WorldWideScience

Sample records for chemical mechanical polishing

  1. Use of chemical mechanical polishing in micromachining

    Science.gov (United States)

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  2. Chemical Mechanical Polishing of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Pirouz

    1999-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) as an enabling electronic technology for many aerospace applications. The Lewis team is focusing on the chemical vapor deposition of the thin, single-crystal SiC films from which devices are fabricated. These films, which are deposited (i.e., epitaxially "grown") on commercial wafers, must consist of a single crystal with very few structural defects so that the derived devices perform satisfactorily and reliably. Working in collaboration (NASA grant) with Professor Pirouz of Case Western Reserve University, we developed a chemical-mechanical polishing (CMP) technique for removing the subsurface polishing damage prior to epitaxial growth of the single-crystal SiC films.

  3. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  4. Chemical mechanical polishing (CMP) of sapphire

    Science.gov (United States)

    Zhu, Honglin

    The concept of chemical mechanical polishing (CMP) was examined for finishing sapphire. In this study sapphire was used as a model system for oxide ceramics. The removal rates were determined by weight loss. Surface quality and structure were characterized with surface probe microscopy (SPM). Polishing experiments were designed to test the chemically modified surface layer. A series of abrasives with various hardnesses including mono-crystalline and polycrystalline diamond, alpha and gamma alumina, zirconia, ceria and silica were used. Diaspore was also evaluated. The results indicated that, with similar particle size and shape, harder abrasives do not necessarily cause faster material removal and better surface finish, and abrasives with hardness equal to or less than sapphire such as alpha alumina and gamma alumina achieved the best surface finish and efficient material removal. A hypothesis was proposed that the sapphire surface was modified by water to form a thin hydration laver with structure and hardness close to diaspore. Abrasives with a hardness between diaspore and sapphire polished the c-plane of sapphire with good surface finish and efficient removal. SPM indicated the hydration layer on the c-plane surface was about 1 nm thick. Removal rate and surface finish as a function of pH were also examined on c-plane sapphire with nano-alumina abrasives. The removal rate as a function of pH was compared to the solubility behavior of alumina. The results showed the deviation of pH from the lowest solubility pH for alumina (pH = 5) was a driving force for the surface reaction to form a hydration layer. The anisotropy of sapphire strongly affects removal rate and surface quality in CMP. The relationships among orientation. pH and abrasive were studied for sapphire with c (0001), a (11-20), and m (10-10) planes. Based on the results, the CMP process for sapphire includes chemical reaction of the surface to form a thin reaction layer that is softer than sapphire

  5. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate

    International Nuclear Information System (INIS)

    The sapphire substrates are polished by traditional chemical mechanical polishing (CMP) and ultrasonic flexural vibration (UFV) assisted CMP (UFV-CMP) respectively with different pressures. UFV-CMP combines the functions of traditional CMP and ultrasonic machining (USM) and has special characteristics, which is that ultrasonic vibrations of the rotating polishing head are in both horizontal and vertical directions. The material removal rates (MRRs) and the polished surface morphology of CMP and UFV-CMP are compared. The MRR of UFV-CMP is two times larger than that of traditional CMP. The surface roughness (root mean square, RMS) of the polished sapphire substrate of UFV-CMP is 0.83 A measured by the atomic force microscopy (AFM), which is much better than 2.12 A obtained using the traditional CMP. And the surface flatness of UFV-CMP is 0.12 μm, which is also better than 0.23 μm of the traditional CMP. The results show that UFV-CMP is able to improve the MRR and finished surface quality of the sapphire substrates greatly. The material removal and surface polishing mechanisms of sapphire in UFV-CMP are discussed too.

  6. Development of clean chemical mechanical polishing systems; Clean CMP system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, M.; Hosokawa, M. [Ebara Corp., Tokyo (Japan)

    1998-10-20

    Described herein are clean chemical mechanical polishing (CMP) systems developed by Ebara. A CMP system needs advanced peripheral techniques, in addition to those for grinding adopted by the conventional system, in order to fully exhibit its inherent functions. An integrated design concept is essential for the CMP steps, including slurry supplying, polishing, washing, process controlling and waste fluid treatment. The Ebara has adopted a standard concept `Clean CMP, dry-in and dry-out of wafers,` and provided world`s highest grades of techniques for inter-layer insulating film, shallow trench isolation, plug and wiring. The head for the polishing module is specially designed by FEM, to improve homogeneity of wafers from the center to edges. The dresser is also specially designed, to improve pad surface topolody after dressing. A slurry dipsersing method is developed to reduce slurry consumption. Various washing modules, designed to have the same external shape, can be allocated to various functions. 10 figs.

  7. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  8. Ceria concentration effect on chemical mechanical polishing of optical glass

    International Nuclear Information System (INIS)

    It was found material removal rate (MRR) sharply increased from 250 to 675 nm/min as the concentration decreased from 1 to 0.25 wt% in optical glass chemical mechanical polishing (CMP) using ceria slurries. Scanning electron microscopy was employed to characterize the ceria abrasive used in the slurry. Atomic force microscopy results showed good surface had been got after CMP. Schematic diagrams of the CMP process were shown. Furthermore, the absorption spectra indicated a sudden change from Ce4+ to Ce3+ of the ceria surface when the concentration decreased, which revealed a quantum origin of the phenomenon

  9. Nano-scratch evaluations of copper chemical mechanical polishing

    International Nuclear Information System (INIS)

    Nanoscale scratches are applied using an atomic force microscope (AFM) to investigate the mechanical aspect of the material removal process in chemical–mechanical polishing. The scratching experiments are carried out with the AFM, whose probe has an SiO2 particle (radius ∼ 400 nm) bonded to it, at low normal forces in deionized (DI) water and a slurry. The experimental results show that the scratch depth increases with increasing normal force. Under a constant force, the scratch depth of the surface in the slurry is significantly larger than that in DI water. This is due to a soft passivation layer generated during chemical interactions on the copper surface. The passivation layer significantly affects the coefficient of friction (COF) and wear rate. At a low scratch depth (below 20 nm), the COF obtained in DI water is ∼ 1.74 times larger than that obtained in the slurry. The wear rate obtained in the slurry is larger than that obtained in the DI water. - Highlights: ► Material removal of chemical–mechanical polishing is explored by nano-scratch testing. ► Scratch profiles and applied forces depend on the generation of passivation layer. ► The scratch depths increase with the generation of passivation layer in the slurry. ► The coefficient of friction in the slurry is smaller than that in deionized (DI) water. ► The wear rate in the slurry is significantly larger than the wear rates in the DI water

  10. The Effects of Nodular Colloidal Silica on Chemical Mechanical Polishing

    Science.gov (United States)

    Haba, Shinichi; Hong, Gisik; Morioka, Yoshitaka; Kobuchi, Yasushi; Katoda, Takashi

    2003-08-01

    Nodular colloidal silica is proposed to be used as a consumable material for the chemical mechanical polishing (CMP). The typical spherical colloidal silica slurry is effective in decreasing both the defect level and the surface roughness of the semiconductor interlayer dielectric (ILD) film during CMP, but the removal rate is also decreased. Hence, the nodular colloidal silica slurry has been developed for the purpose of improving the removal rate of silicon substrate. A few of particles of the nodular colloidal silica slurry are associated with the active porous surface. The surface characteristics of the silica particles are considered to affect the removal rate of the plasma-tetra-ethoxy-silane (p-TEOS) interlayer dielectric film. In particular in the acidic condition, the nodular colloidal silica slurry yields a high removal rate with p-TEOS film, while in the alkaline condition, it yields a lower removal rate due to the surface morphology change. These CMP performances are recognized to depend on the different characteristics between the spherical colloidal and fumed silica.

  11. Research on the molecular scale material removal mechanism in chemical mechanical polishing

    Institute of Scientific and Technical Information of China (English)

    WANG YongGuang; ZHAO YongWu

    2008-01-01

    This paper investigates a novel molecular scale material removal mechanism in chemical mechanical polishing (CMP) by incorporating the order-of-magnitude calculations,particle adhesion force,defect of wafer,thickness of newly formed oxidizedlayer,and large deformation of pad/particle not discussed by previous analysis.The theoretical analysis and experimental data show that the indentation depth,scratching depth and polishing surface roughness are on the order of molecular scale or less.There.fore,this novel mechanism has gained the support from wide order-of- magnitude calculations and experimental data.In addition,with the decrease in the particle size,the molecular scale removal mechanism is plausibly one of the most promising removal mechanisms to clarify the CMP polishing process.The results are useful to substantiating the molecular-scale mechanism of the CMP material removal in addition to its underlying theoretical foundation.

  12. Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films

    Science.gov (United States)

    Peethala, Brown Cornelius

    Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices ( 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (Black Diamond (BD) is a SiCOH type material with a dielectric constant of ˜2.9 and here, polishing of BD was investigated in order to understand the polishing behavior of SiCOH-based materials using the barrier slurries. The slurries that were developed for polishing Co and Ru in this work and Ta/TaN (earlier) were investigated for polishing the Black Diamond (BD) films. Here, it was found that ionic salts play a major role in enhancing the BD RRs to ˜65 nm/min compared to no removal rates in the absence of additives. A removal mechanism in the presence of ionic salts is proposed.

  13. Mechanism of Ge2Sb2Te5 chemical mechanical polishing

    International Nuclear Information System (INIS)

    We report the exploration of Ge2Sb2Te5 (GST) chemical mechanical polishing (CMP) mechanism. Static etching experiments of GST film were first conducted in two typical silica-based slurries (pH 2 and pH 11). To investigate the chemical nature of GST in different chemical environments, solubility of GST in slurries and also the zeta potentials of GST powders vs pH were measured. We further compared the polishing performance to the removal rate (RR), surface roughness, polishing selectivity of GST over oxide, and influence on the phase change property by using the two typical slurries. Then measurements were done for the hardness of GST films before and after polishing, particle size of the slurry during polishing, and also the open circuit potential (OCP) of GST in the two slurries. On the basis of the aforementioned results, we proposed a possible mechanism for GST CMP including reaction formulas, removal of GST as molecules instead of as a lump, surface hydration in alkaline region and electrochemical process, which was partially supported by residue analysis for 8″ patterned wafers using energy dispersive spectroscopy (EDS) under transmission electron microscope (TEM).

  14. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shoji, E-mail: nagaoka@kmt-iri.go.jp [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)

    2015-02-02

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  15. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    International Nuclear Information System (INIS)

    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging

  16. Tribochemical interaction between nanoparticles and surfaces of selective layer during chemical mechanical polishing

    International Nuclear Information System (INIS)

    Nanoparticles have been widely used in polish slurries such as those in the chemical mechanical polishing (CMP) process. For understanding the mechanisms of CMP, an atomic force microscope (AFM) is used to characterize polished surfaces of selective layers, after a set of polishing experiments. To optimize the CMP polishing process, one needs to get information on the interaction between the nano-abrasive slurry nanoparticles and the surface of selective layer being polished. The slurry used in CMP process of the solid surfaces is slurry with large nanoparticle size colloidal silica sol nano-abrasives. Silica sol nano-abrasives with large nanoparticle are prepared and characterized by transmission electron microscopy, particles colloidal size, and Zeta potential in this paper. The movement of nanoparticles in liquid and the interaction between nanoparticles and solid surfaces coating with selective layer are very important to obtain an atomic alloy smooth surface in the CMP process. We investigate the nanoparticle adhesion and removal processes during CMP and post-CMP cleaning. The mechanical interaction between nanoparticles and the wafer surface was studied using a microcontact wear model. This model considers the nanoparticle effects between the polishing interfaces during load balancing. Experimental results on polishing and cleaning are compared with numerical analysis. This paper suggests that during post-CMP cleaning, a combined effort in chemical and mechanical interaction (tribochemical interactions) would be effective in removal of small nanoparticles during cleaning. For large nanoparticles, more mechanical forces would be more effective. CMP results show that the removal rate has been improved to 367 nm/min and root mean square (RMS) of roughness has been reduced from 4.4 to 0.80 nm. Also, the results show that the silica sol nano-abrasives about 100 nm are of higher stability (Zeta potential is −65 mV) and narrow distribution of nanoparticle

  17. Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wang, Tongqing; Jiang, Liang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn

    2015-10-01

    Highlights: • The Ru surface chemical and mechanical property varies with KIO{sub 4} slurry pH. • In alkaline slurry, the corrosion proceeds uniformly like a direct dissolution. • In neutral and acidic slurries, Ru exhibits passivation behavior. • MRR is highest in neutral slurry due to inhomogeneous RuO{sub 2}·2H{sub 2}O/RuO{sub 3} passivation. • Weak alkaline slurry is preferred to get good MRR and avoid toxic RuO{sub 4} formation. - Abstract: When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO{sub 4}-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO{sub 2}·2H{sub 2}O/RuO{sub 3} inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO{sub 4}.

  18. Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing

    International Nuclear Information System (INIS)

    Highlights: • The Ru surface chemical and mechanical property varies with KIO4 slurry pH. • In alkaline slurry, the corrosion proceeds uniformly like a direct dissolution. • In neutral and acidic slurries, Ru exhibits passivation behavior. • MRR is highest in neutral slurry due to inhomogeneous RuO2·2H2O/RuO3 passivation. • Weak alkaline slurry is preferred to get good MRR and avoid toxic RuO4 formation. - Abstract: When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO4-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO2·2H2O/RuO3 inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO4

  19. Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    Institute of Scientific and Technical Information of China (English)

    LEI Hong; BU Naijing; ZHANG Zefang; CHEN Ruling

    2010-01-01

    Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.

  20. Chemical mechanical polishing of steel substrate using colloidal silica-based slurries

    Science.gov (United States)

    Jiang, Liang; He, Yongyong; Luo, Jianbin

    2015-03-01

    AISI 52100 steel has been widely used in the mechanical industry due to its excellent mechanical properties and high availability. In some cases, an ultra-smooth surface of AISI 52100 steel is needed and is even indispensable for the satisfactory performance of devices. In this paper, chemical mechanical polishing technique was employed to prepare the ultra-smooth surface of AISI 52100 steel. Colloidal silica was used as the abrasive. The effects of pH, complexing agent such as glycine, H2O2 and benzotriazole (BTA) on the polishing performance were studied. It is revealed that, with the increase of pH, the static etching rate (SER) and the material removal rate (MRR) are both gradually reduced, and the post-CMP surface roughness Ra decreases. This is attributed to the fact that compact and passive iron oxides, especially Fe(III) oxides, gradually form on the top surface. At pH 4.00, in the presence of glycine, and with the increase of the H2O2 concentration, the SER is further suppressed, and the surface roughness Ra gradually decreases; the MRR initially dramatically increases due to the fact that, with the addition of small amount of H2O2, the porous iron oxide layer with relatively low mechanical strength can be rapidly formed on the surface. Moreover, glycine intensifies the chemical dissolution by chelating iron ions, especially Fe(II) ions, and thereby the mechanical strength of the oxide layer further weakens. Then, after reaching the peak value, the MRR gradually decreases when the H2O2 concentration further increases since the compactness of the oxide layer gradually increases. With the increase of the BTA concentration, the MRR is gradually suppressed and the surface roughness Ra decreases due to the formation of Fe-BTA passivating film on the top surface. Finally, a two-step polishing process was developed. The polishing results show that, within 20 min, a rough surface of AISI 52100 steel with the Ra value of 188 nm can be polished into an ultra

  1. Chemical Mechanical Polishing of Ge2Sb2Te5 Using Abrasive-Free Solutions of Iron Trichloride

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Xia; WANG Liang-Yong; ZHANG Ze-Fang; HE Ao-Dong; ZHONG Min; LIU Wei-Li; WU Liang-Cai; SONG Zhi-Tang

    2012-01-01

    Chemical mechanical polishing (CMP) of amorphous Ge2Sb2Te5 (GST) is studied using aqueous solutions of iron trichloride (FeCl3 ) as possible abrasive-free slurries.The polishing performance of abrasive-free solutions is compared with abrasive-containing (3wt%o colloidal silica) slurry in terms of polishing rate and surface quality.The experimental results indicate that the abrasive-free solutions have a higher polishing rate and better surface quality.In order to further investigate the polishing mechanism,post-CMP GST films using the abrasive-free solutions and abrasive-containing slurry are characterized by x-ray photoelectron spectroscopy. Finally,it is verified that the abrasive-free solutions have no influence on the electrical property of the post-CMP GST films through the resistivity test.

  2. Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant.

    Science.gov (United States)

    Hu, C Y; Lo, S L; Li, C M; Kuan, W H

    2005-04-11

    The effect of surfactants on the treatment of chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation (ECF) process was studied. Two surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) were employed in this study to compare the effect of cationic (CTAB) and anodic (SDS) surfactants on ECF. The cationic surfactant can enhance the removal of the turbidity, but anodic surfactant cannot. It can be explained by the hetero-coagulation theory. Moreover, the addition of CTAB in CMP wastewater can reduce the sludge volume and the flotation/sedimentation time in ECF process. The residual turbidity and dissolved silicon dropped with the increase of charge loading. No CTAB pollution problem exists after the ECF process. PMID:15811659

  3. Static dissolution rate of tungsten film versus chemical adjustments of a reused slurry for chemical mechanical polishing

    International Nuclear Information System (INIS)

    Tungsten is widely used as deposited layer for the multi-level interconnection structures of wafers. The chemical composition of abrasive slurry plays an important role in chemical mechanical polishing (CMP) process. Removal of tungsten is driven by complex oxidation mechanisms between slurry components. The slurry for tungsten CMP generally contains oxidizer, iron catalyst, complexing agents and stabilizers in a pH adjusted solution of abrasive particles. Interaction between iron complex and H2O2 in the slurry is the main factor governing the chemical mode of material removal, oxidation potencies and kinetics. In this study, we investigate the effects of chemical additives in silica (SiO2)-based slurry on the removal rate of the tungsten film. Experiments were carried out in static batch as a preliminary study to understand and optimize chemical mechanisms in CMP-Tungsten process. Experiment designs were conducted to understand the influence of the chemical additives on the main performances of W-CMP. Used slurry, concentrated and retreated with chemical adjustments, is compared to the original slurry as a reference.

  4. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L-1). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  5. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  6. Fabrication of ruthenium thin film and characterization of its chemical mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yi-Sin [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yen, Shi-Chern, E-mail: scyen@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Jeng, King-Tsai [Research Division I, TIER, 7F, No. 16-8, Dehuei St., Taipei 10461, Taiwan (China)

    2015-07-15

    The fabrication of Ru thin film is conducted on titanium (Ti)-based rotating disk electrodes (RDE) by electrodeposition and characteristics of its chemical mechanical polishing (CMP) are investigated to be employed for copper diffusion layer applications in various semiconductor-device interconnects. The electrodeposits obtained under different electrodeposition conditions are characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). Experimental results indicate that the Ru electrodeposition exhibits a Tafel behavior with a 2e metal ion reduction process. Both exchange current density and cathodic transfer coefficient are determined. A quasi Koutecky–Levich analysis is proposed to analyze the electrodeposition processes under different applied current density conditions and the activation overpotentials together with electrodeposition rate constants are obtained. For Ru CMP operations, slurries containing metal-free 2wt% ammonium persulfate and 2wt% silica abrasive at various pH values are employed. Potentiodynamic polarization studies indicate that the corrosion current density varies in the presence of ammonia while the static etch rate remains low. Both chemical and mechanical effects are investigated and analyzed, and the CMP efficacy factors are obtained. - Highlights: • Ru electrodeposition is a 2e metal ion reduction process with Tafel behavior. • Ru electrodeposition on Ti RDE fits a quasi Koutecky–Levich equation. • Metal-free slurry is employed for CMP operation to avoid contamination. • The Ru CMP process is affected by the surface condition and the pH of slurry. • The CMP efficacy factor should be high in order to obtain a smooth surface.

  7. The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

    Science.gov (United States)

    Tsujimura, Manabu

    2016-06-01

    For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.

  8. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate

    International Nuclear Information System (INIS)

    To improve their chemical mechanical polishing (CMP) performance, ceria nanoparticles were surface modified with γ-aminopropyltriethoxysilane (APS) through silanization reaction with their surface hydroxyl group. The compositions, structures and dispersibility of the modified ceria particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), laser particle size analyzer, zeta potential measurement and stability test, respectively. The results indicated that APS had been successfully grafted onto the surface of ceria nanoparticles, which led to the modified ceria nanoparticles with better dispersibility and stability than unmodified ceria particles in aqueous fluids. Then, CMP performance of the modified ceria nanoparticles on glass substrate was investigated. Experimental results showed that the modified ceria particles exhibited lower material removal rate (MRR) but much better surface quality than unmodified ceria particles, which may be explained by the hardness reduction of ceria particles, the enhancement of lubrication of the particles and substrate surfaces, and the elimination of the agglomeration among the ceria particles.

  9. Iron trichloride as oxidizer in acid slurry for chemical mechanical polishing of Ge2Sb2Te5

    International Nuclear Information System (INIS)

    The effect of iron trichloride (FeCl3) on chemical mechanical polishing (CMP) of Ge2Sb2Te5 (GST) film is investigated in this paper. The polishing rate of GST increases from 38 nm/min to 144 nm/min when the FeCl3 concentration changes from 0.01 wt% to 0.15 wt%, which is much faster than 20 nm/min for the 1 wt% H2O2-based slurry. This polishing rate trends are inversely correlated with the contact angle data of FeCl3-based slurry on the GST film surface. Thus, it is hypothesized that the hydrophilicity of the GST film surface is associated with the polishing rate during CMP. Atomic force microscope (AFM) and optical microscope (OM) are used to characterize the surface quality after CMP. The chemical mechanism is studied by potentiodynamic measurements such as Ecorr and Icorr to analyze chemical reaction between FeCl3 and GST surface. Finally, it is verified that slurry with FeCl3 has no influence on the electrical property of the post-CMP GST film by the resistivity–temperature (RT) tests. (interdisciplinary physics and related areas of science and technology)

  10. Role of the Lysine as a Complexing Agent in Ge2Sb2Te5 Chemical Mechanical PolishingSlurries

    International Nuclear Information System (INIS)

    In this work,we investigate the polishing behavior, static dissolution and electrochemical performace of Ge2Sb2Te5 in the presense of lysine as a complexing agent with H2O2 employed as an oxidizer. Electrochemical techniques are used to investigate polishing behavior under static conditions as a function of lysine concentration .The polishing rate of GST increases with lysine concentraion increasing in acidic solutions at pH 5.2. The static dissolution rate shows the same trend. In the presence of lysine, the surface of GST film is smooth. To verify the complexes of the GST and lysine soluble, the Inductively Coupled Plasma is used which demonstrates that complexes with GST and lysine are soluble and the solubleness of Te element is increasing with lysine concentration increasing. In addition, electrochemical investigation indicates that an enhanced polishing rate and static dissolution is due to the Icorr increase varying lysine concentrations. Finally, X-ray photoelectron spectroscope results suggest that the chemical mechanism of lysine as a complexing agent is that lysine has the chemical reaction with GST oxide

  11. Modeling effects of abrasive particle size and concentration on material removal at molecular scale in chemical mechanical polishing

    International Nuclear Information System (INIS)

    A novel material removal model as a function of abrasive particle size and concentration was established in chemical mechanical polishing (CMP) based on molecular scale mechanism, micro-contact mechanics and probability statistics. A close-form equation was firstly developed to calculate the number of effective particles. It found nonlinear dependences of removal rate on the particle size and concentration, being qualitatively agreement with the published experimental data. The nonlinear relation results from the couple relationship among abrasive number, slurry concentration and surface atoms' binding energy with the particle size. Finally, the system parameters such as the operational conditions and materials properties were incorporated into the model as well.

  12. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-03-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions.

  13. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    Science.gov (United States)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  14. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  15. Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.

    Science.gov (United States)

    Kawaguchi, Kentaro; Ito, Hiroshi; Kuwahara, Takuya; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji

    2016-05-11

    We applied our original chemical mechanical polishing (CMP) simulator based on the tight-binding quantum chemical molecular dynamics (TB-QCMD) method to clarify the atomistic mechanism of CMP processes on a Cu(111) surface polished with a SiO2 abrasive grain in aqueous H2O2. We reveal that the oxidation of the Cu(111) surface mechanically induced at the friction interface is a key process in CMP. In aqueous H2O2, in the first step, OH groups and O atoms adsorbed on a nascent Cu surface are generated by the chemical reactions of H2O2 molecules. In the second step, at the friction interface between the Cu surface and the abrasive grain, the surface-adsorbed O atom intrudes into the Cu bulk and dissociates the Cu-Cu bonds. The dissociation of the Cu-Cu back-bonds raises a Cu atom from the surface that is mechanically sheared by the abrasive grain. In the third step, the raised Cu atom bound to the surface-adsorbed OH groups is removed from the surface by the generation and desorption of a Cu(OH)2 molecule. In contrast, in pure water, there are no geometrical changes in the Cu surface because the H2O molecules do not react with the Cu surface, and the abrasive grain slides smoothly on the planar Cu surface. The comparison between the CMP simulations in aqueous H2O2 and pure water indicates that the intrusion of a surface-adsorbed O atom into the Cu bulk is the most important process for the efficient polishing of the Cu surface because it induces the dissociation of the Cu-Cu bonds and generates raised Cu atoms that are sheared off by the abrasive grain. Furthermore, density functional theory calculations show that the intrusion of the surface-adsorbed O atoms into the Cu bulk has a high activation energy of 28.2 kcal/mol, which is difficult to overcome at 300 K. Thus, we suggest that the intrusion of surface-adsorbed O atoms into the Cu bulk induced by abrasive grains at the friction interface is a rate-determining step in the Cu CMP process. PMID:27092706

  16. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Pan, Guoshun, E-mail: pangs@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Xiaolei; Xu, Li; Zou, Chunli; Gong, Hua; Luo, Guihai [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2014-10-15

    Highlights: • CMP removal mechanism of Si-face SiC wafer is investigated through XPS analysis. • UV–vis spectroscopy is used to study CMP removal mechanisms. • CMP removal model of Si-face SiC wafer is proposed. • The variations of atomic step morphology on ultra-smooth surface via AFM is studied. - Abstract: Chemical mechanical polishing (CMP) removal mechanisms of on-axis Si-face SiC wafer have been investigated through X-ray photoelectron spectroscopy (XPS), UV–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). XPS results indicate that silicon oxide is formed on Si-face surface polished by the slurry including oxidant H{sub 2}O{sub 2}, but not that after immersing in H{sub 2}O{sub 2} solution. UV–vis spectroscopy curves prove that • OH hydroxyl radical could be generated only under CMP polishing by the slurry including H{sub 2}O{sub 2} and abrasive, so as to promote oxidation of Si-face to realize the effective removal; meanwhile, alkali KOH during CMP could induce the production of more radicals to improve the removal. On the other side, ultra-smooth polished surface with atomic step structure morphology and extremely low Ra of about 0.06 nm (through AFM) is obtained using the developed slurry with silica nanoparticle abrasive. Through investigating the variations of the atomic step morphology on the surface polished by different slurries, it's reveals that CMP removal mechanism involves a simultaneous process of surface chemical reaction and nanoparticle atomic scale abrasion.

  17. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)

    International Nuclear Information System (INIS)

    Highlights: • CMP removal mechanism of Si-face SiC wafer is investigated through XPS analysis. • UV–vis spectroscopy is used to study CMP removal mechanisms. • CMP removal model of Si-face SiC wafer is proposed. • The variations of atomic step morphology on ultra-smooth surface via AFM is studied. - Abstract: Chemical mechanical polishing (CMP) removal mechanisms of on-axis Si-face SiC wafer have been investigated through X-ray photoelectron spectroscopy (XPS), UV–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). XPS results indicate that silicon oxide is formed on Si-face surface polished by the slurry including oxidant H2O2, but not that after immersing in H2O2 solution. UV–vis spectroscopy curves prove that • OH hydroxyl radical could be generated only under CMP polishing by the slurry including H2O2 and abrasive, so as to promote oxidation of Si-face to realize the effective removal; meanwhile, alkali KOH during CMP could induce the production of more radicals to improve the removal. On the other side, ultra-smooth polished surface with atomic step structure morphology and extremely low Ra of about 0.06 nm (through AFM) is obtained using the developed slurry with silica nanoparticle abrasive. Through investigating the variations of the atomic step morphology on the surface polished by different slurries, it's reveals that CMP removal mechanism involves a simultaneous process of surface chemical reaction and nanoparticle atomic scale abrasion

  18. Effects of Calcination and Milling Process Conditions for Ceria Slurry on Shallow-Trench-Isolation Chemical-Mechanical Polishing Performance

    Science.gov (United States)

    Kim, Jun-Seok; Kang, Hyun-Goo; Kanemoto, Manabu; Paik, Ungyu; Park, Jea-Gun

    2007-12-01

    To improve the performance of shallow trench isolation chemical-mechanical polishing (STI-CMP) in terms of the removal selectivity of oxide and nitride films and the formation of surface defects, we investigated the effects of the calcination and milling process conditions during ceria slurry synthesis. We have focused on the effects of particle size distribution, the large-particle size, and the dispersion stability in a ceria slurry. We determined the optimum bead size for milling and appropriate calcination temperatures in order to obtain a reasonable particle distribution, with lower numbers of fine primary particles and large, agglomerated particles, in ceria slurry. This was achieved by reducing the quantity of aggregated particles during milling and two-step calcination process generating higher-density particles. These results can be qualitatively explained by abrasive collisions occurring between the milling beads and the decarbonation of cerium carbonate through diffusion during the manufacturing process used for the ceria slurry.

  19. A nano-scale mirror-like surface of Ti–6Al–4V attained by chemical mechanical polishing

    Science.gov (United States)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti–6Al–4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti–6Al–4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  20. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-08-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.

  1. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-05-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.

  2. Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior

    International Nuclear Information System (INIS)

    The core/shell-structured organic/inorganic composite abrasive has an important potential application in damage-free chemical mechanical polishing (CMP) due to its non-rigid mechanical property. In this work, the PS/MSiO2 composites, containing polystyrene (PS) sphere (211 ± 4 nm) cores and mesoporous silica shells (31 ± 3 nm in thickness) were synthesized through directed surface sol–gel process of tetraethylorthosilicate on the polymer cores in the presence of the cetyltrimethylammonium bromide surfactant. For comparison, the conventional core/shell PS/NSiO2 composites with non-porous silica shells were also prepared via a modified Stöber procedure that involved the hydrolysis of TEOS under acidic condition. The physical properties of the samples were examined by small-angle X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, and nitrogen adsorption–desorption. As novel abrasives, the core/shell-structured PS/MSiO2 composites were introduced into the CMP process for silicon oxide films. The oxide-CMP performance among conventional solid silica particles, PS/NSiO2 composites, and novel PS/MSiO2 composites was explored by atomic force microscopy. Polishing results indicated that the substrate revealed a comparable root-mean-square surface roughness (0.25 ± 0.03 and 0.22 ± 0.02 nm, respectively) after CMP with PS/NSiO2 and PS/MSiO2 abrasives under the same polishing conditions. However, the material removal rate of the PS/MSiO2 composites (123 ± 15 nm/min) was about three times larger than that of the PS/NSiO2 composites (47 ± 13 nm/min). The reduced surface roughness and improved removal rate might be due to the optimization of the physical and/or chemical environments in the local contacting region between abrasives and substrates. The as-synthesized core/shell PS/MSiO2 composites with mesoporous shells are expected to

  3. Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com; Qin, Jiawei; Wang, Yayun; Li, Zefeng [Changzhou University, School of Material Science and Engineering (China)

    2015-09-15

    The core/shell-structured organic/inorganic composite abrasive has an important potential application in damage-free chemical mechanical polishing (CMP) due to its non-rigid mechanical property. In this work, the PS/{sub M}SiO{sub 2} composites, containing polystyrene (PS) sphere (211 ± 4 nm) cores and mesoporous silica shells (31 ± 3 nm in thickness) were synthesized through directed surface sol–gel process of tetraethylorthosilicate on the polymer cores in the presence of the cetyltrimethylammonium bromide surfactant. For comparison, the conventional core/shell PS/{sub N}SiO{sub 2} composites with non-porous silica shells were also prepared via a modified Stöber procedure that involved the hydrolysis of TEOS under acidic condition. The physical properties of the samples were examined by small-angle X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, and nitrogen adsorption–desorption. As novel abrasives, the core/shell-structured PS/{sub M}SiO{sub 2} composites were introduced into the CMP process for silicon oxide films. The oxide-CMP performance among conventional solid silica particles, PS/{sub N}SiO{sub 2} composites, and novel PS/{sub M}SiO{sub 2} composites was explored by atomic force microscopy. Polishing results indicated that the substrate revealed a comparable root-mean-square surface roughness (0.25 ± 0.03 and 0.22 ± 0.02 nm, respectively) after CMP with PS/{sub N}SiO{sub 2} and PS/{sub M}SiO{sub 2} abrasives under the same polishing conditions. However, the material removal rate of the PS/{sub M}SiO{sub 2} composites (123 ± 15 nm/min) was about three times larger than that of the PS/{sub N}SiO{sub 2} composites (47 ± 13 nm/min). The reduced surface roughness and improved removal rate might be due to the optimization of the physical and/or chemical environments in the local contacting region between abrasives

  4. Chemical mechanical polishing of Indium phosphide, Gallium arsenide and Indium gallium arsenide films and related environment and safety aspects

    Science.gov (United States)

    Matovu, John Bogere

    As scaling continues with advanced technology nodes in the microelectronic industry to enhance device performance, the performance limits of the conventional substrate materials such as silicon as a channel material in the front-end-of-the-line of the complementary metal oxide semiconductor (CMOS) need to be surmounted. These challenges have invigorated research into new materials such as III-V materials consisting of InP, GaAs, InGaAs for n-channel CMOS and Ge for p-channels CMOS to enhance device performance. These III-V materials have higher electron mobility that is required for the n-channel while Ge has high hole mobility that is required for the p-channel. Integration of these materials in future devices requires chemical mechanical polishing (CMP) to achieve a smooth and planar surface to enable further processing. The CMP process of these materials has been associated with environment, health and safety (EH&S) issues due to the presence of P and As that can lead to the formation of toxic gaseous hydrides. The safe handling of As contaminated consumables and post-CMP slurry waste is essential. In this work, the chemical mechanical polishing of InP, GaAs and InGaAs films and the associated environment, health and safety (EH&S) issues are discussed. InP removal rates (RRs) and phosphine generation during the CMP of blanket InP films in hydrogen peroxide-based silica particle dispersions in the presence and absence of three different multifunctional chelating carboxylic acids, namely oxalic acid, tartaric acid, and citric acid are reported. The presence of these acids in the polishing slurry resulted in good InP removal rates (about 400 nm min-1) and very low phosphine generation (surfaces (0.1 nm RMS surface roughness). The optimized slurry compositions consisting of 3 wt % silica, 1 wt % hydrogen peroxide and 0.08 M oxalic acid or citric acid that provided the best results on blanket InP films were used to evaluate their planarization capability of patterned

  5. Preparation of Fe-doped colloidal SiO(2) abrasives and their chemical mechanical polishing behavior on sapphire substrates.

