 47584 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Science.gov (United States)

    2010-08-06

    ... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department of... meeting for the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (the... Charter of the Commission can be found at: http://www.OilSpillCommission.gov . DATES: Wednesday, August...

  10. 75 FR 69652 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Science.gov (United States)

    2010-11-15

    ... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department of... meeting of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (the... Charter of the Commission can be found at: http://www.OilSpillCommission.gov . DATES: December 2, 2010,...

  11. 77 FR 38729 - Alternate Tonnage Threshold for Oil Spill Response Vessels

    Science.gov (United States)

    2012-06-29

    ... comments entitled Alternate Tonnage Threshold for Oil Spill Response Vessels in the Federal Register (76 FR... SECURITY Coast Guard 46 CFR Part 126 RIN 1625-AB82 Alternate Tonnage Threshold for Oil Spill Response... Convention on Tonnage Measurement of Ships, 1969, for oil spill response vessels, which are...

  12. 77 FR 23741 - DEEPWATER HORIZON Oil Spill; Final Phase I Early Restoration Plan and Environmental Assessment

    Science.gov (United States)

    2012-04-20

    ... Fish and Wildlife Service DEEPWATER HORIZON Oil Spill; Final Phase I Early Restoration Plan and... DEEPWATER HORIZON Oil Spill (Framework Agreement), notice is hereby given that ] the Federal and State... the DEEPWATER HORIZON oil spill, which occurred on or about April 20, 2010, in the Gulf of Mexico....

  13. 76 FR 78016 - Deepwater Horizon Oil Spill; Draft Phase I Early Restoration Plan and Environmental Assessment

    Science.gov (United States)

    2011-12-15

    ....S. Fish and Wildlife Service, Interior Deepwater Horizon Oil Spill; Draft Phase I Early Restoration... from the Deepwater Horizon Oil Spill, the Federal and State natural resource trustee agencies (Trustees... resources and services injured or lost as a result of the Deepwater Horizon oil spill, which occurred on...

  14. 30 CFR 254.46 - Whom do I notify if an oil spill occurs?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Whom do I notify if an oil spill occurs? 254.46... Outer Continental Shelf Facilities § 254.46 Whom do I notify if an oil spill occurs? (a) You must immediately notify the National Response Center (1-800-424-8802) if you observe: (1) An oil spill from...

  15. 77 FR 33763 - Exxon Valdez Oil Spill Trustee Council; Request for Nominations

    Science.gov (United States)

    2012-06-07

    ... Office of the Secretary Exxon Valdez Oil Spill Trustee Council; Request for Nominations AGENCY: Office of the Secretary, Department of the Interior. ACTION: Notice SUMMARY: The Exxon Valdez Oil Spill Trustee... to the T/V Exxon Valdez oil spill of 1989. Public Advisory Committee members will be selected...

  16. 76 FR 37141 - Exxon Valdez Oil Spill Trustee Council; Notice of Meeting

    Science.gov (United States)

    2011-06-24

    ... Office of the Secretary Exxon Valdez Oil Spill Trustee Council; Notice of Meeting AGENCY: Department of... Interior, Office of the Secretary is announcing a public meeting of the Exxon Valdez Oil Spill Public Advisory Committee. DATES: July 26, 2011, at 10 a.m. ADDRESSES: Exxon Valdez Oil Spill Trustee...

  17. 33 CFR Appendix D to Part 154 - Training Elements for Oil Spill Response Plans

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Training Elements for Oil Spill... Appendix D to Part 154—Training Elements for Oil Spill Response Plans 1. General 1.1The portion of the plan... contracted oil spill removal organizations and the procedures to notify the activate such organizations....

  18. 78 FR 8184 - DEEPWATER HORIZON Oil Spill; Final Phase II Early Restoration Plan and Environmental Review

    Science.gov (United States)

    2013-02-05

    ... DEEPWATER HORIZON Oil Spill; Final Phase II Early Restoration Plan and Environmental Review AGENCY: Interior... Addressing Injuries Resulting from the DEEPWATER HORIZON Oil Spill (Framework Agreement), notice is hereby... services injured or lost as a result of the DEEPWATER HORIZON oil spill, which occurred on or about...

  19. 75 FR 61771 - Exxon Valdez Oil Spill Trustee Council; Renewal of the Public Advisory Committee

    Science.gov (United States)

    2010-10-06

    ... Office of the Secretary Exxon Valdez Oil Spill Trustee Council; Renewal of the Public Advisory Committee...), following the recommendation and approval of the Exxon Valdez Oil Spill Trustee Council, and in consultation... the Exxon Valdez Oil Spill Public Advisory Committee. SUPPLEMENTARY INFORMATION: The Court...

  20. 76 FR 15332 - Exxon Valdez Oil Spill Trustee Council; Notice of Meeting

    Science.gov (United States)

    2011-03-21

    ... Office of the Secretary Exxon Valdez Oil Spill Trustee Council; Notice of Meeting AGENCY: Office of the..., Office of the Secretary is announcing a public meeting of the Exxon Valdez Oil Spill Public Advisory Committee. DATES: April 13, 2011, at 10 a.m. ADDRESSES: Exxon Valdez Oil Spill Trustee Council Office,...