WorldWideScience

Sample records for chemical sciences division

  1. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  2. Chemical and Laser Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions

  3. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  4. Chemical Sciences Division annual report, 1990

    International Nuclear Information System (INIS)

    1991-08-01

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H 2 , and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO 2 , potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures

  5. Chemical and Laser Sciences Division: Annual report, 1987

    International Nuclear Information System (INIS)

    1988-01-01

    As the Chemical and Laser Sciences Division concludes its first year, the Division personnel can be proud of their many scientific and technical accomplishments. Among the important milestones which the Division achieved were significant demonstrations of the process performance in the Special Isotope Separation program, of beam sensing techniques for the NPB program, and of optical angular multiplexing and energy extraction from the ICF KrF laser. In addition, the Los Alamos FTS was brought to operational status and the Bright Source attained intensities on the order of 10 17 W/cm 2 . A few highlights of these and other research and development activities are presented in the following sections of this report

  6. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  7. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  8. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  9. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  10. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  11. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  12. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  13. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  14. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  15. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Burris, L.; Webster, D.S.; Barney, D.L.; Cafasso, F.A.; Steindler, M.J.

    1981-06-01

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO 2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  16. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  17. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

    2004-01-01

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  18. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  19. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  20. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  1. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  2. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  3. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  4. Chemical sciences, annual report 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE's national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad

  5. Chemical sciences, annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  6. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  7. Division of information and quantum sciences

    International Nuclear Information System (INIS)

    2016-01-01

    The advent of the digital society where tremendous amount of information is electronically accessible has brought the intelligent information processing technologies indispensable. This division consists of seven departments; Information Science Departments (Knowledge Science, Intelligent Media, Architecture for Intelligence, Reasoning for Intelligence), Quantum Science Departments (Photonic and Electronic Materials, Semiconductor Electronics, and Advanced Electron Devices. The former four and the latter three departments aim to establish fundamental techniques to support the advanced digital society in terms of software and hardware technologies respectively. The departments on the former software technologies work on the task of computerizing the intelligent human information processing capability to help solving difficult engineering problems and assist intellectual activities. The departments on the latter hardware technologies pursue various approaches in the fields of electronic materials design and tailoring, surface physics, nanometer scale materials fabrication and characterization, semiconductor nanostructures for quantum devices, semiconductor-based new bio/chemical sensors, organic materials and biomolecules. We challenge to output world-widely significant achievements under our systematic cooperation, and further collaborate with researchers of domestic and overseas universities, research institutes and private companies. Moreover, we educate many graduate students belonging to Graduate School of Science (Department of Physics), Graduate School of Engineering (Department of Electrical, Electronic and Information Engineering, Department of Applied Physics), Graduate School of Engineering Science (Department of Materials Engineering Science), and Graduate School of Information Science and Technology (Department of Computer Science, Department of Information and Physical Sciences) under the aim to grow young researchers having both advanced knowledge and

  8. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  9. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  10. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  11. Earth Sciences Division annual report 1990

    International Nuclear Information System (INIS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required

  12. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  13. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  14. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  15. CHEMICAL ENGINEERING DIVISION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Lawroski, S.; Vogel, R. C.; Levenson, Milton; Munnecke, V. H.

    1963-07-01

    Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants.

  16. Medical Sciences Division report for 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This year's Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE's core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE)

  17. Earth Sciences Division, collected abstracts-1977

    International Nuclear Information System (INIS)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division

  18. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  19. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  20. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  1. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  2. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  3. Earth Sciences Division collected abstracts: 1979

    International Nuclear Information System (INIS)

    Henry, A.L.; Schwartz, L.L.

    1980-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  4. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  5. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  6. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  7. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-01-01

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  8. Earth Sciences Division, collected abstracts, 1978

    International Nuclear Information System (INIS)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-01-01

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  9. Medical Sciences Division report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  10. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  11. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  12. Earth Sciences Division collected abstracts: 1980

    International Nuclear Information System (INIS)

    Henry, A.L.; Hornady, B.F.

    1981-01-01

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author

  13. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. F.; Einziger, R. E.; Green, D. W.

    2001-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  14. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  15. Environmental and Medical Sciences Division progress report January - December 1975

    International Nuclear Information System (INIS)

    Johnston, J.E.

    1976-07-01

    The activities of the AERE Environmental and Medical Sciences Division for January to December 1975 are reported under sections entitled: introduction; inhalation toxicology and radionuclide analysis; whole body counting; radiation physics; environmental analysis, atmospheric pollution; medical; chemical analysis group; publications. (U.K.)

  16. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  17. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  18. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  20. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  1. Life Sciences Division annual report, 1988

    International Nuclear Information System (INIS)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information

  2. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  3. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  4. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  5. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  6. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  7. Earth Sciences Division annual report, 1976

    International Nuclear Information System (INIS)

    Hornady, B.; Duba, A.

    1977-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1976 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. Subjects include: coal gasification, gas stimulation, geothermal fields, oil shale retorting, radioactive waste management, geochemistry, geophysics, seismology, explosive phenomenology, and miscellaneous studies

  8. Environment and Medical Sciences Division Progress Report

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1980-06-01

    The 1979 annual progress report of the UKAEA Environmental and Medical Sciences Division covers both radiological and non-nuclear research programmes in the environmental and toxicological fields. The specific topics were 1) 'atmospheric pollution' which included the analysis of atmospheric trace gases by gas chromatography/mass spectrometry, the life cycle of atmospheric sulphur compounds, photochemical pollution, studies on stratospheric reactions, stratospheric ozone and the effects of pollutants, upper air sampling and monitoring gaseous atmospheric pollutants with passive samplers; 2) miscellaneous 'environmental safety projects'; 3) 'radiation physics' projects concerning a) radioactive fallout, b) studies of stable trace elements in the atmospheric environment and studies of radioactivity in the environment, c) various aspects of dosimetry research including radiation biophysics, d) personnel dosimetry, e) applied radiation spectrometry and f) data systems; 5) 'aerosol and metabolic studies' including whole body counting studies; 6) 'inhalation toxicology and radionuclide analysis' studies including actinide inhalation, cytotoxicity and fibrogenicity of non-radioactive dusts, asbestos and glass fibre research, a Qauntimet 720 image analysis service and radionuclide analysis in biological materials; and 7) 'analytical services' used in relation to 'environmental safety and chemical analysis' projects. (U.K.)

  9. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  10. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  11. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  12. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  13. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  14. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  15. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. PRANJAL SAIKIA1 ABU T MIAH1 PARTHA P DAS2. Department of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, Guwahati 781 014, Assam, India; Department of Physics, NIT Karnataka, Surathkal, Mangalore 575 025, Karnataka, India ...

  17. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  18. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  19. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  20. Nuclear Science Division 1994 annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The open-quotes early implementationclose quotes phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large γ-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive 21 Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium

  1. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  2. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  3. Chemical Engineering Division research highlights, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  4. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  5. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  6. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  7. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  8. Chemical Processing Division monthly report, November 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-12-21

    This report, from the Chemical Processing Department at HAPO for November 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  9. Chemical Processing Division monthly report, January 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-02-21

    This report, from the Chemical Processing Department at HAPO for January 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  10. Summaries of FY 1993 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  11. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  12. Chemical Engineering Division research highlights, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-01

    Separate abstracts are included for sections with information on lithium/metal sulfide batteries; electrochemical energy development; advanced fuel cell development; utilization of coal; magnetohydrodynamics technology; LMFBR and GCFR support work; fuel cycle studies; fusion reactor research; solar energy development; and basic energy science.

  13. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  15. Nuclear Science Division, 1995--1996 annual report

    International Nuclear Information System (INIS)

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document

  16. Nuclear Science Division, 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Poskanzer, A.M. [ed.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  17. European analytical column No. 37 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column again has a somewhat different format. We have once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year we have invited Prof. Manfred Grasserbauer of Vienna University of Technology to present some...... representing a major branch of chemistry, namely, analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry in particular since our discipline by tradition has many close links to industry. We are already noticing a decreased industrial commitment...... with respect to new research projects and sponsoring of conferences. It is therefore important that we strengthen our efforts and that we keep our presence at analytical chemistry meetings and conferences unchanged. Recent activities of the Division of Analytical Chemistry (DAC) and details regarding the major...

  18. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  19. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    International Nuclear Information System (INIS)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  20. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  2. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  3. Chemical Technology Division progress report for the period July 1, 1988 to September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period July 1, 1988, through September 30, 1989. The following major areas are covered: waste management and environmental programs, the Waste Management Technology Center, radiochemical and isotope programs, basic science and technology, Nuclear Regulatory Commission and Electric Power Research Institute severe accident research programs, the Office of Safety and Operational Readiness, and administrative resources and facilities.

  4. 75 FR 9437 - Wacker Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including...

    Science.gov (United States)

    2010-03-02

    ... Chemical Corporation Wacker Polymers Division a Subsidiary of Wacker Chemie AG Including On-Site Leased.... and Yoh Managed Staffing South Brunswick, NJ; Wacker Chemical Corporation Wacker Polymers Division a... of Wacker Chemical Corporation, Wacker Polymers Division, a subsidiary of Wacker Chemie AG, including...

  5. Earth Sciences Division. Annual report 1979

    International Nuclear Information System (INIS)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences

  6. Earth Sciences Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences. (ACR)

  7. Cognitive and Neural Sciences Division 1991 Programs

    Science.gov (United States)

    1991-08-01

    interventions , for performance aiding, for certification and for performance evaluation. As the Navy modernizes those systems to take advantage of potential...2223-2237. Livingstone, M., Drislane, F. and Galaburda, A. (1991, in press) Physiological evidence for a magnocellular defect in dyslexia . Science. 201...develop training interventions to counter the effects of stress on performance. Progress: This grant is new in FY91. Outside Funding: Funds for this

  8. Progress report, Health Sciences Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Health Sciences Division during the quarter included development of improved radiation counters and dosimeters, studies of radionuclide migration through the environment, investigations of the effects of radiation upon a variety of living organisms, and calculation of improved dosimetry factors

  9. Materials Science Division activity report 1991-1993

    International Nuclear Information System (INIS)

    Amarendra, G.; Tiwari, A.M.; Subramanian, N.; Venugopal Rao, G.

    1995-01-01

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  10. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  11. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-01-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  12. Geosciences program annual report 1978. [LBL Earth Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.

    1978-01-01

    This report is a reprint of the Geosciences section of the LBL Earth Sciences Division Annual Report 1978 (LBL-8648). It contains summary papers that describe fundamental studies addressing a variety of earth science problems of interest to the DOE. They have applications in such diverse areas as geothermal energy, oil recovery, in situ coal gasification, uranium resource evaluation and recovery, and earthquake prediction. Completed work has been reported or likely will be in the usual channels. (RWR)

  13. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    1995-01-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  14. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  15. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  16. Research in the chemical sciences: Summaries of FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  17. Summaries of FY 1979 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  18. Summaries of FY 1981 research in the chemical sciences

    International Nuclear Information System (INIS)

    1981-08-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division will find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The contents are as follows: DOE laboratires; chemical physics; atomic physics; chemical energy; separations; analysis; chemical engineering sciences; offsite contracts; equipment funds; topical index; institutional index for offsite contracts; and investigator index

  19. Summaries of FY 1979 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas

  20. The ORNL Chemical Technology Division, 1950-1994

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  1. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  2. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  3. Atmospheric sciences division. Annual report, fiscal year 1981

    International Nuclear Information System (INIS)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included

  4. Progress report - Health Sciences Division - 1985 July 01 -December 31

    International Nuclear Information System (INIS)

    1986-02-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the aspects discussed include measurement and application of environmental isotopes, dosimetry and employee monitoring, environmental processes of radioisotope transport, the effects of ionizing radiation on living cells (cancer, hyperthermia, DNA, etc.), and statistics of hospital procedures

  5. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov (United States)

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  6. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  7. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    International Nuclear Information System (INIS)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included

  8. Dimensions of chemical science

    Indian Academy of Sciences (India)

    C N R RAO. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India. e-mail: ... century with Lavoisier when he propounded ideas on chemical ... we come to recognize that new trends in chemistry started after the ...

  9. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    Kumar, Vijay; Vasumathi, D.; Chandra Sekhar, N.V.

    1990-01-01

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  10. Summaries of FY 1982 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  11. Summaries of FY 1982 research in the chemical sciences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index

  12. Progress report - Health Sciences Division - 1985 January 01 - June 30

    International Nuclear Information System (INIS)

    1985-09-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Dosimetric Research, Environmental Research, Radiation Biology, and Medical. Some of the main areas of interest discussed are the impact of studies on cultured human fibroblasts with abnormal carcinogen sensitivity. This includes mechanisms of DNA repair and for the initiation of cancer, contribution of such genes to overall societal cancer burden, impact on risk assessment, distribution of risk, and radiation protection, application to improved treatment of cancer, screening for abnormal carcinogen sensitivity and Roberts syndrome

  13. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  14. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  15. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    International Nuclear Information System (INIS)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs

  16. Research in the chemical sciences. Summaries of FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  17. Earth Sciences Division Research Summaries 2002-2003

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  18. Earth Sciences Division Research Summaries 2002-2003

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.

    2003-01-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  19. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  20. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  1. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Advanced Search. Journal Home > International Journal of Biological and Chemical Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  2. Earth Sciences Division Research Summaries 2006-2007

    International Nuclear Information System (INIS)

    DePaolo, Donald; DePaolo, Donald

    2008-01-01

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  3. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  4. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  5. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations

  7. Hazardous Waste Cleanup: Fisher Scientific Chemical Division in Fair Lawn, New Jersey

    Science.gov (United States)

    Fisher Scientific Chemical Division occupies a 10-acre site at 1 Reagent Lane in the Fair Lawn Industrial Park, New Jersey. Since 1955, Fisher has formulated, distilled, repackaged and distributed high-purity, laboratory-grade reagents and solvents.

  8. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  9. Summaries of FY 1983 research in the chemical sciences

    International Nuclear Information System (INIS)

    1983-09-01

    These summaries provide a means for becoming acquainted, either generally or in some depth, with the US DOE Chemical Sciences Program. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge generated in this program can be seen in the index and again in the summaries

  10. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  11. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  12. Progress report - physical sciences TASCC division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1991-09-01

    This is the second in a new series of reports of the work of the TASCC Division since the creation of the Physical Sciences Unit in 1990. Physical Sciences comprises four main sectors, namely the TASCC, Physics and Chemistry Divisions, and the National Fusion Program Management Office. Physics Division is responsible for research and development in the areas of condensed matter physics, neutron and neutrino physics, and accelerator physics, while TASCC Division deals with research performed with the Tandem and Superconducting Cyclotron accelerators, primarily in the field of Heavy Ion Nuclear Physics

  13. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

  14. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  15. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  16. Semi-annual report of Chemical Division of CDTN - July to December 1988

    International Nuclear Information System (INIS)

    Ferreira, M.P.

    1989-01-01

    The main activities developed by the Chemical Division of CDTN are described, including 1) the characterization of rare earths and yttrium; 2) the specification of Cu ++ selective electrode; 3) chemical characterization of UO 2 sintering pellets; 4) determination of graphitic carbon in cement; 5) determination of lead in blood and urine; and 6) analytical determinations. (C.G.C.) [pt

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. PRASAD V BHARATAM. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vidyanand K Revankar. Articles written in Journal of Chemical Sciences. Volume 113 Issue 4 August 2001 pp 285-290 Inorganic. Design, synthesis and physico-chemical investigation of a dinuclear zinc(II) complex with a novel 'end-off' compartmental ligand · Anil D Naik ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sambasivarao Kotha. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1369-1371 Special issue on Chemical Crystallography. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction · Sambasivarao ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Anil D Naik. Articles written in Journal of Chemical Sciences. Volume 113 Issue 4 August 2001 pp 285-290 Inorganic. Design, synthesis and physico-chemical investigation of a dinuclear zinc(II) complex with a novel 'end-off' compartmental ligand · Anil D Naik Vidyanand K ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. JAYEETA BHATTACHARJEE. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1463-1475 Special issue on Chemical Crystallography. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MINHAJUL ARFEEN. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P K Chattaraj. Articles written in Journal of Chemical Sciences. Volume 115 Issue 3 June 2003 pp 195-218 Physical and Theoretical. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons · P K Chattaraj B Maiti U ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. B Jayachander Rao. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 401-407. Reactive chemical dynamics through conical intersections · S Ghosal B Jayachander Rao S Mahapatra · More Details Abstract Fulltext PDF. Reaction ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Ganesh Kokate. Articles written in Journal of Chemical Sciences. Volume 126 Issue 2 March 2014 pp 403-413. Novel catalysts for valorization of biomass to value-added chemicals and fuels · Nishita Lucas Narasimha Rao Kanna Atul S Nagpure Ganesh Kokate ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Malaichamy Sathiyendiran. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1501-1506 Special issue on Chemical Crystallography. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex.

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. APOORVA A BANKAR. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. GOPALAN RAJARAMAN. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1569-1579 Special issue on Chemical Crystallography. How strongly are the magnetic anisotropy and coordination numbers correlated in lanthanide based ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Maheswaran Shanmugam. Articles written in Journal of Chemical Sciences. Volume 126 Issue 5 September 2014 pp 1443-1449 Special issue on Chemical Crystallography. Synthesis and magnetic properties of a 1-D helical chain derived from a Nickel-Sodium Schiff base ...

  10. Progress report: Health Sciences Division, 1983 July 1 - December 31

    International Nuclear Information System (INIS)

    1984-02-01

    This report summarizes programs in health physics, radiation biology, environmental sciences and biomedical research. Health physics research included work on neutron dosimetry, thermoluminescent dosimetry, measurements of γ- and β-sensitivity of MOSFET detectors, tritium monitoring, a stack effluent monitor, and other radiation instruments. Environmental research included studies of heated plumes, radiotracer studies of flow through rock fractures, radionuclide cycling by plants, stable cobalt in fish, long-term radiation protection objectives for radioactive waste disposal, and tritium in surface waters in the CRNL vicinity. Radiation biology research continued to be concerned with DNA damage from radiation and carcinogenic chemicals, and enzymatic Σrepair processesΣ which help protect cells from such damage. In biomedical research the experiment to measure the fraction of HT by volunteers that is converted to HTO in vivo is progressing satisfactorily

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6 ... friendly deprotection of acetonides and cleavage of acetals and ketones has been ... Department of Organic Chemistry, Indian Association for the Cultivation of Science, ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5 ... We present here results of ab-initio studies of structures and interaction energies of ... Center for Computational Natural Sciences and Bioinformatics, International Institute ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Controlling dynamics in diatomic systems ... Department of Chemistry, Panjab University, Chandigarh 160 014; Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 8 ... condensation in good to high yields in the presence of diatomite-SO3H as a solid ... of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. P Natarajan1 P Paul1 2 T Dhanasekaran1 H Prakash1. Department of Inorganic Chemistry and National Centre for Ultrafast Processes, University of Madras, Chennai 600 025, India; Catalysis Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, India ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Chemistry, SPW Degree and PG College, Tirupati, Andhra Pradesh 517 502, India; Chemical Research Department, R&D Centre, API Division, Micro Labs Ltd., Jigani-Bommasandra Link Road, Bangalore, Karnataka 560 105, India; Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra ...

  17. Life Sciences Division progress report for CYs 1997-1998[Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mann, Reinhold C.

    1999-01-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R and D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R and D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  18. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  19. Environmental Sciences Division annual progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO 2 and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program

  20. Environmental Sciences Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  1. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  2. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  3. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SABIHA FATIMA. Articles written in Journal of Chemical Sciences. Volume 128 Issue 7 July 2016 pp 1163-1173 Regular Article. Molecular docking, MM/GBSA and 3D-QSAR studies on EGFR inhibitors · RAJU BATHINI SREE KANTH SIVAN SABIHA FATIMA VIJJULATHA ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vandana. Articles written in Journal of Chemical Sciences. Volume 113 Issue 4 August 2001 pp 297-306 Physical and Theoretical. Theoretical study of the mechanism of proton transfer in tautomeric systems: Alloxan · Rita Kakkar Bhupendra K Sarma Vandana katoch.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mikki V Vinodu. Articles written in Journal of Chemical Sciences. Volume 113 Issue 1 February 2001 pp 1-9 Inorganic and Analytical. Peroxidase-like catalytic activities of ionic metalloporphyrins supported on functionalised polystyrene surface · Mikki V Vinodu M ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. NAGAIYAN SEKAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 9 September 2017 pp 1349-1361 Regular Aricle. Enhanced NLO response in BODIPY-coumarin hybrids: density functional theory approach · YOGESH ERANDE NAGAIYAN SEKAR.

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journals; Journal of Chemical Sciences. Ashoka G Samuelson. Articles written in Journal of Chemical Sciences ... Issue 6 November 2012 pp 1343-1352. Computational tools for mechanistic discrimination in the reductive and metathesis coupling reactions mediated by titanium(IV) isopropoxide · Akshai Kumar Ashoka G ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Ruli Borah. Articles written in Journal of Chemical Sciences. Volume 123 Issue 5 September 2011 pp 623-630. Investigation of Prins reaction for the synthesis of 2, 4- disubstituted tetrahydropyran derivatives and 1, 3-dioxanes using polyaniline supported acid as reusable ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Piue Ghoshal. Articles written in Journal of Chemical Sciences. Volume 120 Issue 2 March 2008 pp 275-287. Structural transition in alcohol-water binary mixtures: A spectroscopic study · Tuhin Pradhan Piue Ghoshal Ranjit Biswas · More Details Abstract Fulltext PDF.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Murali Sastry. Articles written in Journal of Chemical Sciences. Volume 114 Issue 5 October 2002 pp 513-520 Physical and Theoretical. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid · Saikat Mandal P R Selvakannan ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. N Ravikumar Reddy. Articles written in Journal of Chemical Sciences. Volume 114 Issue 1 February 2002 pp 11-23 Inorganic and Analytical. Equilibria and kinetics for H-dependent axial ligation of alkyl(aquo) cobaloximes with aromatic and aliphatic N-donor ligands.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Swapan K Pati. Articles written in Journal of Chemical Sciences. Volume 115 Issue 5-6 October-December 2003 pp 533-542. Electrostatic potential profile and nonlinear current in an interacting one-dimensional molecular wire · S Lakshmi Swapan K Pati · More Details ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P G Aravindan. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 403-409. The role of weak intermolecular C-H…F interactions in supramolecular assembly: Structural investigations on 3,5- dibenzylidene-piperidin-4-one and database ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Tamal Ghosh. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 406-406. Catalytic carboxyester hydrolysis by diaminodiphenols · Tamal Ghosh Rupendranath Banerjee · More Details Fulltext PDF. Volume 116 Issue 1 January 2004 pp 17-20 ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Philippe Bertrand. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 471-479. Biological activities of substituted trichostatic acid derivatives · Cédric Charrier Joëlle Roche Jean-Pierre Gesson Philippe Bertrand · More Details Abstract Fulltext ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. PRADEEP KUMAR BUDDE. Articles written in Journal of Chemical Sciences. Volume 130 Issue 3 March 2018 pp 27. Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1−x ZSM-5 derived from pretreatment · PRADEEP KUMAR BUDDE ARVIND ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Afsar Ali. Articles written in Journal of Chemical Sciences. Volume 122 Issue 3 May 2010 pp 311-320 Perspective Articles. Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies · Afsar Ali Amit P Singh Rajeev Gupta.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. RAM CHANDRA REDDY JALA. Articles written in Journal of Chemical Sciences. Volume 129 Issue 6 June 2017 pp 663-677 Regular Aricle. The impact of sugar and fatty acid on the bioactivity of N -fatty acyl- L -tyrosine aglycone · SRIKANTH VUDHGIRI R B N PRASAD Y ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Nalini V Purohit. Articles written in Journal of Chemical Sciences. Volume 125 Issue 1 January 2013 pp 165-173. Synthesis and evaluation of some bioactive compounds having oxygen and nitrogen heteroatom · Poonam Yadav Nalini V Purohit · More Details Abstract Fulltext ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. A Nandakumar. Articles written in Journal of Chemical Sciences. Volume 124 Issue 3 May 2012 pp 609-624. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents · C Praveen A Nandakumar P Dheenkumar D Muralidharan ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Farman Ali. Articles written in Journal of Chemical Sciences. Volume 122 Issue 6 November 2010 pp 847-855 Full Papers. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex · Pabitra K Nayak Neeraj Agarwal Farman Ali Meghan P ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SONALI RAMGOPAL MAHULE. Articles written in Journal of Chemical Sciences. Volume 129 Issue 9 September 2017 pp 1491-1498 Regular Aricle. Axially chiral benzimidazolium based silver(I) and gold(I) bis-NHC complexes of R-BINOL scaffold: synthesis, characterization ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SURESH KUMAR. Articles written in Journal of Chemical Sciences. Volume 112 Issue 6 December 2000 pp 601-605 Inorganic and Analytical. Synthesis and electrochemical studies of phenylazo substituted tetraaza macrocyclic complexes of Ni(II) · Randhir Singh Suresh ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. A Sakthivel. Articles written in Journal of Chemical Sciences. Volume 119 Issue 4 July 2007 pp 303-310. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies · N Raman J Dhaveethu Raja A Sakthivel.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. ZAHRA KHODARAHMI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 8 August 2016 pp 1277-1284 Regular Article. Functionalized dicationic ionic liquids: Green and efficient alternatives for catalysts in phthalate plasticizers preparation · NEGAR ZEKRI ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G N Mukherjee. Articles written in Journal of Chemical Sciences. Volume 114 Issue 3 June 2002 pp 163-174 Inorganic and Analytical. Mixed ligand complex formation of Fe with boric acid and typical N-donor multidentate ligands · G N Mukherjee Ansuman Das · More Details ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences. V R Vijayaraghavan. Articles written in Journal of Chemical Sciences. Volume 112 Issue 5 October 2000 pp 507-514 Inorganic and Analytical. Kinetics of oxidation of nickel(II) aza macrocycles by peroxydisulphate in aqueous media.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. V Gopal Reddy. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 371-378. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex · L Giribabu Vrun Kumar Singh M ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Rajesh Kumar. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 497-502. Synthesis, antimicrobial and antifungal activities of novel 1H-1,4-diazepines containing pyrazolopyrimidinone moiety · Rajesh Kumar Yogesh Chandra Joshi.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. L Giribabu. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 357-357. Synthesis and DNA-interactions of new Co(III), Fe(II), Ni(II), Ru(II) and Os(II) complexes of modified phenanthroline ligands · C V Sastria D Easwaramoorthy Athilakshmi L ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Chintan Gupta. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 659-673. Maximization of yield of C-13 isotope by multiphoton dissociation of Freon-22 using high average power TEA CO2 laser · Manoj Kumar Anant Deshpande ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. XIANG WANG. Articles written in Journal of Chemical Sciences. Volume 129 Issue 1 January 2017 pp 9-20 Regular Article. Self-assembly, structures and properties of three new Ni(II) coordination polymers derived from two different bis-pyridyl-bis-amide ligands and two ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. HONGYAN LIN. Articles written in Journal of Chemical Sciences. Volume 127 Issue 7 July 2015 pp 1275-1285 Regular Articles. Three 2 D copper(II)/cadmium(II) coordination polymers based on semi-rigid/flexible bis-pyridyl-bis-amide ligands and 5-aminoisophthalate: ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Shivanand M Pudakalakatti. Articles written in Journal of Chemical Sciences. Volume 127 Issue 6 June 2015 pp 1091-1097 Regular Articles. Simultaneous acquisition of three NMR spectra in a single experiment for rapid resonance assignments in metabolomics · Shivanand ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. William J Foley. Articles written in Journal of Chemical Sciences. Volume 125 Issue 4 July 2013 pp 765-775. Antileishmanial polyphenols from Corymbia maculata · Jasmeen Sidana Dinesh Neeradi Alka Choudhary Sushma Singh William J Foley Inder Pal Singh.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. ATANU BARIK. Articles written in Journal of Chemical Sciences. Volume 117 Issue 6 November 2005 pp 641-647. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins · Beena Mishra Atanu Barik K Indira Priyadarsini Hari ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Vidyasagar. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 417-417. Solid state chemistry of new polysulphides in A/Sn/S (A = Na, K, Rb) systems · M Suseela Devi K Vidyasagar · More Details Fulltext PDF. Volume 115 Issue 5-6 ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Hemant K Kashyap. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 391-399. Non-ideality in Born-free energy of solvation in alcohol-water and dimethylsulfoxide-acetonitrile mixtures: Solvent size ratio and ion size dependence.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Akshaya K Nayak. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 649-657. Modelling of multifrequency IRMPD for laser isotope separation · Akshaya K Nayak Sisir K Sarkar · More Details Abstract Fulltext PDF. The process of infrared ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Ch Vijay Kumar. Articles written in Journal of Chemical Sciences. Volume 121 Issue 1 January 2009 pp 75-82 Full Papers. Unsymmetrical extended -conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films · L Giribabu Ch Vijay Kumar P Yella Reddy ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Wilaiwan Chanmanee. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 655-664. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications · Satheesh Sambandam Vinodh Valluri Wilaiwan ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Davood Nematollahi. Articles written in Journal of Chemical Sciences. Volume 123 Issue 5 September 2011 pp 709-717. Diversity in electrochemical oxidation of dihydroxybenzenes in the presence of 1-methylindole · Davood Nematollahi Vahid Hedayatfar · More Details ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S Pitchumani. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 647-654. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells · N A Choudhury S K Prashant S Pitchumani P Sridhar A K Shukla.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. A Jalajakshi. Articles written in Journal of Chemical Sciences. Volume 124 Issue 2 March 2012 pp 529-536. Endurance of Nafion-composite membranes in PEFCs operating at elevated temperature under low relative-humidity · A K Sahu A Jalajakshi S Pitchumani P Sridhar ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. I Hubert Joe. Articles written in Journal of Chemical Sciences. Volume 120 Issue 4 July 2008 pp 405-410. Surface enhanced Raman spectra of the organic nonlinear optic material: Methyl 3-(4-methoxy phenyl)prop-2-enoate · D Sajan I Hubert Joe V S Jayakumar Jacek Zaleski.

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. BIPUL KUMAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 2 February 2017 pp 211-222 Regular Article. Synthesis and antibacterial activity screening of quaternary ammonium derivatives of triazolyl pyranochromenones · PREETI YADAV BIPUL ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Hai-Liang Zhu. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 463-470. Synthesis, antimicrobial activity of lamotrigine and its ammonium derivatives · Yong Qian Peng-Cheng Lv Lei Shi Rui-Qin Fang Zhong-Cheng Song Hai-Liang Zhu.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Azadeh Azadbakht. Articles written in Journal of Chemical Sciences. Volume 127 Issue 11 November 2015 pp 2005-2014 Articles. Copper inorganic-organic hybrid coordination compound as a novel L-cysteine electrochemical sensor: Synthesis, characterization, ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P Balaram. Articles written in Journal of Chemical Sciences. Volume 115 Issue 5-6 October-December 2003 pp 373-400. Non-protein amino acids in peptide design · S Aravinda N Shamala Rituparna S Roy P Balaram · More Details Abstract Fulltext PDF. An overview of the ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Tapta Kanchan Roy. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 805-810. Effective harmonic oscillator description of anharmonic molecular vibrations · Tapta Kanchan Roy M Durga Prasad · More Details Abstract Fulltext PDF.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G Mugesh. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 239-248. Aspects of organochalcogen (S, Se, Te) compounds stabilized by intramolecular coordination · G Mugesh Arunashree Panda Harkesh B Singh · More Details Abstract ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. U Manju. Articles written in Journal of Chemical Sciences. Volume 115 Issue 5-6 October-December 2003 pp 491-498. Electron spectroscopic investigation of metal-insulator transition in Ce1-SrTiO3 · U Manju S R Krishnakumar Sugata Ray S Raj M Onoda C Carbone D D ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Asim Bhaumik. Articles written in Journal of Chemical Sciences. Volume 114 Issue 4 August 2002 pp 451-460. Mesoporous titanium phosphates and related molecular sieves: Synthesis, characterization and applications · Asim Bhaumik · More Details Abstract Fulltext PDF.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SAFA ALI-ASGARI. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 293-302. Mechanism and regioselectivity of 1,3-dipolar cycloaddition reactions of sulphur-centred dipoles with furan-2,3-dione: A theoretical study using DFT.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Krishna P Kaliappan. Articles written in Journal of Chemical Sciences. Volume 120 Issue 1 January 2008 pp 205-216. Synthetic studies on taxanes: A domino-enyne metathesis/Diels-Alder approach to the AB-ring · Krishna P Kaliappan Velayutham Ravikumar Sandip A Pujari.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S Karthikeyan. Articles written in Journal of Chemical Sciences. Volume 113 Issue 4 August 2001 pp 245-256 Inorganic. Synthesis and physiochemical studies on binuclear Cu(II) complexes derived from 2,6-[(N-phenylpiperazin-1-yl)methyl]-4-substituted phenols.

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. V V Namboodiri. Articles written in Journal of Chemical Sciences. Volume 124 Issue 1 January 2012 pp 177-186. Basic principles of ultrafast Raman loss spectroscopy · N K Rai A Y Lakshmanna V V Namboodiri S Umapathy · More Details Abstract Fulltext PDF. When a light ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Elena Rodríguez Payán. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1721-1727 Regular Articles. Functionalization of lambda-zirconium phosphate with ethylenediaminetetraacetic acid: Synthesis, characterization and applications.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Renu Pasricha. Articles written in Journal of Chemical Sciences. Volume 114 Issue 5 October 2002 pp 513-520 Physical and Theoretical. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid · Saikat Mandal P R ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Ashavani Kumar. Articles written in Journal of Chemical Sciences. Volume 115 Issue 3 June 2003 pp 185-193 Physical and Theoretical. Lamellar multilayer hexadecylaniline-modified gold nanoparticle films deposited by the Langmuir-Blodgett technique · Anita Swami ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. AMOL JADHAV. Articles written in Journal of Chemical Sciences. Volume 115 Issue 5-6 October-December 2003 pp 679-687. Water-dispersible nanoparticles via interdigitation of sodium dodecylsulphate molecules in octadecylamine-capped gold nanoparticles at a ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Charusita Chakravarty. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 913-919. Evaluation of collective transport properties of ionic melts from molecular dynamics simulations · Manish Agarwal Charusita Chakravarty · More Details ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. OUARDA BENLOUNES. Articles written in Journal of Chemical Sciences. Volume 130 Issue 4 April 2018 pp 40. Oxidative Dehydrogenation (ODH) of Ethylbenzene with CO2 and N2O over Heteropolycompounds · SALEM CHEKNOUN SADIA MANSOURI OUARDA ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. VADDYPALLY SHIVAIAH. Articles written in Journal of Chemical Sciences. Volume 114 Issue 2 April 2002 pp 107-114 Inorganic and Analytical. Synthesis and characterization of a reduced heteropolytungstovanadate: (NH4)7[VO4 W 10 VI V 2 IV O36]·ca. 22H2O · Vaddypally ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Journal of Chemical Sciences. R Ramya. Articles written in Journal of Chemical Sciences. Volume 120 Issue 1 January 2008 pp 25-31. Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific capacitances and construction of equivalent circuits · R Ramya M V ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. AYOUB KANAANI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 8 August 2016 pp 1211-1221 Regular Article. Synthesis, molecular structure, spectroscopic investigations and computational study of a potential molecular switch of 2-([1 ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Chinnakonda S Gopinath. Articles written in Journal of Chemical Sciences. Volume 127 Issue 1 January 2015 pp 33-47 Review Articles. Recent developments in solar H2 generation from water splitting · Sivaraman Rajaambal Kumarsrinivasan Sivaranjani Chinnakonda S ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vijay K Agrawal. Articles written in Journal of Chemical Sciences. Volume 112 Issue 1 February 2000 pp 43-49 Physical and Theoretical. Topological estimation of proton-ligand formation constants of potential antitumour agents: Salicylhydroxamic acids · Sneha Karmarkar ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Krishna Prasad. Articles written in Journal of Chemical Sciences. Volume 120 Issue 1 January 2008 pp 155-162. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions · K Krishna Prasad Sandeep Verma · More Details Abstract Fulltext PDF.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. LAYLA TAIB. Articles written in Journal of Chemical Sciences. Volume 128 Issue 5 May 2016 pp 745-752 Regular Articles. Thermolysis of some N-arylbenzamidoximes: Mechanistic studies for formation of anilide, oxazole and imidazole derivatives · ABDEL-AAL GABER ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Suvarchala Devi Vudayagiri. Articles written in Journal of Chemical Sciences. Volume 116 Issue 3 March 2004 pp 169-174. Solubilization of silica: Synthesis, characterization and study of penta-coordinated pyridine N-oxide silicon complexes · Subramania Ranganathan Ch ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Dhurairajan senthilnathan. Articles written in Journal of Chemical Sciences. Volume 123 Issue 3 May 2011 pp 279-290. Biocatalysis of azidolysis of epoxides: Computational evidences on the role of halohydrin dehalogenase (HheC) · Dhurairajan senthilnathan ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G Narahari Sastry. Articles written in Journal of Chemical Sciences. Volume 115 Issue 1 February 2003 pp 49-66 Organic. Measures to evaluate heteroaromaticity and their limitations: Story of skeletally substituted benzenes · U Deva Priyakumar G Narahari Sastry.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G Krishnamoorthy. Articles written in Journal of Chemical Sciences. Volume 115 Issue 4 August 2003 pp 307-317 Physical and Theoretical. Kinetics of proton transfer in a green fluorescent protein: A laser-induced pH jump study · Roop Mallik Jayant B Udgaonkar G ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MARAVANJI S BALAKRISHNA. Articles written in Journal of Chemical Sciences. Volume 129 Issue 4 April 2017 pp 471-481 Regular Article. Hydrazone derivatives appended to diphenylphosphine oxide as anion sensors · MARUTHAI KUMARAVEL JOEL T MAGUE ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Venkateswara Rao Anna. Articles written in Journal of Chemical Sciences. Volume 124 Issue 2 March 2012 pp 411-419. and - cyclic -perimeter hydrocarbon platinum group metal complexes of 3-(2-pyridyl)pyrazole derived ligands with a pendant nitrile group: Syntheses ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. KRISHNA S INDALKAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 2 February 2017 pp 141-148 Rapid Communication. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Batool Akhlaghinia. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1903-1912 Regular Articles. Fe(HSO4)3: An efficient, heterogeneous and reusable catalyst for -alkylation of -dicarbonyl compounds · Samaneh Khafajeh Batool ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. M K Guleria. Articles written in Journal of Chemical Sciences. Volume 116 Issue 1 January 2004 pp 33-38 Full Papers. A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures · M L Parmar R K ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Ying Tang. Articles written in Journal of Chemical Sciences. Volume 125 Issue 2 March 2013 pp 313-320. Modified calcium oxide as stable solid base catalyst for Aldol condensation reaction · Ying Tang Jingfang Xu Xuefan Gu · More Details Abstract Fulltext PDF. A highly ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China; College of Pharmaceutical Sciences, Heilongjiang University of Chinese ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 1. Issue front cover thumbnail. Volume 121, Issue 1. January 2009, pages 5-106. pp 5-5. Editor's Note % Instance of plagiarism in Journal of Chemical Sciences · S S Krishnamurthy · More Details Fulltext PDF. pp 7-21 Perspective Article. The role of specific ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Pakkirisamy Thilagar. Articles written in Journal of Chemical Sciences. Volume 118 Issue 6 November 2006 pp 455-462. Stannoxanes and phosphonates: New approaches in organometallic and transition metal assemblies · Vadapalli Chandrasekhar Kandasamy Gopal ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. RAJU BATHINI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 7 July 2016 pp 1163-1173 Regular Article. Molecular docking, MM/GBSA and 3D-QSAR studies on EGFR inhibitors · RAJU BATHINI SREE KANTH SIVAN SABIHA FATIMA VIJJULATHA ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S P Senthilkumar. Articles written in Journal of Chemical Sciences. Volume 113 Issue 3 June 2001 pp 191-196 Organic. A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols · H Surya Prakash Rao S P Senthilkumar · More Details ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Heidar Raissi. Articles written in Journal of Chemical Sciences. Volume 124 Issue 3 May 2012 pp 731-739. Theoretical study on β-aminoacroleine; Density functional theory, atoms in molecules theory and natural bond orbitals studies · Heidar Raissi Mehdi Yoosefian Effat ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MARZIEH ABBASI. Articles written in Journal of Chemical Sciences. Volume 129 Issue 8 August 2017 pp 1257-1266 REGULAR ARTICLE. Synthesis, characterization and in vitro antibacterial activity of novel phthalazine sulfonamide derivatives · MARZIEH ABBASI SEYED ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. M RAM VIVEK. Articles written in Journal of Chemical Sciences. Volume 129 Issue 5 May 2017 pp 515-531 Regular Article. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDS) · ANAMIKA SINGH GAUR ANSHU ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Savita S Khandolkar. Articles written in Journal of Chemical Sciences. Volume 127 Issue 9 September 2015 pp 1581-1588. Synthesis, characterization and photochemistry of a new heptamolybdate supported magnesium-aqua coordination complex · Savita S Khandolkar ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Biman Jana. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 343-350. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids · Biman Jana Biman Bagchi.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Fatemeh Baber Shamsi Mogoii. Articles written in Journal of Chemical Sciences. Volume 127 Issue 12 December 2015 pp 2171-2181. Synthesis, characterization and crystal structure of four new asymmetric triazene ligands: An example of linear H complex with H.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Vasantham. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 411-420. Nitroketene dithioacetal chemistry: Synthesis of coumarins incorporating nitrothiophene moiety · H Surya Prakash Rao K Vasantham · More Details Abstract Fulltext PDF.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Shallu. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1869-1874 Regular Articles. First total synthesis of a guanidine alkaloid Nitensidine D using immobilized ionic liquid, microwaves and formamidinesulfinic acid · Shallu M L ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. V Umamaheswari. Articles written in Journal of Chemical Sciences. Volume 112 Issue 4 August 2000 pp 439-448 Inorganic and Analytical. Isomorphous substitution of Mn(II), Ni(II) and Zn(II) in AlPO-31 molecular sieves and study of their catalytic performance.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Aruna Bhatia. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 443-451. Synthesis of 4-aryl-4,5-dihydro-1-indeno[1,2-]pyrimidines by Biginelli condensation and their antibacterial activities · Ramandeep Kaur Monika Bansal Balbir Kaur ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. ADRITY BAIDYA. Articles written in Journal of Chemical Sciences. Volume 130 Issue 4 April 2018 pp 35. Synthesis, characterization and antimicrobial studies of cadmium(II) complexes with a tetraazamacrocycle (LB) and its cyanoethyl N-pendent derivative (LBX) · MD SHAH ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MURALIDARAN KALIYAPERUMALA. Articles written in Journal of Chemical Sciences. Volume 129 Issue 8 August 2017 pp 1233-1245 REGULAR ARTICLE. A novel synthesis of chromone based unnatural α-amino acid derivatives · VENU KANDULA RAMAKRISHNA ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Samar K Das. Articles written in Journal of Chemical Sciences. Volume 114 Issue 2 April 2002 pp 107-114 Inorganic and Analytical. Synthesis and characterization of a reduced heteropolytungstovanadate: (NH4)7[VO4 W 10 VI V 2 IV O36]·ca. 22H2O · Vaddypally Shivaiah ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Gameel A Baghaffar. Articles written in Journal of Chemical Sciences. Volume 121 Issue 6 November 2009 pp 983-987. Multifunctional switches based on bis-imidazole derivative · Abdullah M A Asiri Gameel A Baghaffar Khadija O Badahdah Abdullah G M Al-Sehemi Salman ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Issue front cover thumbnail. Volume 125, Issue 4. July 2013, pages 705-958. pp 705-705. Team Change at the Journal of Chemical Sciences · R Ramaswamy · More Details Fulltext PDF. pp 707-714. NO2-induced synthesis of nitrato-iron(III) porphyrin ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Dilaveez Rehana. Articles written in Journal of Chemical Sciences. Volume 127 Issue 7 July 2015 pp 1155-1166 Regular Articles. Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vitro ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. H Karacali. Articles written in Journal of Chemical Sciences. Volume 117 Issue 6 November 2005 pp 677-683. Modified Pippard relationship describing the Raman frequency shifts of the rotatory lattice mode of ammonia solid II in the vicinity of its melting point · H Karacali H ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. KARISHMA DEVI BORAH. Articles written in Journal of Chemical Sciences. Volume 129 Issue 4 April 2017 pp 449-455 Regular Article. Magnesium Trimethoxyphenylporphyrin Chain Controls Energy Dissipation in the presence of Cholesterol · KARISHMA DEVI BORAH N ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. N Lingaiah. Articles written in Journal of Chemical Sciences. Volume 126 Issue 2 March 2014 pp 467-472. Role of vanadium in Keggin heteropoly molybdate supported on titania catalysts for oxidation reactions · A Srivani K T Venkateswara Rao P S Sai Prasad N Lingaiah.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S Jothilingam. Articles written in Journal of Chemical Sciences. Volume 117 Issue 1 January 2005 pp 27-32 Full Papers. Studies on NaI/DMSO induced retro-Michael addition (RMA) reactions on some 1,5-dicarbonyl compounds · H Surya Prakash Rao S Jothilingam.

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sayed Alam. Articles written in Journal of Chemical Sciences. Volume 116 Issue 1 January 2004 pp 29-32 Full Papers. Synthesis and studies of antibacterial activity of pongaglabol · Sayed Alam Zakaria Sarkar Azizul Islam · More Details Abstract Fulltext PDF. Pongaglabol ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Shashank Singh. Articles written in Journal of Chemical Sciences. Volume 127 Issue 3 March 2015 pp 413-423 Regular Articles. Iodobenzene diacetate-mediated isomerization of pyrazolyl chalcones and their cytotoxicity and anti-microbial activity · Mahavir Parshad Vikas ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. N Kaur. Articles written in Journal of Chemical Sciences. Volume 125 Issue 3 May 2013 pp 555-560. Application of chalcones in heterocycles synthesis: Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Aloke Kumar Ghosh. Articles written in Journal of Chemical Sciences. Volume 124 Issue 6 November 2012 pp 1377-1383. Rhomboidal [Cu4] coordination cluster from self-assembly of two asymmetric phenoxido-bridged Cu2 units: Role of 1,1-azido clips · Avijit Sarkar Aloke ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. CHANDRASEKAR PRAVEEN. Articles written in Journal of Chemical Sciences. Volume 128 Issue 1 January 2016 pp 73-83 Regular Articles. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cytotoxic evaluation of isoxazoles and ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Arun Kumar. Articles written in Journal of Chemical Sciences. Volume 120 Issue 5 September 2008 pp 485-491. Preparation and characterization of free-standing pure porphyrin nanoparticles · Arun Kumar Perepogu Prakriti Ranjan Bangal · More Details Abstract Fulltext PDF.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SUDIP PAN. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1537-1548 Regular Article. A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au).