    Science.gov (United States)

    Lei, Hong; Gu, Qian; Chen, Ruling; Wang, Zhanyong

    2015-08-20

    Abrasives are one of key influencing factors on surface quality during chemical mechanical polishing (CMP). Silica sol, a widely used abrasive in CMP slurries for sapphire substrates, often causes lower material removal rate (MRRs). In the present paper, Fe-doped colloidal SiO2 composite abrasives were prepared by a seed-induced growth method in order to improve the MRR of sapphire substrates. The CMP performance of Fe-doped colloidal SiO2 abrasives on sapphire substrates was investigated using UNIPOL-1502 CMP equipment. Experimental results indicate that the Fe-doped colloidal SiO2 composite abrasives exhibit lower surface roughness and higher MRR than pure colloidal SiO2 abrasives for sapphire substrates under the same testing conditions. Furthermore, the acting mechanism of Fe-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by x-ray photoelectron spectroscopy. Analytical results show that the Fe in the composite abrasives can react with the sapphire substrates to form aluminum ferrite (AlFeO3) during CMP, which promotes the chemical effect in CMP and leads to improvement of MRR. PMID:26368752

  6. Chemical polishing of epitoxial silicon wafer

    International Nuclear Information System (INIS)

    SSD telescopes are used for the determination of the kind and energy of charged particles produced by nuclear reactions, and are the equipments combining ΔE counters and E counters. The ΔE counter is a thin SSD which is required to be thin and homogeneous enough to get the high resolution of measurement. The SSDs for ΔE counters have so far been obtained by polishing silicon plates mechanically and chemically or by applying electrolytic polishing method on epitaxial silicon wafers, but it was very hard to obtain them. The creative etching equipment and technique developed this time make it possible to obtain thin SSDs for ΔE counters. The outline of the etching equipment and its technique are described in the report. The etching technique applied for the silicon films for ΔE counters with thickness of about 10 μm was able to be experimentally established in this study. (Kobatake, H.)

  7. Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped...

  8. Study of impurity distribution in mechanically polished, chemically treated and high vacuum degassed pure niobium samples using the TOFSIMS technique

    Science.gov (United States)

    Bose, A.; Joshi, S. C.

    2015-07-01

    The performance of superconducting radio frequency (SRF) cavities is strongly influenced by various impurities within the penetration depth (∼50 nm) of niobium (Nb), which in turn depends on the applied surface treatments. The effect of these surface treatments on the impurities of Nb has been explored using various surface analytical techniques. However, the results are still inadequate in many aspects and the effect of sequential SRF treatments on the impurity distribution has not been explored. The present study analyzes various impurities within the penetration depth of Nb samples, treated by SRF cavity processing techniques such as colloidal silica polishing (simulating centrifugal barrel polishing), buffer chemical polishing (BCP), high pressure rinsing (HPR) and degassing under a high vacuum (HV) condition at 600 °C for 10 h. Static, dynamic and slow sputtering modes of the time of flight secondary ion mass spectrometry (TOFSIMS) technique were employed to study the effect of the above treatments on interstitial impurities, hydrocarbons, oxides, acidic residues, reaction products and metallic contaminations. The study confirms that the impurity distribution in Nb is not only sensitive to the surface treatments, but also to their sequence. Varying the treatment sequence prior to HV degassing treatments affected the final impurity levels in HV degassed bulk Nb samples. The HV degassing treatment was capable of reducing hydrogen contamination, but oxygen, carbon and metallic impurities were introduced into bulk Nb due to poor isolation from furnace contamination. On the other hand, BCP treated samples exhibited minimum hydrocarbon and metallic contamination along with the thinnest oxide layer at ∼2.8 nm, but led to extensive contamination of the oxide layer with residuals and reaction products of acids used in the BCP solution. HPR treatment, on the other hand, was effective in reducing the acidic impurities on the top surface. Variability of the

  9. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    Science.gov (United States)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  10. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp [Research Center for Ultra-precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced in conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.

  11. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    International Nuclear Information System (INIS)

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF4-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF3 acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO2 slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced in conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface

  12. Study of impurity distribution in mechanically polished, chemically treated and ultra-high vacuum degassed pure Niobium samples using TOFSIMS technique

    CERN Document Server

    Bose, A

    2015-01-01

    The performance of Superconducting radio frequency cavities (SCRF) are highly dependent on the surface treatment processes, which in turn is influenced by the chemistry within the penetration depth of Niobium (Nb). The present study analyses various impurities within the RF penetration depth (~50nm) of Nb samples treated by SCRF cavity processing techniques like colloidal silica polishing (simulating centrifugal barrel polishing), buffer chemical polishing (BCP), high pressure rinsing (HPR) and degassing under ultra high vacuum (UHV) condition at 600{\\deg}C for 10hrs. Various modes of Time of flight secondary ion mass spectrometry (TOFSIMS) technique was employed to study the effect of the above treatments on the vast spectrum of impurities that include interstitials, hydrocarbons, oxides, acidic residuals, reaction products and metallic impurities. UHV degassing treatment was the only treatment capable of reducing hydrogen contamination, but, it led to extensive oxygen, carbon and metallic impurities in the ...

  13. Synthesis of Fe metal precipitated colloidal silica and its application to W chemical mechanical polishing (CMP) slurry.

    Science.gov (United States)

    Kang, Young-Jae; Prasad, Y Nagendra; Kim, In-Kwon; Jung, Seok-Jo; Park, Jin-Goo

    2010-09-01

    The objective of this paper is to develop a new method of Fe (metal) precipitation on colloidal silica to overcome the stability problem, which would be responsible in producing defects, with commercially available fumed silica slurry containing Fe ions. The slurry was developed by using sodium silicate (Na(2)SiO(3)) as a raw material and the concentration of precipitation of metal was controlled by addition of Fe salt (Fe(NO(3))(3)). To compare the concentration of precipitated Fe with directly added Fe ions in slurry solutions, static electrochemical and peroxide decomposition experiments were performed. Although the performance of the Fe precipitation appeared to be lower than Fe ion addition during these experiments, nearly equal removal rate was observed due to the dynamic condition during polishing. The Fe precipitated colloidal silica particles at the concentration of 52ppm showed the similar W removal rate and selectivity of W to TEOS (tetraethylorthosilicate) to commercially available fumed silica slurry containing externally added Fe ions. The introduction of Fe particle precipitation on colloidal silica particles would result in a longer shelf life time and hence lower defect level in W CMP. PMID:20546766

  14. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates

    Science.gov (United States)

    Tseng, Kuan-Chun; Yen, Yu-Ting; Thomas, Stuart R.; Tsai, Hung-Wei; Hsu, Cheng-Hung; Tsai, Wen-Chi; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Zhiming M.; Chueh, Yu-Lun

    2016-02-01

    The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide variety of flexible substrates, suitable for use in the large scale CIGS photovoltaic industry.The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide

  15. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper

    International Nuclear Information System (INIS)

    Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.

  16. Electrolyte composition and removal mechanism of Cu electrochemical mechanical polishing

    Institute of Scientific and Technical Information of China (English)

    边燕飞; 翟文杰; 程媛媛; 朱宝全; 王金虎

    2014-01-01

    The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization (ECMP) at different pH values including 5-methyl-1H-benzotriazole (TTA), hydroxyethylidenediphosphoric acid (HEDP), and tribasic ammonium citrate (TAC) were investigated by electrochemical techniques, X-ray photoelectron spectrometer (XPS) analysis, nano-scratch tests, AFM measurements, and polishing of Cu-coated blanket wafers. The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions, especially at pH=8. The optimal electrolyte compositions (mass fraction) are 6% HEDP, 0.3% TTA and 3% TAC at pH=8. The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential. The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion. The surface topography evolution before and after electrochemical polishing (ECP) illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution, that is, the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate. This understanding is beneficial for optimization of ECMP processes.

  17. Microscopic machining mechanism of polishing based on vibrations of liquid

    International Nuclear Information System (INIS)

    A molecular dynamics method has been applied to study the mechanism of polishing based on vibrations of liquid. Movements of polishing particles and formations of impact dents are simulated and discussed. The abrasive effect between particle and machined substrate is evaluated empirically. Polishing qualities, including roughness and fractal character under multiple impacts, are obtained by numerical methods. Results show that the particle will vibrate and roll viscously on the substrate. Press, tear and self-organization effects will be responsible for the formation of impact dents. Simulation results are compared with experimental data to verify the conclusions

  18. Chemical mechanical polishing for silicon wafer by composite abrasive slurry%利用复合磨粒抛光液的硅片化学机械抛光

    Institute of Scientific and Technical Information of China (English)

    许雪峰; 马冰迅; 黄亦申; 彭伟

    2009-01-01

    为了提高硅片的抛光速率,利用复合磨粒抛光液对硅片进行化学机械抛光.分析了SiO2磨粒与聚苯乙烯粒子在溶液中的ζ电位及粒子间的相互作用机制,观察到SiO2磨粒吸附在聚苯乙烯及某种氨基树脂粒子表面的现象.通过向单一磨粒抛光液中加入聚合物粒子的方法获得了复合磨粒抛光液.对硅片传统化学机械抛光与利用复合磨粒抛光液的化学机械抛光进行了抛光性能研究,提出了利用复合磨粒抛光液的化学机械抛光技术的材料去除机理,并分析了抛光工艺参数对抛光速率的影响.实验结果显示,利用单一SiO2磨料抛光液对硅片进行抛光的抛光速率为180 nm/min;利用SiO2磨料与聚苯乙烯粒子或某氨基树脂粒子形成的复合磨粒抛光液对硅片进行抛光的抛光速率分别为273 nm/min和324 nm/min.结果表明,利用复合磨粒抛光液对硅片进行抛光提高了抛光速率,并可获得Ra为0.2 nm的光滑表面.%In order to increase the polishing rate for a silicon wafer,the composite abrasive slurry was used in Chemical Mechanical Polishing(CMP). Zeta potentials of silica abrasives and polystyrene particles in the slurry were measured at various pH values, and the mechanism of interactions between silica abrasives and polymer particles was analyzed. Small silica abrasives were observed to attach onto the surfaces of the polystyrene particles and some resin particles.Then,the composite abrasive slurry was obtained by adding some polymer particles into single abrasive slurry. In comparison with the polishing performance of traditional CMP and CMP using composite abrasive slurry, the mechanism of material removal of CMP using composite abrasive slurry was proposed, and the influence of craft parameters on the polishing rate was studied through the experiments. Experimental results indicate that the polishing rate is 180 nm/min with single silica abrasive slurry, and 273 nm/min, 324 nm

  19. Effect of FA/O complexing agents and H2O2 on chemical mechanical polishing of ruthenium in weakly alkaline slurry

    Science.gov (United States)

    Bo, Duan; Weijing, An; Jianwei, Zhou; Shuai, Wang

    2015-07-01

    This paper investigated the effect of FA/O and hydrogen peroxide (H2O2) on ruthenium (Ru) removal rate (RR) and static etching rate (SER). It was revealed that Ru RR and SER first linearly increased then slowly decreaseed with the increasing H2O2 probably due to the formation of uniform Ru oxides on the surface during polishing. Their corrosion behaviors and states of surface oxidation were analyzed. In addition, FA/O could chelate Ru oxides (such as (RuO4)2- and RuO4- changed into soluble amine salts [R(NH3)4] (RuO4)2) and enhance Ru RR. The non-ionic surfactant AD was used to improve the Ru CMP performance. In particular, the addition of AD can lead to significant improvement of the surface roughness. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Natural Science Foundation of Hebei Province (No. E2013202247), the Science and Technology Plan Project of Hebei Province (Nos. Z2010112, 10213936), the Hebei Provincial Department of Education Fund (No. 2011128), and the Scientific Research Fund of Hebei Provincial Education (No. QN2014208).

  20. Chemical composition and antimicrobial activity of Polish herbhoneys.

    Science.gov (United States)

    Isidorov, V A; Bagan, R; Bakier, S; Swiecicka, I

    2015-03-15

    The present study focuses on samples of Polish herbhoneys (HHs), their chemical composition and antimicrobial activity. A gas chromatography-mass spectrometry (GC-MS) method was used to analyse eight samples of herbal honeys and three samples of nectar honeys. Their antimicrobial activities were tested on selected Gram-positive (Bacillus cereus, Staphylococcus aureus, Staphylococcus schleiferi) and Gram-negative (Escherichia coli) bacteria, as well as on pathogenic fungi Candida albicans. Ether extracts of HHs showed significant differences in composition but the principal groups found in the extracts were phenolics and aliphatic hydroxy acids typical of royal jelly and unsaturated dicarboxylic acids. In spite of the differences in chemical composition, antimicrobial activity of the extracts of HHs against all the tested microorganisms except E. coli was observed. PMID:25308646

  1. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  2. Chemical vapor deposition of pyrolytic carbon on polished substrates

    OpenAIRE

    DesprÉs, J.-F.; Vahlas, C.; Oberlin, A.

    1993-01-01

    Pyrolytic carbon thin (4-100 nm) films were obtained from méthane in a hot wall reactor on optically polished inert substrates by varying the déposition time and temperature. They were characterized by all modes of TEM. They are composed in majority of lamellar pyrocarbon whose thickness and disorder increases with increasing temperature. Isotropic carbon islands are also observed at the upper surface of the film.

  3. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  4. Efficacy of chemical treatments in eliminating Salmonella and Escherichia coli O157:H7 on scarified and polished alfalfa seeds.

    Science.gov (United States)

    Holliday, S L; Scouten, A J; Beuchat, L R

    2001-10-01

    Alfalfa seeds are sometimes subjected to a scarification treatment to enhance water uptake, which results in more rapid and uniform germination during sprout production. It has been hypothesized that this mechanical abrasion treatment diminishes the efficacy of chemical treatments used to kill or remove pathogenic bacteria from seeds. A study was done to compare the effectiveness of chlorine (20,000 ppm), H2O, (8%), Ca(OH)2 (1%), Ca(OH)2 (1%) plus Tween 80 (1%), and Ca(OH)2 (1%) plus Span 20 (1%) treatments in killing Salmonella and Escherichia coli O157:H7 inoculated onto control, scarified, and polished alfalfa seeds obtained from two suppliers. The influence of the presence of organic material in the inoculum carrier on the efficacy of sanitizers was investigated. Overall, treatment with 1% Ca(OH)2 was the most effective in reducing populations of the pathogens. Reduction in populations of pathogens on seeds obtained from supplier I indicate that chemical treatments are less efficacious in eliminating the pathogens on scarified seeds compared to control seeds. However, the effectiveness of chemical treatment in removing Salmonella and E. coli O157:H7 from seeds obtained from supplier 2 was not markedly affected by scarification or polishing. The presence of organic material in the inoculum carrier did not have a marked influence on the efficacy of chemicals in reducing populations of test pathogens. Additional lots of control, scarified, and polished alfalfa seeds of additional varieties need to be tested before conclusions can be drawn concerning the impact of mechanical abrasion on the efficacy of chemical treatment in removing or killing Salmonella and E. coli O157:H7. PMID:11601695

  5. Surface topography in mechanical polishing of 6H-SiC (0001) substrate

    Science.gov (United States)

    Yin, Ling; Huang, Han

    2007-12-01

    Silicon carbide (SiC) single crystals have been used as the substrates of a new generation of wide band-gap semiconductors due to their unparalleled combination of high breakdown voltage, extreme temperature tolerance, mobility and radiation hardness. For their applications, the SiC substrates need to be machined with nanometric surface quality as well as high form accuracy. However, the superior properties of the materials render their machinability extremely difficult. In this paper, we report the form error and surface roughness of the 6H-SiC (0001) substrate mechanically polished using 3 μm diamond powders in two different polishing processes. One process was concentrated-load polishing; the other was surface polishing. The polished surfaces were evaluated using white light interferometry and atomic force microscopy (AFM) for assessment of two- and three-dimensional topographies including form error and surface roughness. We found that a large form error was produced on the 6H-SiC (0001) substrate in the concentrated-load polishing. The root-mean-square (RMS) surface roughness of approximately 4 nm was resulted. Surface polishing of the 6H-SiC (0001) substrate remarkably improved form accuracy. The RMS surface roughness of approximately 2.5 nm was obtained.

  6. Materials of 45. Scientific Assembly of Polish Chemical Society. Volumes 1-3

    International Nuclear Information System (INIS)

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum, flow analysis, and high-energy materials

  7. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  8. Materials of jubilee scientific assembly of the Polish Chemical Society, Warsaw'94. Homo chemicus

    International Nuclear Information System (INIS)

    The Jubilee Scientific Assembly of the Polish Chemical Society has been held in 1994 in Warsaw. The general view on scientific progress in chemistry in Poland has been presented during plenary session. The conference has been divided into 15 sessions and 3 microsymposia covering the most important research fields in chemistry. Sessions topics were: analytical chemistry, chemistry of solid state materials, physical chemistry, coordination chemistry, medical chemistry, chemistry of metalorganic compounds, inorganic chemistry, organic chemistry, chemistry of polymers, young scientists forum, didactics and history of chemistry, catalysis, crystallochemistry, chemical technology, environment protection. Microsymposia's topics were as follows: chemistry of saccharides, electrochemistry, membranes and membrane processes

  9. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    International Nuclear Information System (INIS)

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory

  10. Silica based polishing of {100} and {111} single crystal diamond

    International Nuclear Information System (INIS)

    Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed. (paper)

  11. Colloid Aspects of Chemical-Mechanical Planarization

    Directory of Open Access Journals (Sweden)

    Matijević, E.

    2010-09-01

    Full Text Available The essential parts of interconnects for silicon based logic and memory devices consist of metal wiring (e.g. copper, a barrier metal (Ta, TaN, and of insulation (SiO2 , low-k polymer. The deposition of the conducting metal cannot be confined to trenches, resulting in additional coverage of Cu and Ta/TaN on the surface of the dielectrics, yielding an electrically conducting continuous but an uneven surface. The surplus metal must be removed until a perfectly flat surface consisting of electrically isolated metal lines is achieved with no imperfections. This task is accomplished by the chemical-mechanical planarization (CMP process, in which the wafer is polished with a slurry containing abrasives of finely dispersed particles in submicrometer to nanometer size. The slurries also contain dissolved chemicals to modify the surfaces to be planarized. Eventually the final product must be cleared of any adhered particles and debris left after polishing is completed. Obviously the entire process deals with materials and interactions which are the focal subjects of colloid and surface science, such as the natures of abrasive particles and their stability in the slurry, the properties of various surfaces and their modifications, adhesion and detachment of the particles and different methods for the characterization of constituents, as well as elucidation of the relevant interfacial phenomena. This review endeavors to describe the colloid approach to optimize the materials and processes in order to achieve desirable polish rates and final surfaces with no imperfections. Specifically, the effects of the composition, size, shape, and charge of abrasive particles on the polish process and the quality of planarized wafers is described in detail. Furthermore, the interactions of metal surfaces with oxidizing, chelating, and other species which affect the dissolution and surface modification of metal (copper surfaces are illustrated and related to the

  12. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices.

  13. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    Science.gov (United States)

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland. PMID:26136137

  14. Modeling and Simulation of Abrasive Flow in Chemical Mechanical Polishing Using Discrete Element Method%化学机械抛光中磨粒运动特性离散元仿真研究

    Institute of Scientific and Technical Information of China (English)

    谭援强; 张浩; 李明军

    2011-01-01

    According to coupling computational fluid dynamics and computational granular media mechanics method, the motion of abrasive flow in CMP with composite particles was simulated using discrete element method. With PFC3D software, a two-phase flow model that predicted the kinematics and trajectory of the abrasive particles was built herein,two verification simulations were conducted to demonstrate the capability of the current method to solve nano-size two-phase flow problems. Finally, the CMP geometry simulations were conducted, some phenomenon observed in the experiments were explained.%基于耦合计算流体力学和计算散体力学的方法,利用PFC3D软件模拟了复合磨粒抛光液化学机械抛光(CMP)中抛光液固液两相流的流动行为.通过2个数值实验并将其与他人实验数据进行对比,验证了利用PFC3D软件模拟纳米两相流问题的可行性.对CMP过程进行了数值模拟,解释了一些实验中观测到的现象.

  15. Chemical composition and starch digestibility in flours from Polish processed legume seeds.

    Science.gov (United States)

    Piecyk, Małgorzata; Wołosiak, Rafał; Drużynska, Beata; Worobiej, Elwira

    2012-12-01

    The study was undertaken to determine the effect of various treatments, i.e. cooking after soaking, freezing after cooking and storage at a low temperature (-18°C, 21days), and autoclaving, of Polish cultivars of bean, pea and lentil seeds on the chemical composition and starch digestibility of the resultant flours. The cooking of seeds caused a significant decrease in contents of ash (by 11-48%), polyphenols (by 10-70%) and protein (to 19%) in flours made of bean. In addition, analyses demonstrated significantly decreased contents of resistant starch, RS (by 61-71%) and slowly digestible starch, SDS (by 56-84%). Storage of frozen seeds resulted in insignificant changes in the chemical composition, and in increased contents of both RS and SDS. The flours produced upon the autoclaving process were characterized by similar changes in the contents of ash and protein as in cooked seeds, yet losses of polyphenols were lower and, simultaneously, contents of RS and SDS were higher. All the analyzed flours were shown to be characterized by a reduced content of amylose in starch, which might have affected its digestibility. This was indicated by a strict negative correlation reported between the value of the starch digestion index (SDRI) and amylose content of starch (r=0.84, p>0.05). PMID:22953824

  16. Fe-Nx/C assisted chemical–mechanical polishing for improving the removal rate of sapphire

    International Nuclear Information System (INIS)

    Highlights: • A novel non-noble metal catalyst (Fe-Nx/C) was prepared. • Fe-Nx/C shows remarkable catalytic activity for improving the removal rate of sapphire in alkaline solution. • The optimum CMP removal by Fe-Nx/C yielded a superior surface finish of 0.078 nm the average roughness. • Fe2O3, Fe3O4, pyridinic N as well as pyrrolic N group possibly serving as the catalytic sites. • A soft hydration layer (boehmite, AlO(OH)) was generated on the surface of sapphire during CMP process. - Abstract: In this paper, a novel non-noble metal catalyst (Fe-Nx/C) is used to improve the removal mass of sapphire as well as obtain atomically smooth sapphire wafer surfaces. The results indicate that Fe-Nx/C shows good catalytic activity towards sapphire removal rate. And the material removal rates (MRRs) are found to vary with the catalyst content in the polishing fluid. Especially that when the polishing slurry mixes with 16 ppm Fe-Nx/C shows the maximum MRR and its removal mass of sapphire is 38.43 nm/min, more than 15.44% larger than traditional CMP using the colloidal silicon dioxide (SiO2) without Fe-Nx/C. Catalyst-assisted chemical–mechanical polishing of sapphire is studied with X-ray photoelectron spectroscopy (XPS). It is found that the formation of a soft hydration layer (boehmite, γ-AlOOH or γ-AlO(OH)) on sapphire surface facilitates the material removal and achieving fine surface finish on basal plane. Abrasives (colloid silica together with magnetite, ingredient of Fe-Nx/C) with a hardness between boehmite and sapphire polish the c-plane of sapphire with good surface finish and efficient removal. Fe2O3, Fe3O4, pyridinic N as well as pyrrolic N group would be the catalytical active sites and accelerate this process. Surface quality is characterized with atomic force microscopy (AFM). The optimum CMP removal by Fe-Nx/C also yields a superior surface finish of 0.078 nm the average roughness (Ra)

  17. Mechanisms of chemical phototoxicity

    International Nuclear Information System (INIS)

    Psoralens in combination with ultraviolet light (PUVA) are phototoxic and potent modulators of epidermal cell growth and differentiation. Using an in vitro cell culture model, the effects of psoralens and UVA light on the growth of epidermal cells were investigated. It was found that psoralen and UVA light interact synergistically to inhibit the growth of cells in culture. This synergism was also observed in the ability of PUVA to inhibit DNA synthesis, decrease cell survival, cause mutations and form psoralen-DNA adducts. Using a cell culture model for the differentiation of melanocytes, PUVA was also found to be a potent inducer of melanogenesis as evidenced by its ability to increase cellular tyrosinase, the enzyme responsible for melanin biosynthesis. Results from these studies indicate that PUVA can induce dramatic alterations in the growth rate and differentiation state of cells at dosage levels which are associated with minimal DNA damage. These findings are in conflict with the general assumption that the biological effects of psoralens and UVA light are associated with their ability to bind covalently to and cross-link DNA. Therefore, the author investigated the possibility that sites of action, other than DNA, are involved in the mechanism(s) by which photoactivated psoralens modulate epidermal cell growth and differentiation. The author's laboratory has found that mammalian epidermal cells contain specific, saturable, high-affinity binding sites for the psoralens that are distinct from DNA. This receptor for the psoralens, photolabeled with [3H]-8-methoxysporalen, was visualized following sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The psoralen receptor is shown to be a 22,000 dalton protein located in nonnuclear fractions of cell extracts

  18. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun'93: chemistry of new materials

    International Nuclear Information System (INIS)

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties

  19. Analysis the complex interaction among flexible nanoparticles and materials surface in the mechanical polishing process

    International Nuclear Information System (INIS)

    Mechanical polishing (MP), being the important technique of realizing the surface planarization, has already been widely applied in the area of microelectronic manufacturing and computer manufacturing technology. The surface planarization in the MP is mainly realized by mechanical process which depended on the microdynamic behavior of nanoparticle. The complex multibody interaction among nanoparticles and materials surface is different from interaction in the macroscopic multibody system which makes the traditional classical materials machining theory cannot accurately uncover the mystery of the surface generation in the MP. Large-scale classical molecular dynamic (MD) simulation of interaction among nanoparticles and solid surface has been carried out to investigate the physical essence of surface planarization. The particles with small impact angle can generate more uniform global planarization surface but the materials removal rate is lower. The shear interaction between particle and substrate may induce large friction torque and lead to the rotation of particle. The translation plus rotation makes the nanoparticle behaved like micro-milling tool. The results show that the nanoparticles may aggregrate together and form larger cluster thus deteriorate surface the quality. This MD simulation results illuminate that the f inal planarized surface can only be acquired by synergic behavior of all particles using various means such as cutting, impacting, scratching, indentation and so on.

  20. Thermal outgassing properties of mechanically polished and of sand- and bead-blasted Inconel 600 surfaces up to 5000C

    International Nuclear Information System (INIS)

    In the present work, two different types of Inconel 600 samples have been investigated. The first one was mechanically polished and chemically cleaned in several steps and had a total hemispherical emissivity at 750C of epsilon1 = 0.146 and a surface roughness of CLA1 = 0.08 μm, while the second sample was sand- and bead-blasted with epsilon2 = 0.382 and CLA2 = 1.2 μm. The experimental studies were composed of the determination of desorption spectra from 200C up to 5500C at different heating rates, the investigation of the decrease of thermal outgassing rates during a longer heating interval at about 5000C and the measurement of equilibrium outgassing rates at higher temperatures of samples which have been heated several days at about 5000C. The total outgassing rates and the partial outgassing rates of the main components H2, H2O, CO and CO2 have been determined in these studies. Activation energies of desorption, rate constants and equilibrium surface coverages have been calculated from the experimental data using the theory of Redhead. (author)

  1. Mechanisms of multiple chemical sensitivity.

    Science.gov (United States)

    Winder, Chris

    2002-03-10

    Sensitivity to chemicals is a toxicological concept, contained in the dose-response relationship. Sensitivity also includes the concept of hypersensitivity, although controversy surrounds the nature of effects from very low exposures. The term multiple chemical sensitivity has been used to describe individuals with a debilitating, multi-organ sensitivity following chemical exposures. Many aspects of this condition extend the nature of sensitivity to low levels of exposure to chemicals, and is a designation with medical, immunological, neuropsychological and toxicological perspectives. The basis of MCS is still to be identified, although a large number of hypersensitivity, immunological, psychological, neurological and toxicological mechanisms have been suggested, including: allergy; autosuggestion; cacosomia; conditioned response; immunological; impairment of biochemical pathways involved in energy production; impairment of neurochemical pathways; illness belief system; limbic kindling; olfactory threshold sensitivity; panic disorder; psychosomatic condition; malingering; neurogenic inflammation; overload of biotransformation pathways (also linked with free radical production); psychological or psychiatric illness; airway reactivity; sensitisation of the neurological system; time dependent sensitisation, toxicant induced loss of tolerance. Most of these theories tend to break down into concepts involving: (1) disruption in immunological/allergy processes; (2) alteration in nervous system function; (3) changes in biochemical or biotransformation capacity; (4) changes in psychological/neurobehavioural function. Research into the possible mechanisms of MCS is far from complete. However, a number of promising avenues of investigation indicate that the possibility of alteration of the sensitivity of nervous system cells (neurogenic inflammation, limbic kindling, cacosomia, neurogenic switching) are a possible mechanism for MCS. PMID:11869820

  2. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry; Streszczenia 40. Zjazdu Naukowego Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inzynierow i Technikow Przemyslu Chemicznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods.

  3. Materials of yearly scientific assembly of Polish Chemical Society, Lublin 1995; Materialy ze zjazdu naukowego Polskiego Towarzystwa Chemicznego, Lublin 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Scientific conference accompanied the yearly assembly of Polish Chemical Society has bee held in 1995 in Lublin. The general review on scientific progress of the most important field of chemistry in Poland have been presented. The conference has been divided into 16 plenary sessions and 3 microsymposia. The sessions topics as follows: S-1 - physical chemistry; S-2 - physicochemistry of the surface; S-3 - catalysis; S-4 - chemical technology; S-5 - inorganic chemistry; S-6 - coordination chemistry; S-7 -crystallochemistry; S-8 - electrochemistry; S-9 - organic chemistry; S-10 -chemistry of polymers; S-11 - chemistry in medicine; S-12 - chemistry and technology of solid state materials; S-13 - young scientists forum; S-14 -didactics in chemistry; S-15 - theoretical chemistry; S-16 - environmental protection. Also the 3 microsymposia have been organized. It was: M-1 -chemistry of heteroorganic compounds; M-2 chromatography; M-3 - plasma chemistry.

  4. Structural features of metallic phase formed under the action of mechanical polishing of SmS polycrystalline specimens

    International Nuclear Information System (INIS)

    By means of X-ray diffractometry one investigated into structural features of a metallic phase film resulting from the balanced polishing of Sm1+xS semiconducting polycrystalline specimens within homogeneity range. One investigated into structural changes occurring in that case in semiconducting phase. On the basis of analysis of thickness dependence of metallic layers formed at the specimen surface on x one explains mechanism of influence of amount of samarium excessive ions on the transition parameters. The evaluations based on measurement results of dimensions of X-ray radiation coherent scattering ranges (CSR) in various composition specimens enabled to explain the reason of stabilization of SmS metallic modification upon termination of polishing. Occurrence and stabilization of metallic phase are associated with reduction and retaining of CSR dimensions

  5. Combined effects of cold work and chemical polishing on the absorption and release of hydrogen from SRF cavities inferred from resistance measurements of cavity-grade niobium bars

    Science.gov (United States)

    Dzyuba, A.; Cooley, L. D.

    2014-03-01

    A series of small fine-grained and single-crystal bars, with strain from 0% (recrystallized) to 50%, were given different amounts of chemical polishing. Four-point resistivity (ρ) data was used to characterize the electron scattering from dislocations, hydrogen, and any other trace contaminants. As noted by previous studies, annealed Nb displayed a weak linear increase of ρ (11 K) with polishing time due to hydrogen absorption, and bulk hydrogen concentration did not exceed 15% for 200 μm metal removed. Cold-worked samples displayed steeper slopes with polishing time (after subtracting resistivity due to strain alone), suggesting that dislocations assist the absorption of hydrogen during polishing. Absorption accelerated above 30% strain and 100 μm material removal, with room-temperature hydrogen concentration rising rapidly from 2% up to 5%. This threshold is significant, since superconducting radio-frequency (SRF) cavities are usually polished as-formed, with >35% strain, and polishing removes >150 μm of metal. Resistance jumps between 40 and 150 K, which signal the formation of hydride precipitates, were stronger in cold-worked samples, suggesting that dislocations also assist precipitate nucleation. High-vacuum anneals at 800 °C for 2 h, which are known to fully recrystallize cavity-grade niobium and de-gas hydrogen, removed the 40-150 K jumps and recovered the resistivity increase due to chemical polishing entirely. But, about 30% of the resistivity increase due to cold work remained, possibly due to residual dislocation clusters. Continued annealing only facilitated the diffusion of surface impurities into the bulk and did not recover the initial 0% state. Strain, polishing, and annealing thus appear to combine as irreversible paths that change the material. Bearing this in mind, the significant difference in hydrogen uptake between annealed and cold-worked samples suggests that annealing SRF cavities prior to chemical polishing could greatly reduce

  6. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling

    2013-01-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  7. Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burrill,A.

    2009-01-01

    The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.

  8. Fe-N{sub x}/C assisted chemical–mechanical polishing for improving the removal rate of sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li, E-mail: xl0522@126.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Zou, Chunli; Shi, Xiaolei [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Pan, Guoshun, E-mail: pangs@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Luo, Guihai; Zhou, Yan [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/Nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-07-15

    Highlights: • A novel non-noble metal catalyst (Fe-N{sub x}/C) was prepared. • Fe-N{sub x}/C shows remarkable catalytic activity for improving the removal rate of sapphire in alkaline solution. • The optimum CMP removal by Fe-N{sub x}/C yielded a superior surface finish of 0.078 nm the average roughness. • Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, pyridinic N as well as pyrrolic N group possibly serving as the catalytic sites. • A soft hydration layer (boehmite, AlO(OH)) was generated on the surface of sapphire during CMP process. - Abstract: In this paper, a novel non-noble metal catalyst (Fe-N{sub x}/C) is used to improve the removal mass of sapphire as well as obtain atomically smooth sapphire wafer surfaces. The results indicate that Fe-N{sub x}/C shows good catalytic activity towards sapphire removal rate. And the material removal rates (MRRs) are found to vary with the catalyst content in the polishing fluid. Especially that when the polishing slurry mixes with 16 ppm Fe-N{sub x}/C shows the maximum MRR and its removal mass of sapphire is 38.43 nm/min, more than 15.44% larger than traditional CMP using the colloidal silicon dioxide (SiO{sub 2}) without Fe-N{sub x}/C. Catalyst-assisted chemical–mechanical polishing of sapphire is studied with X-ray photoelectron spectroscopy (XPS). It is found that the formation of a soft hydration layer (boehmite, γ-AlOOH or γ-AlO(OH)) on sapphire surface facilitates the material removal and achieving fine surface finish on basal plane. Abrasives (colloid silica together with magnetite, ingredient of Fe-N{sub x}/C) with a hardness between boehmite and sapphire polish the c-plane of sapphire with good surface finish and efficient removal. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, pyridinic N as well as pyrrolic N group would be the catalytical active sites and accelerate this process. Surface quality is characterized with atomic force microscopy (AFM). The optimum CMP removal by Fe-N{sub x}/C also yields a superior

  9. Materials of jubilee scientific assembly of the Polish Chemical Society, Warsaw`94. Homo chemicus; Materialy z jubileuszowego zjazdu Polskiego Towarzystwa Chemicznego, Warszawa`94. Homo chemicus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Jubilee Scientific Assembly of the Polish Chemical Society has been held in 1994 in Warsaw. The general view on scientific progress in chemistry in Poland has been presented during plenary session. The conference has been divided into 15 sessions and 3 microsymposia covering the most important research fields in chemistry. Sessions topics were: analytical chemistry, chemistry of solid state materials, physical chemistry, coordination chemistry, medical chemistry, chemistry of metalorganic compounds, inorganic chemistry, organic chemistry, chemistry of polymers, young scientists forum, didactics and history of chemistry, catalysis, crystallochemistry, chemical technology, environment protection. Microsymposia`s topics were as follows: chemistry of saccharides, electrochemistry, membranes and membrane processes.

  10. Optimization of Double Polishing Pad for STI-CMP Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Kim, S.Y. [Daebul University, Yeongam (Korea); Seo, Y.J. [Anam Semiconductor Inc., Bucheon (Korea)

    2002-07-01

    Chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD), inter-level dielectric (ILD) layers of multi-layer interconnections. In this paper, we studied the characteristics of polishing pad, which can apply shallow trench isolation (STI)-CMP process for global planarization of multi-level interconnection structure. Also, we investigated the effects of different sets of polishing pad, such as soft and hard pad. As an experimental result, hard pad showed ceter-fast type, and soft pad showed edge-fast type. Totally, the defect level has shown little difference, however, the counts of scratch was detected less than 2 on JR111 pad. Through the above results, we can select optimum polishing pad, so we can expect the improvements of throughput and device yield. (author). 11 refs., 8 figs., 1 tab.

  11. Defectivity control of aluminum chemical mechanical planarization in replacement metal gate process of MOSFET

    Science.gov (United States)

    Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao

    2016-04-01

    The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).

  12. Materials of yearly scientific assembly of Polish Chemical Society, Poznan 23-26 September 1996; Materialy ze zjazdu naukowego Polskiego Towarzystwa Chemicznego, Poznan 23-26 wrzesnia 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Scientific Assembly of Polish Chemical Society has been held in 1996 in Poznan. The general view on scientific progress of chemistry in Poland has been presented. The conference has been divided into 18 sessions covering the most important research fields in chemistry. The sessions topics were as follows: S-1 physical chemistry; S-2 photochemistry, radiation chemistry and chemical kinetics; S-3 catalysis; S-4 inorganic chemistry and coordination chemistry; S-5 organic chemistry; S-6 chemistry of hetero organic compounds; S-7 medical chemistry; S-8 crystallochemistry; S-9 environment protection; S-10 didactics in chemistry; S-11 analytical chemistry; S-12 chemical technology; S-13 chemical engineering; S-14 chemistry of polymers; S-15 young chemists forum; S-16 professor forum; S-17 membranes and membrane processes; S-18 supermolecular chemistry.

  13. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun`93: chemistry of new materials; Materialy z dorocznego zjazdu naukowego - Torun`93: chemia nowych materialow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties.

  14. Chemical and mechanical signaling in epithelial spreading

    International Nuclear Information System (INIS)

    We propose a minimal mathematical model to explain long-range coordination of dynamics of multiple cells in epithelial spreading, which may be induced, under different conditions, by a chemical signal, or mechanically induced strain, or both. The model is based on chemo-mechanical interactions including a chemical effect of strain, chemically induced polarization and active traction, and interaction between polarized cells. The results, showing kinase concentration distribution and cell displacement, velocity, and stress fields, allow us to reproduce qualitatively available experimental data and distinguish between distinct dynamical patterns observed under conditions of injury or unconstraining. (paper)

  15. 铜及铜合金不同化学抛光工艺研究%Study on different chemical polishing processes for copper and copper alloys

    Institute of Scientific and Technical Information of China (English)

    农兰平; 李金莲; 巩育军

    2011-01-01

    对铜及铜合金化学抛光工艺进行了研究,考察了低浓度硝酸体系和双氧水体系对铜及其合金的抛光亮度、腐蚀失重以及对环境污染程度的影响.结果表明,低浓度硝酸体系抛光亮度高,适用范围广,对环境的污染较传统三酸体系少,虽然对铜及铜合金有一定的腐蚀,但返工对工件的尺寸影响不大,适用于冰箱、空调器等的蒸发管的抛光.双氧水抛光体系对铜及其合金腐蚀轻微,对环境的污染更少,但成本相对较高,适于对加工尺寸要求严格的铜及铜合金电子元件的化学抛光.%The chemical polishing process for copper and its alloy was studied. The influence of a low concentration nitric acid system and a hydrogen peroxide system on the polishing brightness, corrosion weight loss and environmental pollution level was discussed. The results showed that the low concentration nitric acid system has a high polishing brightness and a wide application areas, results in a great improvement in reducing environmental pollution as compared with the traditional three-acid system, and is suitable for polishing the evaporator pipes in refrigerator or air conditioner. Although it causes a slight corrosion of copper and its alloys, there is only a little effect on the size of workpiece during reprocessing. The hydrogen peroxide system features slight corrosion of copper and its alloys and less environmental pollution, but higher cost. It can be applied to chemical polishing of electronic components made of copper and copper alloys with strict request on the size and shape.

  16. Chemical mechanisms of the interaction between radiation and chemical carcinogens

    International Nuclear Information System (INIS)

    There is evidence to suggest that ionizing radiation and chemical carcinogens can act synergistically to produce deleterious biological effects. In addition, many carcinogens undergo metabolic activation in vivo. This activation, initiated by biochemical redox reactions, can be simulated chemically, electrochemically, photochemically and radiation chemically. The principal reactive species formed by the action of ionizing radiation on aqueous solutions of macromolecules and mammalian cells, are hydroxyl radicals and superoxide anions. Pulse and steady-state radiolysis studies of model chemical systems have established that these species can 'activate' chemical carcinogens by a radical oxidation process, and that the resulting activated carcinogens can subsequently react with nucleophilic sites on DNA and other potential target macromolecules. Rate constants for some of the fast reactions involved in the radiation activation of carcinogens and in the subsequent carcinogen-DNA interactions have been determined, together with the yields of radiation-induced covalent DNA-carcinogen binding. A redox models for radiation-induced chemical carcinogenesis is proposed which describes a possible mechanism of action involving free radical species generated in the aqueous cellular milieu, which diffuse to and react with carcinogens located within the micro-environment of the cell. Preliminary experiments suggest that protection against radiation and chemical carcinogenesis can be achieved by radical scavenging or by competitive free radical inhibition

  17. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    Science.gov (United States)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  18. Production of rare earth polishing powders in Russia

    International Nuclear Information System (INIS)

    Full text: Russia is a potent producer of polishing powders made of rare earth material presented as an extensive and well developed base. Considering the reserves, the facilities predisposition and the polishing agent (cerium dioxide) content the chief mineral source is loparite, apatite and monazite. The production of rare earth polishing powders is based on specially developed continuous technological processes, corrosion-proof equipment, ensuring a high and stable production quality. A special attention is paid to the radiation safety of the powders. The initial material for the rare earth polishing powders based on loparite is the fusion cake of rare earth chlorides obtained at that mineral chlorination. The technology of the polishing powder production from the REE fusion cake includes the following stages: dissolution of the REE fusion cake chlorides; - thorough cleaning of the REE fusion cake chlorides from radioactive and non-rare-earth impurities; chemical precipitation of REE carbonates, obtaining middlings with proper material and granulometric composition, thermal treatment of precipitated carbonates followed with the operations of drying and roasting; classification of roasted oxides, obtaining end products - polishing powders. The production of fluorine-containing powders includes the stage of their fluorination after the stage of carbonate precipitation. The stabilizing doping can be introduced both into the middlings during one of the technological process of powders manufacturing and into the end product. Rare earth polishing powders are manufactured in Russia by the Share Holding Company 'Chepetz Mechanical Plant' (ChMP Co.), the city of Glasov. The plant produces a number of polishing materials, such as; polishing powder Optinol, containing at least 50% by mass of cerium dioxide, used in the mass production of optical and other articles; polishing powder Optinol-10 with doping to improve the sedimentary and aggregate stability of the solid phase

  19. Synergic effect of chelating agent and oxidant on chemical mechanical planarization

    International Nuclear Information System (INIS)

    Chemically dominant alkaline slurry, which is free of BTA (benzotriazole) and other inhibitors, was investigated. The synergic effect of the chelating agent and oxidant on the chemical mechanical planarization (CMP) was taken into consideration. Copper CMP slurry is mainly composed of an oxidizer, nonionic surfactant, chelating agent and abrasive particles. The effect of different synergic ratios of oxidant with chelating agent on the polishing removal rate, static etch rate and planarization were detected. The planarization results reveal that with the increase of oxidant concentration, the dishing value firstly diminished and then increased again. When the synergic ratios is 3, the dishing increases the least. A theoretical model combined with chemical-mechanical kinetics process was proposed in the investigation, which can explain this phenomenon. Based on the theoretical model, the effect of synergic ratios of oxidant with chelating agent on velocity D-value (convex removal rate minus recessed removal rate) was analyzed. The results illustrate that when the synergic ratio is between 2.5–3.5, the velocity D-value is relatively higher, thereby good planarization can be achieved in this interval. This investigation provides a new guide to analyze and study copper line corrosion in the recessed region during copper clearing polishing. (semiconductor technology)

  20. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: identification of the marker compounds.

    Science.gov (United States)

    Jerković, Igor; Kuś, Piotr Marek; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2014-02-15

    The case study of Polish Salix spp. honey was compared with published data on willow honey from other regions. GC-FID/MS (after HS-SPME and ultrasonic solvent extraction) and targeted HPLC-DAD were applied. Phenolic content, FRAP/DPPH assays and the colour coordinates were determined spectrophotometrically. Beside ubiquitous linalool derivatives, borneol (up to 10.9%), bicyclic monoterpenes with pinane skeleton (pinocarvone up to 10.6%, myrtenal up to 4.8% and verbenone up to 3.4%) and trans-β-damascenone (up to 13.0%) dominated in the headspace. The main compounds of the extractives were vomifoliol (up to 39.6%) and methyl syringate (up to 16.5%) along with not common 4-hydroxy-3-(1-methylethyl)benzaldehyde (up to 11.1%). Abscisic acid (ABA) was found (up to 53.7 mg/kg) with the isomeric ratio (Z,E)-ABA:(E,E)-ABA=1:2. The honey exhibited low antioxidant potential with pale yellow colour. The composition of Polish willow honey is similar to Mediterranean willow honeys with several relevant differences. PMID:24128442

  1. Mechanisms of Chemical Carcinogenesis in the Kidneys

    Directory of Open Access Journals (Sweden)

    Tara McMorrow

    2013-09-01

    Full Text Available Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.

  2. Mechanical and chemical properties of sewage pipes

    OpenAIRE

    Ł. Wierzbicki; M. Szymiczek

    2012-01-01

    Purpose: The purpose of this paper was to evaluate the compatibility of the physico-chemical properties of sewage pipes with the requirements of PN – EN ISO 1401-01: Plastics piping systems for non-pressure underground drainage and sewerage. This article is based on a research carried out for the water supply company. The article presents the results of mechanical and chemical testing of four pipes of unplasticized polyvinyl chloride and one pipe of polypropylene. All the test pipes were app...

  3. Mechanical and chemical decontamination of surfaces

    International Nuclear Information System (INIS)

    Decontamination does not mean more than a special technique of cleaning surfaces by methods well known in the industry. The main difference consists in the facts that more than just the visible dirt is to be removed and that radioactive contamination cannot be seen. Especially, intensive mechanical and chemical carry-off methods are applied to attack the surfaces. In order to minimize damages caused to the surfaces, the decontamination method is to adapt to the material and the required degree of decontamination. The various methods, their advantages and disadvantages are described, and the best known chemical solutions are shown. (orig./RW)

  4. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  5. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    International Nuclear Information System (INIS)

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO2 or CeO2), mixed abrasives ((PS + SiO2) or (PS + CeO2)), core/shell composites (PS/SiO2 or PS/CeO2), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate

  6. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  7. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  8. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad

    International Nuclear Information System (INIS)

    Chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) is investigated using two typical soft pads (politex REG and AT) in acidic slurry. After CMP, it is found that the removal rate (RR) of a-GST increases with an increase of runs number for both pads. However, it achieves the higher RR and better surface quality of a-GST for an AT pad. The in-situ sheet resistance (Rs) measure shows the higher Rs of a-GST polishing can be gained after CMP using both pads and the high Rs is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads, the surface morphology and characteristics of both new and used pads are analyzed, it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad, and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST, which results in the high RR of a-GST due to enhanced chemical reaction. (semiconductor technology)

  9. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad

    Science.gov (United States)

    Aodong, He; Bo, Liu; Zhitang, Song; Yegang, Lü; Juntao, Li; Weili, Liu; Songlin, Feng; Guanping, Wu

    2013-07-01

    Chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) is investigated using two typical soft pads (politex REG and AT) in acidic slurry. After CMP, it is found that the removal rate (RR) of a-GST increases with an increase of runs number for both pads. However, it achieves the higher RR and better surface quality of a-GST for an AT pad. The in-situ sheet resistance (Rs) measure shows the higher Rs of a-GST polishing can be gained after CMP using both pads and the high Rs is beneficial to lower the reset current for the PCM cells. In order to find the root cause of the different RR of a-GST polishing with different pads, the surface morphology and characteristics of both new and used pads are analyzed, it shows that the AT pad has smaller porosity size and more pore counts than that of the REG pad, and thus the AT pad can transport more fresh slurry to the reaction interface between the pad and a-GST, which results in the high RR of a-GST due to enhanced chemical reaction.

  10. Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation

    Science.gov (United States)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu–BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu–BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu–BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  11. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Magi; Starosvetsky, David [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel); Vaes, Jan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Ein-Eli, Yair, E-mail: eineli@tx.technion.ac.i [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-01

    The integration of an advanced inhibitor, potassium sorbate (K[CH{sub 3}(CH){sub 4}CO{sub 2}]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  12. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    International Nuclear Information System (INIS)

    The integration of an advanced inhibitor, potassium sorbate (K[CH3(CH)4CO2]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  13. Low-frequency noise of strained-Si nMOSFETs fabricated on a chemical–mechanical-polished SiGe virtual substrate

    International Nuclear Information System (INIS)

    The low-frequency noise characteristics in strained-Si nMOSFETs, utilizing the chemical–mechanical-polishing (CMP) treated SiGe virtual substrate have been investigated and compared with the results obtained on strained-Si counterparts without CMP technology. Additional 10.6% mobility improvement and four times lower 1/f noise over 1–100 Hz was obtained for strained-Si devices with the CMP process, indicting that the CMP process provides a smoother surface for the strained-Si/SiGe structure. Moreover, experimental results show that carrier number fluctuation, and not the unified model, is more suitable to interpret the mechanism of 1/f noise in strained-Si devices with the CMP process

  14. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  15. Mécanisme de l'usure par polissage des cylindres de moteurs diesel Bore Polishing Wear Mechanism in Diesel Engine Cylinders

    Directory of Open Access Journals (Sweden)

    Fayard J. C.

    2006-11-01

    particulier, l'usure des segments ainsi que les débits de gaz de soufflage, sont plus faibles qu'avec une chemise normale. Enfin, le mécanisme de l'usure par polissage par abrasion douce à deux et à trois corps est parfaitement confirmé par une exploration micrographique et une microanalyse des surfaces polies. A fast and economical method for evaluating lubricants and fuels in relation to the bore polishing wear of super charged diesel-engine cylinders has been developed using a single-cylinder laboratory engine within the framework of an Société Nationale Elf Aquitaine - Institut Français du Pétrole (SNEA-lFP research agreement. This method bears the reference IFP-UP-4/80.It also serves to evaluate the deposit-forming and sticking tendency, ring wear and the oil-consumption tendency of lubricants. It is in good correlation with the CEC-Ford Tornado test and makes an excellent discrimination between the Coordinating European Council (CEC reference cils RL 47 and RL 48. The method is used for investigating the bore polishingwear mechanism by searching for the influence exerted by the principal parameters: (a Composition of the lubricant: the phenomenon is influenced by the base oil and its viscosity, by the amount of polymers improving the viscosity index and especially by the choice of detergent additives. As a first approximation and for homogeneous oil familles, polishing wear increases when the thermal stability of the oil decreases. (b Engine running: polishing increases very fart with the engine load after a certain threshold, and its evolution in time as observed by endoscopic rating shows a characteristic S shape as polishing begins on the thrust side and at the top of the cylinder. (c Composition of the fuel: the increase in the sulfur content of diesel fuel considerably decreases polishing wear caused by an oil reputed to be poorfrom this standpoint but has no effect on a goodoil. (d Surface finish of the cylinder: prepolishing the liner by extremely fine

  16. Behaviour and mechanism of hydrogen embrittlement cracking at Ta/Zr bond interface during underwater polishing process. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Hydrogen embrittlement cracking behaviours of SUS304/Ta/Zr explosive bonded joint during underwater polishing were investigated. Hydrogen embrittlement cracks occurred in the Zr substrate adjacent to the Ta/Zr bond interface during underwater polishing. The open circuit potential of Zr during underwater polishing was drastically reduced immediately after mechanical polishing (within a fraction of a second). The hydrogen yields of Zr-Ta alloys and cold-worked Zr during underwater polishing were estimated from the corrosion current determined by the Tafel extrapolation method. The hydrogen yield increased with a decrease in the Ta content of Zr-Ta alloy, and with an increase in the degree of working (rolling reduction) of Zr. It was deduced that the mechanical grinding in water removing the passive oxide film on the Zr substrate led to the hydrogen absorption into the Zr substrate and the precipitation of zirconium hydrides. Accordingly, hydrogen embrittlement cracks occurred in the deformation layer of Zr around the Ta/Zr bond interface due to the tensile residual stress in the explosive bonded joint. (author)

  17. 45钢电解-机械复合抛光工艺优化%Optimization of the process for combined electrochemical and mechanical polishing of 45 steel

    Institute of Scientific and Technical Information of China (English)

    时君丽; 周茂军; 曲洪伟

    2013-01-01

    采用电解-机械复合抛光工艺处理某压缩机45钢曲轴,以改善其表面粗糙度。通过单因素试验和正交试验对电解-机械复合抛光工艺进行优化,得到的最佳工艺条件如下:对于脉冲电解抛光,输出频率1000 Hz,方波占空比50%,电解液NaNO3的质量分数20%,电流密度50 A/cm2,工作电压10 V;对于机械抛光,砂轮转速160 r/min,磨削压力2 kg/cm2,砂带粒度号1500#。在最佳电解-机械复合抛光工艺下,45钢的粗糙度 Ra均低于0.3μm,比抛光前降低了70%以上,满足粗糙度应低于0.5μm的加工要求。%The crankshaft of a compressor was treated by combined electrochemical and mechanical polishing for improving its roughness. The optimized process conditions by single factor experiment and orthogonal test are as follows:for pulse electropolishing, output frequency 1 000 Hz, duty cycle of square wave 50%, mass fraction of HNO3 in electrolyte 20%, current density 50 A/cm2, and working voltage 10 V;and for mechanical polishing, rotation rate of abrasive wheel 160 r/min, grinding force 2 kg/cm2, and granularity of abrasive belt 1500#. Under the optimal process conditions, the roughness (Ra) of polished 45 steel is not higher than 0.3μm, which is 70%lower than that of the unpolished one, meeting the roughness requirement of less than 0.5μm.

  18. Chemical Mechanism Solvers in Air Quality Models

    OpenAIRE

    Linford, John C.; Adrian Sandu; Rolf Sander; Hong Zhang

    2011-01-01

    The solution of chemical kinetics is one of the most computationally intensive tasks in atmospheric chemical transport simulations. Due to the stiff nature of the system, implicit time stepping algorithms which repeatedly solve linear systems of equations are necessary. This paper reviews the issues and challenges associated with the construction of efficient chemical solvers, discusses several families of algorithms, presents strategies for increasing computational efficiency, and gives insi...

  19. Environmentally clean slurry using nano-TiO2-abrasive mixed with oxidizer H2O2 for ruthenium-film chemical mechanical planarization

    International Nuclear Information System (INIS)

    A colloidal silica-abrasive-based slurry mixed with periodate salts has been used for chemical mechanical planarization (CMP) of ruthenium (Ru) film in semiconductor-chip fabrication. This slurry has serious environmental problems such as generation of toxic RuO4 gas, corrosion, and ionic contamination. We developed an environmentally clean slurry using nano-TiO2 abrasive mixed with hydrogen peroxide (H2O2) for the purpose of Ru-film CMP. Moreover, this slurry is free of corrosion and ionic contamination. The polishing rates of Ru and SiO2 films with this slurry strongly depended on the H2O2 concentration; the Ru-film polishing rate rapidly increased with H2O2 concentration up to 1 wt% and then slightly decreased or saturated, whereas the SiO2-film polishing rate abruptly dropped to ∼50 Å/min. In particular, the adsorbed amount of H2O2 on nano-TiO2 abrasive directly determined the Ru-film polishing rate, indicating a new CMP mechanism of Ru film in the slurry.

  20. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization

    International Nuclear Information System (INIS)

    High roughness and a greater number of defects were created by lithium niobate (LN; LiNbO3) processes such as traditional grinding and mechanical polishing (MP), should be decreased for manufacturing LN device. Therefore, an alternative process for gaining defect-free and smooth surface is needed. Chemical mechanical planarization (CMP) is suitable method in the LN process because it uses a combination approach consisting of chemical and mechanical effects. First of all, we investigated the LN CMP process using commercial slurry by changing various process conditions such as down pressure and relative velocity. However, the LN CMP process time using commercial slurry was long to gain a smooth surface because of lower material removal rate (MRR). So, to improve the material removal rate (MRR), the effects of additives such as oxidizer (hydrogen peroxide; H2O2) and complexing agent (citric acid; C6H8O7) in a potassium hydroxide (KOH) based slurry, were investigated. The manufactured slurry consisting of H2O2-citric acid in the KOH based slurry shows that the MRR of the H2O2 at 2 wt% and the citric acid at 0.06 M was higher than the MRR for other conditions.

  1. Optimization of Polishing Parameters with Taguchi Method for LBO Crystal in CMP

    Institute of Scientific and Technical Information of China (English)

    Jun Li; Yongwei Zhu; Dunwen Zuo; Yong Zhu; Chuangtian Chen

    2009-01-01

    Chemical mechanical polishing (CMP) was used to polish Lithium triborate (UB_3O_5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface roughness are considered as criteria for the optimization. The polishing pressure, the abrasive concentration and the table velocity are important parameters which influence MRR and surface roughness in CMP of LBO crystal. Experiment results indicate that for MRR the polishing pressure is the most significant polishing parameter followed by table velocity; while for the surface roughness, the abrasive concentration is the most important one. For high MRR in CMP of LBO crystal the optimal conditions are: pressure 620 g/cm~2, concentration 5.0 wt pct, and velocity 60 r/min, respectively. For the best surface roughness the optimal conditions are: pressure 416 g/cm~2, concentration 5.0 wt pct, and velocity 40 r/min, respectively. The contributions of individual parameters for MRR and surface roughness were obtained.

  2. Influence of Zn (II) ion on abrasive-free polishing of hard disk substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hong, E-mail: hong_lei2005@163.com; Zhao, Rong, E-mail: zr890804@163.com; Chen, Ruling, E-mail: chen_ruling@163.com

    2014-07-01

    With higher requirement setting for hard disk substrate to minimize roughness and defects of the polished surface, abrasive-free polishing (AFP) of hard disk substrate has been put forward in this paper. The effect of Zn (II) ion on the AFP of hard disk substrate in the H{sub 2}O{sub 2} based slurry was investigated by AFP tests. The results indicate that the material removal rate of hard disk substrate polished in slurry with Zn (II) ion is obviously higher than that without Zn (II) ion. And surface polished by slurry containing Zn (II) ion exhibits lower surface roughness and fewer nano-asperity peaks than that without Zn (II) ion. Furthermore, the acting mechanism of Zn (II) ion in AFP of hard disk substrate was analyzed. X-ray photoelectron spectroscopy analysis shows that metal Zn appears on the polished surface, implying the tribochemistry reaction occurs during AFP. The electrochemical reaction between metal Zn and oxide film Ni{sub 2}O{sub 3} on the surface of hard disk substrate during AFP can promote the chemical effect in AFP and lead to the increasing of material removal rate. - Highlights: • Zn (II) ion improves surface quality in abrasive-free polishing (AFP). • The removal rate increases with the increasing of Zn (II) ion content. • Tribo-chemistry reaction exists during AFP. • Zn (II) ion accelerates the electrochemistry reaction during AFP.

  3. Effects of Slurry Chemistry on the Rate of Agglomeration of Alumina Nanoparticles for Chemical Mechanical Planarization

    Science.gov (United States)

    Brahma, Neil Anjan

    Chemical mechanical planarization (CMP) is a polishing process used during the manufacture of microelectronic integrated circuits. During fabrication of multilevel circuitry, excess deposited material must be removed and the wafer surface globally planarized for proper function of devices. This is especially necessary with copper interconnects, thus, copper CMP was the focus of this study. CMP requires the use of a slurry containing nanometer-sized abrasive particles along with a variety of chemical additives. The particles and chemicals act synergistically to mechanically and chemically remove material and provide a near globally planar surface. For optimal CMP performance, the effective abrasive particle size must be controlled. If particles aggregate, CMP performance may diminish and possibly even cause defective devices. The chemistry of the slurry (pH, ions present, etc) can not only affect the mean aggregate size of the abrasive particles, but also growth of aggregate over time. This research investigated the aggregation behavior of suspensions of 150 nm alumina particles in 1mM KNO3 with various additives (glycine, H2O2, benzotriazole, and sodium dodecyl sulfate) used in CMP of copper through effective particle (agglomerate) size versus time and zeta potential measurements. Aggregate size rate data were analyzed to elucidate the mechanism of aggregation, as well its effect on the structure of the resultant aggregate. The effects of temperature of the slurry were also explored. Finally, particle size distribution data collected at various stages of aggregation were incorporated into the Luo and Dornfeld model of CMP to investigate the dynamic nature of the CMP process.

  4. Advanced ion exchange resins for PWR condensate polishing

    International Nuclear Information System (INIS)

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  5. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  6. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and...... displacements). As these phenomena usually arise from species adsorption, adsorbate modification or surface reconstruction, they are surface-related by nature and thus require some dedicated mechanical modeling. The accompanying mechanical modeling proposed herein is intended to represent the chemical part of...... drawn from the energy balance in the accompanying model, highlighting the role of surface functionalization parameters in micromechanical sensors engineering....

  7. Mechanisms of chemical-induced porphyrinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Silbergeld, E.K. Fowler, B.A.

    1987-01-01

    This book contains 45 selections. Some of the titles are: Genetic Regulation of the Heme Pathway; Porphyrins in Urine as an Indication of Exposure to Chlorinated Hydrocarbons; Mechanisms of PCB-induced Porphyria and Yusho Disease; and Lead-Induced Abnormalities of Porphyrin Metabolism: The Relationship with Iron Deficiency.

  8. Chemical kinetic reaction mechanism for the combustion of propane

    Science.gov (United States)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  9. Mechanical recovery of chemically treated oil slicks

    International Nuclear Information System (INIS)

    An alternative or supplement to the mechanical recovery of oil spilled at sea, was discussed. In certain oil spill situations, dispersant (or surfactant) treatment could play an active role in the cleanup process. Laboratory and flume studies were conducted to evaluate how a skimmer's recovery rate of various emulsified oils was influenced by the addition of a low efficiency dispersant prior to mechanical treatment. The purpose of using dispersants is to remove spilled oil from the surface by conversion into small droplets, at a faster rate than occurs naturally. Normally, dispersant applications disperse the treated oil into the water column within 1 to 3 hours after treatment. However, dispersant treatment can result in a slower oil dispersion rate (up to several days) due to insufficient dispersant being used, too low surface energy conditions, or too high degree of weathering of the oil. Studies showed that contrary to some expert opinion, a low efficiency dispersant treatment will not have a negative influence on the later mechanical recovery of oil. 13 refs., 2 tabs., 9 figs

  10. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges

    OpenAIRE

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated d...

  11. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    Science.gov (United States)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  12. Text Summarizing In Polish

    Directory of Open Access Journals (Sweden)

    Emilia Branny

    2005-01-01

    Full Text Available The aim of this article is to describe an existing implementation of a text summarizer forPolish, to analyze the results and propose the possibilities of further development. Theproblem of text summarizing has been already addressed by science but until now there hasbeen no implementation designed for Polish. The implemented algorithm is based on existingdevelopments in the field but it also includes some improvements. It has been optimized fornewspaper texts ranging from approx. 10 to 50 sentences. Evaluation has shown that it worksbetter than known generic summarization tools when applied to Polish.

  13. High polishing selectivity ceria slurry for formation of top electrode in spin-transfer torque magnetic random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hao [Advanced Semiconductor Materials and Devices Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electronics and Communication Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lim, Jae-Hyung [Advanced Semiconductor Materials and Devices Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jin-Hyung [Advanced Semiconductor Materials and Devices Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr [Advanced Semiconductor Materials and Devices Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electronics and Communication Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-11-01

    During the formation of the top electrode (T.E.) in spin-transfer torque magnetic random access memory, a slurry with a high polishing rate of SiO{sub 2} and a low polishing rate of metal (T.E. material) is required in the chemical mechanical planarization application area. We used a ceria-based slurry with a polymeric additive to maintain the high polishing rate of SiO{sub 2} while it suppresses the polishing rate of the T.E. material, tantalum and ruthenium. We found ruthenium showed a significantly higher selectivity than tantalum in the ceria-based slurry. X-ray photoelectron spectroscopy was used to investigate the adsorption characteristics of the polymeric additive on the T.E. material. Except for the adsorbed polymeric additive, we found that zeta potential of the T.E. material played a critical role in determining the polishing selectivity of SiO{sub 2}-to-T.E. material. - Highlights: Black-Right-Pointing-Pointer High selective chemical mechanical planarization (CMP) slurry was investigated. Black-Right-Pointing-Pointer The slurry has a high selectivity of SiO{sub 2}-to-metals like tantalum and ruthenium. Black-Right-Pointing-Pointer Spin-transfer-torque magnetic memory requires such high selectivity slurry. Black-Right-Pointing-Pointer Surface zeta potential was used to explain CMP mechanism. Black-Right-Pointing-Pointer tantalum and ruthenium have different rate-determining steps during CMP.

  14. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    Science.gov (United States)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  15. Sublingual immunotherapy (SLIT)--indications, mechanism, and efficacy: Position paper prepared by the Section of Immunotherapy, Polish Society of Allergy.

    Science.gov (United States)

    Jutel, Marek; Bartkowiak-Emeryk, Małgorzata; Bręborowicz, Anna; Cichocka-Jarosz, Ewa; Emeryk, Andrzej; Gawlik, Radosław; Gonerko, Paweł; Rogala, Barbara; Nowak-Węgrzyn, Anna; Samoliński, Bolesław

    2016-01-01

    SLIT (sublingual immunotherapy,) induces allergen-specific immune tolerance by sublingual administration of a gradually increasing dose of an allergen. The mechanism of SLIT is comparable to those during SCIT (subcutaneous immunotherapy), with the exception of local oral dendritic cells, pre-programmed to elicit tolerance. In the SLIT dose, to achieve the same efficacy as in SCIT, it should be 50-100 times higher with better safety profile. The highest quality evidence supporting the efficacy of SLIT lasting 1-3 years has been provided by the large scale double-blind, placebo-controlled (DBPC) trials for grass pollen extracts, both in children and adults with allergic rhinitis. Current indications for SLIT are allergic rhinitis (and conjunctivitis) in both children and adults sensitized to pollen allergens (trees, grass, Parietaria), house dust mites (Dermatophagoides pteronyssinus, Dermatophagoides farinae), cat fur, as well as mild to moderate controlled atopic asthma in children sensitized to house dust mites. There are positive findings for both asthma and new sensitization prevention. Severe adverse events, including anaphylaxis, are very rare, and no fatalities have been reported. Local adverse reactions develop in up to 70 - 80% of patients. Risk factors for SLIT adverse events have not been clearly identified. Risk factors of non-adherence to treatment might be dependent on the patient, disease treatment, physician-patient relationship, and variables in the health care system organization. PMID:27012173

  16. Tribological approach to study polishing of road surface under traffic

    OpenAIRE

    Kane, Malal; Do, Minh Tan

    2007-01-01

    The polishing phenomenon of road pavements under the vehicle traffic constitutes the main mechanism inherent to the loss of skid resistance over time. A better understanding of this phenomenon would allow an improvement of road safety. This study comprises a review of laboratory test and a model simulating the polishing of road surfaces. The laboratory test uses a polishing machine so called 'Wehner-Schulze' which can reproduce the evolution of the road texture from specimens taken directly f...

  17. Adaptation of complete denture bases submitted to chemical polishing Adaptação de bases de próteses totais submetidas a polimento químico

    Directory of Open Access Journals (Sweden)

    Márcia Gomes

    2004-12-01

    Full Text Available OBJECTIVE: This study evaluated the effect of chemical polishing on the internal adaptation of complete denture bases fabricated with Veracril® resin and polymerized by either the conventional (C or microwave (M techniques. MATERIAL AND METHODS: Six groups (n=6/group were tested: 1 C + no polishing (CO; 2 C + chemical polishing (CQ; 3 C + immersion in hot water at 75ºC (CW; 4 M + no polishing (MO; 5 M + chemical polishing (MQ; and 6 M + immersion in hot water at 75ºC (MW. Internal adaptation immediately after the polishing treatment and after 30 days of storage in water at 37ºC was evaluated by weighing a vinyl polysiloxane film reproducing the gap between resin base and metallic master model, using a precision scale. Data were analyzed by ANOVA and Tukey test and paired Student's t test, at a significance level of 0.05. RESULTS: No significant difference in immediate adaptation was found as a function of technique, polishing treatment, or interaction of technique/polishing. After 30 days, adaptation means (g were: CO=2.46±0.32 a; CQ=3.40±0.23 d; CW=3.14±0.22 c; MO=3.23±0.37 c, d; MQ=3.41±0.47 d; MW=2.81±0.33 b (means followed by different letters are statistically different at alpha=0.05. All groups but group CO had significant increase of misfit over the tested period. CONCLUSION: The present results suggest that Veracril® resin denture bases submitted to chemical polishing had decrease of internal adaptation in 30 days, although immediate adaptation was not affected.OBJETIVO: Este trabalho avaliou o efeito do polimento químico sobre a adaptação interna de bases de próteses totais confeccionadas em resina acrílica ativada termicamente Veracril® polimerizada por técnica convencional (C ou por microondas (M. MATERIAIS E MÉTODOS: Foram testados seis grupos (n=6/grupo: 1 C + sem polimento (CO; 2 C + polimento químico (CQ; 3 C + banho de água a 75ºC (CW; 4 M + sem polimento (MO; 5 M + polimento químico (MQ; e 6 M + banho de

  18. 石灰-陶瓷抛光砖粉无机结合料的性能及机理分析%PERFORMANCE AND MECHANISM ANALYSIS OF LIME-POLISHING POWDER INORGANIC BINDER

    Institute of Scientific and Technical Information of China (English)

    王功勋; 苏达根

    2008-01-01

    将陶瓷工业废弃物抛光砖粉用作一种公路工程新型的无机结合料,并将其与粉煤灰进行对比,测试了两种结合料的强度和水稳定性,采用XRD、SEM、IR等手段分析了其水化产物及微观形貌,通过化学结合水量以及化学未溶量等试验研究了抛光砖粉的火山灰活性及水化程度.结果表明:在相同配比条件下,石灰-抛光砖粉结合料与石灰-粉煤灰结合料相比,前者的早期抗压强度略有提高,28 d抗压强度增幅明显,平均增幅达190 %,最大增幅高达210 %;前者的7 d、28 d软化系数均高于后者,具有更好的水稳定性.SEM测试进一步说明,石灰-抛光砖粉结合料生成的水化产物更多,结构更致密,在结构与性能上优于石灰-粉煤灰结合料.%An innovative approach of reusing ceramic polishing powder generated in ceramic industries to develop high performance inorganic binders was studied. Effects of polishing powder on pozzolanic ability and hydration degree were studied comparing to fly ash by X-ray diffraction (XRD),infrared spectrum (IR),scanning electron microscope (SEM) and measuring chemical combined water and chemical undissolved quantity. Results show that polishing powder has high of pozzolanic than fly ash does. Compressive strength curing 7 days of lime-polishing powder binder is slightly higher than those of lime-fly ash binder,but amplitude of strength curing 28 days is obvious high,average amplitude is up to 190% and maximal amplitude is up to 210% comparing to fly ash-lime binder. Lime-PP binder preceded lime-FA binder in intenerate index of 7 days and 28 days under the same ratio of PP (FA) to lime condition. Microstructure analysis of two binders indicated further that larger amount of hydration product is formed in lime-polishing powder binders.

  19. New directions: Atmospheric chemical mechanisms for the future

    Science.gov (United States)

    Kaduwela, Ajith; Luecken, Deborah; Carter, William; Derwent, Richard

    2015-12-01

    The atmospheric chemical reaction scheme, commonly referred to as the chemical mechanism, is the portion of an air quality model that represents the atmospheric chemistry of the pollutants. It is at the heart of every air quality model used in research and policy applications to predict and analyse the complex air pollutants: ozone, air toxics and PM2.5. The chemical mechanism should incorporate available information on chemical kinetics and reaction pathways and be the conduit through which the fundamental science of atmospheric chemistry is applied to solve real-world problems. The efficiency and effectiveness of policies developed to reduce exposure to harmful pollutants depend on how well the mechanisms reflect the actual chemistry. If the mechanism has reaction pathways that are incorrectly characterised or completely missing, the resulting predictions may underestimate emission reduction requirements needed to meet public health and ecosystem protection targets, or may overstate the emission reductions needed and cause unnecessary implementation costs. It is therefore essential that mechanisms utilise the best, most up-to-date atmospheric chemistry information available so that policy development is based on air quality model predictions that are robust, transparent and free from scientific challenge. We are concerned that this may not continue to be the case.

  20. The effect of mechanical load cycling and polishing time on microleakage of class V glass-ionomer and composite restorations: A scanning electron microscopy evaluation

    Science.gov (United States)

    Mirzaie, Mansoreh; Yasini, Esmail; Kermanshah, Hamid; Omidi, Baharan Ranjbar

    2014-01-01

    Background: Microleakage is one of the challenging concerns in direct filling restorations. Understanding of its related factors is important in clinical practice. The aim of this study was scanning electron microscopy (SEM) evaluation of marginal integrity in three types of tooth-colored restorative materials in class V cavity preparations and the effect of load cycling and polishing time on the microleakage. Materials and Methods: In this in vitro experimental study, class V cavity preparations were prepared on the buccal and lingual surfaces of 60 bovine incisors. The specimens were divided into three groups each containing 20 teeth: group 1: Filtek Z350, Group 2: Fuji IX/G Coat Plus, Group 3: Fuji II LC/GC varnish. In each group, 2 subgroups (n = 20) were established based on finishing time (immediate or delayed by 24 h). All specimens were thermocycled (×2,000, 5-50°C). In each sub groups, half of the teeth were load cycled. Epoxy resin replicas of 24 specimens were evaluated under field emission-SEM and interfacial gaps were measured. All teeth were then immersed in 0.5% basic fuchsin dye for 24 h, sectioned and observed under stereomicroscope. Data were analyzed with Kruskal-Wallis’ test and Mann-Whitney U test and a comparison between incisal and cervical microleakage was made with Wilcoxon test. P effect on microleakage, but polishing time did not. Cervical microleakage in Z350/load cycle/immediate polish and Fuji IX/load cycle/immediate or delayed polish and Fuji IX/no load cycle/immediate polish were significantly higher than incisal microleakage. Conclusion: It was concluded that the cervical sealing ability of Fuji IX under load cycling was better than Fuji II LC. Under load cycling and immediate polishing Z350 showed better marginal integrity than both Fuji II LC and Fuji IX. The immediate polishing didn’t cause a statistically significant increase in microleakage of evaluated tooth-colored class V restorations. PMID:24688568

  1. Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin;

    2014-01-01

    This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a...

  2. Effect of Pad Surface Micro-Texture on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization Process

    Science.gov (United States)

    Liao, Xiaoyan; Zhuang, Yun; Borucki, Leonard J.; Cheng, Jiang; Theng, Siannie; Ashizawa, Toranosuke; Philipossian, Ara

    2013-01-01

    The effect of pad surface micro-texture on removal rate in interlayer dielectric chemical mechanical planarization was investigated. Blanket 200-mm oxide wafers were polished on a Dow® IC1000TM K-groove pad conditioned at two different conditioning forces. The coefficient of friction increased slightly (by 7%) while removal rate increased dramatically (by 65%) when conditioning force was increased from 26.7 to 44.5 N. Pad surface micro-texture analysis results showed that pad surface contact area decreased dramatically (by 71%) at the conditioning force of 44.5 N, leading to a sharp increase in the local contact pressure and resulting in a significantly higher removal rate.

  3. Origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid

    Institute of Scientific and Technical Information of China (English)

    Wang Liang-Yong; Liu Bo; Song Zhi-Tang; Liu Wei-Li; Feng Song-Lin; David Huang; S.V Babu

    2011-01-01

    We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre-and the post-polished wafer surfaces as well as the pre-and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.

  4. Functional Median Polish

    KAUST Repository

    Sun, Ying

    2012-08-03

    This article proposes functional median polish, an extension of univariate median polish, for one-way and two-way functional analysis of variance (ANOVA). The functional median polish estimates the functional grand effect and functional main factor effects based on functional medians in an additive functional ANOVA model assuming no interaction among factors. A functional rank test is used to assess whether the functional main factor effects are significant. The robustness of the functional median polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science, including one-way and two-way ANOVA when functional data are either curves or images. Specifically, Canadian temperature data, U. S. precipitation observations and outputs of global and regional climate models are considered, which can facilitate the research on the close link between local climate and the occurrence or severity of some diseases and other threats to human health. © 2012 International Biometric Society.

  5. Characterization of Chemical and Mechanical Properties of Polymer Based Nanocomposites

    OpenAIRE

    Wafy, Tamer

    2013-01-01

    Characterization of Chemical and Mechanical Properties of Polymer Based NanocompositesThe University of ManchesterTamer Wafy Doctor of Philosophy17 January, 2013One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there ...

  6. Surface characteristics of posterior composites after polishing and toothbrushing.

    Science.gov (United States)

    van Dijken, J W; Ruyter, I E

    1987-10-01

    The surface characteristics of eight posterior and two anterior composite resins were studied by SEM and profilometric tracings. The materials included both chemically cured and light-cured resin systems. Two posterior materials were microfilled composites; the others were conventional or hybrid types. The anterior composites were of conventional and hybrid types. At various steps in the procedures the following polishing/brushing treatments were evaluated: 1) dry polishing with Sof-lex discs followed by brushing with toothpaste; and 2) wet polishing with diamond pastes of increasing fineness, followed by brushing with toothpaste. The base line before the polishing/brushing procedures was obtained by wet polishing on silicon-carbide paper (4000 grit). All materials could be polished to a comparable smoothness by the Sof-lex discs, but this polishing procedure was associated with the development of an amorphous surface layer. Polishing with diamond pastes gave various results, with a 20-fold difference in surface roughness values from the smoothest to the roughest material. Toothbrushing after polishing with the Sof-lex system increased the surface roughness for all materials, but to various degrees. The two microfilled and four of the conventional posterior composites showed comparable surface roughness values, whereas two remaining posterior and the two anterior materials showed two to three times higher surface roughness values after toothbrushing. PMID:3478939

  7. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacu...

  8. Diffusion mechanisms for chemical-thermal metal processing

    International Nuclear Information System (INIS)

    To describe volumetric diffusion in metals, some possible mechanisms are offered: exchange, cyclic (circular), interstitial idle time and interstitial with cumulative and vacancy replacement. It is revealed that at chemical-thermal processing the diffusion process is complex where there is multidimensional movement of atoms and displacement of crystal lattices

  9. Multi-functional composite materials for catalysis and chemical mechanical planarization

    Science.gov (United States)

    Coutinho, Cecil A.

    2009-12-01

    Composite materials formed from two or more functionally different materials offer a versatile avenue to create a tailored material with well defined traits. Within this dissertation research, multi-functional composites were synthesized based on organic and inorganic materials. The functionally of these composites was experimentally tested and a semi-empirical model describing the sedimentation behavior of these particles was developed. This first objective involved the fabrication of microcomposites consisting of titanium dioxide (TiO2) nanoparticles confined within porous, microgels of a thermo-responsive polymer for use in the photocatalytic treatment of wastewater. TiO2 has been shown to be an excellent photocatalyst with potential applications in advanced oxidative processes such as wastewater remediation. Upon UV irradiation, short-lived electron-hole pairs are generated, which produce oxidative species that degrade simple organic contaminants. The rapid sedimentation of these microcomposites provided an easy gravimetric separation after remediation. Methyl orange was used as a model organic contaminant to investigate the kinetics of photodegradation under a range of concentrations and pH conditions. Although after prolonged periods of UV irradiation (˜8-13 hrs), the titania-microgels also degrade, regeneration of the microcomposites was straightforward via the addition of polymer microgels with no loss in photocatalytic activity of the reformed microcomposites. The second objective within this dissertation involved the systematic development of abrasive microcomposite particles containing well dispersed nanoparticles of ceria in an organic/inorganic hybrid polymeric particle for use in chemical mechanical polishing/planarization (CMP). A challenge in IC fabrication involves the defect-free planarization of silicon oxide films for successful multi-layer deposition. Planarization studies conducted with the microcomposites prepared in this research, yield

  10. Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

    Energy Technology Data Exchange (ETDEWEB)

    ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

    2000-11-27

    The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw

  11. Environmentally clean slurry using nano-TiO{sub 2}-abrasive mixed with oxidizer H{sub 2}O{sub 2} for ruthenium-film chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hao [Department of Electronics and Communications Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Advance Semiconductor Material and Device Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jin-Hyung [Advance Semiconductor Material and Device Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr [Department of Electronics and Communications Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Advance Semiconductor Material and Device Development Center, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-01

    A colloidal silica-abrasive-based slurry mixed with periodate salts has been used for chemical mechanical planarization (CMP) of ruthenium (Ru) film in semiconductor-chip fabrication. This slurry has serious environmental problems such as generation of toxic RuO{sub 4} gas, corrosion, and ionic contamination. We developed an environmentally clean slurry using nano-TiO{sub 2} abrasive mixed with hydrogen peroxide (H{sub 2}O{sub 2}) for the purpose of Ru-film CMP. Moreover, this slurry is free of corrosion and ionic contamination. The polishing rates of Ru and SiO{sub 2} films with this slurry strongly depended on the H{sub 2}O{sub 2} concentration; the Ru-film polishing rate rapidly increased with H{sub 2}O{sub 2} concentration up to 1 wt% and then slightly decreased or saturated, whereas the SiO{sub 2}-film polishing rate abruptly dropped to ∼50 Å/min. In particular, the adsorbed amount of H{sub 2}O{sub 2} on nano-TiO{sub 2} abrasive directly determined the Ru-film polishing rate, indicating a new CMP mechanism of Ru film in the slurry.

  12. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.

    2003-01-01

    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of o

  13. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  14. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...... and solvated reaction profiles, as expected. In the solvents investigated (CH2Cl2 and MeOH), the most favorable mechanism is addition of peroxide anion to a fluorosilane (starting material or formed in situ), followed by a concerted migration and dissociation of hydroxide anion. In the gas phase, and...

  15. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    Science.gov (United States)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture 200 μm) leading to negligible change in permeability after a 6-month run.

  16. Coupling between chemical degradation and mechanical behaviour of leached concrete

    International Nuclear Information System (INIS)

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  17. Sexual activity of Polish adults

    Directory of Open Access Journals (Sweden)

    Beata Pastwa-Wojciechowska

    2014-03-01

    Full Text Available Aim. The purpose of this research was to explore the subject of sexual activity in the Polish population, with special focus on age and gender differences, and sexual infidelity. Sexual activity is one of the basic factors in initiating and maintaining relationships. On the one hand, sexual activity enables us to meet natural needs and maintain an intimate relationship with another human being; on the other, it may allow us to overcome loneliness and social isolation by providing the opportunity to express feelings of closeness and unity. Material and method. The research was conducted on a representative group of 3,200 Poles aged between 15–49, with the support of a well-known Polish research company – TNS OBOP. Face-to-face and Pencil and Paper (PAPI interviews were carried out. Results. The results focus on two main issues: the age and motives of sexual initiation among teenagers (with a significant percentage starting their sexual activity at the age of 15, and the quality of the sexual lives of adults (average number of sexual partners, sexual infidelity and sexual satisfaction. Conclusion. There is dependence between the type of relationship and the performance or non-performance of sexual activity, as well as the quality of the relationship. Among both adolescents and adults, remaining in a stable relationship (partnership or marriage promotes loyalty. The performance of sexual goals turns out to be an important mechanism regulating the interpersonal aspects of a relationship, influencing their perception and evaluation.

  18. [History of Polish pharmacy].

    Science.gov (United States)

    Okuda, J; Okuda, R

    1993-01-01

    Doctoral thesis (in French) by Monika Debska-Donnet, entitled "History of pharmacy and pharmaceutical art collections in Poland" which was presented to Paris XI University (Faculty of Pharmaceutical and Biological Sciences) in 1991, was translated into Japanese and summarized. In this report, histories of pharmacy education, pharmacists, community pharmacies, pharmacopoeiae, pharmaceutical industries in Poland were described, and four representative Polish museums of history of pharmacy were also explained. PMID:11639718

  19. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    International Nuclear Information System (INIS)

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  20. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  1. Polish Nuclear Physics Network

    International Nuclear Information System (INIS)

    In June 2002 the representatives of thirteen Polish nuclear physics units decided to create Polish Nuclear Physics Network (PNPN) and to contact Czech Republic, Hungary and Slovakia with a suggestion to establish a larger network of nuclear physics laboratories in these countries and in Poland. In spring 2003 North-East European Network (NEEN) was established. Its planned networking activities, their objectives and expected outcomes were submitted to EURONS Coordinator. During the same period the nuclear physics laboratories from Bulgaria, Croatia, Greece, Romania, Serbia and Turkey formed South-East European Network (SEEN) and also applied for EURONS support. Eventually, following the EURONS advice, the merge of NEEN and SEEN was decided by representatives of both networks and, in 2004, a common network EWON (East - West Outreach) was included in the EURONS initiative. The indicated EU financial contribution to EWON includes only the support of NEEN, whereas SEEN, for practical reasons, is financed separately. The nuclear physics activity in Poland can be conveniently divided into a few subgroups: - experimental nuclear physics using local facilities; - experimental nuclear physics using external facilities; - theoretical nuclear physics; - applications of nuclear physics to other domains of science; - medical applications. Most of these activities are presented in this report, at least partly, in the form of review articles and short communications. The special place in the Polish nuclear physics landscape occupies the theoretical physics. Not limited by severe financial restrictions which affects local experimental facilities, the flourishing of this domain is especially evident in the nuclear structure theory

  2. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  3. Polish device for FOCCoS/PFS slit system

    Science.gov (United States)

    de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; de Arruda, Marcio V.; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Ferreira, Décio; dos Santos, Jesulino Bispo; de Paiva Vilaça, Rodrigo; Rosa, Josimar Aparecido; Sodré Junior, Laerte; de Oliveira, Claudia Mendes

    2014-07-01

    The Fiber Optical Cable and Connector System, "FOCCoS", for the Prime Focus Spectrograph, "PFS", is responsible for transporting light from the Subaru Telescope focal plane to a set of four spectrographs. Each spectrograph will be fed by a convex curved slit with 616 optical fibers organized in a linear arrangement. The slit frontal surface is covered with a special dark composite, made with refractory oxide, which is able to sustain its properties with minimum quantities of abrasives during the polishing process; this stability is obtained This stability is obtained by the detachment of the refractory oxide nanoparticles, which then gently reinforce gently the polishing process and increase its the efficiency. The surface roughness measured in several samples after high performance polishing was about 0.01 microns. Furthermore, the time for obtaining a polished surface with this quality is about 10 times less than the time required for polishing a brass, glass or ceramic surface of the same size. In this paper, we describe the procedure developed for high quality polishing of this type of slit. The cylindrical polishing described here, uses cylindrical concave metal bases on which glass paper is based. The polishing process consists to use grid sequences of 30μm, 12μm, 9μm, 5μm, 3μm, 1μm and, finally, a colloidal silica on a chemical cloth. To obtain the maximum throughput, the surface of the fibers should be polished in such a way that they are optically flat and free from scratches. The optical fibers are inspected with a microscope at all stages of the polishing process to ensure high quality. The efficiency of the process may be improved by using a cylindrical concave composite base as a substrate suitable for diamond liquid solutions. Despite this process being completely by hand, the final result shows a very high quality.

  4. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  5. Chemical mechanical planarization of Ge2Sb2Te5 using IC1010 and Politex reg pads in acidic slurry

    International Nuclear Information System (INIS)

    In the paper, chemical mechanical planarization (CMP) of Ge2Sb2Te5 (GST) is investigated using IC1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010. (special topic — international conference on nanoscience and technology, china 2013)

  6. Chemical mechanical planarization of Ge2Sb2Te5 using IC1010 and Politex reg pads in acidic slurry

    Science.gov (United States)

    He, Ao-Dong; Liu, Bo; Song, Zhi-Tang; Wang, Liang-Yong; Liu, Wei-Li; Feng, Gao-Ming; Feng, Song-Lin

    2014-08-01

    In the paper, chemical mechanical planarization (CMP) of Ge2Sb2Te5 (GST) is investigated using IC1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.

  7. Influence of oxygen on the chemical stage of radiobiological mechanism

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  8. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  9. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  10. Centrifugal barrel polishing of 1.3 GHz Nb cavities

    International Nuclear Information System (INIS)

    Superconducting radio-frequency (SRF) cavities are the key components of particle accelerators such as the European X-ray Free Electron Laser (XFEL, under construction) and the planned future International Linear Collider (ILC). Steady progress in surface treatment techniques of SRF cavities in both the achievable quality factor Q and the accelerating electric field Eacc makes new accelerators and ambitious projects feasible. One of the alternative surface preparation techniques which is actually being explored is centrifugal barrel polishing (CBP) pioneered at KEK in Japan in mid-nineties by T. Hiuchi et al. CBP is a mechanical polishing of cavities and results in around 10 x smaller surface roughness and mirror-like surface as compared to chemistry alone. Q and Eacc are expected to be at least as high as for chemically treated cavities. CBP eliminates the bulk chemistry and has the potential to completely replace the chemistry. The University of Hamburg is installing a CBP machine to study it as a cavity preparation and repair technique for 9-cell 1.3 GHz SRF cavities at the Deutsche Elektronen-Synchrotron (DESY). The setup and first commissioning tests will be presented and discussed.

  11. Contrastive Analysis of Metatext. Expressing Polish "niemniej" in Bulgarian

    Directory of Open Access Journals (Sweden)

    Anna Katarzyna Kisiel

    2015-12-01

    Full Text Available Contrastive Analysis of Metatext. Expressing Polish niemniej in BulgarianThe author discusses possible ways of expressing meanings of Polish niemniej, tym niemniej and niemniej jednak in Bulgarian. A confrontative analysis of the equivalents gives grounds for a reflection on how to conduct a cross-linguistic examination of metatext. Two important questions are raised: whether it is methodologically justified to compare objects non-identical such as units and compositions, lexical and grammatical means, and what exactly equivalence within metatext class means. It is expected that analysis of metatext in Polish and Bulgarian will allow to discover mechanisms of creating metatextual units.

  12. Mechanism of plasma ignition in electrothermal-chemical launcher

    Directory of Open Access Journals (Sweden)

    Yong Jin

    2016-04-01

    Full Text Available Plasma generator is a core component in an electrothermal-chemical (ETC launcher. Its work state directly influences the launch efficiency of a system. The interaction between plasma and propellants is a very important mechanism in ETC technology. Based on the transient radiation model and open air plasma jet experiment, the mechanism of plasma ignition process is analyzed. Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation. But it needs enough time to maintain the high energy flow to make self-sustained combustion of solid propellant grains. Because of the limited space characteristics of transient radiation, the near-field propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion. The far-field propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion. Experiments show that plasma jet always has a high flow velocity in the area of the cartridge. Compared with conventional ignition, the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA plasma via energy skin effect of propellant grains, pre-heat temperature mechanism and high efficient jet diffusion.

  13. Mechanism of plasma ignition in electrothermal-chemical launcher

    Institute of Scientific and Technical Information of China (English)

    Yong JIN; Yan-jie NI; Hai-yuan LI; Bao-ming LI

    2016-01-01

    Plasma generator is a core component in an electrothermal-chemical (ETC) launcher. Its work state directly influences the launch efficiency of a system. The interaction between plasma and propellants is a very important mechanism in ETC technology. Based on the transient radiation model and open air plasma jet experiment, the mechanism of plasma ignition process is analyzed. Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation. But it needs enough time to maintain the high energy flow to make self-sustained combustion of solid propellant grains. Because of the limited space characteristics of transient radiation, the near-field propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion. The far-field propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion. Experiments show that plasma jet always has a high flow velocity in the area of the cartridge. Compared with conventional ignition, the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA) plasma via energy skin effect of propellant grains, pre-heat temperature mechanism and high efficient jet diffusion.

  14. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions

  15. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  16. Mechanisms of chemical reaction initiated by recoil implantation

    International Nuclear Information System (INIS)

    Mechanisms of chemical reactions initiated by recoil implantation were studied in the systems 51Cr+M(acac)3 yields 51Cr(acac)3 where M is a trivalent metal. The yield of 51Cr(acac)3 increased linearly with an increase of inverse of the force constant of metal-oxygen bonding K(M-O). This indicates that there is competition between the implanted 51Cr atom and M. However, exception for this trend was the case of Co(acac)3 catcher, for which the yield of 51Cr(acac)3 was much higher than that expected for a competition reaction. Complex features of the replacement reaction caused by implantation are discussed

  17. Chemical and Mechanical processes during burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida

    1998-01-01

    equal or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone......Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here...... the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200-300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an...

  18. Mechanism-based bioanalysis and biomarkers for hepatic chemical stress.

    Science.gov (United States)

    Antoine, D J; Mercer, A E; Williams, D P; Park, B K

    2009-08-01

    Adverse drug reactions, in particular drug-induced hepatotoxicity, represent a major challenge for clinicians and an impediment to safe drug development. Novel blood or urinary biomarkers of chemically-induced hepatic stress also hold great potential to provide information about pathways leading to cell death within tissues. The earlier pre-clinical identification of potential hepatotoxins and non-invasive diagnosis of susceptible patients, prior to overt liver disease is an important goal. Moreover, the identification, validation and qualification of biomarkers that have in vitro, in vivo and clinical transferability can assist bridging studies and accelerate the pace of drug development. Drug-induced chemical stress is a multi-factorial process, the kinetics of the interaction between the hepatotoxin and the cellular macromolecules are crucially important as different biomarkers will appear over time. The sensitivity of the bioanalytical techniques used to detect biological and chemical biomarkers underpins the usefulness of the marker in question. An integrated analysis of the biochemical, molecular and cellular events provides an understanding of biological (host) factors which ultimately determine the balance between xenobiotic detoxification, adaptation and liver injury. The aim of this review is to summarise the potential of novel mechanism-based biomarkers of hepatic stress which provide information to connect the intracellular events (drug metabolism, organelle, cell and whole organ) ultimately leading to tissue damage (apoptosis, necrosis and inflammation). These biomarkers can provide both the means to inform the pharmacologist and chemist with respect to safe drug design, and provide clinicians with valuable tools for patient monitoring. PMID:19621999

  19. Mechanism of Interaction between Ionizing Radiation and Chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals. Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland

  20. Mechanism of Interaction between Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, B. H.; Shin, H. S. (and others)

    2008-03-15

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals{sup .} Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland.

  1. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  2. Nano alumina slurries for improved polishing on thermoset and thermoplastic resins

    Science.gov (United States)

    Hooper, Abigail R.; Boffa, Christopher C.; Sarkas, Harry W.

    2015-10-01

    Cerium oxide, because of its commonality to the optical workshop, is often used as the go-to abrasive for polishing many different substrates. For silica containing substrates, cerium oxide is an excellent abrasive choice because it allows for both chemical and mechanical polishing. However, plastic lenses do not contain silica and thereby cannot undergo the same chemical reaction with cerium oxide. These substrates are also very vulnerable to sleeks and scratches, and the tabular cerium oxide can impart defects into the surface resulting in scratch-dig failures and higher than expected surface roughness values. With the recent market push for plastic optical components, selection of an appropriate polishing slurry is critical to maintaining a competitive edge in the market and a profitable business. In this paper, the authors will show how using an aluminum oxide can improve performance on thermoset and thermoplastic resins like polycarbonate, Zeonex® and Acrylica. The shape of the aluminum oxide allows for reduced defectivity while the high hardness of the abrasive allows for a removal rate tunable to the substrate hardness.

  3. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola [Clay Technology AB, Lund (Sweden); Kiviranta, Leena; Kumpulainen, Sirpa [BandTech Oy, Helsinki (Finland); Linden, Johan [Aabo Akademi, Aabo (Finland)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  4. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields.

    Science.gov (United States)

    Piraneo, Tara G; Bull, Jon; Morales, Mariany A; Lavine, Laura C; Walsh, Douglas B; Zhu, Fang

    2015-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies. PMID:26621458

  5. Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, E.M.; Pitz, W.J.; Curran, H.J.; Westbrook, C.K.

    2000-01-11

    Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors of 10 to 50. This discrepancy, which occurs for species with well-established kinetic mechanisms as well as for methyl esters, is tentatively ascribed to the presence of wall reactions in the experiments. The model predicts a region of weak or negative dependence of overall reaction rate on temperature for each methyl ester. Examination of the reaction fluxes provides an explanation of this behavior, involving a temperature-dependent competition between chain-propagating unimolecular decomposition processes and chain-branching processes, similar to that accepted for hydrocarbons. There is an urgent need to obtain more complete experimental data under well-characterized conditions for thorough testing of the model.

  6. Mechanical and chemical properties of tantalum-implanted steels

    International Nuclear Information System (INIS)

    The surface mechanical and chemical properties of tantalum-implanted AISI 52100, AISI M50 and AISI 9310 steels and pure iron were investigated. Sputter Auger profiles of pure iron indicate significant carbon incorporation during implantation. For AISI 52100 steel the unlubricated kinetic coefficient of friction is reduced from 0.6 to 0.38, the load-carrying capacity is increased and the pitting potential in a 0.01 M NaCl solution is increased by 510 mV. The corrosion resistance of tantalum-implanted AISI M50 steel in 0.5 M H2SO4 is equal to that of high dose chromium implantation. The rolling contact fatigue life is significantly improved for tantalum-implanted AISI M50 steel and a 24% increase in load-carrying capacity is measured for Ryder gear scuffing tests on tantalum-implanted AISI 9310 steel. The mechanism producing the improvements in corrosion resistance is thought to be selective dissolution of iron with the formation of a tantalum-rich passive oxide film on the surface, while friction reduction is at least partly responsible for improving the wear properties. (Auth.)

  7. Comparison of Chemical and Mechanical Prophylaxis of Venous Thromboembolism in Nonsurgical Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Dany Gaspard

    2015-01-01

    Full Text Available Background. Thromboembolic events are major causes of morbidity, and prevention is important. We aimed to compare chemical prophylaxis (CP and mechanical prophylaxis (MP as methods of prevention in nonsurgical patients on mechanical ventilation. Methods. We performed a retrospective study of adult patients admitted to the Cooper University Hospital ICU between 2002 and 2010. Patients on one modality of prophylaxis throughout their stay were included. The CP group comprised 329 patients and the MP group 419 patients. The primary outcome was incidence of thromboembolic events. Results. Acuity measured by APACHE II score was comparable between the two groups (p=0.215. Univariate analysis showed 1 DVT/no PEs in the CP group and 12 DVTs/1 PE in the MP group (p=0.005. Overall mortality was 34.3% and 50.6%, respectively. ICU LOS was similar. Hospital LOS was shorter in the MP group. Multivariate analysis showed a significantly higher incidence of events in the MP prophylaxis group (odds ratio 9.9. After excluding patients admitted for bleeding in both groups, repeat analysis showed again increased events in the MP group (odds ratio 2.9 but this result did not reach statistical significance. Conclusion. Chemical methods for DVT/PE prophylaxis seem superior to mechanical prophylaxis in nonsurgical patients on mechanical ventilation and should be used when possible.

  8. Influence of Polish Climate Conditions on Content and the Chemical Variation of Volatiles in the Roots of Six Eleutherococcus Species and Their Potential Use

    Directory of Open Access Journals (Sweden)

    Daniel Załuski

    2015-08-01

    Full Text Available The aim of this study was the term of the climate influence on essential oil and aroma components of six Eleutherococcus species [E. senticosus (Rupr. & Maxim. Maxim., E. setchuensis (Harms Nakai, E. sessiliflorus (Rupr. & Maxim. S. Y. Hu, E. gracilistylus (W. W. Smith S. Y. Hu, E. henryi Oliv., E. divaricatus (Siebold & Zucc. S. Y. Hu ] cultivated in Poland. The hydrodistilled volatiles of the samples were ranged from 0.2% to 0.4%. The components of the determined volatiles were analyzed by GC/MS/MS. Thirty of the same compounds were present in all samples. Major components of the samples were (E,E-farnesol (43.6-6.9%, (E,Z-farnesol (7.2-0.7%, (Z,E-farnesol (1.4-0.1%, tetradecanoic acid (9.91-2.08%, and pentadecanoic acid (12.8-3.5%. Highest (E,E-farnesol content (43.6% was determined in the roots of E. divaricatus. This compound may be considered as chemical marker of the species. This is the first time, when the analysis of volatiles in the roots of Eleutherococcus spp. cultivated in Poland was performed. This study provides a platform for further investigation for the isolation and pharmacological activity of active principles.

  9. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  10. Polishing large NaCl windows on a continuous polisher

    International Nuclear Information System (INIS)

    The Helios and Antares CO2 fusion laser systems incorporate numerous large sodium chloride windows. These must be refinished periodically, making necessary a consistent and predictable polishing capability. A continuous polisher (or annular lap) which might at Kirtland's Developmental Optical Facility. Large NaCl windows had not been polished on this type of machine. The machine has proven itself capable of producing lambda/16 figures at 633 nm (HeNe) with extremely smooth surfaces on glass. Since then, we have been working exclusively on NaCl optics. Due to different polishing parameters between NaCl and glass, and the slight solubility of the pitch in the slurry, this phase presents new problems. The work on glass will be reviewed. Results on NaCl to date will be reported. The potential of this type of machine relative to prisms, thin and irregularly shaped optics will be discussed

  11. [Lysenkoism in Polish botany].

    Science.gov (United States)

    Köhler, Piotr

    2008-01-01

    Lysenkoism in Poland was never an autonomous phenomenon. The whole array of reasons for which it appeared in Polish science would require a separate study--here it only needs to be pointed out that the major reasons included terror on the part of the security service, lawlessness, the ubiquitous atmosphere of intimidation and terror, censorship, the diminishing sphere of civil liberties, political show trials, propaganda and denunciations. An important role in facilitating the introduction of Lysenkoism was played also by the reorganization of science after World War Two, the isolation of Polish science from science in the West, as well as the damage it had suffered during the war. At first, Lysenkoism was promoted in Poland by a small group of enthusiastic and uncritical proponents. A overview of the events connected with the ten years of Lysenkoism in Poland (end of 1948--beginning of 1958) shows a two-tier picture of how the 'idea' was propagated. The first tier consisted in the activities of the Association of Marxist Naturalists [Koło Przyrodników-Marksistów], which it engaged in since the end of 1948. The Association was later transformed into a Union of Marxist Naturalists, and this in turn merged, in 1952, with the Copernican Society of Polish Naturalists [Polskie Towarzystwo Przyrodników im. Kopernika]. It was that society which promoted Lysenkoism longest, until the end of 1956. The propaganda and training activities of the circle and the society prepared ground for analogous activities of the newly formed Polish Academy of Science (PAN), which--since its very establishment in 1952--engaged in promoting Lysenkoism through its Second Division. These activities were aimed at naturalists, initially at those who were prominent scientists (eg. the conference at Kuźnice, 1950/1951), and then at those who were only starting their academic career (including national courses in new biology at Dziwnów, 1952, or Kortowo, 1953 and 1955). The end to promoting

  12. The Mechanism of Surface Chemical Kinetics of Dissolution of Minerals

    Institute of Scientific and Technical Information of China (English)

    谭凯旋; 张哲儒; 等

    1996-01-01

    This paper deals with the mechanism of dissolution reaction kinetics of minerals in aqueous solution based on the theory of surface chemistry.Surface chemical catalysis would lead to an obvous decrease in active energy of dissolution reaction of minerals.The dissolution rate of minerals is controlled by suface adsorption,surface exchange reaction and desorption,depending on pH of the solution and is directly proportional to δHn0+,When controlled by surface adsorption,i.e.,nθ=1,the dissolution rate will decrease with increasing pH;when controlled by surface exchane reaction,i.e.,nθ=0,the dissolution rate is independent of pH;when controlled by desorption,nθis a positive decimal between 0 and 1 in acidic solution and a negative decimal between-1 and 0 in alkaline solution.Dissolution of many minerals is controlled by surface adsorption and/or surface exchange reactions under acid conditions and by desorption under alkaline conditions.

  13. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Sam De Coster

    2012-01-01

    Full Text Available The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.

  14. Mechanisms and chemical induction of aneuploidy in rodent germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Mailhes, J B; Marchetti, F

    2004-10-15

    The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be inidentified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.

  15. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range of the......, surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness of...... fictive temperatures that we have measured so far. It depends on type of glass systems. This complicated effect is discussed in terms of glass structure, dynamics and relaxation behavior. Our recent experimental findings indicate that for oxide glass fibers the tensile strength, elastic modulus and...

  16. Lysenko affair and Polish botany.

    Science.gov (United States)

    Köhler, Piotr

    2011-01-01

    This article describes the slight impact of Lysenkoism upon Polish botany. I begin with an account of the development of plant genetics in Poland, as well as the attitude of scientists and the Polish intelligentsia toward Marxist philosophy prior to the World War II. Next I provide a short history of the introduction and demise of Lysenkoism in Polish science, with a focus on events in botany, in context with key events in Polish science from 1939 to 1958. The article outlines the little effects of Lysenkoism upon botanists and their research, as well as how botanists for the most part rejected what was often termed the "new biology." My paper shows that though Lysenko's theories received political support, and were actively promoted by a small circle of scientists and Communist party activists, they were never accepted by most botanists. Once the political climate in Poland altered after the events of 1956, Lysenko's theories were immediately abandoned. PMID:20665091

  17. Fused-Polished Fiber Couplers

    Institute of Scientific and Technical Information of China (English)

    Sien; Chi; Shiao-Min; Tseng

    2003-01-01

    We report on fused-polished fiber couplers with a new fabrication method. This structure so fabricated is promising while achieving high-performance all-fiber WDM devices. Potential advantages and prospects of our works are presented.

  18. Tooth polishing: The current status

    Directory of Open Access Journals (Sweden)

    Madhuri Alankar Sawai

    2015-01-01

    Full Text Available Healthy teeth and gums make a person feel confident and fit. As people go about their daily routines and with different eating and drinking habits, the tooth enamel turns yellowish or gets stained. Polishing traditionally has been associated with the prophylaxis procedure in most dental practices, which patients know and expect. However, with overzealous use of polishing procedure, there is wearing of the superficial tooth structure. This would lead to more accumulation of local deposits. Also, it takes a long time for the formation of the fluoride-rich layer of the tooth again. Hence, now-a-days, polishing is not advised as a part of routine oral prophylaxis procedure but is done selectively based on the patients′ need. The article here, gives an insight on the different aspects of the polishing process along with the different methods and agents used for the same.

  19. Balanced Unemployment in Polish Economy

    OpenAIRE

    Kamila Szymańska

    2009-01-01

    The article deals with the problem of balanced unemployment in relation to the Polish economy. This issue with its variety considerations and economic, social and political implications is today one of the most important matter. Author analyses this problem together with its reasons and refer it to the Polish economy. In first and second part of the text there are presented basic assumptions of natural unemployment theory and Non-Accelerating Inflation Rate of Unemployment. Third part is an a...

  20. Road polishing assessment methodology 'TROWS'

    OpenAIRE

    Gothie, Michel; Do, Minh Tan

    2003-01-01

    Both tire wear and road polishing are complex phenomenon, which are obviously strongly related; the energy that polishes the road is the energy that wears the tire. They both depend non-linearly on numerous parameters, like materials used, vehicle and road usage, environmental conditions (e.g., temperature) and many others. Due to their many economic and ecological implications, including those concerning the road users safety, the possibility to predict them is of major importance to tire ma...

  1. Chemical and mechanical interactions of interstitials with vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; Chitwood, L.D.; DeVan, J.H. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Oxidation studies of V-4Cr-4Ti were conducted in air and reduced oxygen partial pressures (10{sup 4}, 10{sup -5} and 10{sup -6} torr). Reaction rates were determined by weight change measurements and chemical analyses. Mechanical properties after the exposures were determined by room temperature tensile tests. In air at 400 and 500{degrees}C, oxide films form on the surface. Initially, rates are high but decrease with time reaching similiar values to those found in oxygen partial pressures at 10{sup -4}, 10{sup -5}, and 10{sup -6} torr. At 400{degrees}C, oxygen pick-up followed a logarithmic function of time and was confined to regions near the surface. Little change in room temperature tensile properties was noted for oxygen increase up to 1500 ppm. Thermal cycling specimens from 400{degrees}C to room temperature up to 14 times had no apparent effect on oxidation rate or tensile properties. At 500{degrees}C, oxygen pick-up appeared to follow a parabolic relation with time. Rates were {approx} 10 times those at 400{degrees}C and correspondingly larger oxygen increases occurred when compared with the 400{degrees}C tests after similiar time periods. This resulted in a significant decrease in total elongation after 240 h. At reduced oxygen partial pressures, rates were measured for times <100 h. Data are relatively sparse but generally show a slightly higher initial rate before slowing. At 400{degrees}C increases to {approx}200 ppm oxygen were found with no effect on room temperature elongation. At 500{degrees}C increase in oxygen of 2400 ppm after 50h/10{sup -5} torr resulted in a decrease of around 25% in room temperature elongation. By comparison, exposure to air at 500{degrees}C for 12 h caused nearly the same results.

  2. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes.

    Science.gov (United States)

    Li, Hao; Zheng, Nan; Liang, Ni; Zhang, Di; Wu, Min; Pan, Bo

    2016-07-01

    Multi-walled carbon nanotubes (MC) were fluorinated by a solid-phase reaction method using polytetrafluoroethylene (PTFE). The surface alteration of carbon nanotubes after fluorination (MC-F) was confirmed based on surface elemental analysis, TEM and SEM. The incorporation of F on MC surface was discussed as F incorporation on carbon defects, replacement of carboxyl groups, as well as surface coating of PTFE. The adsorption performance and mechanisms of MC-F for five kinds of representative organic compounds: sulfamethoxazole (SMX), ofloxacin (OFL), norfloxacin (NOR), bisphenol a (BPA) and phenanthrene (PHE) were investigated. Although BET-N2 surface area of the investigated CNTs decreased after fluorination, the adsorption of all five chemicals increased. Because of the glassification of MC-F surface coating during BET-N2 surface area measurement, the accessible surface area of MC-F was underestimated. Desorption hysteresis was generally observed in all the sorption systems in this study, and the desorption hysteresis of MC-F were stronger than the pristine CNTs. The enhanced adsorption of MC-F may be attributed the pores generated on the coated PTFE and the dispersed CNT aggregates due to the increased electrostatic repulsion after fluorination. The rearrangement of the bundles or diffusion of the adsorbates in MC-F inner pores were the likely reason for the strong desorption hysteresis of MC-F. The butterfly structure of BPA resulted in its high sorption and strong desorption hysteresis. The exothermic sorption character of OFL on CNTs resulted in its strong desorption hysteresis. PMID:27058918

  3. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    Science.gov (United States)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  4. Effect of electrochemical polishing time on surface topography of mild steel

    Institute of Scientific and Technical Information of China (English)

    Baocheng Wang; Jinhua Zhu

    2007-01-01

    The variation in altitude density function (ADF) of the surface topography of mild steel during electrochemical polishing (ECP) was investigated, and the mechanism of the variation of surface roughness with polishing time was analyzed. The results show that the variation trend of ADF with polishing time is flat-steep-flat; the variation of surface roughness results in the different distributions of surface current density, and there is a fine surface smoothness in the special period of ECP from 4 to 8 s.

  5. Chemical Sensory Mechanisms of Insects%昆虫的化学感觉机理

    Institute of Scientific and Technical Information of China (English)

    娄永根; 程家安

    2001-01-01

    Insects possess two kinds of chemical sensory organ,olfactoryorgan and gustatory organ,by which they can perceive chemical cues in the circumstance and subsequently make a series of corresponding behavioral responses.From perceiving chemical cues to making behavioral responses,it involves in information coding,proceeding and integration to chemical cues at various level in insect nerve system.New pest control methods will be developed with the elucidation of insect chemical sensory mechanisms.

  6. MECHANIZM OF ANODE DISSOLVING OF CORROSION-RESISTING AND STRUCTURAL CARBON STEELS UNDER ELECTROPULSE POLISHING

    Directory of Open Access Journals (Sweden)

    I. Yunkovsky

    2013-01-01

    Full Text Available In this article were suggested the schemes of anode processes, taking into account the nature of metals, anion structure, pH solution of electrolyte and anode potential by electropulse polishing of corrosion- resisting and structural carbon steels.It is shown and experimentally confirmed, that under conditions of electropulse polishing of anode dissolving of metals, which are contained into corrosion-resisting and structural carbon steels, carried out according to mechanism of complex formation through a set of series and series-parallel of intermediate stages. In the 1st stage on the surface of metals adsorption complexes with participation of chemisorption molecules of water are formed. In the next stages anions of electrolyte’s solution and molecules of water take part. In final stage of dissolving on the surface of anode soluble compounds are formed, which by transition into solution into simple ions are dissociated. It is determined that by electrical-impulse polishing in dissolving of components of corrosion-resisting carbon steels the important role play chemical processes, and anode dissolving of metals take place in the field of mixed electrochemical and diffusion kinetics . Diffusion limitations appear as a result of difficult ion mass transfer through surface salt, oxide and hydro-oxide and absorption-phase coatings.

  7. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  8. Composite adaptive control of belt polishing force for aero-engine blade

    Science.gov (United States)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and

  9. Program Helps To Determine Chemical-Reaction Mechanisms

    Science.gov (United States)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  10. Chemical protection against ionizing radiation: a survey of possible mechanisms

    International Nuclear Information System (INIS)

    A comparative survey is given of the hypotheses which have been proposed to explain the protecting and sensitizing action of chemical substances towards ionizing radiation such as gamma radiation or x radiation

  11. Machine Learning, Quantum Mechanics, and Chemical Compound Space

    OpenAIRE

    Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2015-01-01

    We review recent studies dealing with the generation of machine learning models of molecular and solid properties. The models are trained and validated using standard quantum chemistry results obtained for organic molecules and materials selected from chemical space at random.

  12. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  13. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  14. Dissolved air flotation of polishing wastewater from semiconductor manufacturer.

    Science.gov (United States)

    Liu, J C; Lien, C Y

    2006-01-01

    The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation. PMID:16752774

  15. Respiratory morbidities among working children of gem polishing industries, India.

    Science.gov (United States)

    Tiwari, R R; Saha, A; Parikh, J R

    2009-02-01

    There are millions of working children worldwide. In gem polishing industry, exposure to occupational hazards of dust and chemicals used in polishing of gemstone may result in respiratory symptoms and respiratory disorders. The present study included 586 exposed and 569 comparison group subjects. Data was collected through personal interview, clinical examination, and chest radiography. The respiratory morbidity was diagnosed on the basis of clinical signs and symptoms and chest radiography. The study variables included age, sex, daily working hours, and duration of exposure. The mean age of the child laborers was 11.31 +/- 5.34 years. Prevalence of respiratory morbidity was significantly high in the female child laborers. The other study variables namely age, duration of exposure, and daily working hours were found to be statistically non-significant. The prevalence of respiratory morbidity among child laborers of gem polishing industry in Jaipur was found to be 7%. PMID:19318508

  16. Sensing roughness and polish direction

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Olesen, Anders Sig; Larsen, Henning Engelbrecht;

    2016-01-01

    needs information about the RMS-value of the surface roughness and the current direction of the scratches introduced by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid...... complications during the casting process. In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 – 100 nm, which corresponds to the finish categories of A1, A2...... and A3 (Finishing guide, Bales). Based on simple intensity measurements, we estimate the RMS-value of the surface roughness, and by using a sectioned annually shaped photo-detector to collect the scattered light, we can determine the direction of polishing and distinguish light scattered from random...

  17. Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models

    OpenAIRE

    L. K. Emmons; Hess, P. G.; Lamarque, J. -F.; G. G. Pfister

    2012-01-01

    A procedure for tagging ozone produced from NO sources through updates to an existing chemical mechanism is described, and results from its implementation in the Model for Ozone and Related chemical Tracers (MOZART-4), a global chemical transport model, are presented. Artificial tracers are added to the mechanism, thus, not affecting the standard chemistry. The results are linear in the troposphere, i.e., the sum of ozone from individual tagged sources equals the ...

  18. Mechanisms of selectivity loss during tungsten CVD (chemical vapor deposition)

    Energy Technology Data Exchange (ETDEWEB)

    Creighton, J.R.

    1990-01-01

    The tungsten subfluoride mechanism as well as other proposed mechanisms of selectivity loss are reviewed. To further demonstrate the viability of the tungsten subfluoride mechanism, we have extended the measurement of the tungsten subfluoride production rate down to 450{degree}C. We also report results from some preliminary experiments designed to identify the selectivity loss mechanism when elemental silicon is available for reaction. Comments regarding the origins of the insulator effect and selectivity loss for silane reduction are offered. 23 refs., 2 figs.

  19. Mechanism and efficiency of chemical vapour generation of silver

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš

    Budapešť, 2005. [European Winter Conference on Plasma Spectrochemistry . Budapest (HU), 30.01.2005-03.02.2005] R&D Projects: GA ČR(CZ) GA203/01/0453 Institutional research plan: CEZ:AV0Z40310501 Keywords : silver * chemical vapour generation * ICP-OES Subject RIV: CB - Analytical Chemistry, Separation

  20. Polish-Bulgarian-Russian, Bulgarian-Polish-Russian or Russian-Bulgarian-Polish dictionary?

    Directory of Open Access Journals (Sweden)

    Violetta Koseska-Toszewa

    2015-11-01

    Full Text Available Polish-Bulgarian-Russian, Bulgarian-Polish-Russian or Russian-Bulgarian-Polish dictionary?The trilingual dictionary (M. Duszkin, V. Koseska, J. Satoła and A. Tzoneva is being elaborated based on a working Polish-Bulgarian-Russian electronic parallel corpus authored by Maksim Duszkin, Violetta Koseska-Toszewa and Joanna Satoła-Staśkowiak, and works by A. Tzoneva. It is the first corpus comparing languages belonging to three different Slavic language groups: western, southern and eastern. Works on the dictionary are based on Gramatyka konfrontatywna bułgarsko-polska (Bulgarian-Polish confrontative grammar and the proposed there semantic-oriented interlanguage. Two types of classifiers have been introduced into the dictionary: classic and semantic. The trilingual dictionary will present a consistent and homogeneous set of facts of grammar and semantics. The Authors point out that in a traditional dictionary it is not clear for example whether aspect should be understood as imperfective / perfective form of a verb or as its meaning. Therefore in the dictionary forms and meaning are separated in a regular way. Imperfective verb form has two meanings: state and configuration of states and events culminating in state. Also perfective verb form has two meanings: event and configuration of states and events culminating in event. These meanings are described by the semantic classifiers, respectively, state and event, state1 and event1. The way of describing language units, mentioned in the article, gives a possibility to present language material (Polish, Bulgarian, Russian in any required order, hence the article’s title.

  1. Advances in mechanisms of activation and deactivation of environmental chemicals.

    OpenAIRE

    Goldstein, J A; Faletto, M B

    1993-01-01

    Environmental chemicals are both activated and detoxified by phase I and phase II enzymes. The principal enzymes involved in phase I reactions are the cytochrome P-450s. The phase II enzymes include hydrolase and the conjugative enzymes such as glucuronyltransferases, glutathione transferases, N-acetyltransferase, and sulfotransferase. Although other phase I and phase II enzymes exist, the present review is limited to these enzymes. Once thought to be a single enzyme, multiple cytochrome P-45...

  2. Chemical mechanisms and reaction rates for the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions: Cr2O3 + 2 Na2SO4(1) + 3/2 O2 yields 2 Na2CrO4(1) + 2 SO3(g)n TiO2 + Na2SO4(1) yields Na2O(TiO2)n + SO3(g)n TiO2 + Na2CrO4(1) yields Na2O(TiO2)n + CrO3(g).

  3. Micropayments on Polish Internet Market

    OpenAIRE

    Zakonnik, Łukasz

    2003-01-01

    In this article author aims to give you a brief insight into problem of micropayments. Especially author takes into consideration situation on Polish Internet market. In the article classification of payments on Web is presented. In publication are also presented most popular and most profitable methods of micropayments - for example pre-paid system and Premium SMS (Short Messages System).

  4. New examples of small Polish structures

    OpenAIRE

    Dobrowolski, Jan

    2013-01-01

    We answer some questions from a paper of Krupi\\'nski by giving suitable examples of small Polish structures. First, we present a class of small Polish group structures without generic elements. Next, we construct a first example of a small non-zero-dimensional Polish $G$-group.

  5. Research and Development of Chemical Mechanical Planarization for Ge2Sb2Te5%Ge2Sb2Te5的化学机械抛光研究进展

    Institute of Scientific and Technical Information of China (English)

    何敖东; 刘波; 宋志棠; 冯高明; 朱南飞; 任佳栋; 吴关平; 封松林

    2013-01-01

    相变存储器由于具有非易失性、高速度、低功耗等优点被认为最有可能成为下一代存储器的主流产品,Ge2Sb2Te5 (GST)作为一种传统相变材料已经被广泛应用在相变存储器中,而GST的化学机械抛光作为相变存储器生产的关键工艺目前已被采用.本工作综述了有关GST的化学机械抛光技术研究进展,讨论了GST化学机械抛光过程的影响因素,如下压力、转速、抛光垫、磨料、氧化剂、表面活性剂等,并对目前GST的化学机械抛光机理进行了归纳,进一步展望了GST的化学机械抛光技术的发展前景.%Phase change memory (PCM) is considered a major candidate for next-generation memory due to its nonvolatile,fast program access times,low consumable power.So far chalcogenide Ge2Sb2Te5 (GST),as a traditional phase material,has been widely adopted and investigated for PCM application.Recently,chemical mechanical planarization (CMP) of GST as a key technique for confined structure has been applied in the fabrication of PCM.In this paper,research and development of CMP for GST is reviewed firstly and the impact factors of down force,rotation velocity,polishing pads,and the slurry on the GST CMP are discussed.For the mechanical parameter,the removal rate (RR) of GST increases with the increasing of pressure and rotation velocity firstly,and then reaches saturation or slightly decreases.The gentle mechanical parameter is a better choice for GST CMP due to its lower hardness.With regard to polishing pads,GST polished using Politex reg can attain a better surface quality,and almost no residue and scratches can be found,compared with IC1010.The oxidizer of slurry,such as H2O2,(NH4)2S2O8,KMnO4 and FeCl3 have a great influence on the GST performance,the oxidization capacity of each element in GST alloy is different.Among these elements,Ge is preferentially oxidized,but Te is hard oxidized due to their different electronegativity.RR strongly depends on the p

  6. Mechanical Characteristics of Chemically Degraded Surface Layers of Wood

    Czech Academy of Sciences Publication Activity Database

    Frankl, Jiří; Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Bryscejn, Jan

    2012-01-01

    Roč. 2, č. 11 (2012), s. 694-700. ISSN 2159-5275 R&D Projects: GA ČR(CZ) GPP105/11/P628 Institutional support: RVO:68378297 Keywords : wood * corrosion * defibering * mechanical properties Subject RIV: JN - Civil Engineering http://www.davidpublishing.com

  7. HyDRa: polishing with a vortex.

    Science.gov (United States)

    Sohn, Erika; Ruiz, Elfego; Salas, Luis; Luna, Esteban; Herrera, Joel

    2013-09-01

    We present a hydrodynamic, deterministic polishing tool (HyDRa) based on the fluid-jet polishing (FJP) principle. In contrast to other FJP methods, the polishing flux is accelerated with pressurized air and then expelled at high velocity, forming a radial, grazing abrasive pattern that exerts no net force of the tool on the surface to be polished, since the vacuum and thrust forces that are created at the tool's output balance each other out. The grazing effect minimizes microroughness, making it appropriate for finishing high-quality surfaces. The principle of operation as well as polishing results of a series of small etalon plates are presented. PMID:24085071

  8. Development of Application of RE Polishing Materials

    Institute of Scientific and Technical Information of China (English)

    Li Xueshun; Huang Shaodong; Yang Guosheng

    2004-01-01

    The manufacturing method and functions of the RE polishing powder and comparation of the current situation of its production and application home and abroad were introduced.By analyzing the development of the liquid crystal (plate) display, the wide application of the RE polishing powder in the field of the liquid crystal display and predicts the development direction of the market of the RE polishing powder was presented.In addition, the development trends of the RE polishing powder industry and forecasts the application prospect of the RE polishing powder was analyzed.

  9. Effect of mechanical stress on biofilms challenged by different chemicals

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, M. J.

    2005-01-01

    In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activ...

  10. Effects of Chairside Polishing and Brushing on Surface Roughness of Acrylic Denture Base Resins

    Institute of Scientific and Technical Information of China (English)

    Seung-Kyun Kim; Ju-Mi Park; Min-Ho Lee; Jae-Youn Jung; Shipu Li; Xinyu Wang

    2009-01-01

    The effects of 3 chairside polishing kits and mechanical brushing on the surface roughness of 3 different acrylic denture base resins were compared. Acrylic denture base resins (auto-polymerizing, heat-polymerizing, injected heat-polymerizing resins) were examined after a tungsten carbide bur, and after chairside polishing using 3 polishing kits and pumice. The specimens were subjected to mechanical brushing using a wear tester to simulate 30 000 strokes of brushing. The surface roughness of the acrylic denture base resin specimens was measured using a contact pro-filometer. After the test, the random polished acrylic resins were evaluated by scanning electron mi-croscopy (SEM) and atomic force microscopy (AFM). Acrylic denture base resins polished using the 3 types of polishing kits had a smoother surface than those finished with the tungsten carbide bur (p <0.05). The surface of the resin polished by a TC cutter exceeded the Ra of 0.2 μm (p<0.05). The auto-polymerizing resin showed a significantly higher surface roughness than the heat-polymerizing resin and injected heat-polymerizing resin (p>0.05). In the case of polishing step wise, there was almost no change in surface roughness after brushing (p>0.05).

  11. Efficacy and mechanisms of non-antibacterial, chemical plaque control by dentifrices - An in vitro study

    NARCIS (Netherlands)

    Busscher, Henk J.; White, Don J.; Atema-Smit, Jelly; van der Mei, Henny C.

    2007-01-01

    Objectives: The provision of antiplaque benefits to dentifrices assists patients in improving hygiene and reducing susceptibility to gingivitis and caries. Chemical plaque control involves different mechanisms and is mostly associated with antibacterial effects, but also includes effects on pellicle

  12. 2010 University Exemplary Department Award honors chemical engineering, entomology, and mechanical engineering

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Virginia Tech's Department of Entomology in the College of Agriculture and Life Sciences and the Department of Chemical Engineering and the Department of Mechanical Engineering in the College of Engineering have been recognized with the 2010 University Exemplary Department Award.

  13. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  14. Corrosion problems of materials for mechanical, power and chemical engineering

    International Nuclear Information System (INIS)

    The proceedings contain 47 contributions, out of which 8 have been inputted in INIS. These are concerned with various corrosion problems of WWER primary circuit components and their testing. The factors affecting the corrosion resistance are analyzed, the simultaneous corrosion action of decontamination of steels is assessed, and the corrosion cracking of special steels is dealt with. The effects of deformation on the corrosion characteristics are examined for steel to be used in fast reactors. The corrosion potentials were measured for various steels. A testing facility for corrosion-mechanical tests is briefly described. (M.D.). 5 figs., 5 tabs., 25 refs

  15. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker;

    2003-01-01

    It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...... mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models...

  16. Mechanisms in endogenous leukemia virus induction by radiation and chemicals

    International Nuclear Information System (INIS)

    A model of endogenous virus induction in AKR-strain mouse cells, based on two distinct types of alterations in cellular or proviral DNA, is presented. The first type are nonrepairable alterations such as those caused by the incorporation of halogenated pyrimidines; the second type are repairable lesions such as those caused by irradiation or certain chemicals other than pyrimidines. The production of nonrepairable lesions leads to the formation of a stable, proviral state which is dependent upon cell division for complete virus expression. A stable provirus intermediate state is not demonstrable in mouse cells induced by treatments which cause repairable lesions since replication of damaged or altered DNA must occur before the lesions are removed by repair synthesis. Experimental support for this model is based upon the following observations: (a) enhancement of induction is observed if lesions are introduced during cellular DNA synthesis; (b) quinacrine, which is an inhibitor of repair synthesis, increases the observed level of radiation induction; and (c) incorporation of 5-iodo-2'-deoxyuridine during repair of DNA appears to 'stabilize' lesions which would otherwise be removed by repair synthesis, and increases the level of virus induction

  17. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  18. Evidentiality in English and Polish

    OpenAIRE

    Gurajek, Beata

    2010-01-01

    This thesis provides a synchronic account of evidentiality in English and Polish and the main ideas associated with the research on evidentiality with reference to these languages. Chapter 1 provides the review of main ideas as presented in the literature on the topic. Linguists provide varied definitions of evidentiality, therefore chapter 2 gives a unified description of evidentiality, understood as an independent grammatical and semantic category, and offers an organised account of its sem...

  19. THE CHANGING POLISH FOOD CONSUMER

    OpenAIRE

    Sznajder, Michal; Senauer, Benjamin

    1998-01-01

    This paper provides an overview of major demographic and food trends in Poland and the rapid changes in Polish food retailing. The demographic changes include the size of the population; birth, death, marriage and divorce rates; the age distribution, education and household types. Two important demographic factors that will affect food consumption are the aging population and the major gap in education between urban and rural areas. In the next 20 years, the number of children will decrease r...

  20. Interculutral Polish-Chinese QQing

    OpenAIRE

    Elżbieta Gajek,

    2012-01-01

    Working in tandem with the use of information and communication technologies is well-known and frequently used as a method of supporting learning of foreign languages in authentic communication. It is based on a constructivist approach to teaching. In the reported case study Polish and Chinese students discussed in English preprepared topics. The work shows the potential of e-learning at the micro level, as the language and intercultural task is implemented into an academic course without mod...

  1. Polish technologies on-line

    OpenAIRE

    Dominiak, Maciej (OPI); Lipiec, Krzysztof (OPI); Siwek, Krystyna (OPI); Ossowski, Maciej (OPI); GreyNet, Grey Literature Network Service

    2008-01-01

    In February 2008 the internet service POLSKIETECHNOLOGIE.pl was opened by Information Processing Centre in Warsaw (OPI). The strategic objective was to improve access to technologies offered to the Polish small land medium enterprises by research organizations. The below article presents the portal's principles of working and observations after the first year of its functioning. Includes: Conference preprint, Powerpoint presentation, Abstract and Biographical notes, Pratt student commentar...

  2. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.

    Science.gov (United States)

    Horváth, Viktor; Epstein, Irving R; Kustin, Kenneth

    2016-03-31

    Existing models of the ferrocyanide-iodate-sulfite (FIS) reaction seek to replicate the oscillatory pH behavior that occurs in open systems. These models exhibit significant differences in the amplitudes and waveforms of the concentration oscillations of such intermediates as I(-), I3(-), and Fe(CN)6(3-) under identical conditions and do not include several experimentally found intermediates. Here we report measurements of sulfite concentrations during an oscillatory cycle. Knowing the correct concentration of sulfite over the course of a period is important because sulfite is the main component that determines the buffer capacity, the pH extrema, and the amount of oxidizer (iodate) required for the transition to low pH. On the basis of this new result and recent experimental findings on the rate laws and intermediates of component processes taken from the literature, we propose a mass action kinetics model that attempts to faithfully represent the chemistry of the FIS reaction. This new comprehensive mechanism reproduces the pH oscillations and the periodic behavior in [Fe(CN)6(3-)], [I3(-)], [I(-)], and [SO3(2-)]T with characteristics similar to those seen in experiments in both CSTR and semibatch arrangements. The parameter ranges at which stationary and oscillatory behavior is exhibited also show good agreement with those of the experiments. PMID:26949219

  3. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  4. Water effect on peroxy radical measurement by chemical amplification: Experimental determination and chemical mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The water effect on peroxy radical measurement by chemical amplification was determined experimentally for HO2 and HO2+OH, respectively at room temperature (298±2) K and atmospheric pressure (1×105 Pa). No significant difference in water effect was observed with the type of radicals. A theoretical study of the reaction of HO2·H2O adduct with NO was performed using density functional theory at CCSD(T)/6-311 G(2d, 2p)//B3LYP/6-311 G(2d, 2p) level of theory. It was found that the primary reaction channel for the reaction is HO2·H2O+NO→HNO3+H2O (R4a). On the basis of the theoretical study, the rate constant for (R4a) was calculated using Polyrate Version 8.02 program. The fitted Arrenhnius equation for (R4a) is k = 5.49×107 T 1.03exp(?14798/T) between 200 and 2000 K. A chemical model incorporated with (R4a) was used to simulate the water effect. The water effect curve obtained by the model is in accordance with that of the experiment, suggesting that the water effect is probably caused mainly by (R4a).

  5. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  6. Cellular and molecular mechanisms of chemical synaptic transmission.

    Science.gov (United States)

    Millhorn, D E; Bayliss, D A; Erickson, J T; Gallman, E A; Szymeczek, C L; Czyzyk-Krzeska, M; Dean, J B

    1989-12-01

    During the last decade much progress has been made in understanding the cellular and molecular mechanisms by which nerve cells communicate with each other and nonneural (e.g., muscle) target tissue. This review is intended to provide the reader with an account of this work. We begin with an historical overview of research on cell-to-cell communication and then discuss recent developments that, in some instances, have led to dramatic changes in the concept of synaptic transmission. For instance, the finding that single neurons often contain multiple messengers (i.e., neurotransmitters) invalidated the long-held theory (i.e., Dale's Law) that individual neurons contain and release one and only one type of neurotransmitter. Moreover, the last decade witnessed the inclusion of an entire group of compounds, the neuropeptides, as messenger molecules. Enormous progress has also been made in elucidating postsynaptic receptor complexes and biochemical intermediaries involved in synaptic transmission. Here the development of recombinant DNA technology has made it possible to clone and determine the molecular structure for a number of receptors. This information has been used to gain insight into how these receptors function either as a ligand-gated channel or as a G protein-linked ligand recognition molecule. Perhaps the most progress made during this era was in understanding the molecular linkage of G protein-linked receptors to intramembranous and cytoplasmic macromolecules involved in signal amplification and transduction. We conclude with a brief discussion of how synaptic transmission leads to immediate alterations in the electrical activity and, in some cases, to a change in phenotype by altering gene expression. These alterations in cellular behavior are believed to be mediated by phosphoproteins, the final biochemical product of signal transduction. PMID:2575357

  7. Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses

    International Nuclear Information System (INIS)

    A comparison of the IR nanosecond laser ablation parameters for polished and nanostructured titanium samples has been performed. The titanium foil was mechanically polished and pres-structured by multiple 744-nm femtosecond laser pulses producing large surface spots covered by ripples with periods in range of 400–500 nm. In order to evaluate the influence of such nanoripples, the nanosecond laser ablation and laser plasma properties were compared for polished surface, surface with nanoripples parallel and orthogonal to the laser beam polarization. A substantial decrease of the nanosecond ablation threshold was observed for the nanostructured in contrast to polished surface was detected while no influence of the ripple orientation vs. beam polarization was revealed. The comparison of plasma spectra for the ablation cases demonstrated that intensity of basic atomic lines and plasma emission duration were 2–5 times larger for the polished sample while spectra evolution was faster for the nanostructured sample. Plasma temperature and electron density were slightly lower for nanostructured sample while laser beam polarization has no effect on plasma properties. - Highlights: • Laser ablation of polished and nanostructured titanium foils has been compared. • No influence of laser beam polarization on laser ablation threshold was detected. • Greater spectra intensity was observed for plasma formed on polished sample. • Plasma temperature and electron density were higher for polished sample

  8. Electrochemical behavior and polishing properties of silicon wafer in alkaline slurry with abrasive CeO2

    Institute of Scientific and Technical Information of China (English)

    SONG Xiao-lan; XU Da-yu; ZHANG Xiao-wei; SHI Xun-da; JIANG Nan; QIU Guan-zhou

    2008-01-01

    The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated. The variations of corrosion potential (φcorr) and corrosion current density (Jcorr) of the P-type (100) silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies. The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP) were also studied. It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum (1.306 μA/cm2) at pH 10.5 when the material removal rate(MRR) comes to the fastest value. The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration. There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5. The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.

  9. NIR Analysis of Rice Bran Depending on DifferentPercentages of Rice Polishing

    OpenAIRE

    Kumagai, Masanori; Takahashi, Toru; Takahashi, Hitoshi; Ogawa, Nobuaki; TOEDA, Kazuki

    2006-01-01

    Generally, in the case of agricultural products, some difficulties, resulting from the broad peak intensity and extensive overlapping of NIR absorption bands derived from complex chemical components that exist in the sample, arise in relation to specific functionalities of those spectra. This study is intended to specify the NIR spectra of rice bran depending on different percentages of rice polishing. Sample sets were prepared by polishing and grinding away 5% increments of the original mass...

  10. Side polished twin-core fiber coupler

    Science.gov (United States)

    Wang, Xianbin; Yuan, Libo

    2015-07-01

    A novel optical fiber coupler was proposed and fabricated for coupling each core of a twin-core fiber (TCF) with a single-core fiber (SCF) core simultaneously and accessing independently both cores of the TCF. The coupler is mainly composed of two sides polished SCF and a side polished TCF. Each optical field launched from the TCF could be coupled into the side polished SCF. The coupler has a simple structure and less cross-talk between the two cores.

  11. Challenges to ART market: a Polish case.

    Science.gov (United States)

    Alichniewicz, Anna; Michałowska, Monika

    2015-02-01

    In the paper we are analyzing the Polish ART market. It can be noticed that the lack of legal regulation has resulted in many discrepancies among the policies adopted by various ART agencies. The social acceptance of ART procedures available mostly in private clinics led to growing commercialization of the Polish ART market. Additionally, the language of gift and altruistic rhetoric that are overwhelmingly employed by ART agencies reveals hypocrisy of the Polish ART market. PMID:24889400

  12. Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions

    CERN Document Server

    Weydahl, Torleif; Seljeskog, Morten; Haugen, Nils Erland L

    2011-01-01

    This paper provides detailed comparisons of chemical reaction mechanisms of H2 applicable at high preheat temperatures and pressures relevant to gas turbine and particularly Alstom's reheat gas turbine conditions. It is shown that the available reaction mechanisms exhibit large differences in several important elementary reaction coefficients. The reaction mechanisms are assessed by comparing ignition delay and laminar flame speed results obtained from CHEMKIN with available data, however, the amount of data at these conditions is scarce and a recommended candidate among the mechanisms can presently not be selected. Generally, the results with the GRI-Mech and Leeds mechanisms deviate from the Davis, Li, O'Conaire, Konnov and San Diego mechanisms, but there are also significant deviations between the latter five mechanisms that altogether are better adapted to hydrogen. The differences in ignition delay times between the dedicated hydrogen mechanisms (O'Conaire, Li and Konnov) range from approximately a maxim...

  13. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  14. Analysis of process parameters of micro fluid-jet polishing on the processing effect

    Science.gov (United States)

    Wang, Shaozhi; Liu, Jian; Zhang, Linghua

    2013-08-01

    Micro fluid-jet polishing technology is a new kind of ultra-smooth machining method which proposed on the basis of float polishing principle and combined with small tool polishing. This article will use micro jet ultra-smooth machine which developed by ourselves to develop the process experiment for plane elements. In the experiment, the material removal rate and surface roughness are taken as the assessment index, and the orthogonal experiment method is used to study the processing effect of different process parameters, such as the spindle speed, the pressure of the grinding head and the abrasive concentration. On the basis of the experimental results and combined with the micro jet polishing mechanism, the processing effect law of the various process parameters is analyzed. It shows that, the influence of polishing pressure and abrasive concentration on the removal efficiency is single, that is to say, the removal efficiency can be increased either by increasing the polishing pressure or by increasing the concentration of the slurry. However, the influence of the grinding speed on removal efficiency is not simple, the removal efficiency can be increased by increasing the grinding speed in the certain range, if continue to increase, the removal efficiency will decrease. The influence of the process parameters on the roughness is more complex, but it can be summarized grossly as follows: if the roughness is required to reduce quickly, the large polishing pressure and high concentration slurry can be chosen, but it has a large depth of removal; if the roughness is required to reduce and the removal depth is as small as possible, the little polishing pressure and the dilute polishing liquid can be chosen, but it has a long polishing time. So in the actual processing, the process parameters should be adjusted according to different machining needs, to finally reach the optimization.

  15. Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation

    International Nuclear Information System (INIS)

    Polyelectrolyte gels are viscoelastic adaptive materials with enormous swelling capabilities under the influence of different kinds of stimulation, e.g. chemical, electrical or thermal. This unique property makes them very attractive for 'pseudomuscular' actuators. In this paper we investigate the mechanism of the chemical stimulation, by changing the salt concentration in the solution bath surrounding the gel. By applying a fully coupled chemo-electro-mechanical model, the change of the concentrations, of the electric potential and of the displacement are investigated when varying the ambient chemical conditions. The change of the mechanical displacement and the gel geometry is realized by the change of the osmotic pressure difference between the gel and the solution. The volume change of the gel leads to a change in the concentration of bound anionic groups while keeping their mole number constant. It is shown that the full coupling of the mechanical and the chemo-electrical field is necessary and that it is a real improvement to the previously developed one-way chemo-electric to mechanical coupling. It is demonstrated that the fully coupled model works as a kind of limiter for the change of the chemo-electric unknowns and thus for the gel deformation. A qualitative comparison with experimental results shows the validity of the fully coupled chemo-electro-mechanical model for chemical stimulation

  16. Surface chemical and morphological properties of mechanical pulps, fibers and fines

    OpenAIRE

    Kangas, Heli

    2007-01-01

    The aim of this work was to study the surface chemical and morphological properties of different mechanical pulps with special focus on the effects of refining, bleaching and enzymatic modification on the surface properties of the isolated pulp fractions, namely fibers, fibrillar fines and flake-like fines. Special emphasis was placed on evaluating the suitability of time-of-flight secondary ion mass spectroscopy (ToF-SIMS) for studying the surface chemical properties of pulps and pulp fracti...

  17. Stochastic innovation as a mechanism by which catalysts might self-assemble into chemical reaction networks

    OpenAIRE

    Bradford, Justin A; Dill, Ken A.

    2007-01-01

    We develop a computer model for how two different chemical catalysts in solution, A and B, could be driven to form AB complexes, based on the concentration gradients of a substrate or product that they share in common. If A's product is B's substrate, B will be attracted to A, mediated by a common resource that is not otherwise plentiful in the environment. By this simple physicochemical mechanism, chemical reactions could spontaneously associate to become chained together in solution. Accord...

  18. Perceptions of and Attitudes towards Regional Varieties of Polish: Views from Two Polish Provinces

    Science.gov (United States)

    Milobog, Magdalena; Garrett, Peter

    2011-01-01

    This paper reports a study of perceptions and attitudes relating to regional varieties of Polish. The methodology followed folk linguistic approaches to attitudes research. Respondents in two Polish provinces were asked to draw on a map of Poland where they thought the main regional varieties of Polish were spoken, and then to name and…

  19. Material Characterization in the Electro-Analytic Approach for Applications in Chemical Mechanical Planarization and Electrochemical Energy Systems

    Science.gov (United States)

    Rock, Simon E.

    the generation of ion-incorporated tantalum pentoxide. DBSA strongly affects the CMP chemistry of Cu, but exhibits relatively weaker effects on the surface activity of Ta, and thus plays a vital role in dictating the selectivity of Ta:Cu polish rates. CMP of tantalum nitride is also an essential step of material processing in the fabrication of integrated circuits, which is looked separately in this thesis. The present work investigates certain chemical aspects of this strategy of TaN-CMP by also using guanidine carbonate (GC) as a surface complexing agent, and employing electrochemical experiments. The experiments are designed to study the chemical and electrochemical origins of the CMP-specific surface complex films formed on a TaN wafer in acidic solutions of GC and hydrogen peroxide. Open circuit potential, polarization resistance, and electrochemical impedance measurements are employed to probe the surface effects that facilitate material removal in chemically prevailing CMP of TaN. The results are discussed in view of designing slurry variables to support barrier layer planarization with reduced roles of mechanical abrasion. Nonvolatile and nonflammable ionic liquids (ILs) have distinct thermal advantages over the traditional organic solvent electrolytes of lithium ion batteries. However, this beneficial feature of ILs is often counterbalanced by their high viscosity (a limiting factor for ionic conductivity) and, sometimes, by their unsuitable electrochemistry for generating protective layers on electrode surfaces. In an effort to alleviate these limiting Aspects of ILs, we have synthesized a PEGylated imidazolium bis(triflouromethylsulfonyl)amide (bistriflamide) IL that exhibited better thermal and electrochemical stability than a conventional electrolyte based on a blend of ethylene carbonate and diethyl carbonate. The electrochemical performance of this IL has been demonstrated using a cathode consisting of ball-milled LiMn2O4 particles. A direct comparison

  20. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  1. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  2. Simulation of chemical reactions in solution by a combination of classical and quantum mechanical approach

    Science.gov (United States)

    Onida, Giovanni; Andreoni, Wanda

    1995-09-01

    A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.

  3. Mechanical Erosion in a Tropical River Basin in Southeastern Brazil: Chemical Characteristics and Annual Fluvial Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Alexandre Martins Fernandes

    2012-01-01

    Full Text Available This study aims to evaluate the mechanical erosion processes that occur in a tropical river basin, located in the São Paulo state, southeastern Brazil, through the chemical characterization of fine suspended sediments and the transport mechanisms near the river mouth, from March 2009 to September 2010. The chemical characterization indicated the predominance of SiO2, Al2O3, and Fe2O3 and showed no significant seasonal influences on the major element concentrations, expressed as oxides. The concentration variations observed were related to the mobility of chemical species. The evaluation of the rock-alteration degree indicated that the physical weathering was intense in the drainage basin. The fine suspended sediments charge was influenced by the variation discharges throughout the study period. The solid charge estimate of the surface runoff discharge was four times higher in the rainy season than the dry season. The transport of fine suspended sediments at the Sorocaba River mouth was 55.70 t km−2 a−1, corresponding to a specific physical degradation of 37.88 m Ma−1, a value associated with the mechanical erosion rate that corresponds to the soil thickness reduction in the drainage basin.

  4. Household Chemical Emergencies

    Science.gov (United States)

    ... and disposing of the material according to the manufacturer’s directions. It is critical to store household chemicals in places where children cannot access them. Remember that products such as aerosol cans of hair spray and deodorant, nail polish ...

  5. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    CERN Document Server

    Zhang, Yiteng; Kais, Sabre

    2015-01-01

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects o...

  6. 3D thermo-chemical-mechanical analysis of the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem C.

    2013-01-01

    In the present study, a 3D Eulerian thermo-chemical analysis is sequentially coupled with a 3D Lagrangian quasi static mechanical analysis of the pultrusion process. The temperature and degree of cure profiles at the steady state are first calculated in the thermo-chemical analysis. In the...... mechanical analysis, the developments of the process induced stresses and distortions during the process are predicted using the already obtained temperature and degree of cure profiles together with the glass transition temperature. The predictions of the transverse transient stresses and distortions are...... found to be similar as compared to the available data in the literature. Using the proposed 3D mechanical analysis, different mechanical behaviour is obtained for the longitudinal stress development as distinct from the stress development in the transverse directions. Even though the matrix material is...

  7. Time-dependent protection of ground and polished Cu using graphene film

    International Nuclear Information System (INIS)

    Highlights: • Graphene was deposited on polished and ground Cu sheets by CVD. • Graphene films provide better protection to polished Cu for short time. • Multilayer graphene films provide better protection for short time. - Abstract: Graphene was deposited on Cu sheets with different morphologies by chemical vapor deposition. Scanning electron microscopy (SEM) analysis indicated that the morphology of the Cu sheet affected the graphene film properties. Electrochemical impedance spectroscopy measurements showed that the graphene film did not effectively protect Cu against corrosion because of prolonged exposure to ionic environments (3.5 wt.% NaCl solution). For short durations, graphene films provided better protection to polished Cu than ground Cu. Prolonged electrolyte immersion of graphene-coated Cu samples showed that the graphene film from the polished Cu surface was detached more easily than that from ground Cu

  8. The Bulgarian-Polish-Russian parallel corpus

    Directory of Open Access Journals (Sweden)

    Maksim Duškin

    2015-11-01

    Full Text Available The Bulgarian-Polish-Russian parallel corpusThe Semantics Laboratory Team of Institute of Slavic Studies of Polish Academy of Sciences is planning to begin work on the creation of a Bulgarian-Polish-Russian parallel corpus. The three selected languages are representatives of the main groups of Slavic languages: Bulgarian represents the southern group of Slavic languages, Polish – the western group of Slavic languages, Russian – the eastern group of Slavic languages. Our project will be the first parallel corpus of these three languages. The planned corpus will be based on material, dating from one period (the 20th century and will have a synchronous nature. The project will not constitute the sum of the separate corpora of selected languages.One of the problems with creating multilingual parallel corpora are different proportions of translated texts between the selected languages, for example, Polish literature is often translated into Bulgarian, but not vice versa.Bulgarian, Russian and Polish differ typologically – Bulgarian is an analytic language, Polish and Russian are synthetic. The parallel corpus should have compatible annotation, while taking into account the characteristic features of the selected languages.We hope that the Bulgarian-Polish-Russian parallel corpus will serve as a source of linguistic material of contrastive language studies and may prove to be a big help for linguists, translators, terminologists and students of linguistics. The results of our work will be available on the Internet.

  9. The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

    OpenAIRE

    A. Kurc-Lisiecka; M. Kciuk

    2013-01-01

    Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron ...

  10. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    OpenAIRE

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; Winkelhoff, Arie-Jan van; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquid...

  11. Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Eres, Gyula [ORNL; Wang, Ying [Nagoya University, Japan; Gao, Xingfa [Institute of High Energy Physics, Chinese Academy of Sciences, China; Qian, Hu-Jun [Jilin University, Changchun; Ohta, Yasuhito [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Wu, Xiaona [Nagoya University, Japan; Morokuma, Keiji [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Irle, Stephan [WPI-Institute of Transformative Bio-Molecules and Department of Chemistry, Nagoya University, Japan

    2014-01-01

    Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

  12. Polish Industry and Art at CERN

    CERN Multimedia

    2000-01-01

    On 17 October 2000 the second Polish industrial and technological exhibition opened at CERN. The first one was held five years ago and nine of the companies that were present then have come back again this year. Six of those companies were awarded contracts with CERN in 1995. Three Polish officials were present at the Opening Ceremony today: Mrs Malgorzata Kozlowska, Under-secretary of State in the State Committee for Scientific Research, Mr Henryk Ogryczak, Under-secretary of State in Ministry of Economy and Prof. Jerzy Niewodniczanski, President of National Atomic Energy Agency. Professor Luciano Maiani welcomed the Polish delegation to CERN and stressed the important contribution of Polish scientists and industrialists to the work of the laboratory. Director General Luciano Maiani (back left) and head of SPL division Karl-Heinz Kissler (back right) visit the Poland at CERN exhibition… The exhibition offers Polish companies the opportunity to establish professional contacts with CERN. Nineteen companies...

  13. TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS IN RAT LIVERS ACCURATELY CATEGORIZES CHEMICALS AND IDENTIFIES MECHANISMS OF TOXICITY

    Science.gov (United States)

    Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluori...

  14. Numerical analysis of hydrodynamic process of circular-translational-moving polishing (CTMP)

    Institute of Scientific and Technical Information of China (English)

    Wenjie ZHAI; Changxiong LIU; Yingchun LIANG

    2008-01-01

    By keeping a pad moving relative to a wafer along a circular path without rotation, we developed a polishing technique called circular-translational-moving polishing (CTMP), which permits multidirectional polish-ing of the work piece and thus bears the advantage of isotropic polishing and a potential increase of material removal rate (MRR) on the wafer. To illuminate the mechanisms of CTMP and determine the optimum pro-cess variables in a CTMP process, a three-dimensional hydrodynamic lubrication model for CTMP with a smooth and rigid pad under a quasi-stable state is estab-lished in a polar coordinate system. The model equations are further calculated numerically by the finite difference method. The instantaneous distribution of fluid pressure is obtained, which shows that a negative pressure exists. The reason for negative pressure in CTMP and its effect on polishing is discussed. Moreover, the nominal clear-ance of the fluid film, roll, and pitch angles under different working conditions are obtained in terms of the applied load, moments, and polishing velocity. The obtained numerical analysis can be used as guidance for choosing operation parameters in a practical CTMP application.

  15. Modeling of laser polishing of parts built up by the milling and additive manufacturing primary processes

    OpenAIRE

    Rosa, Benoit

    2015-01-01

    In order to reach the functional quality imposed by specifications, a mechanical part needs several operations. Thereby, the manufacturing chain is composed by different processes. The primary processes enable to create surfaces, and for aesthetic or tribological functions these surfaces need a finishing operation. Conventional polishing processes hold some drawbacks in terms of quality, productivity, environment and health. In order to overcome these limitations, the laser polishing process ...

  16. Reduced chemical kinetic mechanisms for NOx emission prediction in biomass combustion

    DEFF Research Database (Denmark)

    Houshfar, Ehsan; Skreiberg, Øyvind; Glarborg, Peter;

    2012-01-01

    reactions and chemical species, that is, 35 species and 198 reactions, corresponding to 72% reduction in the number of reactions and, therefore, improving the computational time considerably. Yet, the model based on the reduced mechanism predicts correctly concentrations of NOx and CO that are essentially...... parameters on NOx emission. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 219–231, 2012...

  17. Mechanical, chemical and radiological characterization of the graphite of the UNGG reactors type

    International Nuclear Information System (INIS)

    In the framework of UNGG reactors type dismantling procedures, the characterization of the graphite, used as moderator, has to be realized. This paper presents the mechanical, chemical and radiological characterizations, the properties measured and gives some results in the case of the Bugey 1 reactor. (A.L.B.)

  18. A reconsideration for forming mechanism of optic fiber probe fabricated by static chemical etching

    Science.gov (United States)

    Chen, Yiru; Shen, Ruiqi

    2016-07-01

    The studies on the mechanism of static chemical etching are supplemented in this paper. Surface tension and diffusion effect are both taken into account. Theoretical analysis and data fitting show that the slant angle of the liquid-liquid interface leads to the maximum liquid rising, when diffusion effect is negligible.

  19. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism.

    NARCIS (Netherlands)

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P.M.T.

    2006-01-01

    Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical ch

  20. Mechanism for the Environmental Process & Ecological Effects of Typical Chemical Pollutants

    Institute of Scientific and Technical Information of China (English)

    XU Xiaobai; WANG Liansheng; DAI Shugui; HUANG Yuyao

    2007-01-01

    @@ Principally being engaged in the field of earth sciences, this research project explores the mechanism which governs the environmental process of some typical chemical contaminants and their eco-toxic effects at various levels. The research project features the following achievements:

  1. Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Larsen, N.B.; Krebs, Frederik C

    2006-01-01

    Degradation mechanisms of a photovoltaic device with an Al/C-60/C-12-PSV/PEDOT:PSS/ITO/glass geometry was studied using a combination of in-plane physical and chemical analysis techniques: TOF-SIMS, AFM, SEM, interference microscopy and fluorescence microscopy. A comparison was made between a...

  2. Chemical resistance/thermal and mechanical properties of unsaturated polyester-based nanocomposites

    Science.gov (United States)

    Jaya Vinse Ruban, Y.; Ginil Mon, S.; Vetha Roy, D.

    2013-01-01

    Nanocomposites were synthesized using unsaturated polyester as the matrix and organically modified montmorillonite (CA-MMT) as the reinforcing agent. XRD pattern of the modified montmorillonite showed that the interlayer spacing expanded from 1.21 to 1.9 nm, indicating intercalation. TGA and DTA show loss of organic surfactant from interlayer galleries. Glass transition temperature (T g) of these composites increased from 71 °C in the unfilled unsaturated polyester to 79 °C in the composites with 5 % organically modified montmorillonite. Chemical resistance and mechanical properties of the UP/organo-clay nanocomposites were studied. Chemical resistance was studied under aqueous conditions in acetic acid, nitric acid, hydrochloric acid, sodium hydroxide, aqueous ammonia and sodium carbonate. Chemical resistance studies reveal maximum weight gain/loss with increasing clay content. Mechanical studies show maximum characteristics for the composites-clay filled 5 % (w/w).

  3. The Influence of Surface Polish and Beverages on the Roughness of Nanohybrid and Microhybri Resin Composites

    Directory of Open Access Journals (Sweden)

    Sadeghi M

    2016-03-01

    Full Text Available Statement of the Problem: Surface roughness is a key factor in the aesthetics of restorative dentistry as it can determine the clinical quality and success of restorative materials. The chemical process of dissolution in the presence of mechanical forces can accelerate the surface roughness of tooth-coloured restorative materials. Objectives: To determine the degree of surface roughness of a microhybrid and a nanohybrid resin composite after polishing and immersion in various solutions. Materials and Methods: Two resin composites were used : a microhybrid (Gradia direct, GC, and a nanohybrid (Ice, SDI. A total of 54 disc-shaped specimens were prepared for each composite and immersed in distilled water incubated at 37 °C for 24 hours. After 24 h, the baseline measurement for surface roughness (Ra was performed and the specimens were divided into 3 groups of 18 and tested with unpolished or after polishing with Sof-Lex disc and Enhance point systems. Specimens in each group were subdivided into 3 subgroups (n = 6 and immersed in 3 solutions (distilled water, coffee, and cola for 7 days incubated at 37 °C. After 7 days, the specimens were rinsed with tap water for 10 seconds, dried with paper towel and Ra was measured again. Two randomly selected specimens of each group were sputter coated with gold and examined using a Field-Emission Scanning Electron Microscope (SEM. Results: Gradia direct showed a greater Ra than ice in all solutions for all polishing systems (p < 0.001. Specimens polished with Enhance point revealed a significantly greater roughness than Sof-Lex discs and both showed greater Ra than unpolished specimens. Specimens immersed in coffee exhibited significantly greater surface roughness than that of distilled water (p < 0.05 and cola (p < 0.001. Conclusions: Nano-hybrid composite showed a significantly smoother surface than microhybrid. Coffee exhibited the highest Ra compared to distilled water and cola. Enhance point revealed

  4. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Grush, M.; Callcott, T.A. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  5. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    International Nuclear Information System (INIS)

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature

  6. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    International Nuclear Information System (INIS)

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input

  7. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  8. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Swails, Jason [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States); Zhu, Tong; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science (China); Case, David A., E-mail: case@biomaps.rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States)

    2015-10-15

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  9. Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin;

    2013-01-01

    The aim of this study is to evaluate the existing chemical kinetic mechanism reduction techniques. From here, an appropriate reduction scheme was developed to create compact yet comprehensive surrogate models for both diesel and biodiesel fuels for diesel engine applications. The reduction......-dimensional computational fluid dynamics (CFD) study. A new reduction scheme was therefore formulated. A 68-species mechanism for biodiesel surrogate and a 49-species mechanism for diesel surrogate were successfully derived from the respective detailed mechanisms. An overall 97% reduction in species number and......-hexadecane mechanism is expected to be a better representative of surrogate component for various transportation fuels such as biodiesel. Additionally, it can be applied to predict the reactivity of other n-alkane or interchange with one another for kinetic and CFD simulations....

  10. Sediment losses from forest management: mechanical vs. chemical site preparation after clearcutting

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, R.S.; Granillo, A.B.; Zillmer, V.

    The comparative effects of mechanical and chemical site preparation water yields and sediment losses following forest clearcutting were evaluated over a 4-yr period in the Athens Plateau area of southwestern Arkansas. After 1 yr of pretreatment measurements, three forested water sheds were clearcut and the residual vegetation and debris were sheared and windrowed but not burned. Three watersheds were clearcut in a similar manner, but received chemical site preparation. Residual trees on two watersheds were injected with 2-4, D amine; the third watershed was aerially sprayed with a mixture of Tordon (active ingredient: picloram (4-amino-3,5,6-trichloropicoline acid)) and Garlon (active ingredient; triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid)). Three additional watersheds were left undisturbed for controls. Mean annual sediment losses on the mechanically, site prepared watersheds during the first posttreatment year were significantly higher than those from either the chemically site prepared watersheds or controls. Chemical site preparation did not significantly increase sediment losses. Although 2nd yr losses for the mechanical site preparation and control treatments doubled over 1st-yr levels, no significant treatment effect was detected for either site preparation treatment. Third-year losses decreased below 1st-yr losses for all treatments but not to pretreatment year levels. The relatively sharp declines in sediment losses during the third posttreatment year were attributed to rapid regrowth of natural vegetation on the sites.

  11. Smoking characteristics of Polish immigrants in Dublin

    Directory of Open Access Journals (Sweden)

    Zatonski Witold

    2008-12-01

    Full Text Available Abstract Background This study examined two main hypotheses: a Polish immigrants' smoking estimates are greater than their Irish counterparts (b Polish immigrants purchasing cigarettes from Poland smoke "heavier" (≥ 20 cigarettes a day when compared to those purchasing cigarettes from Ireland. The study also set out to identify significant predictors of 'current' smoking (some days and everyday among the Polish immigrants. Methods Dublin residents of Polish origin (n = 1,545 completed a previously validated Polish questionnaire in response to an advertisement in a local Polish lifestyle magazine over 5 weekends (July–August, 2007. The Office of Tobacco Control telephone-based monthly survey data were analyzed for the Irish population in Dublin for the same period (n = 484. Results Age-sex adjusted smoking estimates were: 47.6% (95% Confidence Interval [CI]: 47.3%; 48.0% among the Poles and 27.8% (95% CI: 27.2%; 28.4% among the general Irish population (p 24 months were significant predictors of current smoking among the Poles. An objective validation of the self-reported smoking history of a randomly selected sub-sample immigrant group, using expired carbon monoxide (CO measurements, showed a highly significant correlation coefficient (r = 0.64 of expired CO levels with the reported number of cigarettes consumed (p Conclusion Polish immigrants' smoking estimates are higher than their Irish counterparts, and particularly if employed, with only primary-level education, and are overseas >2 years.

  12. A micro-mapping strategy to investigate mechanical and chemical mass transport in migmatite

    Science.gov (United States)

    Lanari, Pierre; Riel, Nicolas

    2016-04-01

    Migmatites are fantastic objects to study both mechanical and chemical mass transport occurring at mm to cm-scale. However, migmatitic outcrops are the result of complex space and time interactions between (i) melt producing reactions, (ii) melt gain/loss and (iii) retrograde reactions. This succession of events is recorded in the minerals and microstructures of migmatites, and accounts for their apparent complexity. In order to explore the controlling parameters of these chemico-mechanical mass transport, it is thus necessary to characterize in great details the compositional changes between the different migmatitic domains, such as between leucosome and residuum. In this contribution we show how suitable local effective bulk (LEB) compositions can be derived by means of standardized microprobe X-ray images, using the program XMapTools. For chemically heterogeneous samples, such as migmatites, these LEB allow to forward model the stable mineral assemblages for each domain. Those thermodynamic models are used to investigate the conditions of leucosome-residuum separation. The studied sample is a metapelite embedded within a metasedimentary xenolith in the Marcabeli pluton, El Oro Complex, Ecuador. The sample exhibits complex mineral patterns due to local melt redistribution (at mm to cm-scale). Such physical mass transport involves major changes that affect the local chemical composition observed today. At the same time gradients in chemical potential can be established between adjacent domains such as residuum and leucosome, thus triggering chemical interaction. Diffusive transport between domains aims to reduce such chemical potential gradients. Along a modelled P-T path the chemical and mineralogical evolution of micro-domains can be reconstructed for (at least the reactive parts of) the crystallization history.

  13. Audit Committee Practice in the Polish Listed Stock Companies. Present Situation and Development Perspectives

    Directory of Open Access Journals (Sweden)

    Piotr Szczepankowski

    2012-06-01

    Full Text Available The audit committee is one of the parts of corporate governance mechanism, which is understood as the relationship between corporate managers, directors and the providers of equity, people and institutions who save and invest their capital to earn the return. This study presents survey research results of audit committee activity in Polish public stock companies quoted on the Warsaw Stock Exchange (WSE. The purpose of this paper is to present the audit committee practice in Poland after 2009. The paper shows that the audit committee practice is still the most problematic issue of transitional Polish corporate governance rules. The survey has shown that the corporate needs and its implementation, and communication with listed companies leave a lot of room for improvement. The paper is based on the documents prepared in 2010 by PricewaterhouseCoopers, the Polish Association of Listed Companies and the Polish Institute of Directors.

  14. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  15. Simulating Thermal-Hydrologic-Mechanical-Chemical Evolution Surrounding Fluid Injection in a Fractured Porous Geothermal Reservoir

    Science.gov (United States)

    Taron, J.; Min, K.; Elsworth, D.

    2006-12-01

    Computational analysis is conducted on the coupled thermal-hydrologic-mechanical-chemical (THMC) behavior of a stimulated EGS geothermal reservoir. Numerical analyses utilize a newly developed simulator capable of examining THMC processes in fractured porous geologic media. The simulator links the thermal-hydrologic- chemical (THC) computational code TOUGHREACT with the mechanical (M) capability of FLAC3D, where the response of pore fluid pressure to mechanical disturbance is treated as an undrained system and mineral precipitation/dissolution generates porosity and permeability change within each dual-permeability continuum. Non-linear permeability response to thermal-hydrologic-mechanical (THM) mechanisms is accommodated via embryonic mechanical and transport constitutive laws, and is considered to act in union with permeability changes associated with the removal or addition of minerals within the system. This construct is applied to the geometry of an injector-withdrawal doublet within the Coso Geothermal field, where in situ stress conditions, thermal state, and mineralogical composition at 3000m depth are extracted from recorded field data. Initial results for feasible parametric settings show that permeability reduction in the vicinity of a cool (80°C) injection well may be significant, within an order of magnitude, and accompanied by large (MPa) changes in the stress field throughout the reservoir for imposed boundary conditions of constant stress.

  16. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    Directory of Open Access Journals (Sweden)

    Chuanliang Yan

    2013-01-01

    Full Text Available Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  17. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Vickie S., E-mail: wilson.vickie@epa.gov [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Keshava, Nagalakshmi [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Hester, Susan [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Segal, Deborah; Chiu, Weihsueh [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Thompson, Chad M. [ToxStrategies, Inc., 23501 Cinco Ranch Blvd., Suite G265, Katy, TX 77494 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States)

    2013-09-15

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.

  18. Technological Advances of Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Lazarev, Ruslan; Top, Søren; Grønbæk, Jens;

    The efficient polishing of surfaces is very important in mould and die industry. Fine abrasive processes are widely used in industry for the first steps for the production of tools of high quality in terms of finishing accuracy, form and surface integrity. While manufacturing of most components....... In this study, the influence of polishing parameters and type of polishing media on fine abrasive surface finishing is investigated. Experimental study is covering 2D rotational surfaces that is widespread used in mould and dies industry. Application of it is essential for process intelligent control, condition...

  19. Applicability of random sequential adsorption algorithm for simulation of surface plasma polishing kinetics

    Science.gov (United States)

    Minárik, Stanislav; Vaňa, Dušan

    2015-11-01

    Applicability of random sequential adsorption (RSA) model for the material removal during a surface plasma polishing is discussed. The mechanical nature of plasma polishing process is taken into consideration in modified version of RSA model. During the plasma polishing the surface layer is aligned such that molecules of material are removed from the surface mechanically as a consequence of the surface deformation induced by plasma particles impact. We propose modification of RSA technique to describe the reduction of material on the surface provided that sequential character of molecules release from the surface is maintained throughout the polishing process. This empirical model is able to estimate depth profile of material density on the surface during the plasma polishing. We have shown that preliminary results obtained from this model are in good agreement with experimental results. We believe that molecular dynamics simulation of the polishing process, possibly also other types of surface treatment, can be based on this model. However influence of material parameters and processing conditions (including plasma characteristics) must be taken into account using appropriate model variables.

  20. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. PMID:27344951

  1. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  2. Physical and chemical mechanisms in oxide-based resistance random access memory

    Science.gov (United States)

    Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zhang, Rui; Hung, Ya-Chi; Syu, Yong-En; Chang, Yao-Feng; Chen, Min-Chen; Chu, Tian-Jian; Chen, Hsin-Lu; Pan, Chih-Hung; Shih, Chih-Cheng; Zheng, Jin-Cheng; Sze, Simon M.

    2015-03-01

    In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

  3. Isospin Dependence of Mechanical and Chemical Instabilities in Neutron-Rich Matter

    CERN Document Server

    Li, B A; Tilley, M; Zhang, B; Li, Bao-An; Sustich, Andrew T.; Tilley, Matt; Zhang, Bin

    2001-01-01

    Within nuclear thermodynamics and an isospin-dependent transport model we investigate respective roles of the nuclear mean field and the 2-body stochastic scattering on the evolution of density and isospin fluctuations in either mechanically or chemically unstable regions of neutron-rich matter. It is found that the mean field dominates overwhelmingly the fast growth of both fluctuations, while the 2-body scattering influences significantly the later growth of the isospin fluctuation only. Moreover, both fluctuations grow in mechanically unstable systems, while only the density fluctuation grows significantly in chemically unstable ones. Furthermore, the magnitude of both fluctuations decreases with the increasing isospin asymmetry because of the larger reduction of the attractive isoscalar mean field by the stronger repuslive neutron symmetry potential in the more neutron-rich matter. Finally, several experimental measurements are proposed to test these findings.

  4. NSR&D FY15 Final Report. Modeling Mechanical, Thermal, and Chemical Effects of Impact

    Energy Technology Data Exchange (ETDEWEB)

    Long, Christopher Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Xia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Duan Zhong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The main goal of this project is to develop a computer model that explains and predicts coupled mechanical, thermal and chemical responses of HE under impact and friction insults. The modeling effort is based on the LANL-developed CartaBlanca code, which is implemented with the dual domain material point (DDMP) method to calculate complex and coupled thermal, chemical and mechanical effects among fluids, solids and the transitions between the states. In FY 15, we have implemented the TEPLA material model for metal and performed preliminary can penetration simulation and begun to link with experiment. Currently, we are working on implementing a shock to detonation transition (SDT) model (SURF) and JWL equation of state.

  5. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy

    Science.gov (United States)

    Dezhenkova, L. G.; Tsvetkov, V. B.; Shtil, A. A.

    2014-01-01

    The review summarizes and analyzes recent published data on topoisomerase I and II inhibitors as potential antitumour agents. Functions and the mechanism of action of topoisomerases are considered. The molecular mechanism of interactions between low-molecular-weight compounds and these proteins is discussed. Topoisomerase inhibitors belonging to different classes of chemical compounds are systematically covered. Assays for the inhibition of topoisomerases and the possibilities of using the computer-aided modelling for the rational design of novel drugs for cancer chemotherapy are presented. The bibliography includes 127 references.

  6. Influence of chemical heat treatment on the mechanical properties of paper knife-edge die

    OpenAIRE

    K. Dybowski; Kaczmarek, Ł.; R. Pietrasik; J. Smolik; Ł. Kołodziejczyk; Batory, D.; Gzik, M; M. Stegliński

    2009-01-01

    Purpose: In this article mechanical properties together with wear mechanism of paper knife-edge die made of A 681 steel with TiN, TiCN and DLC coating were analyzed. A Paper knife-edge die using in stamping machine, serves a map of complicated graphical projects. However wear resistance is strongly dependent on chemical composition of a paper mainly on the TiO2 content.Design/methodology/approach: In order to optimize the wear resistance of analyzed paper knife-edge die, influence of HS6-5-2 ...

  7. Notes on the KIVA-2 software and chemically reactive fluid mechanics

    Science.gov (United States)

    Holst, M. J.

    1992-09-01

    Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.

  8. Electro Polishing of Niobium Cavities at DESY

    CERN Document Server

    Matheisen, A; Morales, H; Petersen, B; Schmoekel, M; Steinhau-Kühl, N

    2004-01-01

    At DESY a facility for electro polishing (EP) of the super conducting (s.c.) TESLA/TTF cavities have been built and is operational since summer 2003. The EP infrastructure is capable to handle single-cell structures and the standard TESLA/ TTF nine-cell cavities. Several electro polishing processes have been made since and acceleration voltage up to 40 MV/m have been reached in nine cell structures. We report on measurements and experiences gained since 2003 as well as on handling procedures developed for the preparation of electro polished resonators. Specific data like heat production, variation of current density and bath aging will be presented. Another important point for reproducible results is the quality control of the electro polishing process. First quality control steps to be implanted in the EP procedure for large-scale production will be described.

  9. Deterministic polishing from theory to practice

    Science.gov (United States)

    Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary

    2015-10-01

    Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.

  10. Feasibility of Reduced Chemical Kinetic Mechanisms of Methane in Internal Combustion Engine Simulations

    Science.gov (United States)

    Ennetta, Ridha; Said, Rachid

    2008-09-01

    Three reduced chemical kinetic mechanisms of methane combustion were tested and compared with the standard detailed scheme GriMech 3.0., using the internal combustion engine (ICE) model of Chemkin 4.02 [1]. This study shows acceptable concordances in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict all polluant emissions in an internal combustion engine.

  11. Postharvest Chemical, Sensorial and Physical-Mechanical Properties of Wild Apricot (Prunus armeniaca L.)

    OpenAIRE

    Evica MRATINIĆ; Bojan POPOVSKI; Tomo MILOŠEVIĆ; Melpomena POPOVSKA

    2011-01-01

    Some chemical, sensorial and physical-mechanical properties of 19 apricot genotypes and Hungarian Best (control) such as moisture content, soluble solids content, titratable acidity ratio and their ratio, fruit and stone mass, flesh/stone ratio, fruit dimensions (length, width, thickness), arithmetic and geometric mean diameter, sphericity, surface area and aspect ratio were determined. Their application is also discussed. The highest moisture content and stone mass observed in X-1/1/04 and X...

  12. Development of a Next-Generation Environmental Chamber Facility for Chemical Mechanism and VOC Reactivity Research

    OpenAIRE

    Carter, W P L; Fitz, D; D. R. Cocker III; Malkina, I L; Bumiller, K; Sauer, C G; Pisano, J T; Bufalino, C; Song, C.

    2005-01-01

    A new state-of-the-art indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosol (SOA) has been constructed and characterized. The chamber is designed for atmospheric chemical mechanism evaluation at low reactant concentrations under well-controlled environmental conditions. It consists of two collapsible 90 m3 FEP Teflon film reactors on pressure-controlled moveable frameworks inside a temperature-controlled e...

  13. The impact of cold deformation, annealing temperatures and chemical assays on the mechanical properties of platinum

    OpenAIRE

    Trumić B.; Stanković D.; Ivanović A.

    2010-01-01

    In order to form the necessary data base on platinum and platinum metals, certain tests were carried out on platinum samples of different purity of 99.5%, 99.9% and 99.99%. The degree of cold deformation, annealing temperature and chemical assays were tested as well as their impact on the mechanical properties of platinum. The Vickers hardness (HV) values were determined with different deformation degree, starting from annealing temperatures for platinum of different purity and tensile streng...

  14. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism.

    OpenAIRE

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P. M. T.

    2006-01-01

    Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical chaperones and sarco(endo)plasmic reticulum Ca2+ ATPase pump inhibitors on Madin-Darby canine kidney cells expressing nine ER-retained vasopressin type-2 receptor (V2R) mutants involved in nephrogeni...

  15. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    OpenAIRE

    Saylor, R. D.; A. F. Stein

    2012-01-01

    An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box m...

  16. The Physical-Chemical Mechanism of Water Stream Self-Purification

    CERN Document Server

    Mikhailovskii, V

    2000-01-01

    The self-purification process of water streams is studied and the physical-chemical mechanism of it is determined. The naturally occurring self-purification process at the Boyne River site is monitored. Experiments at several creeks and rivers in GTA area that induced the self-purification process are provided. As a result, the concentration of polluting agents in the water decreases up to 100 0epending on the site and pollutants.

  17. The Application of Mechanical-Chemical Corrosion Theory in Downhole Tubing CO2 Corrosion Research

    OpenAIRE

    2015-01-01

    Indoor simulating experiment is a main method for oil field CO2 corrosion research. Experimental parameters are very important for an accurate simulation. Based on the mechanical-chemical corrosion theory, the external load may be possible to accelerate the corrosion rate. However, the influence of N2 pressure on CO2 corrosion during the simulating experiment is negligible. Because the coupon stress induced by additional N2 pressure is very low, therefore, the N2 adding procedure can be cance...

  18. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    OpenAIRE

    R. D. Saylor; A. F. Stein

    2011-01-01

    An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of ea...

  19. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    OpenAIRE

    R. D. Saylor; A. F. Stein

    2012-01-01

    An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of t...

  20. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    OpenAIRE

    Rui Li; Hui Zhou; Wei Wei; Chen Wang,; Ying Chun Sun; Ping Gao

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the ad...

  1. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    International Nuclear Information System (INIS)

    There is a lot of hydroxyl on the surface of nano SiO2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO2 sol is also directly involved in the chemical reaction. The stability of SiO2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO2 sol. Polarization curves and corrosion potential of different concentrations of SiO2 sol showed that trace SiO2 sol can effectively weaken the passivation film thickness. In other words, SiO2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate with out changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO2 catalytic reaction were derived from the decomposition rate of Cu (OH)2 and the pH value of the system, and then it was concluded that the CuSiO3 as intermediates of Cu/SiO2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO2 catalytic system generated the intermediate of the catalytic reaction (CuSiO3) in the CMP process through the

  2. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?

    Science.gov (United States)

    Keil, Kimberly P.; Lein, Pamela J.

    2016-01-01

    There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.

  3. Potential role of redox cycling as a mechanism for chemical teratogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Juchau, M.R.; Fantel, A.G.; Harris, C.; Beyer, B.K.

    1986-12-01

    A survey of the literature indicates that several chemicals whose reduced metabolites are capable of undergoing redox cycling in biological systems also possess significant teratogenic properties when tested in vivo. The authors have initiated investigations to determine whether the embryotoxic effects of such chemicals could result from their redox cycling properties and whether redox cycling could be an important mechanism in chemical teratogenesis. In order to obviate the potentially confounding influences of maternal factors, the initial studies have been performed with a whole embryo culture system with redox cycling agents added directly to the culture medium. Several representative redox cycling agents including doxorubicin, paraquat, a series of nitroheterocycles, nitrosofluorene, and diethylstilbestrol (converted metabolically to redox cycling quinone/semiquinone radicals) have been investigated thus far. The nitroheterocycles which bear nitro groups with comparatively high redox potentials produced a striking, asymmetric defect involving primarily the right half of the prosencephalic and mesencephalic regions. The effect was exacerbated under conditions of low O/sub 2/ tension. Accumulated data to date strongly suggest that reduction of the nitro group is an essential feature in the embryotoxic mechanism. Quinones (doxorubicin, paraquat) and compounds metabolically converted to quinones (diethylstilbestrol) appeared to produce embryotoxic effects via mechanisms not associated with redox cycling. Nitrosofluorene embryotoxicity was markedly exacerbated by changes in both intra- and extracellular glutathione levels, but definitive dependence on a radical-mediated effect or redox cycling was not demonstrated.

  4. Interculutral Polish-Chinese QQing

    Directory of Open Access Journals (Sweden)

    Elżbieta Gajek

    2012-12-01

    Full Text Available Working in tandem with the use of information and communication technologies is well-known and frequently used as a method of supporting learning of foreign languages in authentic communication. It is based on a constructivist approach to teaching. In the reported case study Polish and Chinese students discussed in English preprepared topics. The work shows the potential of e-learning at the micro level, as the language and intercultural task is implemented into an academic course without modification of the objectives and learning outcomes of the course. Evaluation carried out at the end of the project indicates that both groups perceived the task as a significant linguistic, cultural and personal experience. They stressed the importance of sharing “culture for culture” as the partner culture was new for most of them. The ability to talk and respond to information which was often strange, from the point of view of their own culture, allowed for learning intercultural competence ̔in action’.

  5. Multiwavelength digital holography for polishing tool shape measurement

    Czech Academy of Sciences Publication Activity Database

    Lédl, Vít; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    Vol. 8884. Bellingham : The Society of Photo-Optical Instrumentation Engineers (SPIE), 2013 - (Bentley, J.; Pfaff, M.), 88840E-88840E ISBN 978-0-8194-9747-5. ISSN 0277-786X. - (SPIE. 8884). [SPIE Optifab 2013. Rochester (US), 14.10.2013-17.10.2013] R&D Projects: GA MŠk(CZ) OE10003 Institutional support: RVO:61389021 Keywords : digital holography * polishing * spatial frequencies * chemicals * high power lasers * holographic interferometry * manufacturing * optics * phase shifts Subject RIV: JB - Sensors, Measurment, Regulation http://dx.doi.org/10.1117/12.2030004

  6. Polish martial law the crisis of communism

    OpenAIRE

    Dmitrukowski, Tomasz

    2009-01-01

    In the summer of 1980, Polish workers revolted against Communist corruption and Poland's failed economic system. In a wave of solidarity unprecedented in a Communist state, citizens challenged the government's authority as the legitimate decision making body. Striking workers throughout the country created the Solidarity Union. They demanded personal freedom, legalization of Solidarity, and an input into the government. Polish Communist leaders faced the choice of either executing the wishes ...

  7. Enhancing Regular Expressions For Polish Text Processing

    OpenAIRE

    Krzysztof Dorosz; Anna Szczerbińska

    2009-01-01

    The paper presents proposition of regular expressions engine based on the modified Thompson’salgorithm dedicated to the Polish language processing. The Polish inflectional dictionaryhas been used for enhancing regular expressions engine and syntax. Instead of usingcharacters as a basic element of regular expressions patterns (as it takes place in BRE orERE standards) presented tool gives possibility of using words from a natural language orlabels describing words grammar properties in regex s...

  8. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    Directory of Open Access Journals (Sweden)

    Anders S Christensen

    Full Text Available We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94. ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3J(NC' spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  9. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  10. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2011-10-01

    Full Text Available An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH, resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR, which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  11. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2012-02-01

    Full Text Available An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH, resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR, which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  12. Experimental Polish-Lithuanian Corpus with the Semantic Annotation Elements

    Directory of Open Access Journals (Sweden)

    Danuta Roszko

    2015-06-01

    Full Text Available Experimental Polish-Lithuanian Corpus with the Semantic Annotation ElementsIn the article the authors present the experimental Polish-Lithuanian corpus (ECorpPL-LT formed for the idea of Polish-Lithuanian theoretical contrastive studies, a Polish-Lithuanian electronic dictionary, and as help for a sworn translator. The semantic annotation being brought into ECorpPL-LT is extremely useful in Polish-Lithuanian contrastive studies, and also proves helpful in translation work.

  13. HyDRa: control of parameters for deterministic polishing.

    Science.gov (United States)

    Ruiz, E; Salas, L; Sohn, E; Luna, E; Herrera, J; Quiros, F

    2013-08-26

    Deterministic hydrodynamic polishing with HyDRa requires a precise control of polishing parameters, such as propelling air pressure, slurry density, slurry flux and tool height. We describe the HyDRa polishing system and prove how precise, deterministic polishing can be achieved in terms of the control of these parameters. The polishing results of an 84 cm hyperbolic mirror are presented to illustrate how the stability of these parameters is important to obtain high-quality surfaces. PMID:24105579

  14. Experimental Polish-Lithuanian Corpus with the Semantic Annotation Elements

    OpenAIRE

    Danuta Roszko; Roman Roszko

    2015-01-01

    Experimental Polish-Lithuanian Corpus with the Semantic Annotation ElementsIn the article the authors present the experimental Polish-Lithuanian corpus (ECorpPL-LT) formed for the idea of Polish-Lithuanian theoretical contrastive studies, a Polish-Lithuanian electronic dictionary, and as help for a sworn translator. The semantic annotation being brought into ECorpPL-LT is extremely useful in Polish-Lithuanian contrastive studies, and also proves helpful in translation work.

  15. Biomass use in chemical and mechanical pulping with biomass-based energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas M.; Gustavsson, Leif [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2007-12-15

    The pulp and paper industry is energy intensive and consumes large amounts of wood. Biomass is a limited resource and its efficient use is therefore important. In this study, the total amount of biomass used for pulp and for energy is estimated for the production of several woodfree (containing only chemical pulp) and mechanical (containing mechanical pulp) printing paper products, under Swedish conditions. Chemical pulp mills today are largely self-sufficient in energy while mechanical pulp mills depend on large amounts of external electricity. Technically, all energy used in pulp- and papermaking can be biomass based. Here, we assume that all energy used, including external electricity and motor fuels, is based on forest biomass. The whole cradle-to-gate chain is included in the analyses. The results indicate that the total amount of biomass required per tonne paper is slightly lower for woodfree than for mechanical paper. For the biomass use per paper area, the paper grammage is decisive. If the grammage can be lowered by increasing the proportion of mechanical pulp, this may lower the biomass use per paper area, despite the higher biomass use per unit mass in mechanical paper. In the production of woodfree paper, energy recovery from residues in the mill accounts for most of the biomass use, while external electricity production accounts for the largest part for mechanical paper. Motor fuel production accounts for 5-7% of the biomass use. The biomass contained in the final paper product is 21-42% of the total biomass use, indicating that waste paper recovery is important. The biomass use was found to be about 15-17% lower for modelled, modern mills compared with mills representative of today's average technology. (author)

  16. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  17. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  18. Chemical and Mechanical Degradation of Sulfonated Poly(sulfone) Membranes in Vanadium Redox Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soowhan; Tighe, Timothy B.; Schwenzer, Birgit; Yan, Jingling; Zhang, Jianlu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2011-10-01

    A sulfonated poly(sulfone) (S-Radel{reg_sign}) membrane with high proton conductivity and low vanadium ion diffusion showed high initial performance in a vanadium redox flow battery (VRFB) but suffered damage during charge/discharge cycling. The S-Radel membrane had different degradation behaviors in flow cell cycling and ex-situ vanadium ion immersion tests. The S-Radel membrane immersed in V5+ solution cracked into small pieces, but in the VRFB cell, the membrane underwent internal delamination preferentially on the side of the membrane that faced the positive electrode. A vanadium-rich interface was observed near the membrane surface that experienced delamination and Raman spectroscopic analysis of the surfaces of the membrane indicated a slightly depressed 1026 cm-1 band corresponding to the sulfonate SO2 stretch for the degraded surface. Even though the S-Radel membrane underwent severe mechanical damage during the flow cell cycling, significant chemical degradation was not obvious from the spectroscopic analyses. For the VRFB containing an S-Radel membrane, an increase in membrane resistance caused an abnormal voltage depression during the discharge cycle. The reversible increase in membrane resistance and severe mechanical degradation of the membrane during cycling may be attributed repeated formation and dissolution of particles inside the membrane. The mechanical stresses imposed by the particles coupled with a small amount of chemical degradation of the polymer by V5+, are likely degradation mechanisms of the S-Radel membrane in VRFBs under high state-of-charge conditions.

  19. The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

    Directory of Open Access Journals (Sweden)

    A. Kurc-Lisiecka

    2013-12-01

    Full Text Available Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron 2.0 diffractometer equipped with the lamp of the cobalt anode. The metallographic observations were carried out on LEICA MEF 4A light microscope. Findings: Results shown that after solution heat treatment the values of strength properties (UTS, YS0.2 and hardness (HV of both investigated steels decrease and their elongation (EL increases. The X5CrNi18-8 steel in delivery state shown austenitic microstructure with twins and numerous non-metallic inclusions, while in steel X10CrNi18-8 revealed a austenitic microstructure with numerous slip bands in areas with deformation martensite α’. The examined steels after solution heat treatment followed by water-cooling has the structure of austenite. Research limitations/implications: To investigate in more detail the influence of chemical composition on structure and mechanical properties the examinations of substructure by TEM should be conducted. Originality/value: The relationship between the solution heat treatment, structure and mechanical properties of investigated steels was specified.

  20. Surface morphology changes of acrylic resins during finishing and polishing phases

    Directory of Open Access Journals (Sweden)

    Glaucio Serra

    2013-12-01

    Full Text Available INTRODUCTION: The finishing and polishing phases are essential to improve smoothness and shining on the surface of acrylic resins used to make removable orthodontic appliances. A good surface finishing reduces roughness, which facilitates hygiene, prevents staining and provides greater comfort to the patients. OBJECTIVE: The aim of this paper was to analyze the changes on surface morphology of acrylic resins during finishing and polishing phases. METHODS: Thirty discs (10 mm in diameter and 5 mm in length were made with acrylic resin and randomly divided into ten groups. The control group did not receive any treatment while the other groups received gradual finishing and polishing. The last group received the entire finishing and polishing procedures. Surface morphology was qualitatively analyzed through scanning electron microscopy and quantitatively analyzed through a laser profilometer test. RESULTS: The acrylic resin surfaces without treatment showed bubbles which were not observed in the subsequent phases. Wearing out with multilaminated burs, finishing with wood sandpaper and finishing with water sandpaper resulted in surfaces with decreasing irregularities. The surfaces that were polished with pumice and with low abrasive liquids showed high superficial smoothness. CONCLUSION: Highly smooth acrylic resin surfaces can be obtained after mechanical finishing and polishing performed with multilaminated burs, wood sandpaper, water sandpaper, pumice and low abrasive liquids.

  1. Effect of surface polishing and oxidization induced strain on electronic order at the Verwey transition in Fe3O4

    OpenAIRE

    Tabis, W.; Lorenzo, Emilio; Kozlowski, A.; Kolodziej, T.; Tarnawski, Z.; Kakol, Z.; Mazzoli, C.; Walker, H.; Jaouen, N.; Mannix, Danny; Marin, Christophe; Honig, Jurgen M.

    2013-01-01

    Following the controversy between two previous publications (Lorenzo et al 2008 Phys. Rev. Lett. 101 226401 and Garcia et al 2009 Phys. Rev. Lett. 102 176405), we report on the influence of mechanical polishing, and subsequent sample storage, on the electronic order at the Verwey transition of highly pure magnetite, Fe3O4, by resonant x-ray scattering. Contrary to expectations, mechanically polishing the surface induces an inhomogeneous micron deep dead layer, probably of powdered Fe3O4. In a...

  2. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    Science.gov (United States)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  3. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Chemical vapor deposited coatings of TiB2, TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 20000C on TiB2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 11500C were performed on TiB2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  4. Synthesis and Growth Mechanism of Carbon Filaments by Chemical Vapor Deposition without Catalyst

    Institute of Scientific and Technical Information of China (English)

    Shuhe Liu; Feng Li; Shuo Bai

    2009-01-01

    Carbon filaments with diameter from several to hundreds micrometers were synthesized by chemical vapor deposition of methane without catalyst. The morphology, microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles.

  5. Thermo-chemical-mechanical couplings in uranium dioxide - Application to pellet cladding interaction

    International Nuclear Information System (INIS)

    Nuclear fuels under power transient undergo high thermal and mechanical stresses, as well as deep chemical modifications. All experimental observations report a large increase of the central pellet temperature, a strong evolution in the cracking network in the pellet and a significant fission product release, of which some, like iodine, are corrosive towards the zirconium cladding. The stress on the cladding at the inter-pellet plane due to the pellet thermal expansion, associated to the corrosive fission product release, can lead to clad failures, resulting from a stress corrosion cracking mechanism. The thermal, mechanical and chemical properties of the UO2 irradiated fuel are closely dependent and play a major role on the behavior of the material during a power transient. Thus, the fission product speciation and the amount of fission gas releases are highly controlled by these thermo-chemical-mechanical couplings. In addition, it is known from recent experimental observations that the temperature gradient is high enough to make it possible an oxygen radial redistribution inside the fuel pellet. This strongly affects the chemical equilibria in the fuel and thus the fission gas release. The aim of this work is to model at the pellet scale the chemical, thermal and mechanical coupled changes of the UO2 fuel during a power transient scenario and to evaluate the consequences on the fuel behavior. The final objective is to obtain an evaluation of the iodine release source term to be used in I-SCC modelling codes dedicated to Pellet-Clad-Interaction studies. A detailed thermochemical analysis of the irradiated fuel, using the thermochemical fuel code ANGE, is developed in a first step in order to identify the main phases (condensed, solid solution, gas) formed in an irradiated UO2 fuel during a power transient. Then, the coupling between the thermochemical fuel code ALCYONE (developed at CEA) and ANGE is implemented: a radial (with 1D calculations) and tri

  6. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    Science.gov (United States)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  7. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  8. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    Science.gov (United States)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-03-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  9. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Awada, Houssein, E-mail: houssein.awada@uqtr.c [Centre Integre en Pates et Papiers, Universite du Quebec a Trois-Rivieres (UQTR), 3351, boul. des Forges Trois-Rivieres, G9A 5H7, Quebec (Canada); Noel, Olivier [Universite du Maine, Molecular landscapes and biophotonics, CNRS-UMR 6087, Le Mans (France); Hamieh, Tayssir [Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA, CHAMSI) Faculty of Sciences, Lebanese University, Beirut (Lebanon); Kazzi, Yolla [Faculty of Sciences, Lebanese University, Beirut (Lebanon); Brogly, Maurice [Laboratoire LECOB, Universite de Haute-Alsace, 68057 Mulhouse Cedex (France)

    2011-03-31

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  10. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system. PMID:16290785

  11. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    Science.gov (United States)

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability. PMID:25139029

  12. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  13. Seed morphology of the Polish native species of the genus Ribes L. Part 1. General characteristic

    Directory of Open Access Journals (Sweden)

    Dorota Wrońska-Pilarek

    2014-02-01

    Full Text Available The article contains general morphological and anatomical characteristics and analysis of the chemical composition of seeds of Polish Ribes species: R. uva-crispa L., R. nigrum L., R. alpinum L., R. petraeum Wulfen, R. rubrum L. and R. spicatum Robson. The investigations have been based on the different types of LM and SEM.

  14. Smoking characteristics of Polish immigrants in Dublin.

    LENUS (Irish Health Repository)

    Kabir, Zubair

    2008-01-01

    BACKGROUND: This study examined two main hypotheses: a) Polish immigrants\\' smoking estimates are greater than their Irish counterparts (b) Polish immigrants purchasing cigarettes from Poland smoke "heavier" (>\\/= 20 cigarettes a day) when compared to those purchasing cigarettes from Ireland. The study also set out to identify significant predictors of \\'current\\' smoking (some days and everyday) among the Polish immigrants. METHODS: Dublin residents of Polish origin (n = 1,545) completed a previously validated Polish questionnaire in response to an advertisement in a local Polish lifestyle magazine over 5 weekends (July-August, 2007). The Office of Tobacco Control telephone-based monthly survey data were analyzed for the Irish population in Dublin for the same period (n = 484). RESULTS: Age-sex adjusted smoking estimates were: 47.6% (95% Confidence Interval [CI]: 47.3%; 48.0%) among the Poles and 27.8% (95% CI: 27.2%; 28.4%) among the general Irish population (p < 0.001). Of the 57% of smokers (n = 345\\/606) who purchased cigarettes solely from Poland and the 33% (n = 198\\/606) who purchased only from Ireland, 42.6% (n = 147\\/345) and 41.4% (n = 82\\/198) were "heavy" smokers, respectively (p = 0.79). Employment (Odds Ratio [OR]: 2.89; 95% CI: 1.25-6.69), lower education (OR: 3.76; 95%CI: 2.46-5.74), and a longer stay in Ireland (>24 months) were significant predictors of current smoking among the Poles. An objective validation of the self-reported smoking history of a randomly selected sub-sample immigrant group, using expired carbon monoxide (CO) measurements, showed a highly significant correlation coefficient (r = 0.64) of expired CO levels with the reported number of cigarettes consumed (p < 0.0001). CONCLUSION: Polish immigrants\\' smoking estimates are higher than their Irish counterparts, and particularly if employed, with only primary-level education, and are overseas >2 years.

  15. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  16. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    Science.gov (United States)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  17. Research on the chemical mechanism in the polyacrylate latex modified cement system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Zheng, Shuirong [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Northwestern Polytechnical University–East China University of Science and Technology Combined Research Institute of New High Speed Railway Materials (China); Farhan, Shameel; Yao, Hao; Jiang, Hao [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  18. Structural, Mechanical and Optical Properties of Plasma-chemical Si-C-N Films

    Directory of Open Access Journals (Sweden)

    A.O. Kozak

    2014-11-01

    Full Text Available An influence of the substrate temperature in the range of 40-400 °C on the properties of the Si-C-N films deposited by plasma enhanced chemical vapor deposition (PECVD technique using hexamethyldisilazane is analyzed. Study of the structure, chemical bonding, surface morphology, mechanical properties and energy gap of the obtained films was carried out using X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, optical measurements and nanoindentation. It was established that all the films were X-ray amorphous and had low surface roughness. Intensive hydrogen effusion from the films takes place, when substrate temperature increases up to 400 °C, which promotes a decrease of roughness and an increase in hardness and Young modules more than twice.

  19. Research on the chemical mechanism in the polyacrylate latex modified cement system

    International Nuclear Information System (INIS)

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH)2 (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH)2

  20. Postharvest Chemical, Sensorial and Physical-Mechanical Properties of Wild Apricot (Prunus armeniaca L.

    Directory of Open Access Journals (Sweden)

    Evica MRATINIĆ

    2011-11-01

    Full Text Available Some chemical, sensorial and physical-mechanical properties of 19 apricot genotypes and Hungarian Best (control such as moisture content, soluble solids content, titratable acidity ratio and their ratio, fruit and stone mass, flesh/stone ratio, fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter, sphericity, surface area and aspect ratio were determined. Their application is also discussed. The highest moisture content and stone mass observed in X-1/1/04 and X-1/2/04, soluble solids content in ZO-1/03, titratable acidity in ZL-2/03, SS/TA ratio in ZL-1/03, and fruit mass and flesh/stone ratio in DL-1/1/04 genotype. The most number of genotypes have orange and deep orange skin and flesh colour, respectively, whereas sweet kernel taste was predominant in most genotypes. Regarding physical-mechanical properties, the superior fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter and surface area observed in DL-1/1/04 genotype, whereas the highest sphericity and surface area observed in X-1/1/04 and X-1/2/04 genotypes. Also, the series of genotypes evaluated have better chemical, sensorial and physical-mechanical properties than Hungarian Best (control. Finally, information about these properties is very important for understanding the behaviour of the product during the postharvest operations.

  1. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Science.gov (United States)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  2. Chemical influence on the hydro-mechanical behaviour of high-density bentonite

    International Nuclear Information System (INIS)

    In radioactive waste disposal schemes, during the operational period of clay barriers, solute transport an d thermal gradients may alter the solute concentration of pore water. These induced changes have important consequences on hydro-mechanical properties and microstructural alterations (mineral composition and pore size distribution changes) of the clay barrier. Chemically induced changes originated by different imbibition fluids and soil mineral compositions have been a subject with a long research tradition. These researches have been mainly focused on the behaviour of reconstituted soils starting from slurry and saturated wit h saline solutions at elevated concentrations, where hydro-mechanical changes (soil compressibility and water permeability changes) are clearly detected. In contrast, available information concerning the response of high-density clays subjected to chemically induced actions with a wide range of pore solution concentrations is very limited in spite of its practical relevance to environmental geotechnics. This situation has been caused, at least in part, by the difficulties in detecting important hydro-mechanical changes when clays with low water storage capacity have been used. Nevertheless, this paper will demonstrate that even in the case of high-density fabrics, considerable changes can be observed when high-activity clays (bentonites) are imbibed with different pore fluid compositions. (authors)

  3. Evolution of mechanical properties of silicate glasses: Impact of the chemical composition and effects of irradiation

    International Nuclear Information System (INIS)

    This thesis examines: (1) how the chemical composition changes the hardness, toughness, and stress corrosion cracking behavior in model pristine and (2) how external irradiation impact these properties. It is to be incorporated in the context of the storage of nuclear waste in borosilicate glass matrix, the structural integrity of which should be assessed. Eight simplified borosilicate glasses made of 3 oxides with modulated proportions (SiO2-B2O3-Na2O (SBN) have been selected and their hardness, toughness, and stress corrosion cracking behavior have been characterized prior and after irradiation. The comparative study of the non-irradiated SBN glasses provides the role played by the chemical composition. The sodium content is found to be the key parameter: As it increases, the glass plasticity increases, leading to changes in the mechanical response to strain. Hardness (Hv) and toughness (Kc) decrease since the flow under indenter increases. The analysis of the stress corrosion behavior evidences a clear shift of the SCC curves linked also to the glass plasticity. Four of the 8 simplified SBN glass systems highlight the influence of electron, light and heavy ions irradiations on the mechanical properties. Once again, the sodium content is a key parameter. It is found to inhibit the glass modification: Glasses with high sodium content are more stable. Ions irradiations highlight the predominant role of nuclear interaction in changing the glass properties. Finally, electronic interaction induced by helium and electron irradiation does not lead to the same structural/mechanical glasses variations. (author)

  4. Electropolishing and chemical passivation of austenitic steel

    Directory of Open Access Journals (Sweden)

    A. Baron

    2008-12-01

    Full Text Available Purpose: The aim of the paper is investigations a dependence between the parameters of the electrochemical treatment of austenitic steel and their electrochemical behavior in Tyrod solution.Design/methodology/approach: Specimens (rode 30 mm × ø1 mm were to give in to the surface treatment – mechanically polishing, electrolytic polishing and passivation with various parameter. Electrochemical investigations concerning the corrosion resistance of austenitic steel samples were carried out by means of the potentiodynamic and electrochemical impedance spectroscopy method.Findings: The analysis of the obtained results leads to the conclusion that chemical passivation affects also the chemical composition of the passive layer of steel and changes its resistance to corrosion. Electrolytic polishing improves corrosion resistance, as can be proved by the shift of the value of the corrosion potential and break-down potential of the passive layer and the initiation of pittings.Research limitations/implications: The obtained results are the basis for the optimization of anodic passivation parameters of the austenitic steel as a metallic biomaterial. The future research should be focused on selected more suitable parameters of the electrochemical impedance spectroscopy test to better describe process on the solid/ liquid interface.Practical implications: In result of the presented investigations it has been found that the best corrosion resistance can be achieved thanks to the application of electrolytic polishing of the steel in a special bath and chemical passivation in nitric (V acid with an addition of chromic (VI acid temperature t = 60°C for one hour.Originality/value: The enormous demand for metal implants has given rise to a search for cheap materials with a good biotolerance and resistance to corrosion. Most commonly used are steel implants assigned to remain in the organism for some limited time only. It was compare two electrochemical methods

  5. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL`s Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form`s chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs.

  6. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  7. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  8. Evaluation of the effect of polishing on flexural strength of feldspathic porcelain and its comparison with autoglazing and over glazing

    Directory of Open Access Journals (Sweden)

    Jalali H.

    2005-06-01

    Full Text Available Statement of Problem: Ceramic restorations are popular because they can provide the most natural replacement for teeth. However, the brittleness of ceramics is a primary disadvantage. There are various methods for strengthening ceramics such as metal framework, ceramic cores, and surface strengthening mechanisms through glazing, work hardening and ion exchange. Purpose: The purpose of this study was to evaluate the effect of polish on flexural strength of feldspathic porcelain and to compare it with overglaze and autoglaze. Materials and Methods: In this experimental study, one brand of feldspathic porcelain (colorlogic, Ceramco was used and forty bars (25×6×3 mm were prepared according to ISO 6872 and ADA No. 69. The specimens were randomly divided into four groups: overglazed, auto glazed, fine polish and coarse polish (clinic polish. Flexural strength of each specimen was determined by three point bending test (Universal Testing Machine, Zwick 1494, Germany. Collected data was analyzed by ANOVA and post-hoc test with P<0.05 as the limit of significance. Results: A significant difference was observed among the studied groups (P<0.0001. According to post-hoc test, flexural strength in overglaze and fine polish group were significantly stronger than clinic polish and autoglaze group (P<0.001. Although the mean value for overglazed group was higher than fine polish group, this was not statistically significant (P=0.9. Also no statistical difference was seen between autoglazed and coarse polish group (P=0.2. Conclusion: Based on the findings of this study, flexural strength achieved by fine polish (used in this study can compete with overglazing the feldespathic porcelains. It also can be concluded that a final finishing procedure that involves fine polishing may be preferred to simple staining followed by self-glazing.

  9. Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    CERN Document Server

    Neumann, P L; Dobrik, G; Kertész, K; Horváth, E; Lukács, I E; Biró, L P; Horváth, Z E

    2014-01-01

    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.

  10. Chemical and mechanical interactions of interstitials in V-5%Cr-5%Ti

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; DiStefano, J.R.; Hendricks, J.W. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    A vanadium alloy structure with liquid lithium is the favored concept for an advanced breeding blanket for ITER. The objective of this task is to determine the kinetics of reactions of vanadium alloys with hydrogen and oxygen as a function of alloy composition and TMT. Gas-metal reaction studies of V-5Cr-5Ti were conducted to determine the kinetics of reactions with H{sub 2} and O{sub 2}, respectively, at 450-500{degree}C. Reaction rates were determined through wieght change measurements and chemical analyses, and effects on mechanical properties were evaluated by room temperature tensile tests.

  11. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol

    Indian Academy of Sciences (India)

    C V Mythili; A Malar Retna; S Gopalakrishnan

    2004-06-01

    Cardanol, an excellent monomer for polymer production, has been isolated from CNSL and allowed to react with formaldehyde in a particular mole ratio in the presence of glutaric acid catalyst to give high-ortho novolac resin. Such characterized polyol has been condensed with diphenylmethane diisocyanate to produce rigid polyurethane. A commercially available polyol, polypropylene glycol-2000 (PPG-2000), has also been condensed with diphenylmethane diisocyanate and polyol to produce tough polyurethane. These polyurethanes were characterized with respect to their resistance to chemical reagents and mechanical properties such as tensile strength, percentage elongation, tear strength and hardness. Differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) were undertaken for thermal characterization.

  12. Quantum-chemical basis of adsorption mechanism of hydrogen and carbon oxide on cadmium telluride

    International Nuclear Information System (INIS)

    Results of quantum-chemical calculations of the cluster model of H2 and CO adsorption on CdTe surface enabled to support the basic conclusions concerning the nature of adsorption centers and adsorption mechanism, made on the basis of experimental investigation of the system: 1) hydrogen can be adsorbed in two forms - molecular and dissociative ones versus carbon monoxide which doesn't dissociate during adsorption: 2) predominant centers of molecular hydrogen adsorption are presented by surface VTe vacancies and F-centers; 3) formed hydrogen atoms can advantageously bind with surface coordination-ionsaturated Te atoms: 4) hydrogen adsorption result in the positive charging of the surface

  13. Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites

    International Nuclear Information System (INIS)

    We report load transfer and mechanical properties of chemically derived single layer graphene (SLG) as reinforcements in poly (dimethyl) siloxane (PDMS) composites. Shear mixing reduced graphene sheets in polymers resulted in a marked decrease of the 2D band intensity due to doping and functionalization. Raman G mode shifts of 11.2 cm−1/% strain in compression and 4.2 cm−1/% strain in tension are reported. Increases in elastic modulus of PDMS by ∼42%, toughness by ∼39%, damping capability by ∼673%, and strain energy density of ∼43% by the addition of 1 wt% SLG in PDMS are reported. (paper)

  14. Cellular ceramics made from porcelain tile polishing wastes: influence of sintering time; Ceramicas cellulares obtidas a partir de residuo de polimento de porcelanato: influencia do tempo de sinterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.F.; Zanelatto, C.C.; Uggioni, E. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Dept. de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial, Tijucas, SC (Brazil). Tecnologia em Ceramica

    2009-07-01

    This paper deals with the physical, microstructural and mechanical characterization of cellular ceramics made from porcelain polishing wastes, which were expanded by the bubble formation technique during the sintering process. The microstructure, linear expansion, bulk density (mercury immersion) and mechanical behavior (compressive strength) were determined to characterize the glass foam obtained. Moreover, the porcellaneous residue was characterized by chemical and phase analyses, particle size (laser diffraction) and thermal behavior. As a result, the higher the soaking time during heat treatment at 1200 deg C the lower the density obtained for the cellular ceramic due to CO{sub 2} expansion, and lower the mechanical strength of the samples. The microstructure shows spherical cells and completely closed pores, resulting in a cheap way to obtain low density material with adequate mechanical strength, avoiding the disposal of wastes from the ceramic industry. (author)

  15. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization

    International Nuclear Information System (INIS)

    The stability of a novel low-pH alkaline slurry (marked as slurry A, pH = 8.5) for copper chemical mechanical planarization was investigated in this paper. First of all, the stability mechanism of the alkaline slurry was studied. Then many parameters have been tested for researching the stability of the slurry through comparing with a traditional alkaline slurry (marked as slurry B, pH = 9.5), such as the pH value, particle size and zeta potential. Apart from this, the stability of the copper removal rate, dishing, erosion and surface roughness were also studied. All the results show that the stability of the novel low-pH alkaline slurry is better than the traditional alkaline slurry. The working-life of the novel low-pH alkaline slurry reaches 48 h. (semiconductor technology)

  16. Long-term behaviour of concretes: pure water chemical damaging and coupling with mechanics

    International Nuclear Information System (INIS)

    The durability of concrete structures represents an essential stake of the safety analysis of nuclear waste disposal centres (containers, sealing, casemates, surveillance galleries). The originality of this study is the coupling between the mechanical behaviour of the material (in particular the crack growth) and a damaging of chemical origin (dissolution of cement hydrates due to pure water trickling). A model has been developed to evaluate this coupling and introduced in a finite-elements calculation code. The calcium content of the interstitial solution is chosen as the status variable of the system. The elasticity modules changes as a function of this variable. The non-linear mechanical behaviour of the concrete is modeled according to the damaging theory. In parallel to this modeling approach, specific procedures and experiments were developed for industrial applications. (J.S.)

  17. Recent Developments in the Theory of Mechanisms in Radiation Chemical Processes

    International Nuclear Information System (INIS)

    Recent developments in the mechanisms of radiation-initiated chemical reactions are reviewed. The role of ion molecule processes is reviewed, with particular reference to the radiation chemistry of methane. In this system, the existence of reactions of excited molecules, in addition to ionic processes is deduced. It is shown that, in the radiolysis of methane, unsaturated hydrocarbons play a considerable part in the mechanism of reaction. Developments in ionic polymerization and also polymerization under heterogenous conditions are reviewed. The importance of reactant purity, and also cleanliness of reaction vessels is discussed. The effect of an applied external potential in solid state polymerization is briefly reviewed. The importance of free-radical processes to radiation chemists is considered in the light of the Dow process for the production of ethyl bromide. (author)

  18. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  19. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  20. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    Energy Technology Data Exchange (ETDEWEB)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  1. Combined effects of crystallography, heat treatment and surface polishing on blistering in tungsten exposed to high-flux deuterium plasma

    Science.gov (United States)

    Zayachuk, Y.; Tanyeli, I.; Van Boxel, S.; Bystrov, K.; Morgan, T. W.; Roberts, S. G.

    2016-08-01

    For tungsten exposed to low-energy hydrogen-plasmas, it has been thought that grains with surface normal are most susceptible to blistering while those with surface normal are virtually impervious to it. Here, we report results showing that non-uniformity of blister distribution depends on the state of the surface due to polishing. In electrochemically polished material blisters appear on the grains with all orientations, while in mechanically polished material blister-free areas associated with particular orientations emerge. On the other hand, blistering is shown to have a strong dependence on the level of deformation within particular grains in partially recrystallized material.

  2. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W; Battelli, Lori A; Kashon, Michael L; Ma, Qiang

    2016-02-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  3. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  4. Polishing methods for metallic and ceramic transmission electron microscopy specimens: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kestel, B.J.

    1986-03-01

    In recent years, the increasing sophistication of transmission electron microscope (TEM) studies of materials has necessitated more exacting methods of specimen preparation. The present report describes improved equipment and techniques for electropolishing and chemically polishing a wide variety of specimens. Many of the specimens used in developing or improving the techniques to be described were irradiated with heavy ions such as nickel or vanadium to study radiation damage. The high cost of these specimens increased the need for reproducible methods of initial preparation postirradiation processing, and final thinning for TEM examination. A technique was also developed to salvage specimens that had previously been thinned but were unusable for various reasons. Jet polishing is, in general, the method of choice for surface polishing, sectioning, and thinning. The older beaker electropolishing method is included in this report because it is inexpensive and simple, and gives some insight into how the more recent methods were developed.

  5. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  6. Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites

    Directory of Open Access Journals (Sweden)

    2010-08-01

    Full Text Available Natural fibers are widely used as plastic composite material reinforcements. In this work, composites of postconsumer high-density polyethylene (HDPE reinforced with sisal fibers were prepared. PE and sisal fibers were chemically modified to improve their compatibilities, try to increase the hydrophobic character of the sisal fiber and hydrophilic character HDPE. Sisal was mercerized with a NaOH solution and acetylated and the PE was oxidized with KMnO4 solution. The chemically modified fibers were characterized by Fourier Transformed Infrared Spectroscopy (FTIR and 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR. The composites were prepared by extrusion of modified and unmodified materials containing either 5 or 10 wt% fibers. The morphology of the obtained materials was evaluated by SEM. The fiber chemical modification improves it adhesion with matrix, but not benefit were obtained with HDPE oxidation. Flexural and impact tests demonstrated that the composites prepared with modified sisal fibers and unmodified PE present improved mechanical performance compared to pure PE.

  7. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  8. Physical-chemical principles of corrosion inhibitors for metals and metallic alloys and the inhibition mechanisms

    International Nuclear Information System (INIS)

    The usage of corrosion inhibitors is one of the most important cheapest, easy and efficient methods for controlling the process of the metallic corrosion. This method relies on adding one or more chemical substance at certain concentration to the corroding mediums for retarding of the corrosion process of surfaces corrosion of the metals and alloys. The corrosion inhibitors are considered as a first line of defense against the corrosion process in the petroleum, chemical industrial plants and in the water treating stations. The inhibitor is a complicated subject and applied successfully only in special cases. For example some inhibitors may be effective for one metal or more. The optimum efficiency of each inhibitor can be achieved at certain conditions (such as concentration, temperature and ph). The effective inhibitor for a metal (in the special conditions) may be a corrosive media for another metal (or in other conditions). There are a lot of inhibitors used for preventing process of the corrosion but there is no classification of the inhibitors until now. Several attempts for the classification of inhibitors in accordance to their chemical nature (organic, inorganic, biological and green), to their properties (an oxidizer or inoxidizer) or to their application field (cleaning, or peeling). On the other hand, the incorrect utilization of inhibitors could lead to an increase in the corrosion rate and/or in the hydrogenous creep of the metals and alloys. The inhibition mechanism of the inorganic inhibitors depends on the forming of protective layers on metals surface which retard the corrosion process. organic inhibitors mechanism depends on the surfactant's group adsorption like N, S, COOH, NH2 SH on the metal surface forming micelle which act as physical barrier for protecting the surface against the corrosive media or forming a stable surface complexes. The efficiency of the inhibitors performance can be measured by extent of the adhesion of their molecules on

  9. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenting; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Gou, Xiaolong [School of Power Engineering, Chongqing University, Chongqing 400044 (China)

    2010-07-15

    A direct path flux analysis (PFA) method for kinetic mechanism reduction is proposed and validated by using high temperature ignition, perfect stirred reactors, and steady and unsteady flame propagations of n-heptane and n-decane/air mixtures. The formation and consumption fluxes of each species at multiple reaction path generations are analyzed and used to identify the important reaction pathways and the associated species. The formation and consumption path fluxes used in this method retain flux conservation information and are used to define the path indexes for the first and the second generation reaction paths related to a targeted species. Based on the indexes of each reaction path for the first and second generations, different sized reduced chemical mechanisms which contain different number of species are generated. The reduced mechanisms of n-heptane and n-decane obtained by using the present method are compared to those generated by the direct relation graph (DRG) method. The reaction path analysis for n-decane is conducted to demonstrate the validity of the present method. The comparisons of the ignition delay times, flame propagation speeds, flame structures, and unsteady spherical flame propagation processes showed that with either the same or significantly less number of species, the reduced mechanisms generated by the present PFA are more accurate than that of DRG in a broad range of initial pressures and temperatures. The method is also integrated with the dynamic multi-timescale method and a further increase of computation efficiency is achieved. (author)

  10. Mechanically strengthened new Hagi porcelain developed by controlling the chemical environment of iron

    International Nuclear Information System (INIS)

    In order to enhance the mechanical strength of Hagi Porcelain (Hagiyaki), one of the oldest and famous potteries in Japan, new preparation condition was examined. Tempered Hagi porcelain, denominated as ‘Hagi Porcelain B’, was prepared with the Porcelain clay originating from Daido district, Yamaguchi Prefecture, Japan. Structural change of ‘Hagi Porcelain B’ was investigated by means of 57Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and three-point bending test. Mechanical strength of the ‘original Hagi Porcelain B’ was estimated to be 43.1 MPa by means of the three-point bending test, while much larger value of 104.5 MPa could be achieved when tempered by a chemical modification. Mössbauer spectrum of the ‘original Hagi porcelain B’ was composed of a paramagnetic doublet and a magnetic sextet due to Fe(III) of γ-Fe2O3(maghemite), while only one paramagnetic doublet due to to octahedral Fe(II)O6 was observed for the ‘tempered Hagi Porcelain B’ with isomer shift and quadrupole splitting values of 1.13 and 2.15 mm s−1, respectively. It is considered that the absence of magnetic phase causes an increase of the mechanical strength because the maghemite phase has a defect spinel structure. These results indicate that mechanical strength of the ‘Hagi porcelain B’ could be enhanced by controlling the sintering condition.

  11. SYNERGISTIC EFFECTS BETWEEN BIRCH CHEMICAL MECHANICAL PULPS AND ASPEN BLEACHED KRAFT PULP

    Institute of Scientific and Technical Information of China (English)

    Eric C. Xu; Yajun Zhou

    2004-01-01

    In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes.The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.

  12. SYNERGISTIC EFFECTS BETWEEN BIRCH CHEMICAL MECHANICAL PULPS AND ASPEN BLEACHED KRAFT PULP

    Institute of Scientific and Technical Information of China (English)

    EricC.Xu; YajunZhou

    2004-01-01

    In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes. The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.

  13. Time Evolution of Thermo-Mechanically and Chemically Coupled Magma Chambers

    Science.gov (United States)

    Ozimek, C.; Karlstrom, L.; Erickson, B. A.

    2015-12-01

    Complexity in the volcanic eruption cycle reflects time variation both of magma inputs to the crustal plumbing system and of crustal melt storage zones (magma chambers). These data include timing and volumes of eruptions, as well as erupted compositions. Thus models must take into account the coupled nature of physical attributes. Here we combine a thermo-mechanical model for magma chamber growth and pressurization with a chemical model for evolving chamber compositions, in the limit of rapid mixing, to study controls on eruption cycles and compositions through time. We solve for the mechanical evolution of a 1D magma chamber containing melt, crystals and bubbles, in a thermally evolving and viscoelastic crust. This pressure and temperature evolution constrains the input values of a chemical box model (Lee et al., 2013) that accounts for recharge, eruption, assimilation and fractional crystallization (REAFC) within the chamber. We plan to study the influence of melt supply, input composition, and chamber depth eruptive fluxes and compositions. Ultimately we will explore multiple chambers coupled by elastic-walled dikes. We expect that this framework will facilitate self-consistent inversion of long-term eruptive histories in terms of magma transport physics. Lee, C.-T. A., Lee, T.-C., Wu, C.-T., 2013. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiationof arc magmas. Geochemica Cosmochimica Acta, http://dx.doi.org/10.1016/j.gca.2013.08.009.

  14. Improved Median Polish Kriging for Simulation Metamodeling

    OpenAIRE

    Rekabi, Firas Al; Sheikh, Asim El

    2013-01-01

    In simulation, Median Polish Kriging is a technique used to predict unobserved data points in two-dimensional space. The linear behavior of the traditional Median Polish Kriging in the estimation of the mean function in a high grid makes the interpolation of O(1) which has a low order in the prediction and that leads to a high prediction error. Therefore, an improvement in the estimation of the mean function has been introduced using Biharmonic spline interpolation and the new technique has b...

  15. Polished sapphire for ultracold-neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Nesvizhevsky, V.V. [Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France)]. E-mail: nesvizhevsky@ill.fr

    2006-02-15

    We show that polished sapphire allows one to efficiently reflect ultracold neutrons (UCN) at specular trajectories. The probability of specular UCN reflection at sapphire surface under typical experimental conditions was measured to be at least 99.8%. That could provide nearly loss-free transport of UCN between a source and an experimental installation at a distance of some 10 m. Polished sapphire can be used for specular neutron guides at steady and pulsed UCN sources. It can also be used in experimental installations, in particular, for building compact gravitational spectrometers and for study of the resonance transitions between neutron quantum states in the gravitational field.

  16. Nanoporous framework materials interfaced with mechanical sensors for highly-sensitive chemical sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Hwan; Skinner, Jack L.; Houk, Ronald J. T.; Fischer, Roland A.; Robinson, Alex Lockwood; Allendorf, Mark D.; Yusenko, Kirill; Meilikhov, Mikhail; Hesketh, Peter J.; Venkatasubramanian, Anandram; Thornberg, Steven Michael

    2010-04-01

    We will describe how novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) can be interfaced with common mechanical sensors, such as surface acoustic wave (SAW), microcantilever array, and quartz crystal microbalance (QCM) devices, and subsequently be used to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Chemical detection using micro-electro-mechanical-systems (MEMS) devices (i.e. SAWs, microcantilevers) requires the use of recognition layers to impart selectivity. Unlike traditional organic polymers, which are dense, the nanoporosity and ultrahigh surface areas of NFM allow for greater analyte uptake and enhance transport into and out of the sensing layer. This enhancement over traditional coatings leads to improved response times and greater sensitivity, while their ordered structure allows chemical tuning to impart selectivity. We describe here experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and volatile organic compound (VOCs), and their integration with the surfaces of MEMS devices. Molecular simulation shows that a high degree of chemical selectivity is feasible. For example, a suite of MOFs can select for strongly interacting organics (explosives, CWMD) vs. lighter volatile organics at trace concentrations. At higher gas pressures, the CWMD are deselected in favor of the volatile organics. We will also demonstrate the integration of various NFM on the surface of microcantiliver arrays, QCM crystals, and SAW devices, and describe new synthetic methods developed to improve the quality of NFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response

  17. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilylethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future.

  18. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    Science.gov (United States)

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  19. Determination of the effective mechanism of chemically stimulated diffusion in semiconductors at their interaction with an atomic hydrogen

    International Nuclear Information System (INIS)

    Paper is devoted to calculate coefficients of chemically stimulated diffusion (CSD) of some impurities in near-the-surface layers of germanium and gallium arsenide following well-known mechanisms to determine governing mechanism of CSD depending on type of diffusing impurity and conditions to carry out experiment. Calculation results of CSD coefficients following the mentioned mechanisms for copper in germanium showed that their efficiency was rather unimpressive in contrast to CSD mechanisms associated with energy transfer to crystal atomic subsystem

  20. CHEMICAL AND MECHANICAL CONTROL OF COLORADO POTATO BEETLE (Leptinotarsa decemlineata Say) ON POTATO IN ĐAKOVO AREA

    OpenAIRE

    Kristijan Rack; Marija Ivezić; Emilija Raspudić; Mirjana Brmež

    2001-01-01

    The aim of this investigation was to determine the efficacy in controlling Colorado potato beetles (Leptinotarsa decemlineata Say) by using chemical and mechanical methods of control. The field trials were carried out in 1999 and 2000 in the area of Đakovo. The aim was also to determine the differences between chemical and mechanical way of control, and on the base of the obtained results, give the recommendations for acceptable and profitable way in controlling Colorado potato beetle. This t...

  1. Super-polishing of Zerodur aspheres by means of conventional polishing technology

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Klepetková, Eva; Pošmourný, Josef; Šulc, Miroslav; Procháska, František; Tomka, David; Matoušek, Ondřej; Poláková, Ivana; Šubert, Eduard

    Vol. 9442. Bellingham : SPIE-INT SOC OPTICAL ENGINEERING, 2015 - (Kovačičinová, J.; Vít, T.), s. 944212-944212 ISBN 978-1-62841-557-5. ISSN 0277-786X. - (SPIE). [Optics and Measurement Conference 2014 (OaM 2014). Liberec (CZ), 07.10.2014-10.10.2014] R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : super-polishing * smoothing * roughness reduction * bowl-feed polishing * aspheric polishing Subject RIV: JP - Industrial Processing http://dx.doi.org/10.1117/12.2175899

  2. Stress 'deafness' in a language with fixed word stress: an ERP study on Polish

    Directory of Open Access Journals (Sweden)

    Ulrike eDomahs

    2012-11-01

    Full Text Available The aim of the present contribution was to examine the factors influencing the prosodic processing in a language with predictable word stress. For Polish, a language with fixed penultimate stress but several well-defined exceptions, difficulties in the processing and representation of prosodic information have been reported (e.g., Peperkamp & Dupoux, 2002. The present study utilized event-related potentials (ERPs to investigate the factors influencing prosodic processing in Polish. These factors are i the predictability of stress and ii the prosodic structure in terms of metrical feet. Polish native speakers were presented with correctly and incorrectly stressed Polish words and instructed to judge the correctness of the perceived stress patterns. For each stress violation an early negativity was found which was interpreted as reflection of an error-detection mechanism, and in addition exceptional stress patterns (= antepenultimate stress and post-lexical (= initial stress evoked a task-related positivity effect (P300 whose amplitude and latency is correlated with the degree of anomaly and deviation from an expectation. Violations involving the default (= penultimate stress in contrast did not produce such an effect. This asymmetrical result is interpreted to reflect that Polish native speakers are less sensitive to the default pattern than to the exceptional or post-lexical patterns. Behavioral results are orthogonal to the electrophysiological results showing that Polish speakers had difficulties to reject any kind of stress violation. Thus, on a meta-linguistic level Polish speakers appeared to be stress-‘deaf’ for any kind of stress manipulation, whereas the neural reactions differentiate between the default and lexicalized patterns.

  3. Polishing procedure and surface characterization lead tungstate crystal scintillator Road No. 723 and No. 754

    International Nuclear Information System (INIS)

    Step by step procedures are given for polishing the scintillator rods. A Strasbaugh spindle polishing machine was used along with visual inspection and hand polishing. Extensive data is given on pre-polish surface characterization, profilometry, microphotography, and interferometry

  4. Is chemically dispersed oil more toxic to Atlantic cod (Gadus morhua larvae than mechanically dispersed oil? A transcriptional evaluation

    Directory of Open Access Journals (Sweden)

    Olsvik Pål A

    2012-12-01

    Full Text Available Abstract Background The use of dispersants can be an effective way to deal with acute oil spills to limit environmental damage, however very little is known about whether chemically dispersed oil have the same toxic effect on marine organisms as mechanically dispersed oil. We exposed Atlantic cod larvae to chemically and mechanically dispersed oil for four days during the first-feeding stage of development, and collected larvae at 14 days post hatch for transcriptional analysis. A genome-wide microarray was used to screen for effects and to assess whether molecular responses to chemically and mechanically dispersed oil were similar, given the same exposure to oil (droplet distribution and concentration with and without the addition of a chemical dispersant (Dasic NS. Results Mechanically dispersed oil induced expression changes in almost three times as many transcripts compared to chemically dispersed oil (fold change >+/−1.5. Functional analyses suggest that chemically dispersed oil affects partly different pathways than mechanically dispersed oil. By comparing the alteration in gene transcription in cod larvae exposed to the highest concentrations of either chemically or mechanically dispersed oil directly, the chemically dispersed oil affected transcription of genes involved nucleosome regulation, i.e. genes encoding proteins participating in DNA replication and chromatin formation and regulation of cell proliferation, whereas the mechanically dispersed oil most strongly affected genes encoding proteins involved in proteasome-mediated protein degradation. Cyp1a was the transcript that was most strongly affected in both exposure groups, with a 60-fold induction in the two high-exposure groups according to the RT-qPCR data, but no significant difference in transcriptional levels was observed between the two treatments. Conclusions In summary, dispersants do not appear to add to the magnitude of transcriptional responses of oil compounds but

  5. Polish Complementary Schools in Iceland and England

    Science.gov (United States)

    Zielinska, Malgorzata; Kowzan, Piotr; Ragnarsdóttir, Hanna

    2014-01-01

    Since 2004, the opening of labour markets has spurred a considerable number of Poles to emigrate e.g. to Iceland and England. Families with school age children have had the challenge of adapting to foreign environments and school systems. Polish complementary schools have played an important, albeit ambivalent, role in this process. