WorldWideScience

Sample records for chemical properties crystal

  1. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  2. An effect of re-extraction crystallization parameters on physical and chemical properties of AUC

    International Nuclear Information System (INIS)

    Yahi, Boussad

    1990-07-01

    This study is concerned with direct cristallization of ammonium uranyl carbonate (AUC) from a uranium loaded organic phase (30% TBP in kerosene), with ammonium carbonate (NH4)2 CO3. The effects of operating conditions (NH4)2 CO3 concentration, flowration residence time, temperature on the physical properties of AUC crystals (particle size distribution, specific area, density..) are reported. All products were identified (both by chemical analysis, X-Ray diffraction) as being ammonium uranyl ratio and (NH4)2 CO3 concentration favor the formation of fine AUC grains and aggregates. This is due mainly to the high concentration of (NH4)+ in the system which leads to a high solution supersaturation and consequently to a rapid formation rate of crystal (germination). The reverse phenomenon is observed at low phase ratio and (NH4)2 CO3 concentration, where germination and crystal growth ara slow and the product is mainly monocrystal. In the intermediate range, a mixture of polycrystal and aggregates is obtained. Residence time and temperature are also shown to have an effect on the processes (the effect of time being more important than temperature)

  3. Physical and chemical properties of a Ga-doped ZnO crystal

    International Nuclear Information System (INIS)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard

    2011-01-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  4. Physical and chemical properties of a Ga-doped ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids; Olivos, Katia; Rivera, Richard, E-mail: arvids@utpl.edu.e [Grupo de FisicoquImica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2011-06-01

    First-principles calculations based on density functional theory and strengthened by Hartree-Fock computations have been performed to study a Ga-doped wurtzite-type ZnO crystal. The large 108-atom supercell used throughout this work allows one to model a single point defect within the periodic supercell model. Thus, the Ga impurity produced purely local effects on the properties of the material. The electronic band structure was obtained for both pure and impurity-doped materials. The occurrence of free electrons in the conduction band was observed after the incorporation of Ga, implying the Ga dopant's contribution to n-type electrical conductivity in the ZnO crystal, in agreement with known experimental data. An analysis of the charges on atoms and obtained atomic displacements in the region surrounding the defect showed that there is some alteration in the chemical bonding because of the presence of Ga atoms. In particular, the ionic bonding is strengthened in the defect's neighbourhood.

  5. Effects of crystallization on thermal properties and chemical durability of the glasses containing simulated high level radioactive wastes

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Terai, Ryohei; Hara, Shigeo

    1978-01-01

    In order to improve the thermodynamic stability of the glasses containing high level radioactive wastes, the conversion to glass-ceramics by the heat-treatment was carried out with two kinds of glasses, and the change of thermal properties and chemical durability by crystallization was investigated. One of the glasses has a composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 system, and another one has a composition which could grow the nephelite crystals from Na 2 O in wastes and Al 2 O 3 and SiO 2 added as glass-forming materials. Transition and yield points shifted to higher temperatures by the conversion and the glass-ceramics were found to be more stable than the original glasses. The glass-ceramics of the composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 showed poor durability, whereas the chemical durability of the glass-ceramics containing nephelite crystals was considerably improved. In the latter case, improvement of the durability is attributable to that some parts of glass are converted to nephelite crystals and the crystals are more durable than glass under most conditions. (auth.)

  6. Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study.

    Science.gov (United States)

    Tan, Jin Chong; Furman, Joshua D; Cheetham, Anthony K

    2009-10-14

    We report the application of nanoindentation and atomic force microscopy to establish the fundamental relationships between mechanical properties and chemical bonding in a dense inorganic-organic framework material: Ce(C(2)O(4))(HCO(2)), 1. Compound 1 is a mixed-ligand 3-D hybrid which crystallizes in an orthorhombic space group, in which its three basic building blocks, i.e. the inorganic metal-oxygen-metal (M-O-M) chains and the two organic bridging ligands, (oxalate and formate) are all oriented perpendicular to one another. This unique architecture enabled us to decouple the elastic and plastic mechanical responses along the three primary axes of a single crystal to understand the contribution associated with stiff vs compliant basic building blocks. The (001)-oriented facet that features rigid oxalate ligands down the c-axis exhibits the highest stiffness and hardness (E approximately 78 GPa and H approximately 4.6 GPa). In contrast, the (010)-oriented facet was found to be the most compliant and soft (E approximately 43 GPa and H approximately 3.9 GPa), since the formate ligand, which is the more compliant building block within this framework, constitutes the primary linkages down the b-axis. Notably, intermediate stiffness and hardness (E approximately 52 GPa and H approximately 4.1 GPa) were measured on the (100)-oriented planes. This can be attributed to the Ce-O-Ce chains that zigzag down the a-axis (Ce...Ce metal centers form an angle of approximately 132 degrees) and also the fact that the 9-coordinated CeO(9) polyhedra are expected to be geometrically more compliant. Our results present the first conclusive evidence that the crystal orientation dominated by inorganic chains is not necessarily more robust from the mechanical properties standpoint. Rigid organic bridging ligands (such as oxalate), on the other hand, can be used to produce greater stiffness and hardness properties in a chosen crystallographic orientation. This study demonstrates that

  7. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  8. Electrical properties of molecular crystals

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [fr

  9. Crystallization characteristics and physico-chemical properties of glass–ceramics based on Li2O–ZnO–SiO2 system

    Directory of Open Access Journals (Sweden)

    Saad M. Salman

    2017-09-01

    Full Text Available Glass materials based on lithium zinc silicate system of the composition 24Li2O–20ZnO–56SiO2 LZS (mol% were prepared and converted to glass–ceramics using controlled heat-treatment schedules. The LZS base glass system was modified by addition of Al2O3 and MO/ZnO replacements where MO = CaO, CdO and SrO oxides. Several crystalline phases were developed, including lithium zinc orthosilicate, α-quartz, β-spodumene solid solution, lithium meta and disilicate, Ca-wollastonite, Cd or Sr metasilicate, and Sr-zinc silicate of hardystonite type. The effects of crystallization process on some properties, like thermal expansion coefficient (TEC, chemical stability, and density of glass–ceramics were evaluated. The TEC of crystalline samples varied from 72 × 10−7 to 149 × 10−7 K−1, 25–600 and density values in the range, 2.67–3.29 g/cm3. The addition of Al2O3 and MO/ZnO replacements in the base glass led to improve the chemical durability of the glass–ceramics samples. As a result of the thermal and physico-chemical properties of the studied glass–ceramic, the materials acquire excellent properties and can be used to seal a variety of different metals and alloys.

  10. Crystallization characteristics and physico-chemical properties of glass–ceramics based on Li2O–ZnO–SiO2 system

    International Nuclear Information System (INIS)

    Salman, Saad M.; Salama, Samia N.; Abo-Mosallam, Hany A.

    2017-01-01

    Glass materials based on lithium zinc silicate system of the composition 24Li2O–20ZnO–56SiO2 LZS (mol%) were prepared and converted to glass–ceramics using controlled heat-treatment schedules. The LZS base glass system was modified by addition of Al2O3 and MO/ZnO replacements where MO=CaO, CdO and SrO oxides. Several crystalline phases were developed, including lithium zinc orthosilicate, α-quartz, β-spodumene solid solution, lithium meta and disilicate, Ca-wollastonite, Cd or Sr metasilicate, and Sr-zinc silicate of hardystonite type. The effects of crystallization process on some properties, like thermal expansion coefficient (TEC), chemical stability, and density of glass–ceramics were evaluated. The TEC of crystalline samples varied from 72×10−7 to 149×10−7K−1, 25–600 and density values in the range, 2.67–3.29g/cm3. The addition of Al2O3 and MO/ZnO replacements in the base glass led to improve the chemical durability of the glass–ceramics samples. As a result of the thermal and physico-chemical properties of the studied glass–ceramic, the materials acquire excellent properties and can be used to seal a variety of different metals and alloys. [es

  11. Physical Properties of Liquid Crystals

    CERN Document Server

    Gray, George W; Spiess, Hans W

    1999-01-01

    This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.

  12. Chemical properties of mendelevium

    International Nuclear Information System (INIS)

    Hulet, E.K.

    1980-01-01

    The isotope 256 Md is nearly always employed for chemical studies of this element. This nuclide can be made by bombardment of fractions of a microgram of 254 Es with intense alpha-particle beams which will produce about 10 6 atoms of 256 Md with a half-life of 77 minutes. Even with the most intense ion beams and the largest available quantities of target isotope, about 10 6 atoms at a time is all the Md that can be produced for chemical studies. This lack of sufficient sample size coupled with the very short lifetimes of the few atoms produced has severly restricted the gathering and broadening of our knowledge concerning the properties of Md and the heavier elements. To illustrate, the literature contains a mere eleven references to the chemical studies of Md, and none of these deal with bulk properties associated with element found in solid phases. Some of these findings are: Md was found to be more volatile than other actinide metals which lead to the belief that it is divalent in the metallic state; separation of Md from the other actinides can be accomplished either by reduction of Md to the divalent state or by chromatographic separations with Md remaining in the tripositive state; extraction of Md with bis(2-ethylhexyl)phosphoric acid is much poorer than the extraction of the neighboring tripositive actinides; attempts to oxidize Md wih sodium bismuthate failed to show any evidence of Md 4+ ; standard reduction potential of Md 3+ was found to be close to -0.1 volt; Md 3+ can be reduced to Md(Hg) by sodium amalgams and by electrolysis; the electrochemical behavior of Md is very similar to that of Fm and can be summarized in the equation, Md 2+ + 2e - = Md(Hg), and E 0 = 1.5 V

  13. Chemical properties of mendelevium

    International Nuclear Information System (INIS)

    Hulet, E.K.

    1980-11-01

    Even with the most intense ion beams and the largest available quantities of target isotope, about 10 6 atoms at a time is all the Md that can be produced for chemical studies. This lack of sufficient sample size coupled with the very short lifetimes of the few atoms produced has severely restricted the gathering and the broadness of our knowledge concerning the properties of Md and the heavier elements. To illustrate, the literature contains a mere eleven references to the chemical studies of Md, and none of these deal with bulk properties associated with the element bound in solid phases. Some of these findings are: Md was found to be more volatile than other actinide metals which lead to the belief that it is divalent in the metallic state; separation of Md from the other actinides can be accomplished either by reduction of Md 3+ to the divalent state or by chromatographic separations with Md remaining in the tripositive state; extraction of Md 2+ with bis(2-ethylhexyl)phosphoric acid is much poorer than the extraction of the neighboring tripositive actinides; attempts to oxidize Md 3+ with sodium bismuthate failed to show any evidence for Md 4+ ; reduction potential of Md 3+ was found to be close to -0.1 volt; Md 3+ can be reduced to Md(Hg) by sodium amalgams and by electrolysis; the electrochemical behavior of Md is very similar to that of Fm and can be summarized in the equation, Md 2+ + 2e - = Md(Hg) and E 0 = -1.50 V.; and Md cannot be reduced to a monovalent ion with Sm 2+

  14. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  15. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  16. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  17. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    Science.gov (United States)

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  18. Symmetry and physical properties of crystals

    CERN Document Server

    Malgrange, Cécile; Schlenker, Michel

    2014-01-01

    Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This all...

  19. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  20. Chemical composition of Chinese palm fruit and chemical properties ...

    African Journals Online (AJOL)

    ... chemical properties and could be used as edible oils and for industrial applications. ... on it, which can provide useful information for Chinese oil palm industry. Key words: Chemical composition, palm fruit, palm oil, palm kernel oil, chemical ...

  1. Fabrication of GO/Cement Composites by Incorporation of Few-Layered GO Nanosheets and Characterization of Their Crystal/Chemical Structure and Properties.

    Science.gov (United States)

    Lv, Shenghua; Hu, Haoyan; Zhang, Jia; Luo, Xiaoqian; Lei, Ying; Sun, Li

    2017-12-18

    Original graphene oxide (GO) nanosheets were prepared using the Hummers method and found to easily aggregate in aqueous and cement composites. Using carboxymethyl chitosan (CCS) as a dispersant, few-layered GO nanosheets (1-2 layers) were obtained by forming CCS/GO intercalation composites. The testing results indicated that the few-layered GO nanosheets could uniformly spread, both in aqueous and cement composites. The cement composites were prepared with GO dosages of 0.03%, 0.05% and 0.07% and we found that they had a compact microstructure in the whole volume. A special feature was determined, namely that the microstructures consisted of regular-shaped crystals created by self-crosslinking. The X-ray diffraction (XRD) results indicated that there was a higher number of cement hydration crystals in GO/cement composites. Meanwhile, we also found that partially-amorphous Calcium-Silicate-Hydrate (C-S-H) gel turned into monoclinic crystals. At 28 days, the GO/cement composites reached the maximum compressive and flexural strengths at a 0.05% dosage. These strengths were 176.64 and 31.67 MPa and, compared with control samples, their increased ratios were 64.87% and 149.73%, respectively. Durability parameters, such as penetration, freeze-thaw, carbonation, drying-shrinkage value and pore structure, showed marked improvement. The results indicated that it is possible to obtain cement composites with a compact microstructure and with high performances by introducing CCS/GO intercalation composites.

  2. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    Science.gov (United States)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  3. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  4. Crystal growth and physical properties of Ferro-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Aswartham, Saicharan

    2012-11-08

    The thesis work presented here emphasizes important aspects of crystal growth and the influence of chemical substitution in Fe-As superconductors. High temperature solution growth technique is one of most powerful and widely used technique to grow single crystals of various materials. The biggest advantage of high temperature solution growth technique is the, possibility of growing single crystals from both congruently and incongruently melting materials. Solution growth technique has the potential to control high vapour pressures, given the fact that, in Fe-based superconductors elements with high vapour pressure like As, K, Li and Na have to be handled during the crystal growth procedure. In this scenario high temperature solution growth is the best suitable growth technique to synthesize sizable homogeneous single crystals. Using self-flux high temperature solution growth technique, large centimeter-sized high quality single crystals of BaFe{sub 2}As{sub 2} were grown. This pristine compound BaFe{sub 2}As{sub 2} undergoes structural and magnetic transition at T{sub S/N} = 137 K. By suppressing this magnetic transition and stabilizing tetragonal phase with chemical substitution, like Co-doping and Na-doping, bulk superconductivity is achieved. Superconducting transitions of as high as T{sub c} = 34 K with Na substitution and T{sub c} = 25 K with Co-doping were obtained. A combined electronic phase diagram has been achieved for both electron doping with Co and hole doping with Na in BaFe{sub 2}As{sub 2}. Single crystals of LiFe{sub 1-x}Co{sub x}As with x = 0, 0.025, 0.05 and 0.075 were grown by a self-flux high temperature solution growth technique. The charge doping in LiFeAs is achieved with the Co-doping in Fe atoms. The superconducting properties investigated by means of temperature dependent magnetization and resistivity revealed that superconductivity is shifted to lower temperatures and with higher amount of charge carriers superconductivity is killed

  5. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  6. Linear and nonlinear optical properties of borate crystals as ...

    Indian Academy of Sciences (India)

    Unknown

    crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.

  7. Synthesis, non-isothermal crystallization and magnetic properties of ...

    Indian Academy of Sciences (India)

    perties and modifies the physical properties of the matrix considerably. However ... perties and harmlessness to health. PEVA, in their different ..... crystals causing a depression in Tm and Tp. In all the cases, the crystallization enthalpy peak ...

  8. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  9. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  10. New crystal-chemical data for marécottite

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.

    2015-01-01

    Roč. 79, č. 3 (2015), s. 649-660 ISSN 0026-461X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : marécottite * uranyl sulfate * zippeite group * crystal structure * chemical composition * hydrogen bonds. Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.212, year: 2015

  11. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  12. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals

    International Nuclear Information System (INIS)

    Viswanath, B.; Shastry, V.V.; Ramamurty, U.; Ravishankar, N.

    2010-01-01

    The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values.

  13. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  14. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  15. Crystal chemistry and magnetic properties of ternary rare earth sulfides

    International Nuclear Information System (INIS)

    Plug, C.M.; Rijksuniversiteit Leiden

    1977-01-01

    The results of magnetic measurements on two groups of ternary rare earth sulphides are described, the MLnS 2 (M=Li, Na, K) type of compounds and the series Ln 2 ZrS 5 , where Ln denotes one of the rare earths. None of these compounds is metallic, excluding the possibility of RKKY-interaction. In chapter II a survey of the relevant theory on magnetic properties and crystal field splitting is given. In spite of the similarity in chemical properties of the rare earths, the crystal chemistry of their compounds is rather complex. This is due to the lanthanide contraction. The third chapter deals with the description and classification of the numerous crystal structures of both ternary and binary rare earth sulphides that have been observed. Rather simple relations between various structures are presented using a new method of structure classification. The magnetic interactions expected to be based on superexchange via the anions, which is usually very structure dependent. Experiments to study the crystallographic ordering, applying both X-ray and electron diffraction methods and the results of the magnetic measurements on the compounds MLnS 2 are reported in chapter IV. The compounds Ln 2 ZrS 5 are candidates for a systematic study of the variation of the magnetic properties along the rare earth series. The results of magnetic measurements on these compounds are presented in chapter V, combined with the results of specific heat measurements. Also the magnetic structure of two representatives, Tb 2 ZrS 5 and Dy 2 ZrS 5 , determined by neutron diffraction experiments below the ordering temperature, is reported

  16. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  17. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  18. Thermodynamics of Binary Mixed Crystals in the Sub-quasi-chemical/Debye Approximation

    Science.gov (United States)

    van der Kemp, W. J. M.; Verdonk, M. L.

    1995-03-01

    A new statistical model for the description of the thermodynamic properties of binary mixed crystals is discussed. The model is based on an asymmetrical analogue of the quasi-chemical approximation and the Debye model of a solid. With two interchange -energy parameters and two interchange-Debye-temperature parameters, all important thermodynamic functions, at constant volume, of the binary mixed crystal can be calculated as a function of temperature and composition. The binary system {( 1 - x)Nai + xKI}(s) is used for illustration of the model.

  19. Optical properties of opal photonic crystals

    Science.gov (United States)

    Eradat-Oskouei, Nayer

    2001-10-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function in one, two, or three dimensions, in which the propagation of electromagnetic waves within a certain frequency band is forbidden. This forbidden frequency band has been dubbed photonic band gap (PBG). The position, width, depth, and shape of the PBG strongly depend on the periodicity, symmetry properties, dielectric constant contrast, and internal lattice structure of the unit cell. There is a common belief that PCs will perform many functions with light that ordinary crystals do with electrons. At the same time, PCs are of great promise to become a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with metals, laser dyes, π-conjugated polymers, and J-aggregates. Opals are self-assembled structures of silica (SiO2) spheres mostly packed in a face centered cubic (fcc) lattice. Our research is summarized in the following six chapters. Chapter 1 is a review on the concepts related to PBG and PC, eigenvalue problem of electromagnetism, material systems that exhibit PBG. Chapter 2 covers all the fabrication and measurement techniques including angle resolved reflectivity, transmission, photoluminescence, photo-induced absorption, and coherent backscattering. Chapter 3 focuses on the relationship between a polaritonic gap and a photonic stop-band when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. The experimental results on reflectivity and its dependence on the impinging angle and concentration of the polarizable medium are in agreement with the theoretical calculations. In Chapter 4, the optical studies of three-dimensional metallic mesh composites are reported. Photonic and electronic properties of these PCs strongly depend on their

  20. Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.

    2017-07-01

    Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.

  1. Photonic crystals: role of architecture and disorder on spectral properties.

    Science.gov (United States)

    Verma, Rupesh; Audhkhasi, Romil; Thyagarajan, Krishna; Banerjee, Varsha

    2018-03-01

    Many of the present-day optical devices use photonic crystals. These are multilayers of dielectric media that control the reflection and transmission of light falling on them. In this paper, we study the optical properties of periodic, fractal, and aperiodic photonic crystals and compare them based on their attributes. Our calculations of the band reflectivity and degree of robustness reveal novel features, e.g., fractal photonic crystals are found to reflect the maximum amount of incident light. On the other hand, aperiodic photonic crystals have the largest immunity to disorder. We believe that such properties will be useful in a variety of applications in the field of optical communication.

  2. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  3. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  4. A study on properties of PbWO4 crystal

    International Nuclear Information System (INIS)

    He Jingtang; Mao Yufang; Dong Xiaoli

    1997-01-01

    The experimental results on properties of the PbWO 4 crystal are reported, including the excitation and fluorescence spectra, absolute and relative light yield and decay times. It seems that the PbWO 4 crystal can be used in high energy physics experiments for detecting high energy shower particles

  5. Crystal growth and comparison of vibrational and thermal properties ...

    Indian Academy of Sciences (India)

    The TGA–DTA studies showed the thermal properties of the crystals. ... impact on laser technology, optical communication and optical storage technology. [1,2]. .... UTHC and UTHS crystals in the temperature range of 25–1100◦C with a heat-.

  6. Theoretical analysis of static properties of mixed ionic crystal ...

    Indian Academy of Sciences (India)

    In the present paper, we have investigated the static properties of the mixed ionic crystal NH4Cl1−Br using three-body potential model (TBPM) by the application of Vegard's law. The results for the mixed crystal counterparts are also in fair agreement with the pseudo-experimental data generated from the application of ...

  7. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  8. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  9. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  10. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  11. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...

  12. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  13. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Dou, Renqin [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Sun, Guihua; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-01-15

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω{sub 2,4,6} were obtained to be 9.674 x 10{sup -20}, 2.092 x 10{sup -20}, and 4.061 x 10{sup -20} cm{sup 2}, respectively. (orig.)

  14. Properties and applications of chemically functionalized graphene

    International Nuclear Information System (INIS)

    Craciun, M F; Khrapach, I; Barnes, M D; Russo, S

    2013-01-01

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene. (topical review)

  15. Intravitreal properties of porous silicon photonic crystals

    Science.gov (United States)

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  16. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  17. Magneto-optical properties of biogenic photonic crystals in algae

    International Nuclear Information System (INIS)

    Iwasaka, M.; Mizukawa, Y.

    2014-01-01

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror

  18. Electrical properties of molecular crystals; Proprietes electriques des cristaux moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Barraud, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [French] Cette etude bibliographique resume les proprietes electriques des cristaux moleculaires: structure des cristaux moleculaires, mecanismes de transport et d'excitation des porteurs de charge et differences avec les semiconducteurs mineraux. Les principaux resultats sur la conductibilite electrique des cristaux moleculaires les plus etudies y sont exposes, ainsi que les proprietes optiques et photoelectriques de ces cristaux. Enfin les differents types de mesures electriques utilisees sont passees en revue ainsi que les limites de chaque methode. (auteur)

  19. Electrical properties of molecular crystals; Proprietes electriques des cristaux moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Barraud, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [French] Cette etude bibliographique resume les proprietes electriques des cristaux moleculaires: structure des cristaux moleculaires, mecanismes de transport et d'excitation des porteurs de charge et differences avec les semiconducteurs mineraux. Les principaux resultats sur la conductibilite electrique des cristaux moleculaires les plus etudies y sont exposes, ainsi que les proprietes optiques et photoelectriques de ces cristaux. Enfin les differents types de mesures electriques utilisees sont passees en revue ainsi que les limites de chaque methode. (auteur)

  20. Chemical composition, physicochemical and functional properties of ...

    African Journals Online (AJOL)

    The results of chemical composition, physicochemical and functional properties for both lupin samples indicated that lupins can be used as a raw material for various food products manufacturing and provide consistency in food processing, analogous to other food legumes. Therefore, the research findings can be used by ...

  1. CHEMICAL PROPERTIES STUDYS OF PEATLANDON VARIOUS LANDUSE

    Directory of Open Access Journals (Sweden)

    Yondra Yondra

    2017-12-01

    Full Text Available Natural peat swamp forests converted can alter the soil chemical properties. This study aims to determine the extent to which changes in soil chemical properties that occur after the conversion of land from peat swamp forest to palm oil plantation, HTI Acacia crasicarpa, and sago plantation and to know which types of plants are sustainable on peatlands. The results showed that soil pH increased after the change of land function. While the water content decreased. Chemical properties such as C-organic, ash content, CEC, alkaline saturation, macro nutrients (NPK and bases can be changed also undergo changes after undergoing landuse changes, but no violations based on the law made by the government in pp No 25 of 2000 on the criteria of peatland damage and government regulation no. 150 of 2000 on the control of soil damage for biomass production. Sago is the most sustainable plant compared to others due to changes in soil chemical properties not too much different from other landuse although planted in the long term.

  2. Evidence of incomplete annealing at 800 °C and the effects of 120 °C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb

    Science.gov (United States)

    Sung, Z.-H.; Dzyuba, A.; Lee, P. J.; Larbalestier, D. C.; Cooley, L. D.

    2015-07-01

    High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 °C or annealing at 800 °C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition Tc at ˜ 9.3-9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field Hc3 to the bulk upper critical field Hc2 rising to 2.3, well above the Ginzburg-Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 °C, and a substantial but incomplete recrystallization near the surface after annealing at 800 °C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing.

  3. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    considerable interest both in industry and academia because of its significantly ... super-engineering materials because of their superior mecha- nical properties at ... proves the barrier (Kojima et al 1993c) and ablative. (Vaia et al 1999) ...

  4. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  5. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  6. Dataset on photonic crystal fiber based chemical sensor.