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. YU-HUI HOU. Articles written in Journal of Chemical Sciences. Volume 130 Issue 1 January 2018 pp 6. Efficient click reaction towards novel sulfonamide hybrids by molecular hybridization strategy as antiproliferative agents · DONG-JUN FU YU-HUI HOU SAI-YANG ZHANG ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Akhilesh Kumar Verma. Articles written in Journal of Chemical Sciences. Volume 123 Issue 6 November 2011 pp 937-942. Di(1-benzo[][1,2,3]triazol-1-yl)methane: An efficient ligand for copper and amine-free palladium-catalysed Sonogashira coupling reaction.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Santosh J Gharpure. Articles written in Journal of Chemical Sciences. Volume 123 Issue 6 November 2011 pp 943-949. Stereoselective synthesis of 2,3-disubstituted dihydrobenzofuran using alkyne Prins type cyclization to vinylogous carbonates · Santosh J Gharpure V ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Hao-Hao Hui. Articles written in Journal of Chemical Sciences. Volume 120 Issue 3 May 2008 pp 347-351. Microwave-assisted efficient oxidation of internal alkynes to 1,2-diaryldiketones with DMSO/I2 · Min Chen Qin Zhao De-Bing She Ming-Yu Yang Hao-Hao Hui ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Suresh Parameshwar Nayak. Articles written in Journal of Chemical Sciences. Volume 127 Issue 11 November 2015 pp 1977-1991 Articles. A new synthesis of Entacapone and report on related studies · Attimogae Shivamurthy Harisha Suresh Parameshwar Nayak Pavan ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SHARMISTHA DHATT. Articles written in Journal of Chemical Sciences. Volume 129 Issue 12 December 2017 pp 1921-1928 REGULAR ARTICLE. Indicators for suicide substrate inactivation: A kinetic investigation · SHARMISTHA DHATT · More Details Abstract Fulltext PDF.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Min Xu. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1623-1627 Rapid Communications. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization · Tao Wan Min Xu Liyi Chen Daqing Wu ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Wenzhong Cheng. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1623-1627 Rapid Communications. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization · Tao Wan Min Xu Liyi Chen ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vasant R Choudhary. Articles written in Journal of Chemical Sciences. Volume 115 Issue 4 August 2003 pp 281-286 Physical and Theoretical. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. BISWAJIT CHOWDHURY. Articles written in Journal of Chemical Sciences. Volume 122 Issue 6 November 2010 pp 857-865 Full Papers. Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study · Biswajit Chowdhury Rina De ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P S Sai Prasad. Articles written in Journal of Chemical Sciences. Volume 126 Issue 2 March 2014 pp 467-472. Role of vanadium in Keggin heteropoly molybdate supported on titania catalysts for oxidation reactions · A Srivani K T Venkateswara Rao P S Sai Prasad N ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sujit Roy. Articles written in Journal of Chemical Sciences. Volume 114 Issue 4 August 2002 pp 277-283. Transition metal catalysed Grignard-like allylic activation across tetragonal tin(II) oxide · Pradipta Sinha Moloy Banerjee Abhijit Kundu Sujit Roy · More Details Abstract ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. M PRASANTHI. Articles written in Journal of Chemical Sciences. Volume 129 Issue 5 May 2017 pp 515-531 Regular Article. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDS) · ANAMIKA SINGH GAUR ANSHU ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Gopalpur Nagendrappa. Articles written in Journal of Chemical Sciences. Volume 121 Issue 6 November 2009 pp 1011-1015. Conversion of , '-dichlorodiazene dioxides using levulinic acid under solvent-free conditions to -chloroketones through a three-step domino ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Prabhpreet Singh. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 159-167. The family of N-adenine: New entry for adenine-benzamide conjugates linked via versatile spacers · Prabhpreet Singh · More Details Abstract Fulltext PDF.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SRABANI TARAPHDER. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 545-552. Effect of electrostatic interactions on the formation of proton transfer pathways in human carbonic anhydrase II · Arijit Roy Srabani Taraphder.

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vijayamohanan K Pillai. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 719-725. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Manoj Kumar. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 659-673. Maximization of yield of C-13 isotope by multiphoton dissociation of Freon-22 using high average power TEA CO2 laser · Manoj Kumar Anant Deshpande ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Rajarshi Ghosh. Articles written in Journal of Chemical Sciences. Volume 125 Issue 4 July 2013 pp 723-730. Synthesis, molecular and crystalline architectures, and properties of a mononuclear complex [Co (benzidine)2(NCS)2(OH2)2] · Subhasish Kundu Subhasis Roy ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Krishna Kishore. Articles written in Journal of Chemical Sciences. Volume 113 Issue 4 August 2001 pp 351-359 Physical and Theoretical. Mechanism of oxidation of L-methionine by iron(III)-1,10-phenanthroline complex - A kinetic study · P Vani K Krishna Kishore R ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. IBRAHIM KANI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 4 April 2016 pp 523-536 Regular Articles. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity · Ibrahim Kani Özlem Atlier Kiymet Güven.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Arlin Jose Amali. Articles written in Journal of Chemical Sciences. Volume 124 Issue 2 March 2012 pp 375-383. Formation of fractals by the self-assembly of interpolymer adducts of polymethacrylic acid with complementary polymers in aqueous solution · Kandhasamy Durai ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P Yella Reddy. Articles written in Journal of Chemical Sciences. Volume 120 Issue 5 September 2008 pp 455-462. Functionalized zinc porphyrin as light harvester in dye sensitized solar cells · L Giribabu Ch Vijay Kumar M Raghavender K Somaiah P Yella Reddy P ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. CHINMAYEE CHOUDHURY. Articles written in Journal of Chemical Sciences. Volume 128 Issue 5 May 2016 pp 719-732 Regular Articles. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors.

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Senthil Kumar. Articles written in Journal of Chemical Sciences. Volume 114 Issue 4 August 2002 pp 367-377. Chemistry of selected cyclic P(III) compounds possessing a P-Cl bond · K C Kumara Swamy Sudha Kumaraswamy Praveen Kommana N Satish Kumar K Senthil ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Kishalay Bhar. Articles written in Journal of Chemical Sciences. Volume 125 Issue 4 July 2013 pp 715-721. Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S Ramakrishnan. Articles written in Journal of Chemical Sciences. Volume 117 Issue 2 March 2005 pp 179-186. Mixed-ligand copper(II) complexes of dipicolylamine and 1,10-phenanthrolines: The role of diimines in the interaction of the complexes with DNA.

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Pratim Kumar Chattaraj. Articles written in Journal of Chemical Sciences. Volume 117 Issue 5 September 2005 pp 541-548. A philicity based analysis of adsorption of small molecules in zeolites · Angeles Cáun Marcelo Galván Pratim Kumar Chattaraj · More Details Abstract ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mei Luo. Articles written in Journal of Chemical Sciences. Volume 127 Issue 1 January 2015 pp 163-166 Regular Articles. Efficient one-pot synthesis of 2-oxazolines from benzoylacetonitrile and -aminoalcohols mediated by ZnCl2 · Mei Luo Jing Cheng Zhang Hao Yin.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. YIN ZHOU. Articles written in Journal of Chemical Sciences. Volume 130 Issue 2 February 2018 pp 19. Polynuclear and one-dimensional cyanide-bridged heterobimetallic complexes: synthesis, crystal structures and magnetic properties · JINGWEN SHI WENLONG LAN YIN ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sarat C Dash. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 497-507. Proximity effect on the general base catalysed hydrolysis of amide linkage: The role of cationic surfactant, CTABr · Sarat C Dash Anadi C Dash · More Details Abstract ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. KRISHNAMURTHI MURALIDHARAN. Articles written in Journal of Chemical Sciences. Volume 127 Issue 4 April 2015 pp 635-641 Regular Articles. Polymerization behaviour of butyl bis(hydroxymethyl)phosphine oxide: Phosphorus containing polyethers for Li-ion conductivity.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mangala Sunder Krishnan. Articles written in Journal of Chemical Sciences. Volume 119 Issue 5 September 2007 pp 417-422. Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation · Manoj Kumar Pandey Mangala Sunder ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. D K Lee. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 533-538. Photoinduced electron transfer of chlorophyll in lipid bilayer system · D K Lee K W Seo Y S Kang · More Details Abstract Fulltext PDF. Photoinduced electron transfer ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Seema Kothari. Articles written in Journal of Chemical Sciences. Volume 113 Issue 1 February 2001 pp 43-54 Organic. Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide · Garima Goswami Seema Kothari Kalyan K Banerji.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Sushma Singh. Articles written in Journal of Chemical Sciences. Volume 125 Issue 4 July 2013 pp 765-775. Antileishmanial polyphenols from Corymbia maculata · Jasmeen Sidana Dinesh Neeradi Alka Choudhary Sushma Singh William J Foley Inder Pal Singh.

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G Ranga Rao. Articles written in Journal of Chemical Sciences. Volume 113 Issue 5-6 October-December 2001 pp 651-658. XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method · G Ranga Rao H Ranjan Sahu.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Srinivas Darbha. Articles written in Journal of Chemical Sciences. Volume 126 Issue 2 March 2014 pp 499-509. Solid, double-metal cyanide catalysts for synthesis of hyperbranched polyesters and aliphatic polycarbonates · Joby Sebastian Srinivas Darbha · More Details ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Journal of Chemical Sciences. Volumes & Issues. Volume 130. Issue 1. Jan 2018; Issue 2. Feb 2018; Issue 3. Mar 2018; Issue 4. Apr 2018. Volume 129. Issue 1. Jan 2017; Issue 2. Feb 2017; Issue 3. Mar 2017; Issue 4. Apr 2017; Issue 5. May 2017; Issue 6. Jun 2017; Issue 7

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Tushar Kanti Chakraborty. Articles written in Journal of Chemical Sciences. Volume 116 Issue 4 June 2004 pp 187-207 Perspective Article. Sugar amino acids and related molecules: Some recent developments · Tushar Kanti Chakraborty Pothukanuri Srinivasu Subhasish ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. DEBABRATA NANDI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 8 August 2016 pp 1327-1335 Regular Article. Substitution reactions of [Pd(bipy)(malonate)] explored with a different set of ligands: Kinetic and mechanistic interpretation in aqueous ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P A Nagarjun. Articles written in Journal of Chemical Sciences. Volume 119 Issue 1 January 2007 pp 29-34. Study of the spectroscopic characteristics of methyl (ligand) cobaloximes and their antibacterial activity · N Navaneetha P A Nagarjun S Satyanarayana · More Details ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SRIDHARA JANARDHAN. Articles written in Journal of Chemical Sciences. Volume 129 Issue 5 May 2017 pp 515-531 Regular Article. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDS) · ANAMIKA SINGH GAUR ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Milan Kanti Naskar. Articles written in Journal of Chemical Sciences. Volume 120 Issue 1 January 2008 pp 181-186. Significant improvement in the pore properties of SBA-15 brought about by carboxylic acids and hydrothermal treatment · Milan Kanti Naskar M ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Pitchumani. Articles written in Journal of Chemical Sciences. Volume 115 Issue 2 April 2003 pp 113-121 Organic. Regioselective nitration of aromatic substrates in zeolite cages · T Esakkidurai M Kumarraja K Pitchumani · More Details Abstract Fulltext PDF. Phenol is ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Cédric Charrier. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 471-479. Biological activities of substituted trichostatic acid derivatives · Cédric Charrier Joëlle Roche Jean-Pierre Gesson Philippe Bertrand · More Details Abstract Fulltext ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vilas N Mahire. Articles written in Journal of Chemical Sciences. Volume 128 Issue 4 April 2016 pp 671-679 Regular Articles. Silane@TiO2 nanoparticles-driven expeditious synthesis of biologically active benzo[4,5]imidazo[1,2-a]chromeno[4,3-d]pyrimidin-6-one scaffolds: A ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Harinath Yapati. Articles written in Journal of Chemical Sciences. Volume 128 Issue 1 January 2016 pp 43-51 Regular Articles. Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo[d]thiazol-2-yl)thiourea · Harinath ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Navneet Kaur. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 49-54. Anthraquinone-based demultiplexer and other multiple operations at the molecular level · Navneet Kaur Subodh Kumar · More Details Abstract Fulltext PDF.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Yuanming Zhang. Articles written in Journal of Chemical Sciences. Volume 118 Issue 3 May 2006 pp 281-285. Temperature effects on surface activity and application in oxidation of toluene derivatives of CTAB-SDS with KMnO4 · Yu Tang Biying Du Jun Yang Yuanming ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MONOHAR HOSSAIN MONDAL. Articles written in Journal of Chemical Sciences. Volume 129 Issue 5 May 2017 pp 637-645 Regular Article. Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mozhdeh Seyyedhamzeh. Articles written in Journal of Chemical Sciences. Volume 126 Issue 1 January 2014 pp 111-115. Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. UDAYAKUMAR D. Articles written in Journal of Chemical Sciences. Volume 128 Issue 9 September 2016 pp 1423-1433 Regular Article. D-A conjugated polymers containing substituted thiophene, 1,3,4-oxadiazole and non-conjugation linkers: Synthesis and study of optical ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K Anbalagan. Articles written in Journal of Chemical Sciences. Volume 116 Issue 2 March 2004 pp 119-127. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan · G Karthikeyan K Anbalagan N Muthulakshmi Andal · More Details Abstract Fulltext PDF.

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. R H DUNCAN LYNGDOH. Articles written in Journal of Chemical Sciences. Volume 128 Issue 5 May 2016 pp 681-693 Regular Articles. Uncatalyzed thermal gas phase aziridination of alkenes by organic azides. Part I: Mechanisms with discrete nitrene species · S PREMILA ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Lakshminarayanan Akilandeswari. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 859-866. Fluorine effect on pericyclic and pseudopericyclic processes: Evidences and ab initio theory · Lakshminarayanan Akilandeswari Madhavan ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. HARI JI SINGH. Articles written in Journal of Chemical Sciences. Volume 123 Issue 5 September 2011 pp 733-741. Computational study on decomposition kinetics of CH3CFClO radical · Hari Ji Singh Bhupesh Kumar Mishra · More Details Abstract Fulltext PDF. The present ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Y Soujnya. Articles written in Journal of Chemical Sciences. Volume 123 Issue 4 July 2011 pp 371-378. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex · L Giribabu Vrun Kumar Singh M Srinivasu Ch ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Susmita Roy. Articles written in Journal of Chemical Sciences. Volume 127 Issue 1 January 2015 pp 49-59 Regular Articles. Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition · Sarmistha Sarkar Saikat Banerjee ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Atanu Barik. Articles written in Journal of Chemical Sciences. Volume 117 Issue 6 November 2005 pp 641-647. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins · Beena Mishra Atanu Barik K Indira Priyadarsini Hari Mohan.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. T SHANMUGANATHAN. Articles written in Journal of Chemical Sciences. Volume 129 Issue 1 January 2017 pp 117-130 Regular Article. Synthesis, in vitro anti-inflammatory activity and molecular docking studies of novel 4,5-diarylthiophene-2-carboxamide derivatives.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Hongling Wang. Articles written in Journal of Chemical Sciences. Volume 120 Issue 4 July 2008 pp 419-424. Microdetermination of human serum albumin by differential pulse voltammetry at a L-cysteine modified silver electrode · Liyuan Lu Yanqin Zi Hongling Wang.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. K N Thimmaiah. Articles written in Journal of Chemical Sciences. Volume 112 Issue 1 February 2000 pp 51-61 Physical and Theoretical. Hydrophobic interactions of phenoxazine modulators with bovine serum albumin · H N Kalpana B C Channu Chhabil Dass P J Houghton ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Jubaraj B Baruah. Articles written in Journal of Chemical Sciences. Volume 117 Issue 2 March 2005 pp 117-122. Synthesis, characterisation of few N-substituted 1,8-naphthalimide derivatives and their copper(II) complexes · Nilotpal Barooah Chandan Tamuly Jubaraj B ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Damanjit Kaur. Articles written in Journal of Chemical Sciences. Volume 112 Issue 6 December 2000 pp 623-629 Physical and Theoretical. Theoretical studies on the conformations of selenamides · Rajnish Moudgil Damanjit Kaur Rachita Vashisht Prasad V Bharatam.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S Esthar. Articles written in Journal of Chemical Sciences. Volume 116 Issue 4 June 2004 pp 209-213 Full Papers. A new Mannich base and its transition metal (II) complexes - Synthesis, structural characterization and electrochemical study · N Raman S Esthar C Thangaraja.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. L K ALEXANDER. Articles written in Journal of Chemical Sciences. Volume 129 Issue 1 January 2017 pp 95-102 Regular Article. Photocatalytic Activity of Graphene/ZnO Nanocomposite Fabricated by Two-step Electrochemical Route · A R NANAKKAL L K ALEXANDER.

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Chen Chai. Articles written in Journal of Chemical Sciences. Volume 126 Issue 3 May 2014 pp 813-820 Regular Articles. First total synthesis of Boehmenan · Yamu Xia Xiaoli Dai Haixin Liu Chen Chai · More Details Abstract Fulltext PDF. The first total synthesis of dilignan ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SHWETA DHILLON. Articles written in Journal of Chemical Sciences. Volume 129 Issue 8 August 2017 pp 1277-1292 REGULAR ARTICLE. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. S A Inchara. Articles written in Journal of Chemical Sciences. Volume 127 Issue 5 May 2015 pp 843-848 Regular Articles. Para-amino benzoic acid–mediated synthesis of vaterite phase of calcium carbonate · T N Ramesh S A Inchara K Pallavi · More Details Abstract Fulltext ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Cheng-Li Yao. Articles written in Journal of Chemical Sciences. Volume 121 Issue 1 January 2009 pp 89-93 Full Papers. Sucrose/bovine serum albumin mediated biomimetic crystallization of calcium carbonate · Cheng-Li Yao Wang-Hua Xu Ai-Min Ding Jin-Mao Zhu.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. DIPU SUTRADHAR. Articles written in Journal of Chemical Sciences. Volume 128 Issue 9 September 2016 pp 1377-1384 Regular Article. Two new hexacoordinated coordination polymers of cadmium(II) containing bridging units only: Syntheses, structures and molecular ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. ANAMIKA PAUL. Articles written in Journal of Chemical Sciences. Volume 128 Issue 7 July 2016 pp 1025-1032 Regular Article. Reactivity of [Cp*Mo(CO)₃Me] with chalcogenated borohydrides Li[BH₂E₃] and Li[BH₃EFc] (Cp* = (ŋ⁵-C₅Me₅); E = S, Se or Te; ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mausumi Chattopadhyaya. Articles written in Journal of Chemical Sciences. Volume 126 Issue 4 July 2014 pp 1217-1226. Ab initio study of solvent-dependent one-, two- and three-photon absorption properties of PRODAN-based chemo-sensors · Md Mehboob Alam Mausumi ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Almuth Läuter. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 675-686. Absolute quantum yield measurements for the formation of oxygen atoms after UV laser excitation of SO2 at 222.4 nm · Mohammed Abu-Bajeh Melanie Cameron ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Deb Shankar Ray. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 905-911. Growth and decay of large fluctuations far from equilibrium · Shrabani Sen Syed Shahed Riaz Deb Shankar Ray · More Details Abstract Fulltext PDF.

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. G Karthikeyan. Articles written in Journal of Chemical Sciences. Volume 116 Issue 2 March 2004 pp 119-127. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan · G Karthikeyan K Anbalagan N Muthulakshmi Andal · More Details Abstract Fulltext PDF.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. M Padmanabhan. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 418-418. Structurally deformed metalloporphyrins on polymer support by anchoring at porphyrin periphery · M Padmanabhan Tessymol Mathew · More Details Fulltext PDF.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Shridhar R Gadre. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 815-821. Signatures of molecular recognition from the topography of electrostatic potential · Dhimoy K Roy P Balanarayan Shridhar R Gadre · More Details Abstract ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. SREEDEVI UPADHYAYULA. Articles written in Journal of Chemical Sciences. Volume 121 Issue 2 March 2009 pp 199-207 Full Papers. Alkylation of toluene with isopropyl alcohol over SAPO-5 catalyst · Sreedevi Upadhyayula · More Details Abstract Fulltext PDF.

  14. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Nutritional Science Meetings and Events | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Active Nutritional Science Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Semi-annual report of the chemical process division of CDTN - July to December 1988

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1989-01-01

    The main activities developed by the Chemical Process Division of CDTN are described, including the reconversion of UF 6 to UO 2 , the separation and purification of rare earths and the solvent extraction with pulse column. (C.G.C.) [pt

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Physics · Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Home; Journals; Journal of Chemical Sciences; Special Issues ... 2nd International Symposium on Materials Chemistry (ISMC-2008) ... New Directions of Research in Molecules and Materials ... Theoretical Models for Molecular Structure.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... XIONG1 WEIHUA ZHU1 HEMING XIAO1. Institute for Computation in Molecular and Materials Science and Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Materials Science and Engineering, Nanjing Institute of Technology, ...

  1. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  2. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad-hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of the chemical sciences, a complementary survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the Board to assist these organizations. The BCST maintains close contact with professional societies and non-governmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the NAS Chemistry and Biochemistry Sections, and the National Academy of Engineering. In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry

  3. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  4. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1988-01-01

    Current and Ongoing Projects include: Committee on Nuclear and Radiochemistry; Committee on Nuclear and Radiochemistry Workshop on Training Requirements for Chemists in Nuclear Medicine, Nuclear Industry, and Related Areas; Committee on Nuclear and Radiochemistry Workshop on High-Temperature and Nuclear Chemical Processes in Severe Reactor Accidents; Committee on Chemical Engineering Frontiers Research Needs and Opportunities; Committee on Separation Science on Technology; Panel on Future Directions for Fundamental Science in Fossil Energy Research; Committee for Handling and Disposal of Biohazards in the Laboratory (BIL); Advisory Panels to the AFSOR Chemical and Atmospheric Sciences Directorate; US National Committee for Pure and Applied Chemistry; US National Committee for Biochemistry; US National Committee for Crystallography

  5. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    International Nuclear Information System (INIS)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included

  6. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys

  7. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  8. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  9. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  10. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    International Nuclear Information System (INIS)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications

  11. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... c) Short Communication (maximum: 10 pages, 20 references). d) Case ... Abstract: All articles should be provided with an abstract not exceeding 200 words.

  12. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  13. Oak Ridge Institute for Science and Education, Medical Sciences Division report for 1994

    International Nuclear Information System (INIS)

    Snyder, F.; Poston, S.; Engle, J.

    1995-01-01

    The primary mission of the Medical Sciences Division is (1) to conduct basic and applied biomedical research on human health related to energy systems, (2) to provide technical assistance and training in occupational and environmental medicine, and (3) to make related biomedical applications available to others through technology transfer. As can be gleaned from this report, the strengths and capabilities of their staff in carrying out this mission are closely aligned with the four core competencies of ORISE: (1) occupational and environmental health, (2) environmental and safety evaluation and analysis, (3) education and training, and (4) enabling research. Brief descriptions of the various scientific and technical programs and their progress, as well as the staff responsible for the accomplishments made during 1994, are presented in this report. Research programs include the following: biochemistry; cytogenetics; Center for Epidemiologic Research; Center for Human Reliability Studies; occupational medicine; Radiation Emergency Assistance Center/Training Site; and Radiation Internal Dose Information Center

  14. Oak Ridge Institute for Science and Education, Medical Sciences Division report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, F.; Poston, S.; Engle, J. [eds.

    1995-08-01

    The primary mission of the Medical Sciences Division is (1) to conduct basic and applied biomedical research on human health related to energy systems, (2) to provide technical assistance and training in occupational and environmental medicine, and (3) to make related biomedical applications available to others through technology transfer. As can be gleaned from this report, the strengths and capabilities of their staff in carrying out this mission are closely aligned with the four core competencies of ORISE: (1) occupational and environmental health, (2) environmental and safety evaluation and analysis, (3) education and training, and (4) enabling research. Brief descriptions of the various scientific and technical programs and their progress, as well as the staff responsible for the accomplishments made during 1994, are presented in this report. Research programs include the following: biochemistry; cytogenetics; Center for Epidemiologic Research; Center for Human Reliability Studies; occupational medicine; Radiation Emergency Assistance Center/Training Site; and Radiation Internal Dose Information Center.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 2. Formation of fractals by the self-assembly of interpolymer adducts of polymethacrylic ... ordered fractal patterns in films on glass surface on drying at ambient temperature.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 5-6 ... Calculated interface surface areas for the binding of polyphenols with ... A fractal structure is observed on account of two-dimensional aggregation of collagen induced ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5 ... self-affine fractals: Comparative study of statistically corrugated and isotropic roughness ... Theory of coherent molecule to surface electron injection: An analytical model.

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 6 ... considerable cytotoxicity while the ligands were non-toxic on the tested cell lines. ... 500 607, India; Advanced Materials and Industrial Chemistry Group, School of Applied ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5 ... and isoxazolines; ionic liquid; 1,3-amino alcohol; aldehyde/ketone synthesis. ... Organic Chemistry Laboratory, Sikkim Government College, Gangtok 737 102, India ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3 ... reaction with methyl vinyl ketone (MVK) and S-proline in the absence of solvents. ... Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5 ... achieved by threecomponent condensation of corresponding ketones and aldehydes, ... Laboratory of Organic Chemistry Research, Department of Organic Chemistry, ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 8 .... containing multiple aromatic groups: High efficient extractants for organic dyes .... of a Tungsten-Germylyne Complex with , -Unsaturated Ketones: A DFT Study.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laser flash photolysis studies were carried out on two types of silver nanoparticles prepared by ... Type II silver nanoparticles showed a 390 nm surface plasmon band with a shoulder at 550 nm. ... Journal of Chemical Sciences | News.

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    SN2-type ring opening of substituted--tosylaziridines with zinc (II) halides: Control of racemization by ... The reaction proceeds via an SN2-type pathway and the partial racemization of the starting ... Journal of Chemical Sciences | News.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7 ... Accumulation of amyloid beta (Aβ) peptide in the brain is responsible for debilitating ... the weakening effect of unfavorable inter-peptide electrostatic interactions, thereby ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2. Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, P R China; Department of Chemistry, Science College, Yanbian University, ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 5. Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar medium. SUSANTA MALIK ANIRUDDHA GHOSH PINTU SAR MONOHAR HOSSAIN MONDAL KALACHAND MAHALI ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3 .... Excess molar volumes and viscosities of binary mixtures of 1,2-diethoxyethane with chloroalkanes ... IR-UV double resonance spectroscopy in jet and ab initio calculation.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 6. Metal free synthesis of functionalized 1-aryl isoquinolines via iodine mediated oxidative dehydrogenation and ring opening of lactam in isoindoloisoquinolinones. KAMSALI MURALI MOHAN ACHARI MUTHUPANDI KARTHICK CHINNASAMY RAMARAJ ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 3 ... electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine ... Initially, one dimensionalbimetallic Ag@Cu core−shell NRDs were grown on ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 3. Activated anilide in heterocyclic synthesis: Synthesis of new hydrazo, dihydropyridazine, tetrahydropyridine, dihydropyridine and pyranopyridine derivatives. Ibrahim Saad Abdel Hafiz Mahmoud Mohamed Mahfouz Ramiz Mohamed Ahmed Elian. Volume ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Centre for Nanotechnology Research, VIT University, Vellore 632 014, India; Department of ... Nissan Technology & Business Center India (P) Ltd., Chennai 603002, India ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    1 V Ferretti2. Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India; Center for Structural Diffractometry and Department of Chemical and Pharmaceutical Sciences, University of ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Solvent effect in aqueous media was treated using the integral equation formalism of the ... Reaction rate constants in aqueous media were generally found to be larger than those in gas phase. ... Journal of Chemical Sciences | News.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... analogue has been carried out in aprotic media using wax-impregnated carbon paste electrodes. ... in the presence of tetrabutyl ammonium perchlorate is found to be stable only in aprotic media. ... Journal of Chemical Sciences | News.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 6 ... Nitrogen rich compounds; high energy materials; density functional theory. ... India; School of Chemistry, University of Hyderabad, Hyderabad, Telengana 500 046, India ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 3 ... F/cm2 for the high-frequency semicircle, while for the second semicircle the interface ... School of Urban Rail Transportation, Soochow University, Suzhou 215006, China ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1. Anthraquinone-based demultiplexer and other multiple operations at the molecular level ... to show pH-dependent multiple coordinationmodes towards differentmetal ions ...

  19. From the Scientific Council of the State Science and Technology Committee on New processes in the coking and chemical industry, Coking and Chemical Products Divisions of the Science and Technological Council of the Ministry of Ferrous Metallurgy of the USSR and Central Plenum of Scientific and Technological Associations of the Ferrous Metallurgy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ermolova, V.P.

    1985-06-01

    Joint conference took place on 5-7 December 1984 in Moscow. Reports were presented on the following topics: status of implementing the union-wide scientific and technological programs on coking by-products and organizing the production of coke briquet fuel in 1984; developments in the coking and chemical industry up to the year 2000; developing a raw material base for coking up to the year 2000; state of research on thermal processing with hot coke; training engineers for the coking and chemical industry; on planning the work of the scientific council in 1985.

  20. 7. Eurasia Conference on Chemical Sciences (abstracts)

    International Nuclear Information System (INIS)

    Atta-ur-Rahman; Choudhary, M.I.

    2002-01-01

    The 7th Eurasia Conference on Chemical sciences (EuAs/sub 2/S-7) was held from 8-12 March, 2002 at Karachi, Pakistan. Scientists from thirty different countries had participated in this conference. Several topics from chemical world were highlighted in this conference including use of radioisotopes in different fields and specially environment which have been included here. (A.B)

  1. Board on chemical sciences and technology

    International Nuclear Information System (INIS)

    1991-01-01

    The Board on Chemical Sciences and Technology organizes and provides direction for standing and ad hoc committees charged with addressing specific issues relevant to the continued health of the chemical sciences and technology community. Studies currently under the oversight of the BCST include a major survey of chemical engineering, an examination of the problems of biohazards in the laboratory, and an analysis of the roots and magnitude of the problem of obsolescent facilities for research and teaching in departments in the chemical sciences and engineering. The Board continues to respond to specific agency requests for program assessments and advice. BCST members are designated to serve as liaison with major federal agencies or departments that support research in order to help identify ways for the board to assist the these organizations. The BCST also maintains close contact with professional societies and nongovernmental organizations that share the Board's concern for the health of chemical sciences and technology. Individual Board members are assigned responsibility for liaison with the American Chemical Society, the American Institute of Chemical Engineers, the American Society of Biological Chemists, the Council for Chemical Research, the Chemistry and Biochemistry Sections of the National Academy of Sciences (NAS), and the National Academy of Engineering (NAE). In the past few years, the Board has served as a focus and a forum for a variety of issues that relate specifically to the health of chemistry. A sampling of these concerns include: industry-university cooperation; basic research funding in DOD, DOE, NIH, and NSF; basic research in the chemistry of life processes; basic research in biochemical engineering; basic research in the science and technology of new materials; and undergraduate education in chemistry and chemical engineering

  2. Environmental Sciences Division. Annual progress report for period ending September 30, 1980

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report

  3. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Area of Analytical Chemistry, Faculty of Experimental Sciences, University of Huelva, Agrifood Campus of International Excellence, ceiA3. Avd. Tres de Marzo S/N, 21007 Huelva, Spain; Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Kathmandu, Nepal; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India. Dates. Manuscript received: 9 October 2014; Manuscript revised: 31 January 2015; Accepted: 3 February 2015. Supplementary Material. supp7.doc. Journal of Chemical Sciences. Current Issue : Vol.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; Food and Drug Department, Qingyuan Polytechnic, Qingyuan 511510, P. R. China; Department of City Science, The City Vocational College of Jiangsu, Nanjing 210017, China; Department of Science and Technology, ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 10 ... using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of ... Department of Chemistry, Indian Institute of Science Education and Research Mohali, ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction. Sambasivarao Kotha Shaibal Banerjee Mobin Shaikh. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1369-1371 ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Hong Wang1 Bin Lu2 Jingxiang Zhao2 Qinghai Cai2. School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China; School of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Shida Road Limin development Zone, ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730010, People's Republic of China; Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Isomers of types [2.2.0.0], [3.0.1.0], [3.1.0.0], and [4.0.0.0] are destabilized due to the absence of methine bridge, which results in angle strain for tetrapyrroles. Isomers having ... G Narahari Sastry1. Molecular Modelling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Hyderabad 500 007 India ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journals; Journal of Chemical Sciences; Volume 117; Issue 1. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift. M Elango R Parthasarathi G Karthik Narayanan A Md Sabeelullah U Sarkar N S Venkatasubramaniyan V Subramanian P K Chattaraj. Full Papers Volume ...

  13. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  14. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  15. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  16. Environmental Sciences Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  18. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  19. Medical and Health Sciences Division research report 1975--1976

    International Nuclear Information System (INIS)

    1976-10-01

    Progress is reported on studies on the effects of irradiation and carcinogenic chemical environmental pollutants on the immune system of mammals; fundamental studies of membrane properties and lipid metabolism in neoplasms and respiratory diseases induced by chemical irritants, carcinogens, and mutagens; the development and testing of radiopharmaceuticals labeled with 11 C, 67 Ga, 157 Dy, or 171 Er as tumor-localizing agents; and the completion of a radiation emergency assistance center and training program. A list is included of 60 publications during the period covered by this report that give details of the studies

  20. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  1. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  2. Social Science Libraries Section. Special Libraries Division. Papers.

    Science.gov (United States)

    International Federation of Library Associations, The Hague (Netherlands).

    Three papers on the nonconventional literature and social science libraries were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "Grey Material: A Scandinavian View," Birgitta Bergdahl (Sweden) outlines the etymology and meaning of the concept of "grey literature" (which can include…

  3. About the Nutritional Science Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  4. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  5. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  6. Environmental Sciences Division: Summaries of research in FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  7. Progress report Health Sciences Division - 1984 July 01 to December 31

    International Nuclear Information System (INIS)

    1985-02-01

    This progress report contains a topical summary of major research in the Health Sciences Division. Separate reports are included for each of the following branches: Health Physics, Environmental Research, Radiation Biology, Biomedical Research and Medical. Some of the main areas of interest discussed are health and safety aspects of tritium. This includes instrumentation, environmental studies, metabolism, dosimetry and health effects

  8. Feminist Knowledge Claims, Local Knowledge, and Gender Divisions of Agricultural Labor: Constructing a Successor Science.

    Science.gov (United States)

    Feldman, Shelley; Welsh, Rick

    1995-01-01

    Issues raised by feminist epistemic critiques of social science are used to examine local (farmer-based) knowledge of agriculture and its contribution to analyses of agricultural sustainability. Focuses on the on-farm gender division of labor as critical in constituting the family farm, and elaborates how different experiences of men and women…

  9. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs.

  10. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    International Nuclear Information System (INIS)

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs

  11. Nuclear Science Division annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    Mahoney, J.

    1984-08-01

    This report summarizes research carried out within the Nuclear Science Division between October 1, 1982 and September 30, 1983. Experimental and theoretical investigations of heavy ion reactions are reported. In addition, the development of instrumentation for charge measurements and an on-line mass analyzer are discussed. Individual reports are cataloged separately

  12. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    Science.gov (United States)

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  13. Environmental and Medical Sciences Division progress report January-December, 1976

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1977-05-01

    The report falls under the following headings: introduction (a general survey of the research programme of the Division); inhalation studies and radionuclide analysis; whole body counting; radiation physics (including dosimetry, fallout, environmental analysis); atmospheric pollution; medical department; chemical analysis group; publications. (U.K.)

  14. Progress report, Health Sciences Division: 1982 July 1 - September 30

    International Nuclear Information System (INIS)

    1982-12-01

    Research at CRNL in health physics included characterization of electrochemically etched CR39 plastic, study of superheated liquid drops trapped in gels, measurement of HTO in background gamma fields, and development of components for a wide-range reactor stack effluent monitor. Environmental research continued with local hydrological studies, adsorption/desorption models of Co-60, studies of physical-chemical processes in sedimentation in lakes and rivers, and development of methods to determine the C-14 content of CO 2 and vegetation. Research in radiation biology included studies employing recombinant DNA technology, detection of damaged bases following uv irradiation, tumor induction studies, and work on improved heat resistance in yeast. Biomedical research included the completion of I-129 dose estimations in connection with a proposed waste repository

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. A Reactive Intermediate, [Ni5(C6H4N3)6(CO)4], in the Formation of Nonameric Clusters of Nickel, [Ni9(C6H4N3)12(CO)6] and [Ni9(C6H4N3)12(CO)6].2(C3H7NO). Subhradeep Mistry Srinivasan Natarajan. Special issue on Chemical Crystallography ...

  16. Progress report, Health Sciences Division, 1 April - 30 June, 1980

    International Nuclear Information System (INIS)

    1980-08-01

    A prototype pocket-sized gamma radiation warning dosimeter is being tested. The sorption of arsenic on CRNL soils stripped of oxide coatings is being studied to give an indication of the role of hydrous oxides in oxides in arsenic migration. The migration of iodide through fractured rock is being studied. Improvements have been made in source preparation and measurement techniques in the collaborative experiments on accelerator measurement of low levels of carbon-14. Work in radiation biology is continuing on induction of genetic changes in yeast by radiation and other agents, on the free radicals responsible for these changes, on photoproducts formed in DNA by ultraviolet radiation, on methods to study DNA damage and repair in irradiated human cells, on radiation sensitivity of cells from humans with various diseases associated with susceptibility to cancer, and on induction of cancers in rats by radiation in combination with environmental chemicals. Studies on radon and thoron daugther dosimetry were initiated in conjunction with a Nuclear Energy Agency Working Group. A procedure for the separation of 35 S and 32 p in bioassay was developed. (LL)

  17. Progress report: Health Sciences Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    1982-08-01

    Chemical and electrochemical etching parameters for CR-39 plastic are being studied as a function of neutron energy from 0.2 to 14.7 MeV. An improved oven for UV annealing of sensitized TLDs has been built and optimum operating characteristics are being determined. Circuits and components for the reactor stack effluent monitor are being designed. New sensors and data loggers have been installed to measure water and air temperatures, and air velocity profiles, at Perch and Maskinonge Lakes. Measurements of 222 Rn and tritium have been investigated in groundwater discharge from borehole CR22, near Chalk Lake. Measurements of sorption/desorption of 60 Co with sediments from East Swamp have been continued. Elution rates of Pu and Am from columns and associations with particulates have been shown to depend strongly on the redox conditions. In rock fracture filling materials studies the ratios of uranium isotopes ( 234 U/ 238 U) and of thorium to uranium ( 230 Th/ 238 U) together with uranium contents are providing some values, but interpretation remains difficult. Growth rate of bivalve mollusc cultures has been shown to be affected by nutrients to different extents at the control (10 degC) and elevated (20 degC) temperatures. DNA studies of radiation effects continue. A thoron ( 220 Rn)-in-breath monitor has been designed and will be constructed at CRNL. The dose to basal cells of bronchial epithelium from inhalation of long-lived alpha-emitting aerosols has been calculated, and the risk of bronchial cancer from this dose estimated

  18. Environmental Sciences Division annual progress report for period ending September 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report

  19. Environmental Sciences Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report

  20. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  1. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 2. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer. G Raina G U Kulkarni R T Yadav V S Ramamurthy C N R Rao. Physical and Theoretical Volume 112 Issue 2 April ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 6. Triflic Anhydride-Mediated Beckmann Rearrangement Reaction of Β-Oximyl Amides: Access to 5-Iminooxazolines. MANGFEI YU QIAN ZHANG JIA WANG PENG HUANG PENGFEI YAN RUI ZHANG DEWEN DONG. Regular Article Volume 128 Issue 6 ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. Bovine Serum Albumin Metal Complexes for Mimic of SOD. GUIFANG YAN YUFENG HE GANG LI YUBING XIONG PENGFEI SONG RONG-MIN WANG. Regular Article Volume 128 Issue 11 November ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 6. Synthesis and aggregation study of optically active tetra--[()-2-octanyloxy]-substituted copper and nickel phthalocyanines. Fang-Di Cong Gui Gao Jian-Xin Li Guo-Qing Huang Zhen Wei Feng-Yang Yu Xi-Guang Du Ke-Zhi Xing. Full Papers Volume ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 6. Amidinate Ligands in Zinc coordination sphere: Synthesis and structural diversity. SRINIVAS ANGA INDRANI BANERJEE TARUN K PANDA. Regular Article Volume 128 Issue 6 June 2016 pp 867-873 ...

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy. SHYAMTANU CHATTORAJ KANKAN BHATTACHARYYA. Regular Article Volume 128 Issue 11 November 2016 pp 1717-1724 ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 6. Reactivity of allenylphosphonates and allenylphosphine oxides toward 9-chloroacridines and acridone- A facile route to new -substituted acridones. A Leela Siva Kumari Venu Srinivas K C Kumara Swamy. Regular Articles Volume 125 Issue 6 ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. Nano MgBi₂O₄: A Novel Green Catalyst for the One-step Cascade Condensation of ... times, mild eco-friendly conditions and excellent yields to prepare a novel class of ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 5 .... synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst ... In this research, we have developed a clean and environmentally friendly .... acid modified MCM-41 catalyst and its catalytic activity towards acetylation of ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 8. Three coordination compounds based on benzene tetracarboxylate ligand: syntheses, structures, thermal behaviors and luminescence properties. YUNLONG WU CHANGKUN XIA JUN QIAN JIMIN XIE. REGULAR ARTICLE Volume 129 Issue 8 August ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 3. Volume 118, Issue 3. May 2006, pages 223-285. pp 223-235. Factors influencing ring closure through ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 1 ... potential for immobilization and disposal of high level nuclear waste, was developed. ... on the fission product substituted NZP sintered at 1000°C, in pure de-ionized water ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents. Author Affiliations. Rosenani A Haque1 M A Salam1. The School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. Dates. Manuscript received: 15 ...

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 3. Issue front cover thumbnail. Volume 119, Issue 3. May 2007, pages 219-274. pp 219-230. Engineering macrocyclic figure-eight motif · V Haridas Harinder Singh Yogesh K Sharma Kashmiri Lal · More Details Abstract Fulltext PDF. The design and ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Catalytic application of two novel sandwich-type polyoxometalates in synthesis of 14-substituted-14-dibenzo[, ]xanthenes ... Two sandwich-type polyoxometalates K12[As2W18Cu3O68]·30H2O and ... Journal of Chemical Sciences | News.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy. Meera Parthasarathy Vijayamohanan K Pillai. Volume 121 Issue 5 September 2009 pp 719-725 ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. H2O2-HBr: A metal-free and organic solvent-free reagent system for the synthesis of arylaldehydes from methylarenes. Mohammad Ghaffarzadeh Mohammad Bolourtchian Kourosh Tabar-Heydar Iman Daryaei Farshid Mohsenzadeh. Full Papers Volume ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Vibrational excitation resulting from electron capture in LUMO of F2 and HCl - A treatment using the time-dependent wave packet approach. Bhavesh K Shandilya Manabendra Sarma Satrajit Adhikari Manoj K Mishra. Volume 124 Issue 1 January 2012 ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 5. Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate catalyzed by manganese(III) tetra-arylporphyrins, to study the axial ligation of imidazole. Reza Tayebee. Volume 118 Issue 5 September 2006 pp 429-433 ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 2. Comparative photophysical behaviour of naphthalene-linked crown ethers and aza crown ethers of varying cavity dimensions. Subhodip Samanta Pinki Saha Sardar Shyam Sundar Maity Anirban Pal Maitrayee Basu Roy Sanjib Ghosh. Volume 119 Issue ...

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 3. Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application. R Chandrasekaran M Koh Y Ozhawa H Aaoyoma T Nakajima.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 1. Issue front cover thumbnail. Volume 119, Issue 1. January 2007, pages 3-51. pp 3-9. Synthesis, structure, redox and spectra of green iridium complexes of tridentate azo-aromatic ligands · Manashi Panda Chayan Das Chen-Hsiung Hung Sreebrata ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 11. Preparation, characterization, and post-synthetic ... The results revealed that MCM-22 has a layered sphere, doughnut like morphology and after modification, swollen and broken sphere was observed. Physicochemical analysis revealed that the ...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 5. Application of localized reactivity index in combination with periodic DFT calculation to rationalize the swelling mechanism of clay type inorganic material. Abhijit Chatterjee. Volume 117 Issue 5 September 2005 pp 533-539 ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 5. Issue front cover thumbnail. Volume 122, Issue 5. September 2010, pages 665-785. Organic and Related Solids. pp 665-665. Foreword · S Natarajan · More Details Fulltext PDF. pp 667-675. Crystal engineering: A brief overview · Gautam R Desiraju.

  7. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 6 ..... in NaClO4 aqueous solutions by specific ion interaction theory and Pitzer equations .... it be part of the basis set of valence internal coordinates in normal mode analysis?

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 1. Yttrium Nitrate mediated Nitration of Phenols at room temperature in Glacial Acetic acid. MOHABUL A MONDAL DBASHIS MANDAL KANCHAN MITRA. Regular Article Volume 129 Issue 1 January 2017 pp 39-43 ...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Issue front cover thumbnail. Volume 125, Issue 5. September 2013, pages 967-1292. pp 967-974. Aza-Morita-Baylis-Hillman reaction of maleimides with azodicarboxylates under neat conditions · Subramani Kandhasamy Kesavan Karthikeyan Krishnan ...

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Chemical Sciences; Volume 126; Issue 6. Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene. Sweta Mishra Smriti Arora Ritika Nagpal Shive Murat Singh Chauhan. Regular Articles Volume 126 Issue 6 November 2014 pp 1729-1736 ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Issue front cover thumbnail. Volume 122, Issue 3. May 2010, pages 295-451. pp 295-310 Perspective Articles. Supramolecular chemistry and crystal engineering · Ashwini Nangia · More Details Abstract Fulltext PDF. Advances in supramolecular ...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Hong-Wen Gao1 Fa-Shui Hong2 Qing-Song Ye2. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P. R. China; Department of Biological Science, Huaibei Coal Teachers College, Huaibei 235000, P. R. China ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Syntheses, structures and properties of two dinuclear mercury(II) iodide compounds containing tetradentate tripodal amine/pentadentate N-donor Schiff base: Control of molecular and crystalline architectures by varying ligand matrices. Subhasis Roy ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 3. Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). Pankaj Kumar Rastogi Dharmendra Kumar Yadav Shruti Pandey Vellaichamy Ganesan Piyush Kumar Sonkar Rupali Gupta.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 6. Synthesis and anti-inflammatory activity of 3-indolyl pyridine derivatives through one-pot multi component reaction. Prakasam Thirumurugan S Mahalaxmi Paramasivan T Perumal. Full Papers Volume 122 Issue 6 November 2010 pp 819-832 ...

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1. Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate- interactions of cerium(III) complex. Karreddula Raja Akkili ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. Voltammetric behaviour of levodopa and its quantification in pharmaceuticals using a -cyclodextrine doped poly (2,5-diaminobenzenesulfonic acid) modified electrode. Mehmet Aslanoglu Aysegul Kutluay Sultan Goktas Serpil Karabulut. Full Papers ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon. B Sivaraman. Regular Articles Volume 128 Issue 1 January 2016 pp 159-164 ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 3. Issue front cover thumbnail. Volume 124, Issue 3. May 2012, pages 551-739. pp 551-556. Covalent crosslinking of carbon nanostructures · Urmimala Maitra M Pandeeswar T Govindaraju · More Details Abstract Fulltext PDF. Covalent crosslinking of ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 4. Issue front cover thumbnail. Volume 121, Issue 4. July 2009, pages 377-548. pp 377-385. A water soluble heteropolyoxotungstate as a selective, efficient and environment friendly oxidation catalyst · Prasenjit Maity Double Mukesh Sumit ...