    Science.gov (United States)

    Ahmed, Kawsar; Paul, Bikash Kumar; Chowdhury, Sawrab; Islam, Md Shadidul; Sen, Shuvo; Islam, Md Ibadul; Asaduzzaman, Sayed; Bahar, Ali Newaz; Miah, Mohammad Badrul Alam

    2017-06-01

    This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA), and effective area ( A eff). The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017) [1]. Furthermore, V -parameter ( V ), Marcuse spot size (MSS), and beam divergence (BD) are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML). The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10 -11 to ~10 -7  dB/m; the high A eff from 5.50 to 5.66 µm 2 ; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  7. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  8. Dataset on photonic crystal fiber based chemical sensor

    Directory of Open Access Journals (Sweden)

    Kawsar Ahmed

    2017-06-01

    Full Text Available This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA, and effective area (Aeff. The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017 [1]. Furthermore, V-parameter (V, Marcuse spot size (MSS, and beam divergence (BD are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML. The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10–11 to ~10−7 dB/m; the high Aeff from 5.50 to 5.66 µm2; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  9. Absorption and emission properties of photonic crystals and metamaterials

    International Nuclear Information System (INIS)

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  10. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  11. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  12. Synthesis, crystal structures and properties of new quinolinium derivatives

    Science.gov (United States)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  13. Chemical forms of 35S in KCl crystals doped with elementary 35S. Pt. 1

    International Nuclear Information System (INIS)

    Maddock, A.G.; Todorovsky, D.S.

    1983-01-01

    KCl crystals have been doped with 35 S at low chemical concentrations. Upon solution of the doped crystals in cyanide solution and analysis by the method of Kasrai and Maddock, the 35 S appears in the same chemical forms as are found for the 35 S produced in similar crystals by the (n, p) reaction. Reactions are suggested whereby these products may be produced. (orig.)

  14. Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory

    International Nuclear Information System (INIS)

    Korlyukov, Alexander A; Antipin, Mikhail Yu

    2012-01-01

    The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.

  15. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    Chemical Composition, antioxidant activity, functional properties and inhibitory action of unripe plantain ( M. Paradisiacae ) flour. ... of dry matter (48.00 ± 3.96%) and starch (31.10 ± 0.44%) but was low in phenol (1.42 ± 0.03%), protein (3.15 ± 0.042%), ash (5.50 ± 0.42%) and total soluble sugar (0.64 ± 0.001%) (p < 0.05).

  16. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...

  17. Crystallization and mechanical properties of biodegradable poly(p ...

    Indian Academy of Sciences (India)

    Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the ... attracting more and more attention in recent times.12–14 Blen- ..... spent at Ts is enough to erase the crystalline memory of the.

  18. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  19. Frictional properties of single crystals HMX, RDX and PETN explosives

    International Nuclear Information System (INIS)

    Wu, Y.Q.; Huang, F.L.

    2010-01-01

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations.

  20. Origin of electronic properties of PbGa2Se4 crystal: Experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Babuka, T.; Kityk, I.V.; Parasyuk, O.V.; Myronchuk, G.; Khyzhun, O.Y.; Fedorchuk, A.O.; Makowska-Janusik, M.

    2015-01-01

    Graphical abstract: In the presented work the structural and electronic properties of the PbGa 2 Se 4 single crystal were investigated experimentally as well as theoretically. The XPS spectra, Urbach’s rule and steepness parameters of PbGa 2 Se 4 single crystal have been investigated for the first time. The quantum chemical calculations were also never performed before for the studied structure. The theoretically obtained data help to explain the properties of material. - Highlights: • Urbach’s rule and steepness parameters for PbGa 2 Se 4 crystals explored for the first time. • Non-reactivity of the PbGa 2 Se 4 surface was established by XPS. • DFT approach shows its efficiency to describe electronic properties of PbGa 2 Se 4 . • Electronic parameters are affected by existence of electron–phonon interaction. - Abstract: The PbGa 2 Se 4 crystal is a promising material for optoelectronic applications. It is caused by coexistence of the large polarized Pb cations and a huge contribution of anharmonic phonon subsystem caused by chalcogenide anions. In the present work the electronic and optical properties of the mentioned material were studied theoretically as well as experimentally by optical and X-ray photoelectron spectroscopy methods. The DFT approach has been used for the quantum chemical electronic properties calculations. Urbach rule and steepness parameters of the PbGa 2 Se 4 crystal have been evaluated for the first time. These parameters and Urbach energies increase with increasing temperature of the samples that is typical for the semiconducting materials. The XPS measurements of the investigated crystal reveal that all the spectral features are originated from core-level states of the constituent elements. Simultaneously these results also confirm non-reactivity of the PbGa 2 Se 4 surface. However, the titled single crystal possesses a number of intrinsic structural defects and vacancies thereby affecting its electronic properties. The

  1. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  2. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  3. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  4. Crystal chemical characterization of mullite-type aluminum borate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); Hooper, T.J.N. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhao, H.; Kolb, U. [Institut für Anorganische Chemie und Analytische Chemie, Jakob-Welder-WegJakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, D-55128 Mainz (Germany); Murshed, M.M. [Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Fischer, M.; Lührs, H. [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Nénert, G. [Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Kudějová, P.; Senyshyn, A. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); and others

    2017-03-15

    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The {sup 11}B NMR data show a small amount of BO{sub 4} species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al{sub 5−x}B{sub 1+x}O{sub 9} where Al is substituted by B in the range of 1–3%. The structure of B-rich Al{sub 4}B{sub 2}O{sub 9} (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction. - Graphical abstract: Projections of three-dimensional electron diffraction space of Al{sub 4}B{sub 2}O{sub 9} along the main directions. - Highlights: • The crystal structure of Al{sub 4}B{sub 2}O{sub 9} was re-evaluated. • Structural details vary among different crystals and inside Al{sub 4}B{sub 2}O{sub 9} crystallites. • Diffuse scattering indicate a probable disordered configuration of O5 and O10. • A solid solution series for Al{sub 5−x}B{sub x}O{sub 9} is indicated by PGAA and NMR spectroscopy. • The presence of BO{sub 4} groups is confirmed by {sup 11}B MAS NMR spectroscopy for Al{sub 5−x}B{sub 1+x}O{sub 9}.

  5. Different properties exhibited on the two typical crystal faces of hydroxyapatite in a simulated body environment

    International Nuclear Information System (INIS)

    Hagio, T; Iwai, K; Tanase, T; Akiyama, J; Asai, S

    2009-01-01

    Hydroxyapatite is a main mineral constituent of hard tissues and is extensively used as a biomaterial in the medical field. Hydroxyapatite exhibits anisotropic chemical properties on its two typical crystal faces, the a-face and c-face, due to its hexagonal crystal structure. In polycrystalline bodies, such anisotropy can be enhanced by controlling the crystal orientation. Hydroxyapatite nanocrystals that constitute long bones also form a crystal oriented structure. Therefore, clarification of the difference between the properties of a-face and c-face in hydroxyapatite using in vitro experiments is useful to understand the structure and function of actual hard tissues. Hydroxyapatite ceramics with controlled crystal orientation were prepared by a slip casting method under application of a magnetic field. The fabricated hydroxyapatite ceramics had surfaces consisting mainly of a-face, or otherwise c-face hydroxyapatite. These hydroxyapatite ceramics were immersed into simulated body fluids to investigate the difference in bioactivity. The precipitation behavior observed on the surface of each hydroxyapatite ceramic was different. The thickness of the precipitate was increased and formed earlier on the HAp c-face compared to that on the a-face.

  6. Different properties exhibited on the two typical crystal faces of hydroxyapatite in a simulated body environment

    Energy Technology Data Exchange (ETDEWEB)

    Hagio, T; Iwai, K [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Tanase, T [Toho Gas Corporation, 19-18 Sakurada-cho, Atsuta-ku, Nagoya, 456-8511 (Japan); Akiyama, J [Institute for Molecular Science, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585 (Japan); Asai, S [Innovation Plaza Tokai Japan Science and Technology Agency, 23-1 Ahara-cho, Minami-ku, Nagoya, 457-0063 (Japan)], E-mail: hagio.takeshi@h.mbox.nagoya-u.ac.jp

    2009-03-01

    Hydroxyapatite is a main mineral constituent of hard tissues and is extensively used as a biomaterial in the medical field. Hydroxyapatite exhibits anisotropic chemical properties on its two typical crystal faces, the a-face and c-face, due to its hexagonal crystal structure. In polycrystalline bodies, such anisotropy can be enhanced by controlling the crystal orientation. Hydroxyapatite nanocrystals that constitute long bones also form a crystal oriented structure. Therefore, clarification of the difference between the properties of a-face and c-face in hydroxyapatite using in vitro experiments is useful to understand the structure and function of actual hard tissues. Hydroxyapatite ceramics with controlled crystal orientation were prepared by a slip casting method under application of a magnetic field. The fabricated hydroxyapatite ceramics had surfaces consisting mainly of a-face, or otherwise c-face hydroxyapatite. These hydroxyapatite ceramics were immersed into simulated body fluids to investigate the difference in bioactivity. The precipitation behavior observed on the surface of each hydroxyapatite ceramic was different. The thickness of the precipitate was increased and formed earlier on the HAp c-face compared to that on the a-face.

  7. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  8. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  9. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  10. Engineering electrical properties of graphene: chemical approaches

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Yuna; Hong, Byung Hee; Novoselov, Konstantin

    2015-01-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed. (topical review)

  11. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  12. Arbutus unedo L.: chemical and biological properties.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Maria L; Guerreiro, Adriana C; Antunes, Maria D

    2014-09-30

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  13. Arbutus unedo L.: Chemical and Biological Properties

    Directory of Open Access Journals (Sweden)

    Maria G. Miguel

    2014-09-01

    Full Text Available Arbutus unedo L. (strawberry tree has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies, jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  14. Crystal growth and magnetic properties of equiatomic CeAl

    Science.gov (United States)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  15. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties

    Science.gov (United States)

    de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria

    2017-08-01

    LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.

  16. Spectrometric properties and radiation damage of BGO crystals

    Science.gov (United States)

    Kim, Gen C.; Gasanov, Eldar M.

    1997-07-01

    Spectrometric properties, such as light output, energy resolution BGO crystals before and after (superscript 60)Co gamma-ray (dose 10(superscript 4) - 10(superscript 6) R) and neutron irradiation (fluence 10(superscript 14) cm(superscript -2)) are investigated. Condition for degradation of spectrometric properties and their recovering after irradiation are studied. The energy spectrum of the photons emitted from BGO crystals irradiated with neutron fluence contains the long living background peak which is caused by self-irradiation with radioactive isotopes produced in the crystals. The defect production was studied in crystals under the high dose gamma-irradiation with (superscript 60)Co isotope. It was found that after doses above 10(superscript 8) R the color center at 365 nm and doses higher than 10(superscript 9) R a wide absorption band in the region of 300 - 350 nm occur. Comparison of these results with those of reactor irradiation has shown that under the high dose gamma-irradiation the structure defect production takes place.

  17. 40 CFR 716.50 - Reporting physical and chemical properties.

    Science.gov (United States)

    2010-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical...

  18. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  19. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  20. Asymmetric flavone-based liquid crystals: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Daren J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Jordan, Abraham J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Kirchon, Angelo A. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Murthy, N. Sanjeeva [New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Siemers, Troy J. [Department of Applied Mathematics, Virginia Military Institute, Lexington, VA, USA; Harrison, Daniel P. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Slebodnick, Carla [Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

    2017-02-01

    A series of flavones (n-F) substituted at the 4', and 6 positions was prepared, characterised by NMR (1H,13C), HRMS, and studied for liquid crystal properties. The 4'-alkoxy,6-methoxyflavones (4-F–16-F) exhibit varying ranges of nematic and smectic A phases as evidenced by polarised optical microscopy and differential scanning calorimetry (DSC). As the tail length is increased, the smectic phase becomes more prevalent. Smectic phases for (8-F–16-F) were further analysed by powder X-ray diffraction (XRD), and the rate of structural transformations was explored by combined DSC/XRD studies. Flavonol 6-F–OH was also prepared but no mesogenic behaviour was observed. The molecular structures of 6-F and 6-F–OH were determined by single-crystal XRD and help to explain the differences in material properties. Additionally, fluorescence and electrochemical studies were conducted on solutions of n-F.

  1. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  2. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  3. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  4. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  5. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  6. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  7. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  8. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    Science.gov (United States)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  9. Relaxor properties of barium titanate crystals grown by Remeika method

    Science.gov (United States)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  10. Chemical properties of peat used in balneology

    Science.gov (United States)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  11. Physical and chemical properties of pyrethroids.

    Science.gov (United States)

    Laskowski, Dennis A

    2002-01-01

    The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively

  12. Crystal-chemical characteristics of nontronites from bottom sediments of Pacific ocean

    International Nuclear Information System (INIS)

    Palchik, N. A.; Moroz, T. N.; Grigorieva, T. N.; Nikandrova, N. K.; Miroshnichenko, L. V.

    2017-01-01

    A crystal-chemical analysis of the nontronite samples formed in deep-water sediments of the underwater Juan-de-Fuca ridge in the Pacific ocean has been performed using powder X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy. A comparison with the previously investigated nontronites from different regions of the Sea of Okhotsk showed that the structural features of these formations are due to the difference in the physicochemical parameters of their crystallization. The values of the basal interplanar spacing d_0_0_1 (within 11–13 Å) in the samples analyzed are determined by the degree of hydration and cation filling of the interlayer space, while the differences in the IR spectra are due to isomorphic substitutions in the structure. The character of cation distribution and the nature and concentration of stacking faults in nontronite structures are determined. The differences in the composition, structure, and properties of nontronites of different origin are confirmed by theoretical calculations of their structural parameters.

  13. Crystal-chemical characteristics of nontronites from bottom sediments of Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Moroz, T. N.; Grigorieva, T. N. [Russian Academy of Sciences, Sobolev Institute of Geology and Mineralogy, Siberian Branch (Russian Federation); Nikandrova, N. K. [Russian Academy of Sciences, Institute of Mineralogy, Ural Branch (Russian Federation); Miroshnichenko, L. V. [Russian Academy of Sciences, Sobolev Institute of Geology and Mineralogy, Siberian Branch (Russian Federation)

    2017-01-15

    A crystal-chemical analysis of the nontronite samples formed in deep-water sediments of the underwater Juan-de-Fuca ridge in the Pacific ocean has been performed using powder X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy. A comparison with the previously investigated nontronites from different regions of the Sea of Okhotsk showed that the structural features of these formations are due to the difference in the physicochemical parameters of their crystallization. The values of the basal interplanar spacing d{sub 001} (within 11–13 Å) in the samples analyzed are determined by the degree of hydration and cation filling of the interlayer space, while the differences in the IR spectra are due to isomorphic substitutions in the structure. The character of cation distribution and the nature and concentration of stacking faults in nontronite structures are determined. The differences in the composition, structure, and properties of nontronites of different origin are confirmed by theoretical calculations of their structural parameters.

  14. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    Science.gov (United States)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  15. Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105)

    International Nuclear Information System (INIS)

    Henderson, R.A.

    1990-01-01

    The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute 260 Lr and 35-second 262 Ha. The crystal ionic radius of Lr 3+ was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am 3+ through Es 3+ , obtained by x-ray diffraction methods, and to Md 3+ and Fm 3+ which were determined in the same manner as Lr 3+ . The hydration enthalpy of -3622 kJ/mol was calculated from the crystal ionic radius using an empirical form of the Born equation. Comparisons to the spacings between the ionic radii of the heaviest members of the lanthanide series show that the 2Z spacing between Lr 3+ and Md 3+ is anomalously small, as the ionic radius of Lr 3+ of 0.0886 nm is significantly smaller than had been expected. The chemical properties of Ha were determined relative to the lighter homologs in group 5, Nb and Ta. Group 4 and group 5 tracer activities, as well as Ha, were absorbed onto glass surfaces as a first step toward the determination of the chemical properties of Ha. Ha was found to adsorb on surfaces, a chemical property unique to the group 5 elements, and as such demonstrates that Ha has the chemical properties of a group 5 element. A solvent extraction procedure was adapted for use as a micro-scale chemical procedure to examine whether or not Ha displays eka-Ta-like chemical under conditions where Ta will be extracted into the organic phase and Nb will not. Under the conditions of this experiment Ha did not extract, and does not show eka-Ta-like chemical properties

  16. Dislocation-defect interactions and mechanical properties of crystals

    International Nuclear Information System (INIS)

    Granato, A.V.

    1975-01-01

    The influence of dislocation-defect interactions on mechanical properties of crystals is reviewed. Interactions are separated into those producing pinning and those producing viscous drag. Deformation behavior is classified according to the strength of the drag. For small drag, inertial effects become important. For intermediate drag, traditional theories resting on rate theory treatments become applicable. For large drag, viscoelastic behavior is obtained. Measurements are examined for information concerning the basic nature of different sources of short and long range pinning and of drag

  17. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  18. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  19. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  20. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  1. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  2. Effect of cobalt on microstructural parameters and mechanical properties of Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Suzuki, Takanobu; Imai, Hachiro; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Koizumi, Yutaka; Harada, Hiroshi

    2007-01-01

    The alloying effect of Cobalt (Co) to microstructural parameters and mechanical properties, such as partitioning ratios of alloying elements and creep strength, of Re-bearing Ni-base single crystal superalloys have been investigated. The second generation single crystal superalloys, TMS-82+, Ni-7.8Co-4.9Cr-1.9Mo-8.7W-5.3Al-6.0Ta-2.4Re-0.1Hf, in mass% (8Co) was compared to a Co-free (0Co) and 15 mass% Co (15Co) alloy which had the same chemical composition as TMS-82+ except that Co was changed. It was shown that the partitioning ratios of alloying elements trend to k(=X γ /X' γ )=1, as the content of Co was increased. Furthermore, it was found that there was suitable content of Co for the creep strength under various temperature-stress conditions. (author)

  3. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature

  4. Imaging properties of a positron tomograph with 280 BGO crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.; Vuletich, T.

    1980-11-01

    The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm x 30 mm x 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm x 32 mm x 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm 3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1). However, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9 to 10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated

  5. Anisotropic properties of single crystals of high Tc superconductors

    International Nuclear Information System (INIS)

    Tholence, J.L.; Saint-Paul, M.; Laborde, O.; Monceau, P.; Guillot, M.; Niel, H.; Levet, J.C.; Potel, M.; Padiou, J.; Gougeon, P.

    1990-01-01

    In this article the authors make a review of some of the anisotropic properties of high T c compounds, essentially RE Ba 2 Cu 3 O 7 , Bi-SR-Ca-Cu-O and Tl-Ca-Ba-Cu-O systems. In section 2 a short description of the crystal growth is reported. Section 3 deals with the anisotropic elastic properties measured by ultrasonic techniques. In section 4 the authors discuss the anisotropy in magnetization measurements and consequently on the critical currents. Section 5 concerns the magnetoresistance measurements, and the determination of the superconducting critical magnetic field H c2 . Finally in section 6, in conclusion of result described in sections 4 and 5, the authors discuss on the pinning force and on the controversial Lorentz force for explaining the broadening of the superconducting transition under magnetic field. The authors apologize for not having quoted all the works published on these different topics, which is in fact practically impossible

  6. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  7. Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal

    Directory of Open Access Journals (Sweden)

    K. Rajesh

    2014-01-01

    Full Text Available Nonlinear optical single crystal of organic amino acid L-Serine (LS was grown by slow evaporation technique. Solubility study of the compound was measured and metastable zone width was found. Single crystal X-ray diffraction study was carried out for the grown crystal. The linear and nonlinear optical properties of the crystal were confirmed by UV-Vis analysis and powder SHG tester. FT-IR spectrum was recorded and functional groups were analyzed. Vickers’ microhardness studies showed the mechanical strength of the grown crystal. Laser damage threshold value of the crystal was calculated. Photoconductivity studies reveal the conductivity of the crystal.

  8. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  9. Optical properties of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Hsu, H.P.; Huang, Y.S.; Liang, C.H.; Tiong, K.K.; Du, C.H.

    2008-01-01

    Single crystals of WS 2 doped with gold have been grown by the chemical vapour transport method using iodine as a transporting agent. X-ray diffraction (XRD) pattern analysis revealed presence of mixed three-layer rhombohedral (3R) and two-layer hexagonal (2H) polytypes for the doped crystals while the undoped one shows only 2H form. Hall measurements indicate that the samples are p-type in nature. The doping effects of the materials are characterized by surface photovoltage (SPV), photoconductivity (PC) and piezoreflectance (PzR) measurements. Room temperature SPV and PC spectra reveal a feature located at ∼60 meV below the A exciton and has been tentatively assigned to be an impurity level caused by Au dopant. Excitonic transition energies of the A, B, d and C excitons detected in PzR spectra show red shift due to the presence of a small amount of Au and the broadening parameters of the excitonic transition features increase due to impurity scattering. The values of the parameters that describe the electron (exciton)-phonon interaction of excitonic transitions of A-B are about two times larger than that of d-C excitonic pairs. The possible assignments of the different origins of A-B and d-C excitonic pairs have been discussed

  10. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  11. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  12. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    Science.gov (United States)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  13. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  14. Comparative study of the chemical properties of palm oil extracted ...

    African Journals Online (AJOL)

    The chemical properties of oil samples determined were free fatty acid, acid value, saponification value, peroxide value, iodine value and moisture content. The experimental design adopted was 3 x 2 x 2 factorial randomized complete block design in three replicates. The data of chemical properties of extracted palm oil ...

  15. Physico-chemical properties and sensory evaluation of jam made ...

    African Journals Online (AJOL)

    This study was carried out to investigate the possibility of producing jam from black-plum and to evaluate the physico-chemical properties, nutritional properties and consumer acceptability of the product. Black-plum jam was produced using traditional openkettle method. The physico-chemical analyses of black-plum fruit ...

  16. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  17. Pb1–xMnxTe single crystals and their structural properties

    Directory of Open Access Journals (Sweden)

    NEBOJSA ROMCEVIC

    2004-12-01

    Full Text Available Pb1-xMnxTe crystals were grown by the vertical Bridgman method. Their structural properties were observed both by optical microscopy after chemical polishing and ething, and by X-ray powder diffraction analysis. A solution of 5 vol. % Br2 in HBr at room temperatur, for an exposure of 2 min was determined for chemical polishing. A solution of 20 g KOH in 1 ml H2O2, 2 ml glycerol (C3H8O3, and 20 ml H2O at room temperature for an exposure for 6 min was found to be a suitable etching solution. The obtained results are discussed and compared with published data.

  18. Experimental setup for rapid crystallization using favoured chemical ...

    Indian Academy of Sciences (India)

    Unknown

    present the comparative study of structural and optical properties of traditionally and ... growth, the design of the platform is modified, specially with regard to the .... growth habit, spurious nucleation events and morphologi- cal instabilities of the ...

  19. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  20. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  1. Electrophysical properties of crystals with superconducting inclusions of small sizes

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Shevtsova, O.N.

    2001-01-01

    The effect of superconducting inclusions, incorporated in a semiconducting or dielectric matrix, on the electrophysical properties of the dielectric is studied. The critical magnetic field of a spherical isolated inclusion is determined in the assumption that the inclusion radius is less than or of the order of coherence length. The dependence of conductivity on temperature and magnetic field is calculated for a crystal with superconducting inclusions. In the calculations an assumption is made that the inclusion concentration is inadequate for the superconductivity to appear in a whole sample (i.e. below the thresh-old of percolation). It is shown that the presence of superconducting inclusions leads to a sharp increase of the sample conductivity at low temperatures, and to a strong dependence of conductivity on magnetic field (magnetoresistance). The magnetoresistance is caused by suppression of superconductivity in the inclusions with increasing magnetic field. The influence of variations in inclusion size on the temperature and magnetic field dependences of conductivity is studied

  2. Interactions of molecules and the properties of crystals

    Science.gov (United States)

    McConnell, Thomas Daniel Leigh

    In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used

  3. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  4. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2018-05-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g( F), 4 T 1g → 4 A 2g( F) and 4 T 1g → 4 T 1g( P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g( F) and the 4 T 1g → 4 T 1g( P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g( F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  5. Influence of dislocations in solid-phase crystal lattices on structure and properties of an WC-9Co alloy

    International Nuclear Information System (INIS)

    Grewe, H.

    1976-01-01

    After theoretical considerations about evaluation of degree of dislocation concentration in crystal lattices two tungsten-carbide-powders are characterized by chemical reaction behaviour. The hard metal grades produced from the two carbide powders are tested by material and tool life investigation. The tungsten carbide powder with lower level of dislocation-concentration leads to a hardmetall-alloy with an equal microstructure and with favourable properties, especially with a good toughness and with an interesting tool life. (orig.) [de

  6. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rathika, A. [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India); Prasad, L. Guru [Departemnt of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Raman, R. Ganapathi, E-mail: ganapathiraman83@gmail.com [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India)

    2016-03-15

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  7. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    International Nuclear Information System (INIS)

    Rathika, A.; Prasad, L. Guru; Raman, R. Ganapathi

    2016-01-01

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  8. Challenging chemical concepts through charge density of molecules and crystals

    International Nuclear Information System (INIS)

    Gatti, Carlo

    2013-01-01

    Narrating my scientific career, I show in this paper how, starting as a computational and theoretical chemist, I got naturally involved with x-ray crystallographers because of the common interest in charge density and in the study of chemical bonds based on such an observable. The tools I devised and the conceptual developments I made to facilitate a profitable encounter between x-ray charge density and computational chemistry researchers are illustrated, with a special focus on the proposal and applications of the Source Function concept. (comment)

  9. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  10. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  11. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  12. Crystal growth and magnetic property of YFeO3 crystal

    Indian Academy of Sciences (India)

    2Department of Physics, Shanghai University, Shanghai 200444, China. 3School ... YFeO3 and other rare earth substituted crystals with distorted orthorhombic pervoskite-like struc- .... gen, with rotation rates of 30 rpm for the growing crystal or.

  13. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  14. Properties of lead tungstate crystals for high-energy physics

    CERN Document Server

    Ippolitov, M S; Burachas, S; Ikonnikov, V; Kuriakin, A; Lebedev, V; Makov, I; Man'ko, V; Nikulin, S P; Nyanin, A; Saveliev, Yu; Tamulaitis, G; Tsvetkov, A A; Vasilev, A; Vinogradov, Yu I

    2004-01-01

    Technology for the mass production of high-quality PbWO//4 (PWO) scintillating crystals is described. Scintillators produced from PWO crystals are intented for the ALICE CERN heavy ion experiment. Light yield, emission and decay time spectra as well as optical transmission of about 3600 crystals (dimensions 22 multiplied by 22 multiplied by 180 mm**3) were measured. Beam-test results of the ALICE PHOS prototype obtained with such PWO crystals are presented.

  15. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  16. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  17. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  18. Characteristic properties of crystals. Their demonstration; Proprietes caracteristiques des cristaux. Mise en evidence

    Energy Technology Data Exchange (ETDEWEB)

    Lesueur, C

    1951-03-01

    The characteristic properties of scintillation crystals discussed are the photon spectrum emitted by passage of a particle, number of these photons, transparence of the crystal to its own fluorescence radiation, and decay period of the fluorescence. The experimental apparatus, consisting of photomultiplier tube, preamplifier, amplifier, discriminator, and scaler, is described, and the experimental evaluation of the characteristic properties is discussed. Results of tests on various crystals with {alpha} and {beta} radiations are reported graphically.

  19. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  20. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  1. A framework for analysing relationships between chemical composition and crystal structure in metal oxides

    International Nuclear Information System (INIS)

    Thomas, N.W.

    1991-01-01

    A computer program has been written to characterize the coordination polyhedra of metal cations in terms of their volumes and polyhedral elements, i.e. corners, edges and faces. The sharing of these corners, edges and faces between polyhedra is also quantitatively monitored. In order to develop the methodology, attention is focused on ternary oxides containing the Al 3+ ion, whose structures were retrieved from the Inorganic Crystal Structure Database (ICSD). This also permits an objective assessment of the applicability of Pauling's rules. The influence of ionic valence on the structures of these compounds is examined, by calculating electrostatic bond strengths. Although Pauling's second rule is not supported in detail, the calculation of oxygen-ion valence reveals a basic structural requirement, that the average calculated oxygen-ion valence in any ionic oxide structure is equal to 2. The analysis is further developed to define a general method for the prediction of novel chemical compositions likely to adopt a given desired structure. The polyhedral volumes of this structure are calculated, and use is made of standard ionic radii for cations in sixfold coordination. The electroneutrality principle is invoked to take valence considerations into account. This method can be used to guide the development of new compositions of ceramic materials with certain desirable physical properties. (orig.)

  2. A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Zi-Liang, Ping; Dalsgaard, Erik

    1996-01-01

    A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....

  3. Electronic transport properties of pentacene single crystals upon exposure to air

    NARCIS (Netherlands)

    Jurchescu, OD; Baas, J; Palstra, TTM; Jurchescu, Oana D.

    2005-01-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases

  4. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  5. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  6. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...... is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis of organic chemicals......, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property...

  7. 10428 PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF ...

    African Journals Online (AJOL)

    user

    properties of cookies produced from sweet potato and mango mesocarp .... Moisture, fat, protein, fiber and ash contents of the cookie samples were determined ... A 9-point hedonic score system [19] was used with the following ratings: 9=Like.

  8. Crystallization evolution, microstructure and properties of sewage sludge-based glass–ceramics prepared by microwave heating

    International Nuclear Information System (INIS)

    Tian, Yu; Zuo, Wei; Chen, Dongdong

    2011-01-01

    Highlights: ► A reactor is designed to prepare glass–ceramic from sewage sludge by microwave. ► Microwave process has reduced energy consumption for its low reaction temperature. ► Finer and uniform crystals are observed in microwave glass–ceramics. ► Improved properties of microwave glass–ceramics are found. ► We modeled the crystals growth in microwave field. - Abstract: A Microwave Melting Reactor (MMR) was designed in this study which improved the microwave adsorption of sewage sludge to prepare glass–ceramics. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used for the study of crystallization behavior and microstructure of the developed glass–ceramics. DSC and XRD analysis revealed that crystallization of the nucleated specimen in the region of 900–1000 °C resulted in the formation of two crystalline phases: anorthite and wollastonite. When the crystallization temperature increased from 900 to 1000 °C, the tetragonal wollastonite grains were subjected to tensile microstresses, causing the cracking of crystal. Al ions substituted partially Si ions and occupied tetrahedral sites, giving rise to the formation of anorthite. The relationship between microwave irradiation and crystal growth was studied and the result indicated that the microwave selective heating suppressed the crystal growth, giving apparent improvements in the properties of the glass–ceramics. The glass–ceramics products exhibited bending strength of 86.5–93.4 MPa, Vickers microhardness of 6.12–6.54 GPa and thermal expansion coefficient of 5.29–5.75 × 10 −6 /°C. The best chemical durability in acid and alkali solutions was 1.32–1.61 and 0.41–0.58 mg/cm 2 , respectively, showing excellent durability in alkali solution.

  9. A PMMA coated PMN–PT single crystal resonator for sensing chemical agents

    International Nuclear Information System (INIS)

    Frank, Michael; Kassegne, Sam; Moon, Kee S

    2010-01-01

    A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator

  10. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  11. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)

    Structural, optical and electrical properties of chemically deposited nonstoichiometric copper ... One of these compounds, CuInSe2, with its optical absorption .... is clear from SEM images that the number of grains goes on increasing with the ...

  12. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  13. Computational chemical product design problems under property uncertainties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Cignitti, Stefano; Abildskov, Jens

    2017-01-01

    Three different strategies of how to combine computational chemical product design with Monte Carlo based methods for uncertainty analysis of chemical properties are outlined. One method consists of a computer-aided molecular design (CAMD) solution and a post-processing property uncertainty...... fluid design. While the higher end of the uncertainty range of the process model output is similar for the best performing fluids, the lower end of the uncertainty range differs largely....

  14. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    Science.gov (United States)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  15. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite.

    Science.gov (United States)

    Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W

    2007-03-01

    Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.

  16. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    Science.gov (United States)

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  17. Some chemical and physico-mechanical properties of pear cultivars

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... carried out at the Biological Material Laboratory in Agricultural. Machinery Department and Fruit Science Laboratory in Horticulture. Department of Ataturk University, Erzurum, Turkey. Chemical analysis. All chemical properties of the pear cultivars were investigated on randomly selected fifty fruit samples.

  18. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal

    Science.gov (United States)

    Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.

    2016-01-01

    2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.

  19. Crystallization characteristics and physico-chemical properties of glass–ceramics based on Li2O–ZnO–SiO2 system; Características de cristalización y propiedades físico-químicas de los materiales vitrocerámicos compuestos a base del sistema Li2O-ZnO-SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Salman, Saad M.; Salama, Samia N.; Abo-Mosallam, Hany A.

    2017-11-01

    Glass materials based on lithium zinc silicate system of the composition 24Li2O–20ZnO–56SiO2 LZS (mol%) were prepared and converted to glass–ceramics using controlled heat-treatment schedules. The LZS base glass system was modified by addition of Al2O3 and MO/ZnO replacements where MO=CaO, CdO and SrO oxides. Several crystalline phases were developed, including lithium zinc orthosilicate, α-quartz, β-spodumene solid solution, lithium meta and disilicate, Ca-wollastonite, Cd or Sr metasilicate, and Sr-zinc silicate of hardystonite type. The effects of crystallization process on some properties, like thermal expansion coefficient (TEC), chemical stability, and density of glass–ceramics were evaluated. The TEC of crystalline samples varied from 72×10−7 to 149×10−7K−1, 25–600 and density values in the range, 2.67–3.29g/cm3. The addition of Al2O3 and MO/ZnO replacements in the base glass led to improve the chemical durability of the glass–ceramics samples. As a result of the thermal and physico-chemical properties of the studied glass–ceramic, the materials acquire excellent properties and can be used to seal a variety of different metals and alloys. [Spanish] Los materiales de vidrio compuestos a base del sistema de silicato de cinc y de litio, de la composición 24Li2O–20ZnO-56SiO2 LZS (mol %), se prepararon y se convirtieron en vitrocerámica con regímenes de tratamiento térmico controlado. El sistema de vidrio de base LZS se modificó mediante la adición de reemplazos de Al2O3 y MO/ZnO, donde MO=óxidos de CaO, CdO y SrO. Se desarrollaron varias fases cristalinas, incluyendo ortosilicato de cinc y de litio, de cuarzo α, solución sólida de espomudeno, metal litio y disilicato, Ca-wollastonita, metasilicato Cd o Sr, y silicato de cinc Sr de tipo hardistonita. Se evaluaron los efectos del proceso de cristalización en algunas propiedades, como el coeficiente de expansión térmica, la estabilidad química y la densidad de las vitrocer

  20. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  2. Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.

    Science.gov (United States)

    Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar

    2018-07-05

    Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Synthesis, crystal structures and luminescence properties of two metal carboxyphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaonan; Feng, Pingjing; Li, Jintang, E-mail: leejt@xmu.edu.cn; Luo, Xuetao

    2017-05-15

    Two metal carboxyphosphonates, [Co{sub 2}(OOCC{sub 5}H{sub 3}NPO{sub 3}){sub 2·}(H{sub 2}O){sub 3}] (Compound1) and Zn{sub 3}[OOCC{sub 6}H{sub 3}CH(OH)PO{sub 3}]{sub 2·}2H{sub 2}O (Compound2) were successfully synthesized under the hydrothermal reactions. In compound 1, two (Co1-NO{sub 5}) octahedra link the (CPO{sub 3}) by sharing the corner, which link the two (Co2-O{sub 6}) octahedra. From a-axis the six clusters form the layer. Each layer is linked through hydrogen bond. In compound 2, the (Zn-O{sub 4}) tetrahedron and (CPO{sub 3}) tetrahedron are corner-shared, which arrange in line. From a-axis, each line forms the columnar. The thermal and luminescence properties of these compounds were investigated. - Graphical abstract: The synthesis conditions of the two compounds and the crystal morphology. Compound 1 shows the layer and the compound 2 shows the pillared-layer. - Highlights: • Two new carboxyphosphonate ligands have been prepared. • Using the two ligands, two metal carboxyphosphonates have been synthesized. • The two MOFs may be candidates for fluorescent materials.

  4. Transmission properties of one-dimensional ternary plasma photonic crystals

    International Nuclear Information System (INIS)

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-01-01

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter

  5. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  6. Synthesis, crystal structures and properties of lead phosphite compounds

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Hu, Chun-Li; Xu, Xiang; Kong, Fang; Mao, Jiang-Gao

    2015-01-01

    Here, we report the preparation and characterization of two lead(II) phosphites, namely, Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 through hydrothermal reaction or simple solution synthesis, respectively. A new lead phosphite, namely, Pb_2(HPO_3)_2, crystallizes in the noncentrosymmetric space group Cmc2_1 (no. 36), which features 3D framework formed by the interconnection of 2D layer of lead(II) phosphites and 1D chain of [Pb(HPO_3)_5]_∞. The nonlinear optical properties of Pb_2(HPO_3)(NO_3)_2 have been studied for the first time. The synergistic effect of the stereo-active lone-pairs on Pb"2"+ cations and π-conjugated NO_3 units in Pb_2(HPO_3)(NO_3)_2 produces a moderate second harmonic generation (SHG) response of ∼1.8×KDP (KH_2PO_4), which is phase matchable (type I). IR, UV–vis spectra and thermogravimetric analysis (TGA) for the two compounds were also measured. - Graphical abstract: Two lead phosphites Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 are studied. A new lead phosphite Pb_2(HPO_3)_2 features a unique 3D framework structure and Pb_2(HPO_3)(NO_3)_2 shows a moderate SHG response of ∼1.8×KDP (KH_2PO_4). - Highlights: • A new lead phosphite, Pb_2(HPO_3)_2 is reported. • Pb_2(HPO_3)_2 features a unique 3D framework structure. • NLO property of Pb_2(HPO_3)(NO_3)_2 is investigated. • Pb_2(HPO_3)(NO_3)_2 produces a moderate SHG response of ∼1.8×KDP (KH_2PO_4).

  7. Magnetic, electric and optic properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, St.C.

    1980-01-01

    We study the nematic liquid crystals of thermotrop type. We also studied the crystals whose mesomorphism occured both at temperature increasing and decreasing and during the supercooling phase (monotrope). Investigation results performed by us have had in view the following: clearing up and experimental support of a new mechanism of nuclear relaxation in liquid crystals, proposed by author; usage of experimental techniques and methods for to characterize and test some mesomorph media used in very important applications, such as color TV. (author)

  8. Formation and electrical transport properties of pentacene nanorod crystal

    International Nuclear Information System (INIS)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Kuwahara, Y; Aono, M

    2010-01-01

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  9. Formation and electrical transport properties of pentacene nanorod crystal.

    Science.gov (United States)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  10. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  11. Crystal growth, structure, defects, mechanical and spectral properties of Nd{sub 0.01}:Gd{sub 0.89}La{sub 0.1}NbO{sub 4} mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun; Lu, Wancheng; Xu, Jinrui [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Guihua; Sun, Dunlu [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui Province (China)

    2017-10-15

    A novel mixed laser crystal of Nd:GdLaNbO{sub 4} (Nd:GLNO) was grown successfully by conventional Czochralski method. The unit cell parameters were obtained by Rietveld refinement method. The density of the as-grown crystal was measured by Archimedean buoyancy method and calculated in theory. Absorption spectrum of Nd:GLNO crystal was recorded at room temperature, and 11 absorption peaks were assigned. The defects of Nd:GLNO crystal were revealed by using chemical etching method with phosphoric acid as etchant. The mechanical properties (including hardness, yield strength, elastic stiffness constant, fracture toughness and brittleness index) were systemically estimated based on Vickers hardness test. All these obtained results play a quite important role in further investigation of Nd:GLNO crystal. (orig.)

  12. Symmetry, stability, and diffraction properties of icosahedral crystals

    International Nuclear Information System (INIS)

    Bak, P.

    1985-01-01

    In a remarkable experiment on an Mn-Al alloy, Shechtman et al. observed a diffraction spectrum with icosahedral symmetry. This is inconsistent with discrete translational invariance since the symmetry includes a five-fold axis. In this paper, it is shown that the crystallography and diffraction pattern can be described by a six-dimensional space group. The crystal structure in 3d is obtained as a cut along a 3d hyperplane in a regular 6d crystal. Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries for the icosahedral crystal, three of which are phase symmetries describing internal rearrangements of the atoms

  13. Tuning the dielectric properties of thiourea analog crystals for efficient nonlinear optical applications

    International Nuclear Information System (INIS)

    Sabari Girisun, T.C.; Dhanuskodi, S.

    2010-01-01

    Materials with low dielectric constant have attracted a great deal of interest in the field of nonlinear applications and microelectronic industry. Metal complexes of thiourea with group II transition metals (Zn, Cd) as central atom and period III elements (S, Cl) were synthesized by chemical reaction method and single crystals were grown from aqueous solution by slow evaporation method. By parallel plate capacitor technique, the dielectric response, dissipation factor, ac conductivity and impedance of virgin and metal complexes have been studied in the frequency (100 Hz to 5 MHz) and temperature (303-423 K) ranges. Metal complexes of thiourea with cadmium substitute have a low dielectric constant less than 10. Also the presence of chlorine in the metal complex induces noncentro symmetric structure. Hence the role of group II transition metals and period III elements in tuning the dielectric properties for efficient nonlinear applications has been studied.

  14. Chemical and Physical Properties of Hi-Cal-2

    Science.gov (United States)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  15. Optical properties of tetrapod nanostructured zinc oxide by chemical ...

    African Journals Online (AJOL)

    ... deposited onto indium tin oxide (ITO) coated glass substrate by thermal chemical vapor deposition (TCVD) technique. This work studies the effects of annealing temperature ranging from 100–500 ºC towards its physical and optical properties. FESEM images showed that the structural properties of tetrapod nanostructured ...

  16. Physical properties of smectic C liquid crystal cells

    International Nuclear Information System (INIS)

    Dunn, P.E.

    1998-01-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  17. Physical properties of smectic C liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P E

    1998-07-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  18. Structural and morphological properties of electroceramics for chemical sensors

    International Nuclear Information System (INIS)

    Tor Vergata, Via della Ricerca Scientifica, Roma (Italy). Dipartimento di Scienze e Tecnologie Chimiche)" data-affiliation=" (Universita' di Roma Tor Vergata, Via della Ricerca Scientifica, Roma (Italy). Dipartimento di Scienze e Tecnologie Chimiche)" >Enrico Traversa

    1996-01-01

    Ceramic materials possess a unique structure consisting of grains, grain boundaries, surfaces and pores, which makes them suitable for chemical sensors. The control of the chemical composition and microstructure of electrochemicals is fundamental for controlling their properties. Ceramics with a given composition and microstructure can be produced by controlling the different steps of their processing. The chemical processing of ceramics offer many advantages in terms of control and reproducibility, with respect to the conventional ceramics processing. Results are reported about the chemical processing of perovskite-type oxides for gas sensors and about the novel humidity-sensitive electrical properties of sol-gel processed alkali-doped titania films. The structural and morphological characterization of these materials permits the understanding of the sensitive electrical properties of the ceramics (71 refs.)

  19. Crystal growth and optical properties of 4-aminobenzophenone (ABP)

    Science.gov (United States)

    Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan

    1997-02-01

    Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.

  20. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  1. Magnetic, electrical and optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, S.C.

    1980-01-01

    This thesis lays stress on the study of thermotrop nematic liquid crystals. But the crystals whose mesomorphism is achieved by an increase and decrease in temperature and the crystal category exhibiting a mesomorphism in a deep freezing phase are also studied. The results of the research carried out in the laboratory of ''active media, lasers and matter-radiation interactions'' of the Institute for Physics and Technology of Radiation Apparata as well as in the laboratories of liquid crystals and nuclear magnetic resonance of the Polytechnical Institute of Bucharest during seven years have had in view two main objectives: to elucidate and prove experimentally a new mechanism of nuclear relaxation in liquid crystals, proposed by the author; to use the current experimental techniques and methods applied in the above-mentioned laboratories to characterize and test some foreign mesomorphic media which are synthesized locally, providing a wide range of applications, such as colour television. (author)

  2. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    International Nuclear Information System (INIS)

    Xu, X D; Meng, J Q; Cheng, Y; Li, D Z; Cheng, S S; Wu, F; Zhao, Z W; Wang, X D; Xu, J

    2009-01-01

    Nd:LuAG (Nd:Lu 3 Al 5 O 12 ) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm 3 . The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%

  3. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Meng, J. Q.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Xu, J.

    2009-09-01

    Nd:LuAG (Nd:Lu3Al5O12) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm3. The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%.

  4. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  5. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    Science.gov (United States)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the

  6. Studies on various properties of pure and Li-doped Barium Hydrogen Phosphate (BHP) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nallamuthu, D. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Selvarajan, P., E-mail: pselvarajanphy@yahoo.co.i [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Freeda, T.H. [Physics Research Centre, S.T. Hindu College, Nagercoil 629002 (India)

    2010-12-15

    Single crystals of pure and Li-doped barium hydrogen phosphate (BHP) were grown by solution method with gel technique. Various properties of the harvested crystals were studied by carrying out single crystal and powder XRD, FTIR, TG/DTA, microhardness and dielectric studies. Atomic absorption study was carried out for Li-doped BHP crystal to check the presence of Li dopants. Unit cell dimensions and diffracting planes of the grown crystals have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Density of the grown crystals was calculated using the XRD data. Thermal stability of the samples was checked by TG/DTA studies. Mechanical and dielectric characterizations of the harvested pure and Li-doped BHP crystals reveal the mechanical strength and ferroelectric transition. The observed results are reported and discussed.

  7. Property Model-Based Chemcal Substitution and Chemical Formulation Design

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Hukkerikar, Amol Shivajirao

    Chemical-based products including structured product formulations and single molecule products have proven to be a boon to mankind and have been a significant part of our economies. Our life and the changes around us cannot be imagined without the presence or involvement of chemicals. But like...... with environmentally benign chemicals. Additionally, the decisions taken during chemical product design also have an impact on the process and product performance and are influenced by company strategy, availability of market and government policies [2]. Hence, undoubtedly there is a need to develop a systematic...... [3] will also be highlighted. A set of new group contribution-based models for a number of useful properties of amino acids will be presented. Through examples on substitution of chemicals from chemical-based products from various sectors namely cosmetics and personal care, pharmaceutical and food...

  8. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  9. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  10. Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Lin, Z. F.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Gao, C. Q.; Gao, M. W.; Xu, J.

    2009-11-01

    Tm:Lu3Al5O12 (Tm:LuAG) crystal was grown by the Czochralski method. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometer. The cell parameters were analyzed with X-ray powder diffraction experiments. The absorption and fluorescence spectra of Tm:LuAG crystal at room temperature were investigated. With a 20 W fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Tm:LuAG crystal was demonstrated. The maximum output power at 2020 nm was obtained to be 3.04 W, and the slope efficiency was 25.3%.

  11. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L.; Quevedo-Lopez, Manuel; Alshareef, Husam N.; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M.

    2015-01-01

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  12. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  13. Improving the electrical properties of graphene layers by chemical doping

    International Nuclear Information System (INIS)

    Khan, Muhammad Farooq; Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Eom, Jonghwa

    2014-01-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO 3 ) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO 3 . The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO 3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics. (paper)

  14. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals

    NARCIS (Netherlands)

    Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, G.Q.

    2017-01-01

    For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli,

  15. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  16. Synthesis and magnetic properties of SmOOH crystals

    Energy Technology Data Exchange (ETDEWEB)

    Samata, Hiroaki, E-mail: samata@maritime.kobe-u.ac.jp [Graduate School of Maritime Sciences, Kobe University, Fukaeminami, Higashinada, Kobe, Hyogo 658-0022 (Japan); Hanioka, Masashi [Graduate School of Maritime Sciences, Kobe University, Fukaeminami, Higashinada, Kobe, Hyogo 658-0022 (Japan); Ozawa, Tadashi C. [Materials Development Group, Superconducting Properties Unit, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2016-01-15

    Samarium oxyhydroxide (SmOOH) crystals were synthesized using a flux method. The as-grown crystals were yellowish, transparent, and elongated with a maximum length of approximately 1.0 mm. SmOOH adopts a monoclinic structure in the space group P2{sub 1}/m with a=0.4356 nm, b=0.3766 nm, c=0.6139 nm, and β=108.464°. The magnetic susceptibility of the SmOOH crystals exhibited typical Van Vleck paramagnetism, and the experimental data at temperatures above 200 K were in close agreement with the calculated results using a spin-orbit coupling constant λ=443 K (308 cm{sup −1}). - Highlights: • SmOOH crystals were synthesized via flux method and characterized. • Magnetic susceptibilities above 200 K agreed with theoretical Van Vleck values. • Discrepancies were observed at lower temperatures based on the crystalline field.

  17. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Zhuang, S D; Wang, Z P; Xu, J

    2010-01-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω 2,4,6 were obtained to be 2.65, 5.75, and 7.37×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10 -20 cm 2 ) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4 F 3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material

  18. Crystal growth and scintillation properties of Lu substituted CeBr.sub.3./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Ito, T.; Yokota, Y.; Kurosawa, S.; Král, Robert; Kamada, K.; Pejchal, Jan; Ohashi, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 65-68 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] Institutional support: RVO:68378271 Keywords : radiation * halides * scintillator materials * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  19. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  20. Physical and chemical properties of gels. Application to protein nucleation control in the gel acupuncture technique

    Science.gov (United States)

    Moreno, Abel; Juárez-Martínez, Gabriela; Hernández-Pérez, Tomás; Batina, Nikola; Mundo, Manuel; McPherson, Alexander

    1999-09-01

    In this work, we present a new approach using analytical and optical techniques in order to determine the physical and chemical properties of silica gel, as well as the measurement of the pore size in the network of the gel by scanning electron microscopy. The gel acupuncture technique developed by García-Ruiz et al. (Mater. Res. Bull 28 (1993) 541) García-Ruiz and Moreno (Acta Crystallogr. D 50 (1994) 484) was used throughout the history of crystal growth. Several experiments were done in order to evaluate the nucleation control of model proteins (thaumatin I from Thaumatococcus daniellii, lysozyme from hen egg white and catalase from bovine liver) by the porous network of the gel. Finally, it is shown how the number and the size of the crystals obtained inside X-ray capillaries is controlled by the size of the porous structure of the gel.

  1. Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?

    Science.gov (United States)

    Dalpiaz, Alessandro; Pavan, Barbara; Ferretti, Valeria

    2017-08-01

    Poorly soluble and/or permeable molecules jeopardize the discovery and development of innovative medicines. Pharmaceutical co-crystals, formed by an active pharmaceutical substance (API) and a co-crystal former, can show enhanced dissolution and permeation values compared with those of the parent crystalline pure phases. It is currently assumed that co-crystallization with pharmaceutical excipients does not affect the pharmacological activity of an API or, indeed, might even improve physical properties such as solubility and permeability. However, as we highlight here, the biological behavior of co-crystals can differ drastically with respect to that of their parent physical mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  3. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  4. Massive photon properties in 3D photonic crystals, filled by dielectrics or metals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2009-01-01

    The optical properties of 3D photonic crystals-artificial opals, consisting of monosized silica globules-have been investigated. The volume between globules was filled by various dielectrics or metals. The dispersion law of electromagnetic waves of this type of crystal has been obtained. It was shown that the sign of photonic mass in globular photonic crystals may be positive or negative for different points on dispersion curves. The value of the effective mass of photons depends on the refractive index of the substance infiltrated into the globular photonic crystal.

  5. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  6. The crystallization and properties of sputter deposited lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W.

    2016-01-01

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO_2) is performed by co-deposition from a lithium oxide (Li_2O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO_2. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO_2 films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO_2) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material

  7. Data on the chemical properties of commercial fish sauce products.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2017-12-01

    This data article reports on the chemical properties of commercial fish sauce products associated with the fish sauce taste and flavor. All products were analyzed in triplicate. Dried solid content was analyzed by moisture analyzer. Fish sauce salinity was determined by a salt meter. pH was measured using a pH meter. The acidity was determined using a titration assay. Amino nitrogen and total nitrogen were evaluated using a titration assay and Combustion-type nitrogen analyzer, respectively. The analyzed products originated from Japan, Thailand, Vietnam, China, the Philippines, and Italy. Data on the chemical properties of the products are provided in table format in the current article.

  8. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    Science.gov (United States)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.

  9. Effects of Manganese (Ii Sulphate on Structural, Spectral, Optical, Thermal and Mechanical Properties of L-Alanine Sodium Sulphate Single Crystals

    Directory of Open Access Journals (Sweden)

    F. Praveena

    2017-04-01

    Full Text Available New Non-linear Optical materials have been attracting in the research world for their potential applications in emerging opto-electronic technology. The dipolar nature of amino acid leads to peculiar physical and chemical properties, thus making a good candidate for NLO applications. Single crystals of manganese(II sulphate doped L-Alanine sodium sulphate(LASS has been synthesized by slow evaporation technique. Structural property of the grown crystals are characterized by X-ray powder diffraction,FT-IR spectral analysis conforms all the functional groups. Thermogravity (TG and differential themogravimetric (DTA analysis have been performed to study the thermal stability of the crystals. The second harmonic generation efficiency was measured by Kurtz-Perry powder technique. The transmission and absorption of electromagnetic radiation is analysed through UV-VIS spectrum. Microhardness was measured at different applied load to understand the mechanical stability of the crystal.

  10. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  11. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    Science.gov (United States)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  12. Linear, non-linear and thermal properties of single crystal of LHMHCl

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  13. Structural elucidation and physicochemical properties of an organic NLO crystal: 4-Nitrotoluene-2-sulphonic acid dihydrate

    Science.gov (United States)

    Sangeetha, K.; Guru Prasad, L.; Mathammal, R.

    2018-03-01

    4-nitrotoluene-2-sulphonic acid dihydrate single crystals have been developed using slow evaporation technique in methanol. Lattice parameters of the NTSAD crystal have been calculated and it confirms the grown material. The intermolecular interactions are studied from the 3D Hirshfeld surface analysis and 2D fingerprint plots. The NMR spectral analysis has been carried out to confirm the molecular structure of the grown material. Optical properties have been obtained from UV-VIS spectral analysis and photoluminescence studies. Frequency conversion property of the NTSAD crystal was investigated with the aid of Kurtz and Perry method.

  14. Spectrometric properties of crystals for low-energy x-ray diagnostics

    International Nuclear Information System (INIS)

    Barrus, D.m.; Blake, R.L.; Felthauser, H.; Fenimore, E.E.

    1981-01-01

    Quantitative diagnostics of fusion and astrophysical plasmas require knowledge of crystal spectrometric properties. To provide more reliable and versatile diagnostics of plasma conditions, increasingly accurate knowledge of crystal spectrometric properties is becoming necessary. A summary is presented of the following accurately measured parameters for the crystals KAP, RbAP, TlAP, NH 4 AP, NaAP, ADP, and EDDT: the interplanar spacing of atoms; the angle correction for normal and anomalous dispersion that is required for application of the Bragg formula; the thermal expansion coefficient near room temperature for commonly used planes; and the integrated coefficient of reflection

  15. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  16. Measuring the diffraction properties of an imaging quartz(211) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M. J.; Jacoby, K. D.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94550 (United States); Chen, H.; Schneider, M. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-06-15

    A dual goniometer X-ray system was used to measure the reflectivity curve for a spherically bent quartz(211) crystal. An analysis of the dual goniometer instrument response function for the rocking curve width measurement was developed and tested against the actual measurements. The rocking curve was measured at 4510.8 eV using the Ti Kα1 characteristic spectral line. The crystal is the dispersion element for a high resolution spectrometer used for plasma studies. It was expected to have a very narrow rocking curve width. The analysis showed that we could measure the upper bound for the rocking curve width of the Qz(211) crystal. The upper bound was 58 μrad giving a lower bound for the instrument resolving power E/ΔE = 34 000. Greatly improved insight into the dual goniometer operation and its limitations was achieved.

  17. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  18. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  19. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen. • Enhanced

  20. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  1. Hp Ge: Purification, crystal growth, and annealing properties

    International Nuclear Information System (INIS)

    Hall, R.N.

    1984-01-01

    The prospects for growing HP Ge crystals of increased size and purity are examined. One interesting approach is to grow dislocation-free crystals, which must then be annealed to reduce the concentration of V 2 H traps. The phenomena which occur during annealing are discussed and compared with experiment. Hydrogen, present in atomic form at the growth temperature, forms H 2 molecules during cooling, causing the effective diffusion coefficient to decrease rapidly. Models representing the reactions between H and the V 2 H, A(H, Si), and D(H,O) complexes are presented and analyzed

  2. Transistor properties of exfoliated single crystals of 2 H -Mo (Se1-xT ex ) 2(0 ≤x ≤1 )

    Science.gov (United States)

    Uesugi, Eri; Miao, Xiao; Ota, Hiromi; Goto, Hidenori; Kubozono, Yoshihiro

    2017-06-01

    Field-effect transistors (FETs) were fabricated using exfoliated single crystals of Mo (Se1-xT ex) 2 with an x range of 0 to 1, and the transistor properties fully investigated at 295 K in four-terminal measurement mode. The chemical composition and crystal structure of exfoliated single crystals were identified by energy-dispersive x-ray spectroscopy (EDX), single-crystal x-ray diffraction, and Raman scattering, suggesting the 2 H - structure in all Mo (Se1-xT ex) 2 . The lattice constants of a and c increase monotonically with increasing x , indicating the substitution of Se by Te. When x 0.4 . In contrast, the polarity of a thick single-crystal Mo (Se1-xT ex) 2 FET did not change despite an increase in x . The change of polarity in a thin single-crystal FET was well explained by the variation of electronic structure. The absence of such change in the thick single-crystal FET can be reasonably interpreted based on the large bulk conduction due to naturally accumulated electrons. The μ value in the thin single-crystal FET showed a parabolic variation, with a minimum μ at around x =0.4 , which probably originates from the disorder of the single crystal caused by the partial replacement of Se by Te, i.e., a disorder that may be due to ionic size difference of Se and Te.

  3. Linkages between aggregate formation, porosity and soil chemical properties

    NARCIS (Netherlands)

    Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J.

    2015-01-01

    Linkages between soil structure and physical–chemical soil properties are still poorly understood due to the wide size-range at which aggregation occurs and the variety of aggregation factors involved. To improve understanding of these processes, we collected data on aggregate fractions, soil

  4. Effect of vegetation switch on soil chemical properties

    Czech Academy of Sciences Publication Activity Database

    Iwashima, N.; Masunaga, T.; Fujimaki, R.; Toyota, Ayu; Tayasu, I.; Hiura, T.; Kaneko, N.

    2012-01-01

    Roč. 58, č. 6 (2012), s. 783-792 ISSN 0038-0768 Institutional support: RVO:60077344 Keywords : earthworm * litter * nutrient cycling * soil chemical properties * vegetation switch Subject RIV: EH - Ecology, Behaviour Impact factor: 0.889, year: 2012

  5. Physical and Chemical Properties of Some Selected Rice Varieties

    African Journals Online (AJOL)

    User

    Physical and chemical properties of nine rice varieties grown and processed in Ebonyi .... Therefore, one tonne of a slender variety of rice will need more storage space than the ..... during washing and boiling of milled rice Starch 36:386-390.

  6. Physical, sensory and chemical properties of bread prepared from ...

    African Journals Online (AJOL)

    Physical, sensory and chemical properties of bread prepared from wheat and ... Different levels (0, 1, 2 and 3% w/w) of cissus gum powder was added to ... flours for bread making where 100% wheat bread without cissus gum served as control. ... serve as a gluten substitute in preparing acceptable wheat bread substituted ...

  7. Application of the chemical properties of ruthenium to decontamination processes

    International Nuclear Information System (INIS)

    Fontaine, A.; Berger, D.

    1965-01-01

    The chemical properties of ruthenium in the form of an aqueous solution of the nitrate and of organic tributylphosphate solution are reviewed. From this data, some known examples are given: they demonstrate the processes of separation or of elimination of ruthenium from radioactive waste. (authors) [fr

  8. Comparative Studies of Physico-chemical Properties of Some ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate some physico-chemical properties of four major general purpose cement (As, Br, De and Sk) sold in Nigerian market using standard methods; due to the persistent collapse of buildings. The results showed that Br cement recorded the least CaO content (56.17%) while De cement had ...

  9. Physico-chemical properties and fertility status of some typic ...

    African Journals Online (AJOL)

    Physico-chemical properties and fertility status of some typic plinthaquults in bauchi loval government area of Bauchi state, Nigeria. S Mustapha. Abstract. No Abstract. IJOTAFS Vol. 1 (2) 2007: pp. 120-124. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Wood anatomical and chemical properties related to the pulpability ...

    African Journals Online (AJOL)

    Eucalyptus globulus is one of the most important hardwood species used by the pulp and paper industry due to its high pulp yield, high wood density, excellent fibre quality and good handsheet properties. However, the wood is a highly variable and complex material that has different chemical, physical and anatomical ...

  11. Physico-chemical properties of topsoil under indigenous and exotic ...

    African Journals Online (AJOL)

    This study evaluated selected physico-chemical properties of topsoil under monoculture plantation of an indigenous tree species - Nauclea diderrichii, and those of four exotic tree species – Theobroma cacao, Gmelina arborea, Pinus caribaea and Tectona grandis, located in Omo Biosphere Reserve, Ogun State, Nigeria.

  12. Chemical and thermal properties of VIP latrine sludge

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... This study investigated the chemical and thermal properties of faecal sludge from 10 dry VIP latrines in Bester's Camp in the eThekwini Municipality, Durban, ... emptying and treatment equipment. A manual sorting of the pit .... (LaDePa) plant (Harrison and Wilson, 2012). Figure 3 illustrates the depths of the ...

  13. Physico-chemical properties of Nigerian pumpkin ( Curcurbita pepo ...

    African Journals Online (AJOL)

    Physico-chemical properties of Nigerian pumpkin (Curcurbita pepo) seed oil. NC Ihediohanma, CN Ubbaonu, ENT Akobundu, EOI Banigo. Abstract. No Abstract. Nigerian Food Journal Vol. 24(1) 2006: 123-126. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Carcass properties, chemical content and fatty acid composition of ...

    African Journals Online (AJOL)

    The aim of this study was to examine carcass properties and variability in chemical content and fatty acid composition in the musculus longissimus lumborum et thoracis (MLLT) of different genotypes of pigs. Of 36 male castrated animals used in the trial, 24 were from two strains of Mangalitsa pigs (12 Swallow - bellied ...

  15. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  16. Physico-chemical properties of a Haplic Acrisol in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical properties of a Haplic Acrisol in Southeastern Nigeria amended with rice mill waste and NPK fertilizer. ... conductivity (Ksat) and mean weight diameter (MWD) of water stable aggregates significantly by 41.1, 368.2 and 155.8%, respectively, and resulted in 20.9% significant decrease in bulk density (BD).

  17. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  18. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  19. Mechanical properties of fats in relation to their crystallization

    NARCIS (Netherlands)

    Kloek, W.

    1998-01-01

    Crystallization in bulk fats is always initiated by a heterogeneous nucleation process. Homogeneous nucleation conditions for fully hydrogenated palm oil (HP) in sunflower oil (SF) could be obtained by emulsifying the fat phase into very fine droplets and using sodium caseinate as an

  20. Crystal growth and comparison of vibrational and thermal properties

    Indian Academy of Sciences (India)

    During the course of a literature survey of metal compounds containing both thiourea and urea ligands, the title paper by Gunasekaran et al [1] reporting on the growth of the so-called urea thiourea mercuric chloride (UTHC) and urea thiourea mercuric sulphate. (UTHS) crystals attracted our attention. For formulating these ...

  1. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Zhuang, S. D.; Wang, Z. P.; Xia, C. T.; Wu, F.; Xu, J.

    2010-11-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω2,4,6 were obtained to be 2.65, 5.75, and 7.37×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10-20 cm2) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4F3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material.

  2. Crystal growth and optical properties of Sm:CaNb2O6 single crystal

    International Nuclear Information System (INIS)

    Di Juqing; Xu Xiaodong; Xia Changtai; Zeng Huidan; Cheng Yan; Li Dongzhen; Zhou Dahua; Wu Feng; Cheng Jimeng; Xu Jun

    2012-01-01

    Highlights: ► Sm:CaNb 2 O 6 single crystal was grown by the Czochralski method. ► Thermal expansion coefficients and J–O parameters were calculated. ► We found that this crystal had high quantum efficiency of 97%. - Abstract: Sm:CaNb 2 O 6 single crystal has been grown by the Czochralski method. Its high-temperature X-ray powder diffraction, optical absorption, emission spectroscopic as well as lifetime have been studied. Thermal expansion coefficients (α), J–O parameters (Ω i ), radiative lifetime (τ rad ), branching ratios (β) and stimulated emission cross-sections (σ e ) were calculated. The quantum efficiency (η) was calculated to be 97%. The intense peak emission cross section at 610, 658 nm were calculated to be 2.40 × 10 −21 , 2.42 × 10 −21 cm 2 . These results indicate that Sm:CaNb 2 O 6 crystal has potential use in visible laser and photonic devices area.

  3. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  4. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  5. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.5–5 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  6. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  7. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    Science.gov (United States)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  8. Electronic transport properties of single crystal thallium-2201 superconductors

    International Nuclear Information System (INIS)

    Yandrofski, R.M.

    1992-01-01

    Four-probe resistance measurements on single crystals of the calcium-free thallium-based superconducting Tl 2 Ba 2 CuO 6+σ phase (Tl-2201) were performed in magnetic fields up to 12 Telsa. Single crystals of sizes were grown by a self-flux technique and were characterized by single crystal X-ray diffraction and X-ray Dispersive Analysis. Field measurements were taken at dc and at low frequencies using a lock-in technique. Techniques were developed to oxygen-anneal the as-grown single crystals to generate single crystal samples of the same Tl-2201 phase with varying transition interaction effect against appropriate composite general alternatives are developed for the standard two-way layout with a single observation per cell. Nonparametric aligned-rank test procedures are introduced. One of the new procedures is shown to be equivalent to a slight modification of the previously studied Latin square procedures when the factors have the same number of levels. The equal in distribution technique is used to show that any statistic based on the joint ranks should not be used to test the hypotheses of interest. The tests based on aligning with the averages do not depend on the nuisance main effects, while those based on aligning with the median do depend on the nuisance main effects. The relative power performance of the competing tests are examined via Monte Carlo simulation. Power studies conducted on the 5 x 5, 5 x 6, and 5 x 9 two-way layouts with one observation per cell show that the new procedures based on a comparison of all possible pairs of rank-profiles perform quite well for two types of product interaction, a general class of interaction effects proposed by Martin, and several sets of specific interaction effects. Approximate critical values for some of the proposed procedures are explored in the special case when the main effect parameters for one factor are known

  9. Electrical properties of zirconium diselenide single crystals grown by iodine transport method

    International Nuclear Information System (INIS)

    Patel, S.G.; Agarwal, M.K.; Batra, N.M.; Lakshminarayana, D.

    1998-01-01

    Single crystals of zirconium diselenide (ZrSe 2 ) were grown by chemical vapour transport method using iodine as the transporting agent. The crystals were found to exhibit metallic behaviour in the temperature range 77-300 K and semiconducting nature in 300-443 K range. The measurements of thermoelectric power and conductivity enabled the determination of both carrier mobility and carrier concentration. The variation of carrier mobility and carrier concentration with temperature indicates the presence of deep trapping centres and their reduction with temperature in these crystals. (author)

  10. On the topography of sputtered or chemically etched crystals: surface energies minimised

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Cope, J.O.

    1984-01-01

    The sputtering of single or polycrystalline metal surfaces by heavy ions gives rise to the characteristic topographical features of etch pits, ripples, and cones (pyramids). For cones and pyramids, in particular, no completely satisfactory explanation exists as to the origin of the basic geometry. Scanning electron micrographs are shown. It is proposed that for topographical features of both chemical etch and ion beam origin on single crystal surfaces, the presence of facets on cones and pyramids in particular, is due to the minimization of surface energy. (U.K.)

  11. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  12. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  13. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  14. Band structure and optical properties of opal photonic crystals

    OpenAIRE

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-01-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order...

  15. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  16. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  17. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  19. Crystal growth and scintillation properties of selected fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Yamaji, A.; Yokota, Y.; Kurosawa, S.; Král, Robert; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 401, Sep (2014), s. 833-838 ISSN 0022-0248. [International Conference on Crystal Growth and Epitaxy /17./. Warsaw, 11.08.2013-16..08.2013] R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : vacuum-ultra-violet emission * micro-pulling-down method * barium -lutetium fluoride * erbium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.698, year: 2014

  20. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS{sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Q. L.; Luo, X., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn; Lin, G. T.; Song, J. Y.; Hu, L.; Song, W. H.; Lu, W. J. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, Y. M.; Yu, L.; Tong, W. [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-28

    2-Dimensional (2D) CrPS{sub 4} single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat C{sub P}(T), and the electronic spin response (ESR) measurements. CrPS{sub 4} crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap E{sub a} = 0.166 eV. The antiferromagnetic transition temperature is about T{sub N} = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS{sub 4} single crystal has been discussed. The extracted magnetic entropy at T{sub N} is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr{sup 3+} ion. Based on the mean-field theory, the magnetic exchange constants J{sub 1} and J{sub c} corresponding to the interactions of the intralayer and between layers are about 0.143 meV and −0.955 meV are obtained based on the fitting of the susceptibility above T{sub N}, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS{sub 4} may be a promising candidate to explore 2D magnetic semiconductors.

  1. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  2. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    International Nuclear Information System (INIS)

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics

  3. Single crystal growth and surface chemical stability of KPb2Br5

    Science.gov (United States)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Tarasova, A. Yu.

    2011-03-01

    Single crystal of KPb2Br5 has been grown using the Bridgman technique. Initially the synthesis of stoichiometric KPb2Br5 compound was performed from high purity bromide salts. Electronic structure of KPb2Br5 has been determined with X-ray photoelectron spectroscopy for powdered sample fabricated by grinding in air. Drastic chemical interaction of KPb2Br5 with atmosphere has not been detected. Chemical bonding in potassium- and lead-containing bromides is considered using binding energy differences ΔK=(BE K 2p3/2-BE Br 3d) and ΔPb=(BE Pb 4f7/2-BE Br 3d), respectively, as representative parameters.

  4. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  5. Ethanol vapor-induced fabrication of colloidal crystals with controllable layers and photonic properties.

    Science.gov (United States)

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong

    2015-04-07

    A novel fabrication method for colloidal crystals has been proposed for the first time in this research. In this method, a suspension droplet containing colloidal particles was first spread onto a glass substrate placed in an ethanol vapor environment, and then the droplet was extracted from its center. In that case, the contact angle of the droplet reduced and the contact line receded toward the center, during which the colloidal particles self-assembled and immobilized forming a 2D colloidal crystal film on the substrate upon drying the liquid film. Alternately spreading and drying of suspension films could construct fine multi-layers of colloidal crystals, while the ethanol fraction in the suspension would be used to control roughly but rapidly the layer numbers of colloidal crystals. It was also found that the photonic properties of resultant colloidal crystal films were elevated by increasing their thickness.

  6. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  7. Influence of chemical processing on the imaging properties of microlenses

    International Nuclear Information System (INIS)

    Vasiljevic, Darko; Muric, Branka; Pantelic, Dejan; Panic, Bratimir

    2009-01-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  8. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  9. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  10. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  11. Tensometrical properties of volumetric crystals of germanium-silicon solid solutions irradiated by fast electrons

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.

    2002-01-01

    Full Text: In the present work the tensometrical properties of Ge1-xSix solid solution monocrystal contended of up to 15 at. % Si were investigated. The radiation-proof strain gauges of researched crystals were made. For this purpose the site was cutted out from a sample, perpendicularly or in parallel of a crystal axes. After polishing the samples had thickness of 30-40 microns, and length of 2 mm

  12. Anisotropy of the Mechanical Properties of TbF3 Crystals

    Science.gov (United States)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  13. Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal

    International Nuclear Information System (INIS)

    Woody, C.L.; Petridou, C.I.; Smith, G.C.

    1985-01-01

    The properties of a detector consisting of a large barium fluoride crystal and a multiwire proportional chamber operating at low pressure with TMAE have been studied. Measurements of the time resolution, pulse width, energy resolution, photoelectron yield and the effective energy threshold were carried out in a test beam using minimum ionizing particles. Although the detector is sensitive to signals originating from an adsorbed layer of TMAE from the crystal surface, no indication of such a signal was observed. 7 refs., 6 figs

  14. Properties of horizontally oriented ice crystals observed by polarization lidar over summit, Greenland

    Directory of Open Access Journals (Sweden)

    Neely Ryan R.

    2018-01-01

    Full Text Available A source of error in microphysical retrievals and model simulations is the assumption that clouds are composed of only randomly oriented ice crystals. This assumption is frequently not true, as evidenced by optical phenomena such as parhelia. Here, observations from the Cloud, Aerosol and Polarization Backscatter Lidar at Summit, Greenland are utilized along with other sensors and beam imaging to examine the properties of horizontally oriented ice crystals and the environment conditions in which they occur.

  15. Micromechanical properties of C70 single crystals in the temperature range 77-350 K

    International Nuclear Information System (INIS)

    Lubenets, S.V.; Natsik, V.D.; Fomenko, L.S.; Rusakova, A.V.; Natsik, V.D.; Osip'yan, Yu.A.; Orlov, V.I.; Sidorov, N.S.; Izotov, A.N.

    2012-01-01

    Hexagonal single crystals of C 70 up to a size down to 1-2 mm were grown which allowed for the first time to investigate their low-temperature mechanical properties. Morphology, microplasticity anisotropy and the temperature dependence of Vickers microhardness HV (T) of the C 70 crystals in the temperature range 77-350 K involving all known phase transitions have been studied with the aid of optical microscopy and microindentation. The association of the features of HV (T) dependence with orientation phase transformations has been analyzed. It is suggested that anisotropy of microplasticity in the C 70 crystals correlates with the active slip systems.

  16. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  17. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  18. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  19. Anomalous property of coherent bremsstrahlung linear polarization of relativistic electrons in a crystal

    International Nuclear Information System (INIS)

    Lapko, V.P.; Nasonov, N.N.; Truten', V.I.

    1993-01-01

    Polarization and spectral-and-angular properties of γ-radiation of the relativistic electron flux moving in a crystal under uncorrelated collisions with crystal atomic chains, are studied theoretically. Direction of linear polarization of radiation is shown to vary with energy of emitted photon. Reasons of occurrence of this effect are discussed. The results of numerical calculations demonstrating the possibility to form an intensive source of polarized γ-quanta on the basis of coherent radiation of relativistic electrons during low-angular scattering at crystal atom chains, are given

  20. Study on Properties of Energy Spectra of the Molecular Crystals

    Science.gov (United States)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  1. Electronic and chemical properties of barium and indium clusters

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1992-11-01

    The ground state electronic and chemical properties of divalent barium and trivalent indium are investigated in a self-consistent manner using the spin-polarized local density approximation in the framework of Density Functional Theory. A jellium model is adopted in the spirit of Gunnarsson and Lundqvist exchange and correlation energies and the calculated properties primarily associated with the s-p orbitals in barium and p orbitals in indium provide deepened insight towards the understanding of the mechanisms to the magic numbers in both clusters. (author). 21 refs, 5 figs

  2. Luminescent properties of Y3Al5−xGaxO12:Ce crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Zorenko, T.; Malinowski, P.; Sidletskiy, O.; Neicheva, S.

    2014-01-01

    Absorption, luminescent and scintillation properties of Ce 3+ doped Y 3 Al 5−x Ga x O 12 crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce 3+ related luminescence of Y 3 Al 5−x Ga x O 12 :Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y 3 Al 5−x Ga x O 12 :Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y 3 Al 5−x Ga x O 12 :Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y 3 Al 5−x Ga x O 12 :Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y Al antisite defects in Y 3 Al 5−x Ga x O 12 :Ce crystals at x>2. • Significant improvement of the scintillation properties of Y 3 Al 5−x Ga x O 12 :Ce crystals at x=2 and 3 in comparison with YAG:Ce

  3. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  4. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  5. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  6. Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors

    International Nuclear Information System (INIS)

    Skakle, J.M.S.

    1998-01-01

    This review covers the literature on cationic and anionic substitutions and their effect on the properties of YBCO. Reported solubility limits are given, together with crystal symmetry and trends in unit cell parameters with dopant concentration. The dopant site is considered; this is additionally complex in the case of copper substitution because of the two distinct copper sites in the crystal structure. The effect of the dopant on the critical temperature, T c , is reviewed; the literature is often contradictory due to the dual effects of variable oxygen content and the nature of the dopant. Preparation methods appear to have an effect on solubility limits, crystal symmetry and T c . Also, the methods used to determine solubility limits are often imprecise which can lead to contradictions. The magnetic properties of doped materials are reviewed; for some dopants, particularly the magnetic lanthanides, antiferromagnetism and superconductivity co-exist. The related RBa 2 Cu 3 O δ phases (R=lanthanide), their structure, properties and behaviour on doping are reviewed in a similar way. For the larger rare earths, the related systems R 1+x Ba 2-x Cu 3 O δ are reviewed; as x increases, the transition temperature decreases and compositions R 1.5 Ba 1.5 Cu 3 O δ are semiconducting. The upper and lower solubility limit changes with R, and for R=Dy, the upper limit is 2 Cu 3 O δ , cannot be prepared in air since substitution of La onto the Ba site occurs, forming the Ba-deficient solid solutions. (orig.)

  7. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  8. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  9. Heliotropium huascoense resin exudate: chemical constituents and defensive properties.

    Science.gov (United States)

    Villarroel, L; Torres, R; Urzúa, A; Reina, M; Cabrera, R; González-Coloma, A

    2001-09-01

    From the resinous exudate of Heliotropium huascoense a new compound, rel-(8R,9R)-carrizaloic acid, (1) (3-[rel-(8R,9R-9-hydroxy-9,13,13-trimethyl-12-oxo-10-cyclohexenyl)methyl]-4-methoxybenzoic acid), and three known flavonoids, [3-methylgalangin, 3,7-dimethylgalangin, and (-)-alpinone] have been isolated. The structure of 1 was determined by spectral and chemical methods. Several plant defensive properties of 1 (insecticidal and antifungal) have been evaluated.

  10. Physico-chemical properties of perturbed water: facts and enigmas

    OpenAIRE

    Vittorio Elia

    2012-01-01

    Background The study of extremely diluted and agitated substances and solutions is strictly linked with the analysis of properties of water perturbed using different systems. This study is about the determination of the physical-chemical parameters of water, after the perturbations described. Methods The perturbed water was obtained using the three different protocols: · EDS (Extremely Diluted Solutions). Obtained through an iterative process of ...

  11. A Rare Case of Anal and Perianal Chemical Burn in a Child due to Potassium Permanganate Crystals.

    Science.gov (United States)

    Dash, Suvashis; Bhojani, Jatin; Sharma, Sharadendu

    2018-02-09

    Many chemicals used as medical treatments can cause chemical burns as an untoward side effect. One of such chemicals is potassium permanganate. It is a caustic chemical used as a disinfectant. The most common sites of burn by potassium permanganate are exposed sites like the face and hands. Chemical burns in the perianal and anal region are rare in clinical practice and even sparser in the pediatric age group. In this article, we report a case of perianal and anal chemical burn in an 18-month-old, male child, caused by potassium permanganate crystal applied wrongly for the treatment of pinworm infestation. As a chemical burn in this region can have serious complications, it is necessary to be vigilant when using such chemicals in these cases. Early and timely management in such cases leads to good outcomes. This is the first of such cases of chemical burn caused by potassium permanganate in the anal and perianal region.

  12. Scintillation properties of CdF{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan); Fujimoto, Yutaka; Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Fukuda, Kentaro [Tokuyama Corp., 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 Japan (Japan)

    2015-01-15

    CdF{sub 2} single crystal was prepared by Tokuyama Corp. with the μ-PD method to investigate Auger free luminescence of this material. From optical transmittance spectrum, bandgap wavelength was around 280 nm. In X-ray induced radioluminescence spectrum, emission lines appeared around 350 nm and 420 nm. Excitation wavelength was investigated and excitation peak was around 250 nm. Photoluminescence and scintillation decay times were evaluated and decay time was few ns. Temperature dependence of X-ray induced radioluminescence was compared with conventional BaF{sub 2} scintillator and scintillation of CdF{sub 2} decreased when the temperature increased. Consequently, scintillation of CdF{sub 2} is possibly emission at color centers or exciton related one. - Highlights: • CdF{sub 2} crystal scinitillator was synthesized. • Emission wavelengths of CdF{sub 2} appeared around 350 and 420 nm. • Scintillation decay time of CdF{sub 2} was quite fast, 1.75 ns. • Excitation bands were investigated by using Synchrotron facility, UVSOR.

  13. Scintillation properties of CdF2 crystal

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Fukuda, Kentaro

    2015-01-01

    CdF 2 single crystal was prepared by Tokuyama Corp. with the μ-PD method to investigate Auger free luminescence of this material. From optical transmittance spectrum, bandgap wavelength was around 280 nm. In X-ray induced radioluminescence spectrum, emission lines appeared around 350 nm and 420 nm. Excitation wavelength was investigated and excitation peak was around 250 nm. Photoluminescence and scintillation decay times were evaluated and decay time was few ns. Temperature dependence of X-ray induced radioluminescence was compared with conventional BaF 2 scintillator and scintillation of CdF 2 decreased when the temperature increased. Consequently, scintillation of CdF 2 is possibly emission at color centers or exciton related one. - Highlights: • CdF 2 crystal scinitillator was synthesized. • Emission wavelengths of CdF 2 appeared around 350 and 420 nm. • Scintillation decay time of CdF 2 was quite fast, 1.75 ns. • Excitation bands were investigated by using Synchrotron facility, UVSOR

  14. Synthesis, electronic transport and optical properties of Si:α-Fe2O3 single crystals

    NARCIS (Netherlands)

    Rettie, A.J.E.; Chemelewski, W.D.; Wygant, B.R.; Lindemuth, J.; Lin, J.F.; Eisenberg, D.; Brauer, C.S.; Johnson, T.J.; Beiswenger, T.N.; Ash, R.D.; Li, X.; Zhou, J.; Mullins, C.B.

    2016-01-01

    We report the synthesis of silicon-doped hematite (Si:alpha-Fe2O3) single crystals via chemical vapor transport, with Si incorporation on the order of 1019 cm(-3). The conductivity, Seebeck and Hall effect were measured in the basal plane between 200 and 400 K. Distinct differences in electron

  15. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    Science.gov (United States)

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  16. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    Science.gov (United States)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  17. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Yang, Xiaoyuan [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kopacz, Adrian M [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Geier, Manfred [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  18. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  20. Carcinogenic and mutagenic properties of chemicals in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R J

    1985-12-01

    Isolated cases of careless handling of industrial and domestic waste has lead to a wide variety of dangerous chemicals being inadvertently introduced into drinking water. However, chemicals with established carcinogenic and mutagenic properties that occur with a high frequency and in multiple locations are limited in number. To date, the chief offenders have been chemicals of relatively low carcinogenic potency. Some of the more common chemicals are formed as by-products of disinfection. The latter process is generally regarded as essential to the production of a ''microbiologically safe'' drinking water. Consequently, any reductions in what may be a relatively small carcinogenic risk must be balanced against a potential for a higher frequency of waterborne infectious disease. The results of recent toxicological investigations will be reviewed to place the potential carcinogenic and mutagenic hazards frequently associated with drinking water into perspective. First, evidence for the carcinogenicity of certain volatile organic compounds such as trichloroethylene, tetrachloroethylene and carbon tetrachloride is considered. Second, the carcinogenic activity that can be ascribed to various by-products of chlorination is reviewed in some detail. Finally, recent evidence that other chemicals derived from the treatment and distribution of drinking water is highlighted as an area requiring move systematic attention. 72 references.

  1. Optical and scintillation properties of bulk ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196 (Japan); Fujimoto, Yutaka; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamanoi, Kohei; Sarukura, Nobuhiko [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Kano, Masataka; Wakamiya, Akira [Daishinku Corporation, 1389 Shinzaike, Hiraoka-cho, Kakogawa, Hyogo 675-0194 (Japan)

    2012-12-15

    Single crystal bulk ZnO scintillator grown by the hydrothermal method was tested on its scintillation performances. In X-ray induced radio luminescence spectrum, it exhibited two intense emission peaks at 400 and 550 nm. The former was ascribed to the free and bound exciton related luminescence and the latter to oxygen vacancy related one, respectively. X-ray induced scintillation decay time of the exciton related emission measured by the pulse X-ray streak camera system resulted {proportional_to} 4 ns. Finally, the light yield under {sup 241}Am 5.5 MeV {alpha}-ray was examined and it resulted {proportional_to} 500 ph/5.5 MeV-{alpha}.(copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates.

    Science.gov (United States)

    Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2014-03-05

    By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystal structure and magnetic properties of Tb6FeSb2

    International Nuclear Information System (INIS)

    Cai Gemei; Zhang Jiliang; He Wei; Qin Pingli; Zeng Lingmin

    2006-01-01

    The crystal structure and magnetic properties of Tb 6 FeSb 2 has been investigated for the first time. The compound crystallizes in the hexagonal, space group P6-bar 2m (No. 189) with the Ho 6 FeSb 2 structure type and lattice parameters a=8.1942(5)A, c=4.1758(3)A, z=1 and D calc =8.564g/cm 3 . Its magnetic properties were measured between 85 and 420K. The Curie temperature T c =256K was obtained using the method of intersecting tangents, and the effective paramagnetic moment was μ eff =9.32μ B per Tb atom

  4. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  5. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, A., E-mail: yoshikawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kamada, K. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kurosawa, S. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Shoji, Y. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Yokota, Y. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Chani, V.I. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); Nikl, M. [Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic)

    2016-01-15

    Crystal growth by micro-pulling-down, Czochralski, and floating zone methods and scintillation properties of Ce:Gd{sub 3}(Ga,Al){sub 5}O{sub 12} (Ce:GGAG) multi-component oxide garnets, and Ce:Gd{sub 2}Si{sub 2}O{sub 7} (Ce:GPS) or Ce:(La,Gd){sub 2}Si{sub 2}O{sub 7} (Ce:La-GPS) pyro-silicates are reviewed. GGAG crystals demonstrated practically linear dependences of some of the parameters including lattice constant, emission wavelength, and band gap on Ga content. However, emission intensity, light yield and energy resolution showed maxima for intermediate compositions. GGAG crystals had the highest light yield of 56,000 photon/MeV for Ga content of 2.7 atoms per garnet formula unit. Similarly the light yield and energy resolution of La-GPS showed the highest values of 40,000 photon/MeV and 4.4%@662 keV, respectively, for La-GPS containing 10% of La. Moreover, La-GPS demonstrated stable scintillation performance up to 200 °C.

  6. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  7. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  8. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  9. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    Science.gov (United States)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x

  10. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    International Nuclear Information System (INIS)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude

    2009-01-01

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given. (semiconductor materials)

  11. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude, E-mail: xfchen@semi.ac.c, E-mail: nfchen@semi.ac.c [Key Laboratory of Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-08-15

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given. (semiconductor materials)

  12. Calculation of dynamic and electronic properties of perfect and defect crystals by semiempirical quantum mechanical methods

    International Nuclear Information System (INIS)

    Zunger, A.

    1975-07-01

    Semiempirical all-valence-electron LCAO methods, that were previously used to study the electronic structure of molecules are applied to three problems in solid state physics: the electronic band structure of covalent crystals, point defect problems in solids and lattice dynamical study of molecular crystals. Calculation methods for the electronic band structure of regular solids are introduced and problems regarding the computation of the density matrix in solids are discussed. Three models for treating the electronic eigenvalue problem in the solid, within the proposed calculation schemes, are discussed and the proposed models and calculation schemes are applied to the calculation of the electronic structure of several solids belonging to different crystal types. The calculation models also describe electronic properties of deep defects in covalent insulating crystals. The possible usefulness of the semieipirical LCAO methods in determining the first order intermolecular interaction potential in solids and an improved model for treating the lattice dynamics and related thermodynamical properties of molecular solids are presented. The improved lattice dynamical is used to compute phonon dispersion curves, phonon density of states, stable unit cell structure, lattice heat capacity and thermal crystal parameters, in α and γ-N 2 crystals, using the N 2 -N 2 intermolecular interaction potential that has been computed from the semiempirical LCAO methods. (B.G.)

  13. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  14. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  15. Universal fragment descriptors for predicting properties of inorganic crystals

    Science.gov (United States)

    Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander

    2017-06-01

    Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.

  16. Structural, Chemical and Physical Properties of Mn12

    Science.gov (United States)

    Sessoli, Roberta

    1997-03-01

    Recent investigations on the physical properties of the first molecular nanomagnet, Mn12ac, will be reported. Among them very high field EPR spectra (up to 25 T) (A. L. Barra, D. Gatteschi, R. Sessoli Phys. Rev. B. submitted) have provided precise information on the spin hamiltonian up to the fourth order terms. These new findings justify the irregularities in the step separations in the quantum hysteresis that we have observed performing the measurements on a single crystal (L. Thomas et al, Nature.383, 145 (1996)), and confirm that we are observing resonant quantum tunneling of the magnetization. The magnetic hysteresis has been also optically detected in collaboration with Prof. A. Thomson of the University of East Anglia, UK. Possible modifications to the Mn12 cluster as well as an iron cluster showing MQT of the magnetization (C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, D. Gatteschi, submitted) will be briefly presented.

  17. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    LI Yao

    2017-11-01

    Full Text Available VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W doping vanadium dioxide(W-VO2 was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD, field emission scanning electron microscope(FESEMand differential scanning calorimetry(DSC analysis. The results indicate that rod-like W-VO2(B crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B to W-VO2(M and eventually, the W-VO2(M crystals can further grow up while the W-VO2(B gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction.The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M.

  18. Studying the properties of photonic quasi-crystals by the scaling convergence method

    International Nuclear Information System (INIS)

    Ho, I-Lin; Ng, Ming-Yaw; Mai, Chien Chin; Ko, Peng Yu; Chang, Yia-Chung

    2013-01-01

    This work introduces the iterative scaling (or inflation) method to systematically approach and analyse the infinite structure of quasi-crystals. The resulting structures preserve local geometric orderings in order to prevent artificial disclination across the boundaries of super-cells, with realistic quasi-crystals coming out under high iteration (infinite super-cell). The method provides an easy way for decorations of quasi-crystalline lattices, and for compact reliefs with a quasi-periodic arrangement to underlying applications. Numerical examples for in-plane and off-plane properties of square-triangle quasi-crystals show fast convergence during iteratively geometric scaling, revealing characteristics that do not appear on regular crystals. (paper)

  19. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    International Nuclear Information System (INIS)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-01-01

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern

  20. Improvement of several properties of lead tungstate crystals with different doping ions

    CERN Document Server

    Auffray, Etiennette; Baccaro, Stefania; Cecilia, Angelica; Dafinei, Ioan; Diemoz, Marcella; Jarolímek, O; Korzhik, Mikhail; Lecoq, Paul; Nikl, M

    1998-01-01

    A very good radiation resistance of Lead Tungstate crystals is mandatory for their use in the high precision electromagnetic calorimeter of the CMS experiment at LHC. Since the beginning of 1996 we have organised systematic investigations of the parameters influencing the radiation hardness of this crystal. Two classes of parameters have been particularly studied, the first one related to the control of the stoichiometry and structure associated defects, the second one connected with the suppression and the charge compensation of existing defects with different kinds of doping ions. This paper reports about the second part of this study and complements a first paper where the role of the stoichiometry was already discussed. Results of tests are given on a significant statistical sample of full size crystals ( 23cm) which show a considerable improvement in the optical properties and the radiation resistance of appropriately doped crystals.

  1. Electrical and thermoluminescence properties of γ-irradiated La2CuO4 crystals

    Science.gov (United States)

    El-Kolaly, M. A.; Abd El-Kader, H. I.; Kassem, M. E.

    1994-12-01

    Measurements of the electrical properties of unirradiated as well as ?-irradiated La2CuO4 crystals were carried out at different temperatures in the frequency range of 0.1-100 kHz. Thermoluminescence (TL) studies were also performed on such crystals in the temperature range of 300-600K. The conductivity of the unirradiated La2CuO4 crystals were found to obey the power law frequency dependence at each measured temperature below the transition temperature (Tc = 450K). The activation energies for conduction and dielectric relaxation time have been calculated. The TL response and the dc resistance were found to increase with ?-irradiation dose up to 9-10 kGy. The results showed that the ferroelastic domain walls of La2CuO4 crystal as well as its TL traps are sensitive to ?-raditaion. This material can be used in radiation measurements in the range 225 Gy-10 kGy.

  2. Chain alignment for improved properties - Optimization of PLA and PHB-V by crystallization and reinforcement

    Science.gov (United States)

    Moser, K.; Bergmann, B.; Diemert, J.; Elsner, P.

    2014-05-01

    In this paper two promising ways to improve the material characteristics of PLA and PHB-V are presented by showing their positive effects on mechanical, optical, and thermal properties. The optimization is achieved by increasing the crystallization from the melt of the polymer chains and the other by means of a reinforcement of the matrices by bio-based materials. In the case of crystallization specific nucleating agents and optimized process parameters promote optimized crystallization conditions and lead particularly in toughness to significant improvements. In addition to crystallization the introduction of cellulose-based reinforcing materials is also a good alternative to improve the ductility of a biopolymer matrix considerably. Due to their polar surface structure cellulose fibres are favouring a very good interaction to the also polar biopolymers. In addition, the polar surfaces of both materials results in very homogeneous dispersion within the compound.

  3. Optical properties and radiation response of Ce3+-doped GdScO3 crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui; Kurosawa, Shunsuke; Kochurikhin, Vladimir; Yanagida, Takayuki; Yoshikawa, Akira

    2012-01-01

    10%-Ce doped GdScO 3 perovskite type single crystal was grown by the Czochralski process. The Ce concentration in the crystal was measured. No impurity phases were observed by powder X-ray diffraction analysis. We evaluated the optical and radiation properties of the grown crystal. Ce:GdScO 3 crystal showed photo- and radio-luminescence peaks due to Ce 3+ of 5d-4f transition and colour centre. The photoluminescence decay time was sub-ns order. The relative light yield under 5.5 MeV alpha-ray excitation was calculated to be approximately 9% of BGO. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    Lopez M, A.; Delgadillo G, J. A.; Vega C, H. R.

    2014-08-01

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137 Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  5. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  6. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...

  7. Photonic crystal fibers: fundamental properties and applications within sensors

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Riishede, Jesper; Broeng, Jes

    2003-01-01

    a large variety of novel optical properties and improvements compared to standard optical fibers. The stack-and-pull procedure used to manufacture PCFs is a highly flexible method offering a large degree of freedom in the fabrication of PCFs with specific characteristics. A few of the remarkable optical...

  8. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    Spectroscopic properties of praseodymium ions-doped erbium oxalate ... solution with specific gravity 1.04 g/cm3 was mixed homogeneously with 0.5 M oxalic ... of concentrated nitric acid were transferred carefully and gently through the wall ...

  9. Crystal and Microstructure Analysis of Pozzolanic Properties of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    and analyze the quality and quantity of composition and hydration behavior of the ... advantages in the properties of such concrete in term of mineral composition .... The value of the temperature constant (K) was derived from a table using the ...

  10. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  11. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  12. Structural and electrical properties of organic stilbazolium single crystal of DSCHS

    Science.gov (United States)

    Sundaram, S. John; Raj, A. Antony; Ramaclus, Jerald V.; Sagayaraj, P.

    2016-05-01

    Organic nonlinear optical crystal 4-N, N-Dimethyl Amino-4'N'-Methyl-Stilbazolium 3-Carboxy-4-Hydroxy benzenesulfonate (DSCHS) has been successfully grown from aqueous methanol solution by adopting slow solvent evaporation technique. Chemical composition of the sample was confirmed by CHN analysis. Powder X-ray diffraction analysis was carried out and it shows that DSCHS crystal belongs to triclinic structure with Pl space group. It is found that this material exhibits positive photoconductivity. Dielectric studies were also carried out for different temperature by varying the frequency.

  13. Structural and electrical properties of organic stilbazolium single crystal of DSCHS

    International Nuclear Information System (INIS)

    Sundaram, S. John; Ramaclus, Jerald V.; Sagayaraj, P.; Raj, A. Antony

    2016-01-01

    Organic nonlinear optical crystal 4-N, N-Dimethyl Amino-4’N’-Methyl-Stilbazolium 3-Carboxy-4-Hydroxy benzenesulfonate (DSCHS) has been successfully grown from aqueous methanol solution by adopting slow solvent evaporation technique. Chemical composition of the sample was confirmed by CHN analysis. Powder X-ray diffraction analysis was carried out and it shows that DSCHS crystal belongs to triclinic structure with Pl space group. It is found that this material exhibits positive photoconductivity. Dielectric studies were also carried out for different temperature by varying the frequency.

  14. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  15. Valorisation of chicken feathers: Characterisation of chemical properties.

    Science.gov (United States)

    Tesfaye, Tamrat; Sithole, Bruce; Ramjugernath, Deresh; Chunilall, Viren

    2017-10-01

    The characterisation of the chemical properties of the whole chicken feather and its fractions (barb and rachis), was undertaken to identify opportunities for valorizing this waste product. The authors have described the physical, morphological, mechanical, electrical and thermal properties of the chicken feathers and related them to potential valorisation routes of the waste. However, identification of their chemical properties is necessary to complete a comprehensive description of chicken feather fractions. Hence, the chicken feathers were thoroughly characterised by proximate and ultimate analyses, elemental composition, spectroscopic analyses, durability in different solvents, burning test, and hydrophobicity. The proximate analysis of chicken feathers revealed the following compositions: crude lipid (0.83%), crude fibre (2.15%), crude protein (82.36%), ash (1.49%), NFE (1.02%) and moisture content (12.33%) whereas the ultimate analyses showed: carbon (64.47%), nitrogen (10.41%), oxygen (22.34%), and sulphur (2.64%). FTIR analysis revealed that the chicken feather fractions contain amide and carboxylic groups indicative of proteinious functional groups; XRD showed a crystallinity index of 22. Durability and burning tests confirmed that feathers behaved similarly to animal fibre. This reveals that chicken feather can be a valuable raw material in textile, plastic, cosmetics, pharmaceuticals, biomedical and bioenergy industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fractal and mechanical micro- and nanorange properties of sylvite and halite crystals

    Directory of Open Access Journals (Sweden)

    Valery N. Aptukov

    2017-09-01

    Full Text Available This article involves the treatment of micro- and nanorange scanning and indentation data for salt rock crystals obtained with help of the scanning microscope Dimension Icon using the mathematical models. It also describes the basic methods of fractal analysis. It shows the effectiveness of the method of minimal covering which is chosen to research the fractal properties of salt rock crystal surfaces. The article includes the algorithm of this method and the description of its generalization for the two-dimensional case. The values of fractal index and multifractal parameters have been calculated on the basis of the minimal covering method. The article also involves the anisotropy effects for fractal properties, comparison of fractal behavior on different scale levels. It gives the values of hardness for different parts of the crystals and studies the correlation between hardness and fractal index and describes the character of the influence of fractal dimension on roughness.

  17. Machine learning of molecular electronic properties in chemical compound space

    Science.gov (United States)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  18. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    Montavon, Grégoire; Müller, Klaus-Robert; Rupp, Matthias; Gobre, Vivekanand; Hansen, Katja; Tkatchenko, Alexandre; Vazquez-Mayagoitia, Alvaro; Anatole von Lilienfeld, O

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  19. Physico-chemical properties of water in bentonite

    International Nuclear Information System (INIS)

    Torikai, Yuji; Sato, Seichi; Ohashi, Hiroshi

    1994-01-01

    As a part of safety analysis on ground layer disposal, in order to estimate nuclides migration behavior from engineering shielding materials, it is required to modelize migration process of nuclides in bentonite and chemical species relating to corrosion, to estimate solubility and to specify application condition of geochemical calculation code. In this study, as a part of elucidation of nuclide migration process, physico-chemical properties of water in bentonite and montmorillonite using steam pressure method were determined. As a result, following items were found: (1) Even if 1/3 of water in bentonite is near free water, it is far from a region dealable with dilute solution in the electrolyte solution theory. And, (2) the water in bentonite has generally small activity in comparison with dilute solution, then has smaller solubility than estimation value of calculation code. (G.K.)

  20. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  1. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  2. Determining the diffraction properties of a cylindrically bent KAP(001) crystal from 1 to 5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, Michael [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Lee, Joshua [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Jacoby, Kenneth [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Christensen, C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, G. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States), Livermore Operations

    2015-08-31

    Various crystals are used for the dispersive component of X-ray spectrometers. The crystals are usually bent to meet the desired measurement needs, such as focusing. The bending can change the crystal diffraction properties, thus altering the spectrometer throughput and resolving power. This work concerns measuring the diffraction properties of a potassium acid phthalate (001) [KAP(001)] crystal bent into a circular cylinder segment. The measurement methods using a diode source and a synchrotron source are described. The multi-lamellar model for calculating the diffraction properties of a bent crystal is described. The measurement results are compared to the multi-lamellar model and show qualitative agreement. The measurements show how to make the multi-lamellar calculations a useful estimate. A method is given to make useful estimates of the diffraction properties of the KAP(001) crystal bent into a circular cylinder segment.

  3. Mechanical properties of low temperature proton irradiated single crystal copper

    International Nuclear Information System (INIS)

    Schildcrout, M.

    1975-01-01

    Single crystal copper samples, of varying degrees of cold work, were irradiated near either liquid helium or liquid nitrogen temperature by 10.1-MeV protons. The internal friction and dynamic Young's modulus were observed as a function of either temperature or integrated proton flux. The primary effect of irradiation was to produce dislocation pinning. The initial pinning rate was found to be very sensitive to cold work. During irradiation it was found that heavily cold worked samples (25 percent compression) exhibited, almost exclusively, exponential pinning given by Y = e/sup --lambda phi/. This is attributed to the immobilization, rather than shortening, of loop lengths and is characterized by the pinning constant lambda. Exponential pinning was also found, to a smaller degree, in less heavily cold worked samples. Cold work appears to reduce the ''effective volume'' within which the defect clusters produced by irradiation, can immobilize dislocation segments. The bulk effect was observed after dislocation pinning was completed. Expressed in terms of the fractional change in Young's modulus per unit concentration of irradiation induced defects, it was measured at liquid helium temperature to be --18.5 +- 3. An anelastic process occurring near 10 0 K for low kHz frequencies and due to stress-induced ordering of point defects produced by irradiation has also been studied. The peak height per unit fluence was found to decrease with increasing cold work. The peak was not observed in samples compressed 25 percent. For the most carefully handled sample the activation energy was (1.28 +- 0.05) x 10 -2 eV, the attempt frequency was 10/sup 11.6 +- .8/ s -1 , the shape factor was 0.20, and the half width of the peak was 11 percent larger than the theoretical value calculated from the Debye equation for a single relaxation process

  4. Anisotropic electrical properties of superconducting single crystals YBa2 Cu3 O7-x

    International Nuclear Information System (INIS)

    Konczykowski, M.; Rullier-Albenque, F.

    1988-01-01

    The effect of the hydrostatic pressure (up to 18 kbar) on the transport properties of YBa 2 Cu 3 O 7 single crystals was investigated. A decrease of the resistivity and of its anisotropy was observed under pressure whereas an increase of the critical temperature, of the upper critical field and of its slope vs temperature variation was found

  5. INFLUENCE OF RARE-EARTH ELEMENTS ON THE ELECTRICAL AND OPTICAL PROPERTIES OF INP BULK CRYSTALS

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Zavadil, Jiří; Pekárek, Ladislav

    -, - (2011), s. 58-65 ISSN 1335-9053. [Development of Materials Science in Research and Education . Závažná Poruba, 31.08.2009-04.09.2009] Institutional research plan: CEZ:AV0Z20670512 Keywords : Crystal growth * REEs elements * Electrical properties Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.

    Science.gov (United States)

    Leontis, N B; Westhof, E

    1998-09-01

    A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings

  7. Layered Growth and Crystallization in Calcareous Biominerals: Impact of Structural and Chemical Evidence on Two Major Concepts in Invertebrate Biomineralization Studies

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Cuif

    2012-02-01

    Full Text Available In several recent models of invertebrate skeletogenesis, Ca-carbonate crystallization occurs within a liquid-filled chamber. No explanation is given neither for the simultaneous occurrence of distinct polymorphs of Ca-carbonate within these liquid volumes, nor for the spatial arrangement of the mineral units which are always organized in species-specific structural sequences. Results of a series of physical characterizations applied to reference skeletal materials reveal the inadequacy of this liquid-filled chamber model to account for structural and chemical properties of the shell building units. Simultaneously, these data provide convergent pieces of evidence for a specific mode of crystallization developed throughout various invertebrate phyla, supporting the hypothesized “common strategy” based on a multi-scaled control exerted on formation of their calcareous hard parts.

  8. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    Science.gov (United States)

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  9. Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO{sub 4} laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shoujun [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China); University of Science and Technology of China, Hefei (China); Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Wang, Xiaofei; Sun, Guihua; Li, Xiuli; Sun, Dunlu [Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Hefei, Anhui Province (China)

    2017-05-15

    A Nd-doped GdNbO{sub 4} crystal was grown successfully by Czochralski method. Its monoclinic structure was determined by X-ray diffraction; the unit-cell parameters are a = 5.38 Aa, b = 11.09 Aa, c = 5.11 Aa, and β = 94.56 . The morphological defects of Nd:GdNbO{sub 4} crystal were investigated using the chemical etching with the phosphoric acid etchant. For a new crystal, the physical properties are of great importance. The hardness and density of Nd:GdNbO{sub 4} were investigated first. Thermal properties of Nd:GdNbO{sub 4}, including thermal expansion coefficient and specific heat, were measured along a-, b-, and c-crystalline axes. Thermal properties indicate that the Nd:GdNbO{sub 4} pumped along c-axis can reduce the thermal lensing effect effectively. The specific heat is 0.53 J g{sup -1} K{sup -1} at 300 K, indicating a relatively high damage threshold of Nd:GdNbO{sub 4}. The transmission and emission spectrum of Nd:GdNbO{sub 4} were measured, and the absorption peaks were assigned. The strongest emission peak of Nd:GdNbO{sub 4} is located at 1065.3 nm in the spectral range of 850-1420 nm excited by 808 nm laser. The refractive index of Nd:GdNbO{sub 4} was calculated with the transmission spectrum and fitted with Sellmeier equation. All these obtained results is of great significance for the further research of Nd:GdNbO{sub 4}. (orig.)

  10. Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Romero, R.; Lopez, M.C.; Leinen, D.; Martin, F.; Ramos-Barrado, J.R.

    2004-01-01

    Electrical, structural and compositional properties of n-ZnO/c-Si heterojunctions prepared by chemical spray pyrolysis on single-crystal n-type and p-type monocrystalline silicon(1 0 0) substrates are examined with the C-V method and admittance spectroscopy at temperature ranges between 223 and 373 K. The n-ZnO/c-Si heterojunctions show a height barrier consistent with the difference in energy of the work functions of Si and ZnO; however, the n-ZnO:Al/c-Si heterojunctions present a more complex behavior due to the defects at or near the n-ZnO:Al/c-Si interface, causing a Fermi energy pinning

  11. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  12. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure

    OpenAIRE

    Adamova, Gabriela; Gardas, Ramesh L.; Nieuwenhuyzen, Mark; Vaca Puga, Alberto; Rebelo, Luis Paulo N.; Robertson, Allan J.; Seddon, Kenneth R.

    2012-01-01

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, CnH2n+1Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosit...

  13. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks

    OpenAIRE

    Tan, J. C.; Bennett, T. D.; Cheetham, A. K.

    2010-01-01

    The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. ...

  14. First principles study of structural, electronic and optical properties of KCl crystal

    International Nuclear Information System (INIS)

    Chen, Z.J.; Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The structural, electronic and optical properties of KCl crystal in B1, B2, B3 and T1 structures have been systematically studied using first-principle pseudopotential calculations. In addition, pressure-induced phase transition has also been investigated. It was found that when the pressure is below 2.8 GPa, the B1 structure is the most stable. Above 2.8 GPa KCl crystal will undergo a structural phase transition from the relatively open NaCl structure into the more dense CsCl atomic arrangement. Our results also suggested that at about 1.2 GPa structural phase transition from B3 to T1 will occur. When the pressure arrives at 39.9 GPa, the phase transition will occur from B2 to T1. In addition, we found KCl Crystal has indirect band gap in B2 structure and direct band gap in B1, B3 and T1 structures. The band gap value is the smallest in the T1 structure and is the largest in the B1 and B3 structures. Our calculations are found to be in good agreement with available experimental and theoretical results. The dielectric function and energy loss function of KCl crystal in four structures (B1, B2, B3 and T1) have been calculated as well as the anisotropy of the optical properties of KCl crystal in T1 structure

  15. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    Science.gov (United States)

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.

  16. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  17. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    Mario Agio

    2002-01-01

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser

  18. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  19. Exploration of crystal simulation potential by fluconazole isomorphism and its application in improvement of pharmaceutical properties

    Science.gov (United States)

    Thakur, Amitha; Kumar, Dinesh; Thipparaboina, Rajesh; Shastri, Nalini R.

    2014-11-01

    Control of crystal morphology during crystallization is a paramount challenge in pharmaceutical processing. Hence, there is need to introduce computational methods for morphology prediction to manage production cost of drugs and improve related pharmaceutical and biopharmaceutical properties. Layer docking approach with molecular dynamics opens a new avenue for crystal habit prediction in presence of solvent. In the present study, attempts were made to correlate predicted and experimental crystal habits of fluconazole considering solvent interactions using layer docking approach. Simulated results from layer docking approach with methanol as solvent gave two dominant facets (0 1 1) and (1 0 1) with a surface area 22.43% and 19.82% respectively, which were in agreement with the experimental results. Experimentally grown modified crystal habit of fluconazole in methanol showed enhanced dissolution rate (phabit change and absence of any polymorphs, hydrates or solvates. Flow and compressibility of fluconazole recrystallized in methanol was significantly improved when compared to plain drug. This study demonstrates a methodical approach using computational tools for prediction and modification of crystal habit, to enhance dissolution of poorly soluble drugs, for future pharmaceutical applications.

  20. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  1. Optical and scintillating properties of Ce:Li(Y,Lu)F4 single crystals

    International Nuclear Information System (INIS)

    Yokota, Yuui; Kurosawa, Shunsuke; Chani, Valery; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    We have investigated the optical and scintillating properties of Lu co-doped Ce:LiYF 4 single crystals with various Lu content. In the transmittance and absorption spectra, the absorption peaks at 243 nm get systematically red shifted in contrast to the peaks at 197 and 200 nm which get blue shifted with the increase in Lu content. At the same time, emission peaks at 306 nm and 200 nm under 295 nm excitation also get red shifted. The decay time of Ce:Li(Y,Lu)F 4 crystals under 295 nm excitation is found to be faster than that of Ce:LiYF 4 and Ce:LiLuF 4 crystals. The alpha-peak positions in the pulse-height spectra and decay times of crystals under alpha-ray irradiation are found to vary with the Lu content. - Highlights: • Optical and scintillation properties of Ce:Li(Y 1-x Lu x )F 4 crystals were inspected. • Increase of Lu content resulted change of the position of four absorption peaks. • Admixing of Y and Lu decreased the light yield and increased the decay time. • The Ce:LiLuF 4 crystal indicated the largest light yield in the pulse-height spectra. • Li[(Y 0.8 Lu 0.2 ) 0.98 Ce 0.02 ]F 4 indicated larger light yield than Ce:LiYF 4 crystal

  2. Thermal properties of carbon inverse opal photonic crystals

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Lee, Sergey B.; Baughman, Ray H.; Zakhidov, Anvar A.

    2007-01-01

    The thermal conductivity of thin-wall glassy carbon and graphitic carbon inverse opals, fabricated by templating of silica opal has been measured in the temperature range 10-400 K using transient pulse method. The heat flow through 100 A-thick layers of graphite sheets tiled on spherical surfaces of empty overlapping spheres arrayed in face-centered-cubic lattices has been analyzed in term of anisotropy factor. Taking into account high anisotropy factor in graphite, γ=342, we found that the thermal conductivity of inverse opal prepared by chemical vapor deposition infiltration is limited by heat flow across the graphitic layers in bottleneck, κ-perpendicular =3.95 W/m K. The electronic contribution to the thermal conductivity, κ e(300K) =3.7x10 -3 W/m K is negligible comparing to the measured value, κ (300K) =0.33 W/m K. The obtained phonon mean free path, l=90 nm is comparable with the graphite segments between hexagonal array of interconnections

  3. Crystal structures and second-order NLO properties of borogermanates

    International Nuclear Information System (INIS)

    Zhang, Jian-Han; Kong, Fang; Xu, Xiang; Mao, Jiang-Gao

    2012-01-01

    Borogermanates are a class of very important compounds in materials chemistry. In this paper, the syntheses, structures, and properties of metal borogermanates are reviewed. Organically templated borogermanates with zeolite-like open-frameworks show potential applications as microporous materials. Many compounds in alkali or alkaline-earth borogermanate systems are structurally acentric or polar, some of which exhibit excellent Second Harmonic Generation (SHG) coefficients, wide transparency regions, and high optical-damage thresholds as well as excellent thermal stability. Most of the lanthanide borogermanates are structurally centrosymmetric and not SHG active; however, they are able to emit strong luminescence in visible or near-IR region. In the B-rich compounds, BO 3 and BO 4 groups can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures via B–O–B bridges; whereas in the Ge-rich compounds, GeO 4 and GeO 6 polyhedra can also be polymerized. The combinations of borate and germinate afforded rich structural and topological types. - Graphical abstract: Borogermanates are a class of very important compounds in materials chemistry. Both BO x (x=3, 4) and GeO y (y=4, 6) polyhedra can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures. The combinations of borate and germanate groups in the same oxide framework not only give rise to a rich structural chemistry, but also afford many polar compounds with good SHG properties. Highlights: ► Borogermanates are a class of new materials. ► They feature to be the combination of B and Ge atoms into the same oxide framework. ► They can form a large number of novel 2D and 3D framework structures. ► Some of them are acentric or polar with moderate strong SHG responses.

  4. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  5. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  6. Synthesis, growth, physicochemical properties and DFT calculations of 2-naphthol substituted Mannich base 1-(morpholino(phenyl) methyl) naphthalen-2-ol: A non linear optical single crystal

    Science.gov (United States)

    Dennis Raj, A.; Jeeva, M.; Shankar, M.; Venkatesa Prabhu, G.; Vimalan, M.; Vetha Potheher, I.

    2017-11-01

    2-Naphthol substituted Mannich base 1-morpholino(phenyl)methyl)naphthalen-2-ol (MPMN), a potential NLO active organic single crystal was developed using acetonitrile as a solvent by slow evaporation method. The experimental and theoretical analysis made towards the exploitation in the field of electro-optic and NLO applications. The cubic structure with non-centrosymmetric space group Cc was confirmed and cell dimensions of the grown crystal were obtained from single crystal X-ray diffraction (XRD) study. The formation of the Csbnd Nsbnd C vibrational band at 1115 cm-1 in Fourier Transform Infra-Red (FTIR) analysis confirms the formation of MPMN compound. The placement of protons and carbons of MPMN were identified from Nuclear Magnetic Resonance Spectroscopy (NMR) analysis. The wide optical absorption window and the lower cutoff wavelength of MPMN show the suitability of the material for the various laser related applications. The presence of dislocations and growth pattern of crystal were analyzed using chemical etching technique. The Second Harmonic Generation (SHG) of MPMN was found to be 1.57 times greater than the standard KDP crystal. The laser damage threshold was measured by using Nd: YAG laser beam passed through the sample and it was found to be 1.006 GW/cm2. The electronic structure of the molecular system and the optical properties were also studied from quantum chemical calculations using Density Functional Theory (DFT) and reported for the first time.

  7. Computerized crystal-chemical classification of silicates and related materials with CRYSTANA and formula notation for classified structures

    International Nuclear Information System (INIS)

    Klein, Hans-Joachim; Liebau, Friedrich

    2008-01-01

    The computer program CRYSTANA is described which implements a method for the crystal-chemical classification of silicates and related materials. This method is mainly based upon the topological structure of the connected units of a compound and can be applied when the units are built from tetrahedra as coordination polyhedra. The classification parameters and the rules which have to be applied for their determination are summarized and a formalization of the method is provided based upon a finite graph representation of the units. A description of how CRYSTANA can be used and which kind of output it produces is included. From this output crystal-chemical formulas can be derived, which differ slightly from an existing notation in order to meet recommendations of the International Union of Crystallography. - The computer program CRYSTANA is described which implements a method for the crystal-chemical classification of silicates and related materials. The implementation is based upon a graph-theoretical formalization of the classification method. An extended notation of crystal-chemical formulas is introduced. The formulas can be derived from the output of the program

  8. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  9. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Correlation of the crystal orientation and electrical properties of silicon thin films on glass crystallized by line focus diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Huang, J.; Teal, A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Suntech R& D Australia, Botany, NSW 2019 (Australia); Varlamov, S.; Green, M.A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-06-30

    In this work, crystallographic orientation of polycrystalline silicon films on glass formed by continuous wave diode laser crystallization was studied. Most of the grain boundaries were coincidence lattice Σ3 twin boundaries and other types of boundaries such as, Σ6, Σ9, and Σ21 were also frequently observed. The highest photoluminescence signal and mobility were observed for a grain with (100) orientation in the normal direction. X-ray diffraction results showed the highest occupancies between 41 and 70% along the (110) orientation. However, the highest occupancies changed to (100) orientation when a 100 nm thick SiO{sub x} capping layer was applied. Suns-Voc measurement and photoluminescence showed that higher solar cell performance is obtained from the cell crystallized with the capping layer, which is suspected from increased occupancies of (100) orientation. - Highlights: • Linear grains parallel to the scan direction formed with high density. • Σ3 coincidence lattice (CSL) boundaries found inside a grain • Grain boundaries exhibit various CSL boundaries such as Σ9, Σ18, and Σ27. • Grain with < 100 > orientation in normal direction showed highest electrical properties. • Improved voltage observed when percentage of < 100 > normal orientation is increased.

  11. Dielectric properties of lanthanum gallate (LaGaO3) crystal

    Science.gov (United States)

    Dube, D. C.; Scheel, H. J.; Reaney, I.; Daglish, M.; Setter, N.

    1994-04-01

    Dielectric properties of single crystals of LaGaO3 have been measured at low frequencies as well as in the microwave region over a wide temperature range. Measurements performed on two crystal orientations, viz. (001) and (110), show dielectric anomalies at a transition near 145 °C. Dielectric anisotropy below, but not above, 145 °C confirm the previously reported orthorhombic symmetry at room temperature and rhombohedral symmetry above 145 °C. Domain wall motion which arises as a result of a phase transition has been observed around 145 °C.

  12. Mechanical properties of pure and doped InP single crystals under concentrated loading

    International Nuclear Information System (INIS)

    Boyarskaya, Yu.S.; Grabko, D.Z.; Medinskaya, M.I.; Palistrant, N.A.

    1997-01-01

    The mechanical properties of pure and doped (Fe, Zn, Sn) InP single crystals were investigated in the temperature interval from 293 to 600 K. It was shown that impurity hardening (the microhardness increase) was more pronounced at elevated temperatures than at 293 K. This is conditioned by braking of the moving dislocations with impurities which is more observed in the the high temperature region. The obvious anisotropy of the scratch hardness was revealed at room temperature for the (001) face of crystals under investigation. This anisotropy decreased sharply in increasing the temperature from 293 to 600 K

  13. Gamma radiation effects on photorefractive and photoelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, Eh.S.; Ovsepyan, R.K.; Pogosyan, A.R.; Timofeev, A.L.

    1984-08-01

    Investigations into the gamma radiation effect on the photorefractive aned photoelectric properties of lithium niobate crystals have been carried out for the first time. Gamma irradiation has been found to lead to an increase in the photorefractive sensitivity. The effect of optical decoloration has been discovered for the first time along with photorelaxation currents resulting from radiation center decay under the action of light. It has been shown that an increase of photorefractive sensitivity in gamma-irradiated lithium niobate crystals is caused by a new photorefraction mechanism - photorelaxation currents.

  14. Fast neutron irradiation and thermal properties of doped nonstoichiometric lithium potassium sulphate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gomaa, N.G.; El-Khatib, A.M.

    1990-01-01

    The influence of point defects introduced by fast neutron irradiations with neutron fluences up to 1.08 x 10 10 n/cm 2 on the thermal properties of pure and doped Li 1.4 K 0.6 SO 4 single crystals are studied in the vicinity of high temperature phase transition at 705 K. The temperature dependence of specific heat is found to be shifted towards lower temperature with the increase of neutron fluence, and can be affected by the presence of Cu 2+ dopant. The change in the value of the specific heat can be attributed to the presence of internal strain generated inside the crystal. (author)

  15. Spectral properties of a two dimensional photonic crystal with quasi-integrable geometry

    International Nuclear Information System (INIS)

    Cruz-Bueno, J J; Méndez-Bermúdez, J A; Arriaga, J

    2013-01-01

    In this paper we study the statistical properties of the allowed frequencies for electromagnetic waves propagating in two-dimensional photonic crystals with quasi-integrable geometry. We compute the level spacing, group velocity, and curvature distributions (P(s), P(v), and P(c), respectively) and compare them with the corresponding random matrix theory predictions. Due to the quasi-integrability of the crystal we observe signatures of intermediate statistics in P(s) and P(c) for high refractive index contrasts

  16. Properties of melt-grown single crystals of 'YB/sub 68/'

    Energy Technology Data Exchange (ETDEWEB)

    Slack, G A; Oliver, D W; Brower, G D; Young, J D [General Electric Co., Schenectady, N.Y. (USA). Research and Development Center

    1977-01-01

    Single crystals of yttrium boride YB/sub n/ with n = 61 +- 3 were grown from the melt. Precision density and lattice parameter measurements indicate a congruent melting point at n = 61.7 and a stoichiometric composition at n = 68. Measurements of elastic constants, acoustic attenuation, electrical resistivity and optical absorption are presented. High resolution transmission electron microscopy reveals a complex crystal structure similar to that found by using X-rays. A comparison of the properties of YB/sub n/ with those of ..beta..-boron show that there are many similarities.

  17. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  18. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  19. Effects of scalp dermatitis on chemical property of hair keratin

    Science.gov (United States)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  20. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  1. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  2. Biochar physico-chemical properties as affected by environmental exposure

    International Nuclear Information System (INIS)

    Sorrenti, Giovambattista; Masiello, Caroline A.; Dugan, Brandon; Toselli, Moreno

    2016-01-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha −1 . We combined two pycnometry techniques to measure skeletal (ρ s ) and envelope (ρ e ) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~ years

  3. Biochar physico-chemical properties as affected by environmental exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sorrenti, Giovambattista, E-mail: g.sorrenti@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy); Masiello, Caroline A., E-mail: masiello@rice.edu [Departments of Earth Science, BioSciences, and Chemistry, Rice University, Houston, TX 77005 (United States); Dugan, Brandon, E-mail: dugan@rice.edu [Department of Earth Science, Rice University, Houston, TX 77005 (United States); Toselli, Moreno, E-mail: moreno.toselli@unibo.it [Department of Agricultural Sciences, University of Bologna, viale G. Fanin 44, 40127 Bologna (Italy)

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30 t ha{sup −1}. We combined two pycnometry techniques to measure skeletal (ρ{sub s}) and envelope (ρ{sub e}) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0–5 nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75 nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75 nm, while no significant changes were measured in the deepest layer, up to 110 nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over

  4. Optical properties of GaS:Ho3+ and GaS:Tm3+ single crystals

    International Nuclear Information System (INIS)

    Jin, Moon-Seog; Kim, Chang-Dae; Kim, Wha-Tek

    2004-01-01

    GaS:Ho 3+ and GaS:Tm 3+ single crystals were grown by using the chemical transport reaction method. We measured the optical absorption, the infra-red absorption, and the photoluminescence spectra of the single crystals. The direct and the indirect energy band gaps of the single crystals at 13 K were identified. Infra-red absorption peaks at 6 K appeared in the single crystals. Broad emission bands at 6 K were observed at 464 nm and 580 nm for GaS:Ho 3+ and 462 nm and 581 nm for GaS:Tm 3+ . These broad emission bands were identified as originating from donor-acceptor pair recombinations. Sharp emission peak groups were observed near 435 nm, 495 nm, and 660 nm for GaS:Ho 3+ and near 672 nm for GaS:Tm 3+ . These sharp emission peak groups were identified as being due to the electron transitions between the energy levels of Ho 3+ and Tm 3+ . Especially, white photoluminescence was obtained in the GaS:Ho 3+ single crystal.

  5. Synthesis, growth, structural, optical, thermal, electrical and mechanical properties of hydrogen bonded organic salt crystal: Triethylammonium-3, 5-dinitrosalicylate

    Science.gov (United States)

    Rajkumar, Madhu; Chandramohan, Angannan

    2017-04-01

    Triethylammonium-3, 5-dinitrosalicylate, an organic salt was synthesized and single crystals grown by slow solvent evaporation solution growth technique using methanol as a solvent. The presence of various functional groups and mode of vibrations has been confirmed by FT-IR spectroscopic technique. The UV-vis-NIR Spectrum was recorded in the range 200-1200 nm to find optical transmittance window and lower cut off wavelength of the title crystal. The formation of the salt and the molecular structure was confirmed by NMR spectroscopic technique. Crystal system, crystalline nature, cell parameters and hydrogen bonding interactions of the grown crystal were determined by single crystal x-ray diffraction analysis. The thermal characteristics of grown crystal were analyzed by thermo gravimetric and differential thermal analyses. Dielectric studies were carried out to study the distribution of charges within the crystal. The mechanical properties of the title crystal were studied by Vicker's microhardness technique.

  6. Crystal structures and second-order NLO properties of borogermanates

    Science.gov (United States)

    Zhang, Jian-Han; Kong, Fang; Xu, Xiang; Mao, Jiang-Gao

    2012-11-01

    Borogermanates are a class of very important compounds in materials chemistry. In this paper, the syntheses, structures, and properties of metal borogermanates are reviewed. Organically templated borogermanates with zeolite-like open-frameworks show potential applications as microporous materials. Many compounds in alkali or alkaline-earth borogermanate systems are structurally acentric or polar, some of which exhibit excellent Second Harmonic Generation (SHG) coefficients, wide transparency regions, and high optical-damage thresholds as well as excellent thermal stability. Most of the lanthanide borogermanates are structurally centrosymmetric and not SHG active; however, they are able to emit strong luminescence in visible or near-IR region. In the B-rich compounds, BO3 and BO4 groups can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures via B-O-B bridges; whereas in the Ge-rich compounds, GeO4 and GeO6 polyhedra can also be polymerized. The combinations of borate and germinate afforded rich structural and topological types.

  7. Chemical precursor impact on the properties of Cu{sub 2}ZnSnS{sub 4} absorber layer

    Energy Technology Data Exchange (ETDEWEB)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K. [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Mahesh C. [National Institute of Solar Energy, Gurgaon 122003 (India)

    2016-04-13

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu{sub 2}ZnSnS{sub 4} (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effect of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.

  8. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie

    1997-01-01

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  9. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements

    International Nuclear Information System (INIS)

    Chukanov, Nikita V; Pekov, Igor V; Rastsvetaeva, Ramiza K

    2004-01-01

    The review surveys and generalises recent data on synthesis methods, physicochemical properties and crystal chemistry of silicate microporous materials containing transition elements (amphoterosilicates). The frameworks of these materials, unlike those of usual aluminosilicate zeolites, are built from tetrahedrally coordinated atoms along with atoms of various elements (Ti, Nb, Zr, Ta, Sn, W, Fe, Mn, Zn, etc.) with coordination numbers of 6 or 5. Many amphoterosilicates possess ion-exchange properties and can serve as catalysts for redox reactions, sorbents, etc. The structural diversity of synthetic and natural amphoterosilicates provides the basis for the preparation of microporous materials with different properties.

  10. A crystal chemical approach to superconductivity. I. A bond-valence sum analysis of inorganic compounds

    International Nuclear Information System (INIS)

    Liebau, Friedrich; Klein, Hans-Joachim; Wang, Xiqu

    2011-01-01

    A crystal-chemical approach to superconductivity is described that is intended to complement the corresponding physical approach. The former approach takes into account the distinction between the stoichiometric valence ( stoich V) and the structural valence ( struct V) which is represented by the bond-valence sums (BVS). Through calculations of BVS values from crystal-structure data determined at ambient temperature and pressure it has been found that in chalcogenides und pnictides of the transition metals Fe, Co, Ni, Mn, Hf, and Zr the atoms of the potential superconducting units yield values of vertical stroke BVS vertical stroke = vertical stroke struct V vertical stroke ≥ 1.11 x vertical stroke stoich V vertical stroke, whereas the atoms of the charge reservoirs have in general values of vertical stroke struct V vertical stroke stoich V vertical stroke. In corresponding compounds which contain the same elements but are not becoming superconducting, nearly all atoms are found to have vertical stroke struct V vertical stroke stoich V vertical stroke. For atoms of oxocuprates that are not becoming superconducting and for atoms of the charge reservoirs of oxocuprates that become superconducting, the relation vertical stroke struct V vertical stroke stoich V vertical stroke seems also to be fulfilled, with the exception of Ba. However, in several oxocuprates the relation vertical stroke struct V vertical stroke = 1.11 x vertical stroke stoich V vertical stroke for the atoms that become superconducting units is violated. These violations seem to indicate that in oxocuprates it is the local bond-valence distribution rather than the bond-valence sums that is essential for superconductivity. The present analysis can possibly be used to predict, by a simple consideration of ambient-T, P structures, whether a compound can become an unconventional superconductor at low T, under high P and/or by doping, or not. (orig.)

  11. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  12. Physico-chemical properties of different forms of bovine lactoferrin.

    Science.gov (United States)

    Bokkhim, Huma; Bansal, Nidhi; Grøndahl, Lisbeth; Bhandari, Bhesh

    2013-12-01

    Three forms of bovine lactoferrin (Lf), apo-, native- and holo- with 0.9%, 12.9% and 99.7% iron content, respectively, were characterised for their physico-chemical properties. Colour, surface tension, thermal properties, particle charge and rheological behaviour of Lf were found to be affected by the form of Lf. The surface tension of Lf tends to decrease with decrease in iron content. The Circular Dichroism (CD) spectra confirmed that all forms of Lf had similar secondary structures while the tertiary structure was different for holo-Lf. The Differential Scanning Calorimeter (DSC) analysis showed that the apo- and holo-Lf in aqueous solution displayed thermal denaturation temperatures of 71±0.2 and 91±0.5 °C, respectively, suggesting that the iron saturation of Lf tends to increase its thermal stability. The study of particle charge properties (ζ-potential) in 1 mM KCl salt solution showed that apo-Lf reached the net charge of zero in the pH range 5.5-6.5 whereas native and holo-Lf in the pH range 8.0-9.0. The apparent viscosity of 1% (wt/wt) solution of the different forms of Lf showed no difference between apo- and native-Lf (≈1.4 mPas) while the value was significantly higher (2.38 mPas) for holo-Lf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Synthesis, spectral analysis, optical and thermal properties of new organic NLO crystal: N,N";-Diphenylguanidinium Nitrate (DPGN)

    Science.gov (United States)

    Saravana Kumar, G.; Murugakoothan, P.

    2014-10-01

    A new organic NLO material N,N";-Diphenylguanidinium Nitrate (DPGN) single crystal was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction and powder X-ray diffraction experiments were carried out in order to confirm the structure and crystalline nature of DPGN crystal. Wide band gap of 3.9 eV with transmittance of 57% up to 800 nm is observed for the grown crystal using UV-vis spectral analysis. The chemical bonding and presence of various functional groups were confirmed by the FT-IR and FT-Raman spectral studies. The thermal behavior of DPGN crystal was analyzed by simultaneous TG-DTA studies. The second harmonic generation (SHG) nonlinearity of the grown crystal was measured by Kurtz and Perry powder technique and was found to be comparable with that of the standard reference material potassium dihydrogen phosphate (KDP) crystal.

  14. The plutonium: brief presentation of its nuclear, physical and chemical properties

    International Nuclear Information System (INIS)

    Madic, C.

    1993-01-01

    In this text we give a brief presentation of the nuclear properties (isotopes, isotopic composition of spent fuels, decay), of the physical properties (phase diagrams, alloys) and of the chemical properties (complexes, solvent extraction) of the plutonium

  15. Magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal revisited

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: Mohamed.balli@Usherbrooke.ca [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Roberge, B.; Vermette, J.; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (Canada); Gospodinov, M.M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2015-12-01

    Magnetic and magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal have been revisited. It was found that the magnetocaloric effect shown by HoMnO{sub 3} strongly depends on the crystal orientation in respect to the applied magnetic field. Consequently, a large thermal effect can be induced by spinning the single crystal HoMnO{sub 3} around the a (or b) axis in a constant magnetic field instead of the conventional magnetization–demagnetization process. Under 7 T, the maximum rotating entropy change was evaluated to be about 8 J/kg K. The associated adiabatic temperature change reaches a value of about 5 K. These values are comparable to those of the other oxides exhibiting a large rotating magnetocaloric effect. The presence of both conventional and rotating thermal effects makes the hexagonal HoMnO{sub 3} more interesting from a practical point of view.

  16. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    Science.gov (United States)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  17. Scintillation properties of pure and Ca-doped ZnWO4 crystals

    International Nuclear Information System (INIS)

    Danevich, F.A.; Shkulkova, O.G.; Henry, S.; Kraus, H.; McGowan, R.; Mikhailik, V.B.; Telfer, J.

    2008-01-01

    Following the investigations of the structure and scintillation properties of Ca-doped zinc tungstate powder [phys. stat. sol. (a) 204, 730 (2007)] a single-crystal of ZnWO 4 -Ca (0.5 mol%) was grown and characterised. The relative light output, energy resolution and decay characteristics were measured for pure and Ca-doped ZnWO 4 scintillators. An increase in the light yield of ∝40% compared with the undoped crystal, and an energy resolution 9.6% ( 137 Cs) were obtained for Ca-doped ZnWO 4 . The observed improvement is attributed to the reduction of self-absorption (bleaching) of the crystal. The cause of bleaching as well as the possible contribution of scattering is discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Effects of heat treatment temperature on morphology and properties of opal crystal

    International Nuclear Information System (INIS)

    Duan Tao; China Academy of Engineering Physics, Mianyang; Peng Tongjiang; Chen Jiming; Tang Yongjian

    2008-01-01

    The monodispersed SiO 2 microspheres were synthesized by reactant mixed equally. The colloid crystal templates were assemblied by vertical sedimentation method in ethanol at certain temperatures, and the effects of the heat treatment temperature on the morphology and the properties of opal colloid crystals were investigated. SEM, TCr-DSC results indicate SiO 2 colloid templates should be heat treated at 700-800 degree C, enhancing the conglutination and mechanistic intensity of opal templates. UV-Vis analysis result indicates that the heat treatment process can remove the photonic band gap location of the opal colloid crystals, and with the heat treatment temperature increasing gradually, blue shift occurs and the gap narrows. (authors)

  19. Polarized spectral properties of Sm3+:LiYF4 crystal

    International Nuclear Information System (INIS)

    Wang, G.Q.; Lin, Y.F.; Gong, X.H.; Chen, Y.J.; Huang, J.H.; Luo, Z.D.; Huang, Y.D.

    2014-01-01

    A trivalent samarium-doped LiYF 4 single crystal was grown by the vertical Bridgman technique. Its polarized absorption and fluorescence spectra and fluorescence decay curves were recorded at room temperature. On the basis of the Judd–Ofelt theory, the spectral parameters of the Sm 3+ :LiYF 4 crystal were calculated. The emission cross sections for the 4 G 5/2 → 6 H J (J=5/2, 7/2. 9/2, and 11/2) transitions of special interest for visible laser application were obtained by the Fuchtbauer–Ladenburg formula. -- Highlights: • Polarized spectral properties of Sm 3+ :LiYF 4 crystal at room temperature were analyzed in detail. • The emission cross sections for the transitions of special interest for visible laser application are calculated. • Sm 3+ :LiYF 4 is a promising laser material for 401 nm GaN LD pumped 605 nm visible laser

  20. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  1. Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Steigerwald, Hendrik

    2011-08-15

    One of the most important non-linear-optical materials is lithium niobate, due to its ease of fabrication, robustness, transparency in the visible-to-infrared and excellent nonlinear properties. In this thesis the issue of tailoring ferroelectric domain structures in lithium niobate crystals is approached from two sides: interaction of defect structures inside the crystal with growing ferroelectric domains is investigated and also actual domain patterning on all crystal faces by different methods is performed. Special emphasis is given to the Mg-doped material. The fundamental understanding and the methods of domain patterning developed in this thesis are then used to obtain tailored domain structures that meet the requirements of their intended application in non-linear optics. (orig.)

  2. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-08-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2…3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  3. Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties

    International Nuclear Information System (INIS)

    Shmychkova, O.; Luk’yanenko, T.; Velichenko, A.; Meda, L.; Amadelli, R.

    2013-01-01

    The influence of bismuth ions on kinetics of lead dioxide electrodeposition from methanesulfonate electrolytes and physico-chemical properties of obtained coatings were studied. Experimental results are consistent with a mechanism previously proposed in the literature for lead dioxide electrodeposition. The presence of bismuth ions in the electrodeposition solution causes a decrease of rate constants of lead dioxide formation due to co-adsorption phenomena. Deposits from solutions containing bismuth ions appear shiny dark grey, and show good adhesion to metal support. SEM images reveal a compact structure with spindle-shaped submicron and nanosized crystals and X-ray diffractograms demonstrated that incorporation of bismuth diminishes the size of crystal particles. Oxygen evolution was investigated to test electrocatalytic activity. It is shown, that oxygen overpotential on modified electrodes is significantly higher than on non-modified PbO 2 -electrode, which depends on bismuth content in deposit and segregation of bismuth that induces surface heterogeneity due to sites with different electroactivity for water oxidation

  4. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng

    2018-05-01

    The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018

  5. Bimodal polyethylenes form one pot synthesis : effect of flow induced crystallization on physical properties

    NARCIS (Netherlands)

    Kukalyekar, N.P.

    2007-01-01

    The ultimate properties of a polymer are governed not only by the chemical structure of the polymer chains but also by the processing conditions applied during fabrication of the final product, in particular as a result of orientation of long-chain molecules. The intrinsic properties of a polymer

  6. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  7. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  8. A new series of two-dimensional silicon crystals with versatile electronic properties

    Science.gov (United States)

    Chae, Kisung; Kim, Duck Young; Son, Young-Woo

    2018-04-01

    Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.

  9. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    International Nuclear Information System (INIS)

    Aoi, Y; Tominaga, T

    2013-01-01

    Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  10. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  11. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  12. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  13. Preliminary laboratory studies of the optical scattering properties of the crystal clouds

    Directory of Open Access Journals (Sweden)

    C. Saunders

    Full Text Available Ice crystal clouds have an influence on the radiative budget of the earth; however, the exact size and nature of this influence has yet to be determined. A laboratory cloud chamber experiment has been set up to provide data on the optical scattering behaviour of ice crystals at a visible wavelength in order to gain information which can be used in climate models concerning the radiative characteristics of cirrus clouds. A PMS grey-scale probe is used to monitor simultaneously the cloud microphysical properties in order to correlate these closely with the observed radiative properties. Preliminary results show that ice crystals scatter considerably more at 90° than do water droplets, and that the halo effects are visible in a laboratory-generated cloud when the ice crystal concentration is sufficiently small to prevent masking from multiple scattering.

    Key words. Meteorology and atmosphere dynamics · Climatology · Radiative process · Atmospheric composition and structure · Cloud physics and chemistry

  14. Size dependences of crystal structure and magnetic properties of DyMnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, T., E-mail: tajiri@fukuoka-u.ac.jp [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan); Terashita, N.; Hamamoto, K.; Deguchi, H.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Morimoto, Y.; Konishi, K. [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kohno, A. [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan)

    2013-11-15

    We synthesized DyMnO{sub 3} nanoparticles with particle sizes of about 7.5–15.3 nm in the pores of mesoporous silica and investigated their crystal structure and magnetic properties. As the particle size decreased, the lattice constants of the DyMnO{sub 3} nanoparticles deviated from those of the bulk crystal, and the Jahn–Teller distortion in the nanoparticle systems decreased. In addition, the estimated lattice strain increased with decreasing particle size. The DyMnO{sub 3} nanoparticles showed superparamagnetic behavior. The blocking temperature and the coercive field increased with decreasing particle size, and this behavior was contrary to the usual magnetic size effects. It is deduced that these unique size dependences of the magnetic properties for the DyMnO{sub 3} nanoparticles were derived from the changes in lattice constants and lattice strain. The anisotropic lattice deformation in the crystal structure of the nanoparticles induces an enhancement of the magnetic anisotropy, which results in the increase in blocking temperature and coercive field with decreasing particle size. - Highlights: • We successfully synthesized DyMnO{sub 3} nanoparticles with particle size of 7.5–15.3 nm. • Lattice strain increases with decreasing particle size. • Lattice constants exhibit anisotropic change with decreasing particle size. • Distortion of crystal structure leads to enhancement of magnetic anisotropy constant. • Blocking temperature and coercive field increases with decreasing particle size.

  15. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki

    2010-03-16

    Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.

  16. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  17. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    Science.gov (United States)

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.

  18. Physical and chemical properties of calcium doped neodymium manganite

    International Nuclear Information System (INIS)

    Tikhonova, L.A.; Zhuk, P.P.; Tonoyan, A.A.; Vecher, A.A.

    1991-01-01

    Physical and chemical properties of calcium doped neodymium manganite were investigated. It was shown that structure of perovskite with O'-orthorhombic distortion was characteristic for solid solutions of Nd 1-x Ca x MnO 3 (x=0-0.5). Maximum of conductivity for samples with x=0.2 was determined. Inversion of conductivity from p- (x=0) to n-type (x=0.5) was observed in increase of concentration of calcium doped addition. Values of thermal expansion coefficient of studied solid solutions of Nd 1-x Ca x MnO 3 didn't depend on concentration of doped addition within the range 700 to 1200 K and were (9.9-11.3)·10 -6 K -1

  19. Chemical Tuning of Adsorption Properties of Titanate Nanotubes

    Directory of Open Access Journals (Sweden)

    Anastasia V. Grigorieva

    2012-01-01

    Full Text Available A conventional hydrothermal method widely used for the preparation of titania-based nanotubes still generates many unsolved questions. One of them is definitely connected with the influence of a posthydrothermal treatment of titania nanotubes on their micromorphology, structure, and adsorption characteristics. Here, it was analyzed systematically by a group of methods including nitrogen adsorption and temperature-programmed desorption of ammonia and carbon dioxide. It is proved that adsorption characteristics and the surface state of titania nanotubes correlate with a sodium content, since sodium ions act as Lewis acid sites and shield Ti4+ acid sites of the nanotubes. To obey a balance between chemical and heat treatments of the nanotubes to design their functional properties has been suggested.

  20. Chemical structure and properties of low-molecular furin inhibitors

    Directory of Open Access Journals (Sweden)

    T. V. Osadchuk

    2016-12-01

    Full Text Available The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.

  1. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  2. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor

    Directory of Open Access Journals (Sweden)

    Valdecir F. Ximenes

    2013-03-01

    Full Text Available Apocynin is the most employed inhibitor of NADPH oxidase (NOX, a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V, the hydrophobicity index was calculated (logP = 0.83 and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M−1 cm−1. Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA with a binding affinity of 2.19 × 104 M−1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.

  3. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  4. Chemical and Thermodynamic Properties at High Temperatures: A Symposium

    Science.gov (United States)

    Walker, Raymond F.

    1961-01-01

    This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.

  5. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Umar Hamzah; Learn, K.K.; Sahibin Rahim

    2010-01-01

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  6. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films

    International Nuclear Information System (INIS)

    Jain, Vipin Kumar; Kumar, Praveen; Kumar, Mahesh; Jain, Praveen; Bhandari, Deepika; Vijay, Y.K.

    2011-01-01

    Research highlights: → Structural, chemical and electrical properties of cost effective ZTO thin films with varying concentrations. → Effect of annealing of ZTO films. - Abstract: Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO 2 ; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 deg. C in vacuum. These films were characterized to study the effect of annealing and addition of SnO 2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO 2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ∼ 3.69 x 10 -2 Ω-cm), maximum carrier concentration (n ∼ 3.26 x 10 19 cm -3 ) and Hall mobility (μ ∼ 5.2 cm 2 v -1 s -1 ) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ∼ 1.12 x 10 -3 Ω-cm), highest carrier concentration (n ∼ 2.96 x 10 20 cm -3 ) and mobility (μ ∼ 18.8 cm 2 v -1 s -1 ) for annealed ZTO (50:50) thin film.

  7. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  8. Sublimation Properties of Pentaerythritol Tetranitrate Single Crystals Doped with Its Homologs

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharia, Sanjoy K.; Maiti, Amitesh; Gee, Richard H.; Weeks, Brandon L.

    2012-07-20

    Pentaerythritol tetranitrate (PETN) is a secondary explosive used extensively in military and commercial applications. Coarsening of PETN during long-term storage changes the physical properties such as surface area and particle morphology which are important factors in initiation and performance. Doping of impurities was proposed to slow the coarsening process since impurities were shown to modify both the kinetic and thermodynamic properties. In this paper, we discuss how doping of PETN with its homologs of dipentaerythritol hexanitrate (diPEHN) and tripentaerytritol octanitrate (triPEON) affect kinetic and thermodynamic parameters. Pure and homolog doped PETN single crystals were prepared by solvent evaporation in acetone at room temperature. Doping concentrations for this study were 1000 ppm, 5000 ppm, and 10000 ppm. Activation energy and vapor pressure of pure and doped PETN single crystals were obtained from thermogravimetric analysis data.

  9. Electrical properties and features of the crystallization behaviour and the phase morphology of polyethylene blends

    International Nuclear Information System (INIS)

    Kolesov, I.S.; Radusch, H.-J.; Kolesov, S.N.

    1999-01-01

    It was discovered that polyethylene blends show a typical concentration dependence of the specific electrical resistance and the electrical strength measured by the surge voltage method. The concentration dependencies show two local maxima at definite blend compositions (ω LDPE = 0,2 to 0,4 and 0,7 to 0,8). The results of investigation of the melt and crystallization behavior as well as of the supermolecular structure of these blends point out that the changes caused by mixing in topology and packaging density of the inter-phases between the phases and crystallites have an influence on the electrical properties of the polyethylene blends in correspondence to the composition. The changed structure-property relationships are caused essentially by a possible co-crystallization of the components and by the interactions at separate seeds formation. (orig.)

  10. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  11. Influence of Mo impurity on the spectroscopic and scintillation properties of PbWO4 crystals

    International Nuclear Information System (INIS)

    Boehm, M.; Hofstaetter, A.; Luh, M.; Meyer, B.K.; Scharmann, A.; Drobychev, G.Yu.; Grenoble-1 Univ., 74 - Annecy; Peigneux, J.P.

    1997-12-01

    The influence of molybdenum doping on the spectroscopic and scintillation properties of lead tungstate crystals has been investigated. From the results the slow scintillation component as well as the afterglow are found to be due to the Mo impurity. In addition the blue luminescence from excited (WO 4 ) 2- -complex seems to be increasingly suppressed as the doping concentration goes on. Possible mechanisms for the effects have been discussed. (author)

  12. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  13. Growth and properties of oxygen doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Kapitulnik, A.; Mitzi, D.B.

    1990-01-01

    This paper reports results on oxygen doped single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system grown by a directional solidification method. Annealing of as made crystals in increasing partial pressure of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed). Magnetic and photoemission properties of these crystals will be discussed

  14. Properties of magnetized Coulomb crystals of ions with polarizable electron background

    Science.gov (United States)

    Kozhberov, A. A.

    2018-06-01

    We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B = 0, the difference between phonon moments calculated using the Thomas-Fermi (TF) and random phase approximations is always less than 1% and for description of phonon properties of a crystal, TF formalism was used. This formalism was successfully applied to investigate thermodynamic properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of the electron background is significant only at κ TF a > 0.1 and T ≪ T p ( 1 + h2 ) - 1 / 2 , where κTF is the Thomas-Fermi wavenumber, a is the ion sphere radius, T p ≡ ℏ ω p is the ion plasma temperature, h ≡ ω B / ω p , ωB is the ion cyclotron frequency, and ωp is the ion plasma frequency.

  15. Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2017-02-01

    Full Text Available In this work, using large-sized single crystals of high optical quality, the optical properties of Ba2TiSi2O8 were systematically investigated, including transmission spectra, refractive indices and nonlinear absorption properties. The crystal exhibits a high transmittance (>84% over a wide wavelength range from 340 to 2500 nm. The refractive indices in the range from 0.31256 to 1.01398 μm were measured, and Sellmeier’s equations were fitted by the least squares method. The nonlinear absorption properties were studied by using the open-aperture Z-scan technique, with a nonlinear absorption coefficient measured to be on the order of 0.257 cm/GW at the peak power density of 16.4 GW/cm2. Such high transmittance and wide transparency indicate that optical devices using the Ba2TiSi2O8crystal can be applied over a wide wavelength range. Furthermore, the small nonlinear absorption observed in Ba2TiSi2O8 will effectively increase the optical conversion efficiency, decreasing the generation of laser damage of the optical device.

  16. PA6 and Kevlar fiber reinforced isotactic polypropylene: Structure, mechanical properties and crystallization and melting behavior

    International Nuclear Information System (INIS)

    Zhao, Songfang; Cheng, Lei; Guo, Yong; Zheng, Yuying; Li, Baoming

    2012-01-01

    Highlights: ► KF was modified with caprolactam using toluenediisocyanate (TDI) as bridge. ► Modified KF improves interfacial interaction of iPP/KF/PA6 composites. ► Fiber and nylon 6 inhibited the crystallization of PP continuous phase. -- Abstract: To improve the thermal and mechanical properties of isotactic polypropylene (iPP), iPP/Kevlar fiber (KF)/polyamide 6 (PA6) composites were prepared via the melt-extrusion method on twin-screw extruder. Kevlar fiber was modified with caprolactam using toluenediisocyanate (TDI) as bridge. The microstructure of modified KF was successfully characterized by Fourier transform infrared (FT-IR), X-ray photoelectron spectrometer (XPS) and scanning electron microscopy (SEM), the results showed that KF was bonded with caprolactam and became coarser. Then the modified KF was introduced into iPP, the composites have better mechanical and thermal properties, implying that modification of KF was helpful to improve the interfacial interaction of iPP/KF/PA6 composites. Besides, the crystallization curves indicated that crystallization behavior of PA6 in the composites was homogeneous and fractional. Furthermore, compatibilizer content played an important role in the mechanical and thermal properties of composites.

  17. Copper chelators: chemical properties and bio-medical applications.

    Science.gov (United States)

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  18. Influence of MgSO{sub 4} doping on the properties of zinc tris–thiourea sulphate (ZTS) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Selvapandiyan, M., E-mail: mselvapandiyan@rediffmail.com [Department of Physics, Sri Vidya Mandir Arts and Science College, Uthangarai 635 207 (India); Arumugam, J. [Department of Physics, Sri Vidya Mandir Arts and Science College, Uthangarai 635 207 (India); Sundaramoorthi, P. [Department of Physics, Thiruvalluvar Government Arts College, Rasipuram 637 401 (India); Sudhakar, S. [CSIR–National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India)

    2013-12-15

    Highlights: •The influence of MgSO{sub 4} doping on the properties of ZTS single crystals grown at room temperature. •Thermal stability of the crystals increased with incorporation of Mg atom. •Energy band gap was estimated from UV–vis spectra. •ZTS is a potential material for frequency conversion. •Both pure and doped ZTS crystals are belonging to category of typical insulating materials. -- Abstract: The influence of MgSO{sub 4} doping on the properties of zinc tris–thiourea sulphate single crystals grown at room temperature by slow evaporation solution growth technique was studied. Powder XRD analysis confirmed the orthorhombic crystal structure with noncentrosymmetric space group Pca2{sub 1}. The mechanical properties of the grown crystals were analysed by Vicker’s microhardness method. Functional groups present in the materials were identified by FTIR spectral analysis in the range between 4000 and 400 cm{sup −1}. The UV–Vis spectrum indicates that the UV cut-off wavelength of the crystals has less than 297 nm. The thermal stability of the grown crystals was determined with the aid of thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Second order nonlinear optical behaviour of the grown crystals have been confirmed by Kurtz powder second harmonic generation (SHG) test.

  19. Crystallization kinetics and optical properties of titanium-lithium tetraborate glass containing europium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A. [Al Azhar University, Department of Physics, Faculty of Science (Girl' s Branch), Cairo (Egypt); Ratep, A. [Ain Shams University, Physics Department, Faculty of Girls, Cairo (Egypt); Abdel-Khalek, E.K.; Kashif, I. [Al-Azhar University, Department of Physics, Faculty of Science, Cairo (Egypt)

    2017-07-15

    The crystallization kinetics and optical properties of [60 Li{sub 2}B{sub 4}O{sub 7}-30 TiO{sub 2}-10 Eu{sub 2}O{sub 3}] (mol%) glass sample have been investigated. The present glass sample exhibits three crystallization exothermic peaks (T{sub p1}, T{sub p2,} and T{sub p3}) corresponding to the formation of LiBO{sub 2}, Li{sub 2}B{sub 4}O{sub 7,} and EuTiO{sub 3} phases, respectively. The presence of phase separation in the glass sample has been confirmed by scanning electron microscopic (SEM). The mean values of Avrami exponent (n = 3.1 and 4) around T{sub p1} and T{sub p2}, indicate that the bulk crystallization with a constant number of nuclei and with an increasing number of nuclei, respectively. The values of the local activation energy as a function of the fraction of crystallization (0.1 ≤ χ ≤ 0.9) decrease for the crystallization of LiBO{sub 2} and EuTiO{sub 3} and increase for the crystallization of Li{sub 2}B{sub 4}O{sub 7}. The values of n(χ) for T{sub p3} and T{sub p2} in the range (0.1 ≤ χ ≤ 0.9) and (0.1 ≤ χ ≤ 0.4), respectively, are larger than 4 indicate that the presence of anomalous in Avrami exponent. The trend of Judd-Ofelt intensity parameters (Ω{sub 2} > Ω{sub 4} > Ω{sub 6}) and the bonding parameter (δ) indicate that the lower symmetry and the highest covalent nature of the bonding around Eu{sup 3+} ions. (orig.)

  20. Evaluation of physical and chemical properties and their interactions in fat, oil, and grease (FOG) deposits.

    Science.gov (United States)

    Gross, Martin A; Jensen, Jeanette L; Gracz, Hanna S; Dancer, Jens; Keener, Kevin M

    2017-10-15

    Fat, oil and grease (FOG) blockages in sewer systems are a substantial problem in the United States. It has been estimated that over 50% of sewer overflows are a result of FOG blockages. In this work, a thorough laboratory study was undertaken to examine key variables that contribute to FOG deposit formation under controlled conditions. Physical and chemical properties and their interactions were evaluated and conditions that generated deposits that mimicked field FOG deposits were identified. It was found that 96 of the of 128 reaction conditions tested in the laboratory formed FOG deposits with similar physical and chemical characteristics as field FOG deposits. It was also found that FOG deposits can be created through fatty acid crystallization and not just saponification. Furthermore FOG deposits were found to be more complex than previously documented and contain free fatty acids, fatty acid metal salts, triacylglycerol's, diacylglycerol's and, monoacylglycerol's. Lastly it was found that FOG deposits that only contained saturated fatty acids were on average 2.1 times higher yield strength than deposits that contained unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  2. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  3. Effect of chemical and isotope substitution in LiH crystals on polariton emission

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    Measurements of fine structure of phonon-free line of free exciton radiation in mixed crystals LiH x F 1-x (o x D 1-x (O x F 1-x crystals a sharp increase in the intensity of phonon-free line of free exciton radiation as compared with its LO repetitions is observed. The experimental results suggest manifestation of polariton effects in mixed crystals produced on the basis of lithium hydride. 17 refs., 2 figs

  4. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  5. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    Science.gov (United States)

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  6. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  7. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol.

    Science.gov (United States)

    Ahmed, Hamzah; Shimpi, Manishkumar R; Velaga, Sitaram P

    2017-01-01

    Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.

  8. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    Science.gov (United States)

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free

  9. Emergent Low-Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO 3 Bulk Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lummen, Tom T. A. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Leung, J. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Kumar, Amit [School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT71NN Northern Ireland UK; Wu, X. [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; Ren, Y. [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; VanLeeuwen, Brian K. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Haislmaier, Ryan C. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA; Holt, Martin [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Lai, Keji [Department of Physics, University of Texas at Austin, Austin TX 78712 USA; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA

    2017-06-19

    The design of new or enhanced functionality in materials is traditionally viewed as requiring the discovery of new chemical compositions through synthesis. Large property enhancements may however also be hidden within already well-known materials, when their structural symmetry is deviated from equilibrium through a small local strain or field. Here, the discovery of enhanced material properties associated with a new metastable phase of monoclinic symmetry within bulk KNbO3 is reported. This phase is found to coexist with the nominal orthorhombic phase at room temperature, and is both induced by and stabilized with local strains generated by a network of ferroelectric domain walls. While the local microstructural shear strain involved is only approximate to 0.017%, the concurrent symmetry reduction results in an optical second harmonic generation response that is over 550% higher at room temperature. Moreover, the meandering walls of the low-symmetry domains also exhibit enhanced electrical conductivity on the order of 1 S m(-1). This discovery reveals a potential new route to local engineering of significant property enhancements and conductivity through symmetry lowering in ferroelectric crystals.

  10. Chemical and nuclear properties of Rutherfordium (Element 104)

    International Nuclear Information System (INIS)

    Kacher, C.D.

    1995-01-01

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr∼Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d 5/2 shell and a stabilization of the 7p l/2 shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr∼Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr∼Hf>Ti. An attempt was made to produce 263 Rf (a) via the 248 Cm( 22 Ne, α3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the 249 Bk( 18 O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to 256 Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the 248 Cm( 22 Ne, α3n) 263 Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A

  11. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  12. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties

    International Nuclear Information System (INIS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2010-01-01

    Recently, solid state photovoltaic Schottky diodes, able to detect ionizing radiation, in particular, x-ray and ultraviolet radiation, have been developed at the University of Rome 'Tor Vergata'. We report on a physical and electrical properties analysis of the device and a detailed study of its detection capabilities as determined by its electrical properties. The design of the device is based on a metal/nominally intrinsic/p-type diamond layered structure obtained by microwave plasma chemical vapor deposition of homoepitaxial single crystal diamond followed by thermal evaporation of a metallic contact. The device can operate in an unbiased mode by using the built-in potential arising from the electrode-diamond junction. We compare the expected response of the device to photons of various energies calculated through Monte Carlo simulation with experimental data collected in a well controlled experimental setup i.e., monochromatic high flux x-ray beams from 6 to 20 keV, available at the Diamond Light Source synchrotron in Harwell (U.K.).

  13. Extrinsic and intrinsic properties in metal–insulator transition of hydrothermally prepared vanadium dioxide crystals

    International Nuclear Information System (INIS)

    Lee, Myeongsoon; Kim, Don

    2014-01-01

    The clear insulator (monoclinic-VO 2 ) to metal (rutile-VO 2 ) transition (IMT) was observed in electrical conductivity and differential scanning calorimeter (DSC) measurements at around 340 K, which is IMT temperature (T H ), in the hydrothermally prepared VO 2 crystals. The occurrence of metal to insulator transition (MIT) temperature (T C ) was observed below 333 K during the first resistance measurement cycle in the most of cases. The sudden jump of the electrical resistance at IMT and MIT points was amplified several times than that of the first cycle during the repeated successive thermal cycles (heating and cooling across the IMT and MIT temperatures). T C and T H shifted to higher temperature by the repeated successive thermal cycles. This shift and the amplified jump might be related to the mechanical stress between the VO 2 crystals, i.e. extrinsic properties. However, the starting point of MIT, T CS = ∼ 336 K, and the starting point of IMT, T HS = ∼ 338 K, kept almost constant during the repeated thermal cycles (< 10 times). These two temperatures may be related to the intrinsic properties of the VO 2 : the phase transitions initiated at these temperatures regardless of the number of the repeated thermal cycles. The neat surface of the VO 2 crystals was severely damaged and the average size of particles reduced from 110 nm to 70–90 nm after extensively repeated thermal cycles (> 70 times). The damaged surface and the smaller particles, which would be originated from the mechanical stress caused by crystal volume change during the first order transition of the VO 2 , would weaken the electrical conduction path (loosen grain boundaries) between the VO 2 single crystals and would result in the amplified jump at the following MIT. This report may boost the study for the improved stability and lifetime of the VO 2 based electronic devices. - Highlights: • The sharp phase transition in cluster of VO 2 crystals depends on repeated thermal cycles.

  14. Synthesis, growth, and structural, optical, mechanical, electrical properties of a new inorganic nonlinear optical crystal: Sodium manganese tetrachloride (SMTC

    Directory of Open Access Journals (Sweden)

    M. Packiya raj

    2017-01-01

    Full Text Available A new inorganic nonlinear optical single crystal of sodium manganese tetrachloride (SMTC has been successfully grown from aqueous solution using the slow evaporation technique at room temperature. The crystals obtained using the aforementioned method were characterized using different techniques. The crystalline nature of the as-grown crystal of SMTC was analyzed using powder X-ray diffraction. Single-crystal X-ray diffraction revealed that the crystal belongs to an orthorhombic system with non-centrosymmetric space group Pbam. The optical transmission study of the SMTC crystal revealed high transmittance in the entire UV–vis region, and the lower cut-off wavelength was determined to be 240 nm. The mechanical strength of the as-grown crystal was estimated using the Vickers microhardness test. The second harmonic generation (SHG efficiency of the crystal was measured using Kurtz's powder technique, which indicated that the crystal has a nonlinear optical (NLO efficiency that is 1.32 times greater than that of KDP. The dielectric constant and dielectric loss of the compound were measured at different temperatures with varying frequencies. The photoconductivity study confirmed that the title compound possesses a negative photoconducting nature. The growth mechanism and surface features of the as-grown crystals were investigated using chemical etching analysis.

  15. Chemical, mechanical and biological properties of contemporary composite surface sealers.

    Science.gov (United States)

    Anagnostou, Maria; Mountouris, George; Silikas, Nick; Kletsas, Dimitris; Eliades, George

    2015-12-01

    To evaluate the chemical, mechanical, and biological properties of modern composite surface sealers (CSS) having different compositions. The CSS products tested were Biscover LV (BC), Durafinish (DF), G-Coat Plus (GC), and Permaseal (PS). The tests performed were: (A): degree of conversion (DC%) by ATR-FTIR spectroscopy; (B): thickness of O2-inhibition layer by transmission optical microscopy; (C): surface hardness, 10 min after irradiation and following 1 week water storage, employing a Vickers indenter (VHN); (D): color (ΔE*) and gloss changes (ΔGU) after toothbrush abrasion, using L*a*b* colorimetry and glossimetry; (E): accelerated wear (GC,PS only) by an OHSU wear simulator plus 3D profilometric analysis, and (F): cytotoxicity testing of aqueous CSS eluents on human gingival fibroblast cultures employing the methyl-(3)H thymidine DNA labeling method. Statistical analyses included 1-way (A, B, ΔE*, ΔGU) and 2-way (C, F) ANOVAs, plus Tukey post hoc tests. Student's t-test was used to evaluate the results of the accelerated wear test (α=0.05 for all). The rankings of the statistical significant differences were: (A) PS (64.9)>DF,BC,GC (56.1-53.9) DC%; (B) DF,PS (12.3,9.8)>GC,BC (5.2,4.8) μm; (C): GC (37.6)>BC,DF (32.6,31.1)>PS (26.6) VHN (10 min/dry) and BC,DF (29.3,28.7)>GC(26.5)>PS(21.6) VHN (1w/water), with no significant material/storage condition interaction; (D): no differences were found among GC,DF,BC,PS (0.67-1.11) ΔE*, with all values within the visually acceptable range and PS,BC (32.8,29.4)>GC,DF (19.4,12.9) ΔGU; (E): no differences were found between GC and PS in volume loss (0.10,0.11 mm(3)), maximum (113.9,130.5 μm) and mean wear depths (30.3,27.5 μm); (F): at 1% v/v concentration, DF showed toxicity (23% vital cells vs 95-102% for others). However, at 5% v/v concentration DF (0%) and BC (9%) were the most toxic, whereas GC (58%) and PS (56%) showed moderate toxicity. Important chemical, mechanical, and biological properties exist among

  16. Mixed vanadates: optimization of optical properties by varying chemical composition

    Czech Academy of Sciences Publication Activity Database

    Levushkina, V.; Spassky, D.; Brik, M.G.; Zych, E.; Madej, A.; Belsky, A.N.; Bartosiewicz, Karol; Nikl, Martin

    2017-01-01

    Roč. 189, Sep (2017), s. 140-147 ISSN 0022-2313 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : yttrium vanadate * energy-transfer * single-crystals * YVO 4 crystals * doped YVO 4 * luminescence * growth * scintillator * LuVO 4 * improvement Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  17. Crystal phase transition in LixNa1-xGdF4 solid solution nanocrystals - Tuning of optical properties

    KAUST Repository

    Bański, Mateusz; Afzaal, Mohammad; Cha, Dong Kyu; Wang, X.; Tan, Hua; Misiewicz, Jan J.; Podhorodecki, Artur P.

    2014-01-01

    field symmetry and emission properties from doped europium (Eu3+) ions. We report that for lithium (Li+) substitution <15%, the hexagonal crystal field is preferred, while the Eu3+ emission is already tuned, whereas at higher Li+ substitution, a phase

  18. Piezoelectric Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} crystal: crystal growth, piezoelectric and acoustic properties

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry; Emelin, Evgenii [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); National University of Science and Technology MISiS, Moscow (Russian Federation); Ortega, Luc [Univ. Paris-Sud, CNRS, UMR 8502, Laboratoire de Physique des Solides, Orsay Cedex (France); Plotitcyna, Olga; Irzhak, Dmitry [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); Erko, Alexei; Zizak, Ivo; Vadilonga, Simone [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Berlin (Germany); Buzanov, Oleg [FOMOS Materials Co., Moscow (Russian Federation); Leitenberger, Wolfram [Universitaet Potsdam Institut fuer Physik, Potsdam (Germany)

    2016-08-15

    Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{sub 11} and d{sub 14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/+36 {sup circle} -cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties. (orig.)

  19. In situ crystallized zirconium phenylphosphonate films with crystals vertically to the substrate and their hydrophobic, dielectric, and anticorrosion properties.

    Science.gov (United States)

    Cui, Zhaohui; Zhang, Fazhi; Wang, Lei; Xu, Sailong; Guo, Xiaoxiao

    2010-01-05

    The in situ crystallization technique has been utilized to fabricate zirconium phenylphosphonate (ZrPP) films with their hexagonal crystallite perpendicular to the copper substrate. The micro/nano roughness surface structure, as well as the intrinsic hydrophobic characteristic of the surface functional groups, affords ZrPP films excellent hydrophobicity with water contact angle (CA) ranging from 134 degrees to 151 degrees , without any low-surface-energy modification. Particularly, in the corrosive solutions such as acidic or basic solutions over a wide pH from 2 to 12, no obvious fluctuation in CA was observed for all the ZrPP film. The k values of the hydrophobic ZrPP films are in the low-k range (k feature is proposed to bear ZrPP film a more stable low-k value in an ambient atmosphere. Besides, the polarization current of ZrPP films is reduced by 2 orders of magnitude, compared to that of the untreated copper substrate. Even deposited in a vacuum oven for 30 days at room temperature, ZrPP films also show excellent corrosion resistance, indicating a stable anticorrosion property.

  20. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  1. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    Science.gov (United States)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  2. Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance

    KAUST Repository

    Banavoth, Murali

    2016-12-14

    Hybrid organic-inorganic perovskite crystals have recently become one of the most important classes of photoactive materials in the solar cell and optoelectronic communities. Albeit improvements have focused on state-of-the-art technology including various fabrication methods, device architectures, and surface passivation, progress is yet to be made in understanding the actual operational temperature on the electronic properties and the device performances. Therefore, the substantial effect of temperature on the optoelectronic properties, charge separation, charge recombination dynamics, and photoconversion efficiency are explored. The results clearly demonstrated a significant enhancement in the carrier mobility, photocurrent, charge carrier lifetime, and solar cell performance in the 60 ± 5 °C temperature range. In this temperature range, perovskite crystal exhibits a highly symmetrical relaxed cubic structure with well-aligned domains that are perpendicular to a principal axis, thereby remarkably improving the device operation. This finding provides a new key variable component and paves the way toward using perovskite crystals in highly efficient photovoltaic cells.

  3. Physical and chemical properties for sandstone and bentonites

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-01-01

    Physical and chemical properties such as porosity, pore-size distribution, dry density, solid density, mineralogy and chemical composition, which are important parameters for the understanding and analysis of the diffusion phenomena of radionuclides and ions in bentonite and in the geosphere, were measured. The measurements were performed for sandstone, of which fundamental data and information are limited. For bentonite, 3 kinds of bentonites with different smectite contents (Kunigel-V1, Kunipia-F, MX80) were used. In the measurements of the physical and chemical properties of rock, the measurements of solid density by pychnometer, the measurements of porosity, dry density and solid density by water saturation method, the measurements of porosity, dry density, solid density, pore-size distribution and specific surface area of pores by Hg porosimetry, the identifications of constituent minerals by X-ray Diffractometry (XRD), the measurement of chemical composition by whole rock analysis, the observations of micropore structure by Laser Confocal Microscope (LCM), the measurements of water vaporization curves and the measurements of the homogeneity of the rock by penetration of KMnO 4 were performed. While, in the measurements of the physical and chemical properties for bentonite, water basis water content, water content, porosity, dry density, solid density and their distributions in samples were measured, and the degree of inhomogeneity was quantitatively evaluated by comparing with data and information reported up to date. The porosities of sandstone are 15.6±0.21% for water saturation method and 15.5±0.2% for Hg porosimetry, and similar values were obtained in both methods. The solid densities ranged 2.65-2.69 Mg/m 3 for 3 methods, and the average value was 2.668±0.012 Mg/m 3 . The average pore size was 88.8±0.5nm, and pore sizes ≤10μm shared 80% of total pore volume and pore sizes ≤1μm shared 40%. The specific surface area of the pores is 4.09±0.017 m

  4. Thermal and Optical Properties of CdS Nanoparticles in Thermotropic Liquid Crystal Monomers

    Directory of Open Access Journals (Sweden)

    Marc Alnot

    2010-03-01

    Full Text Available Two new mesogenic monomers, namely 3,3’-dimethoxy-4,4’-di(hydroxyhexoxy-N-benzylidene-o-Tolidine (Ia and 4,4’-di(6-hydroxyhexoxy-N-benzylidene-o-Tolidine (IIa, were reacted with cadmium sulfide (CdS via an in situ chemical precipitation method in ethanol to produce CdS nanocomposites. A series of different mass compositions of CdS with Ia and IIa ranging from 0.1:1.0 to 1.0:1.0 (w/w were prepared and characterized using X-ray Diffraction (XRD, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR, Transmission Electron Microscopy (TEM, Polarizing Optical Microscopy (POM and Differential Scanning Calorimetry (DSC, X-ray Photoelectron Spectroscopy (XPS and Photoluminescence Spectroscopy (PL. XRD showed that the broad peaks are ascribed to the formation of cubic CdS nanoparticles in both Ia and IIa. The average particle size for both nanocomposites was less than 5 nm with a narrower size distribution when compared with pure CdS nanoparticles. The analyses from POM and DSC demonstrated that mass composition from 0.1:1.0 up to 0.5:1.0 of CdS:Ia nanocomposites showed their enantiotropic nematic phase. On the other hand, polarizing optical microscopy (POM for IIa nanocomposites showed that the liquid crystal property vanished completely when the mass composition was at 0.2:1.0. PL emissions for CdS: Ia or IIa nanocomposites indicated deep trap defects occurred in these both samples. The PL results revealed that addition of CdS to Ia monomers suppressed the photoluminescence intensity of Ia. However, the introduction of CdS to IIa monomers increased the photoluminescence and was at a maximum when the mass composition was 0.3:1.0, then decreased in intensity as more CdS was added. The XPS results also showed that the stoichiometric ratios of S/Cd were close to 1.0:1.0 for both types of nanocomposites for a mass composition of 1.0:1.0 (CdS:matrix.

  5. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  7. CHEMENGL/CHIMISTE, Chemical and Physical Properties of Elements

    International Nuclear Information System (INIS)

    Levart, Eugene

    2007-01-01

    Description of program or function: Data Base on basic chemical, physical, and nuclear properties of the elements in the Mendeleev Table (118 elements, 4435 nuclides comprising isotopes and isomers). Example: density electric and thermal conductivity, masses of isotopes and isomers, ionisation potential, etc. from H to Ei (Z=118). Both French and English versions are available. In addition, the French version (513 pages) contains other general information about the elements such as mineralogy, industrial applications, toxicity, historical information on discovery of the elements, etc. The latest version contains updates of atomic masses, the names of symbols of transuranium elements have been updated in accordance with the IUPAC recommendations. The values of the abundance of elements in the sun have been corrected according to Grevesse et al. The price of the different elements have been updated, some minor errors have been corrected and the presentation of the cover page has been improved. Several pages have been added to the last chapter of the French version (CHIMISTE), this chapter is not available in the English version (CHEMENGL)

  8. Chemical composition and biological properties of Satureja avromanica Maroofi.

    Science.gov (United States)

    Abdali, Elham; Javadi, Shima; Akhgari, Maryam; Hosseini, Seyran; Dastan, Dara

    2017-03-01

    Satureja avromanica is an indigenous plant which is frequently used as a spice in Avraman-Kurdistan region of Iran. The present study aimed to investigate the chemical composition, antimicrobial and antioxidant properties of the S. avromanica . In addition, rosmarinic acid and total phenolic content of S. avromanica was assessed by spectrophotometric method and HPTLC. The essential oil and methanolic extract were isolated by hydrodistillation and maceration methods, respectively. A total of 32 compounds representing 98.6% of the essential oil were identified by GC-MS and GC-FID. The main constituents were n -pentacosane (23.8%), spathulenol (11.5%), β-bourbonen (11.3%) and n -docosane (11.0%). The antibacterial activity of samples were carried out by disc diffusion method and evaluate the minimal inhibitory concentration (MIC) essential oil and methanolic extract were found to be effective against Staphylococcus aureus , Bacillus cereus and Bacillus pumilus . The highest scavenging activity was found for methanolic extract of S. avromanica (21.58 µg/mL) and the total phenolics of methanolic extract of S. avromanica was 95.3 mg GAE/g. The rosmarinic acid content of S. avromanica methanolic extract was 0.83 mg/g plant. Antioxidant activity and rosmarininc acid content of S. avromanica suggests that the essential oil and methanolic extract of S. avromanica has great potential for application as a natural antimicrobial and antioxidant agent to preserve food.

  9. Chemical stability and physical properties of Caesium uranates

    International Nuclear Information System (INIS)

    Berton, J.P.; Baron, D.; Coquerelle, M.

    1998-01-01

    Caesium is one of the most abundant fission products in PWR nuclear fuel or in fast reactor fuel as well. A work program has been started at the TUI Karlsruhe, in collaboration with EDF Etudes et Recherches, to determine the thermal stability and conductivity, the mechanical properties and the thermal expansion coefficient of Cs 2 UO 4 . The Caesium mono-uranate was obtained by a chemical reaction between Cs 2 O 3 and U 3 O 8 powders mixed together, pressed and heated at 670 deg. C for 24 hours. The compound was found stable up to 830 deg. C. Mechanical compressive hardening tests allowed to evaluate the elastic modulus versus temperature in the range 200 to 800 deg. C. Furthermore the viscous behaviour of the compound above 400 deg. C was confirmed. The thermal expansion coefficient of Cs 2 UO 4 was found somewhat 40% higher than the thermal expansion coefficient of UO 2 . The thermal conductivity is about 1.5 to 1.8 W/m/K for temperatures ranging from 100 to 700 deg. C, a value very similar to the UO 2 fuel thermal conductivity at high burnup in the same temperature range. (author)

  10. Novel edible oil sources: Microwave heating and chemical properties.

    Science.gov (United States)

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterisation of gaharu hydrosol: Physical, chemical and microbiological properties

    International Nuclear Information System (INIS)

    Nur Humaira Lau Abdullah; Salmah Moosa

    2010-01-01

    Gaharu hydrosol is produced during the hydro distillation of resinous wood part of Aquilaria sp. This aromatic water is being considered as a by-product in the industry. There is interest to turn this aromatic by-product into aroma therapy products. The present study is carried out in order to understand the properties of gaharu hydrosol, physically, chemically and microbiologically. Gaharu hydrosol from two different extraction facilities for example at Kedaik Agar wood Sdn. Bhd. and Malaysian Nuclear Agency were characterised in this study. All the gaharu hydrosol samples displayed acidic nature, with pH in the range of 3.62 - 4.53. Four antioxidant assays were carried out to ascertain the antioxidant capabilities of two gaharu hydrosol samples through the total phenolic content assay, ABTS + radical scavenging activity, DPPH· radical scavenging activity and ferric reducing activity (FRAP). The results revealed that the samples exhibited lower antioxidant capabilities as compared to the positive control. For microbial population study, fungi was not present in the samples as there was no growth observed on the Plate Sabouraud Dextrose Agar (SDA) using membrane filtration technique. The antibacterial activity of the gaharu hydrosol against Staphylococcus aureus and Pseudomonas aeruginosa was determined using agar dilution method and disk diffusion method. The results showed that the gaharu hydrosol did not inhibit the growth of both the bacteria. The results obtained from this study will be further evaluated for the development of new products using this aromatic gaharu by-product. (author)

  12. Magma oceanography. II - Chemical evolution and crustal formation. [lunar crustal rock fractional crystallization model

    Science.gov (United States)

    Longhi, J.

    1977-01-01

    A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.

  13. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    NARCIS (Netherlands)

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be

  14. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    Science.gov (United States)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  15. Physical properties of pre-crystallized mixtures of cocoa butter and cupuassu fat

    Energy Technology Data Exchange (ETDEWEB)

    Quast, L.B.; Luccas, V.; Kieckbusch, T.G.

    2011-07-01

    The physical characteristics of pre-crystallized binary mixtures of cocoa butter (Bahia + Indonesian blend) and 5, 10, 15, 20, 25 and 30% (w/w) cupuassu fat were determined. recrystallization was carried out using a lab-scale agitated jacket vessel reactor (700 mL). Samples were submitted to differential scanning calorimetry and X-Ray diffraction. The solid fat content and rupture force were also quantified. The snap values of the crystallized mixture decreased with an increase in the amount of alternative fat. A similar trend was observed with respect to the melting point values. The cocoa butter and cupuassu fat X-ray diffraction patterns confirmed the predominant formation of the a-circumflex polimorph. The addition of up to 30% cupuassu fat did not significantly affect the values of the physical properties when compared to pure cocoa butter (Author).

  16. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  17. Synthesis, Crystal Structure and Water Vapor Adsorption Properties of a Porous Supramolecular Architecture

    Directory of Open Access Journals (Sweden)

    Rui Qiao

    2017-10-01

    Full Text Available A new complex, [Cu4(HL4(H2O14] (1, H3L·HCl = 5-((4-carboxypiperidin-1-ylmethylisophthalic acid hydrochloride, has been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and powder X-ray diffraction (PXRD. The result of the X-ray diffraction analysis reveals that the complex crystallizes in monoclinic, space group C2/c and three unique Cu(II atoms that are connected by partially deprotonated HL2− anion to form a cyclic structure. The rich hydrogen bonding and π-π non-covalent packing interactions extend cyclic units into a three-dimensional (3D supramolecular polymer. Moreover, the thermogravimetric (TG analysis and water vapor adsorption property of 1 were also discussed.

  18. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages oforganic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  19. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties.

    Science.gov (United States)

    Li, Mingjie; Wu, Xiaochen; Zhou, Jiyu; Kong, Qingshan; Li, Chaoxu

    2016-04-01

    Single-crystal Au microflakes with the planar area over 10(3)μm(2) (i.e. being accessible to the human eye resolution) were synthesized in an environment-friendly route by directing two-dimensional growth of Au nanocrystals into macroscopic scales with amino acids as both reducing agents and capping agents. Side groups of amino acids were found to be a determinant parameter to tune the dimension and size of Au single crystals. The successful synthesis of Au microflakes provides an unprecedented opportunity to bridge nanotechnology and macroscopic devices, and hereby to start a new scenario of exploring their unique properties and applications in optoelectronic devices and bio-sensing fields across multiple length scales. For example, Au microflakes respond to air humidity upon depositing on films of chitin nanofibrils, and sense various physiological molecules as electrode materials of biosensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.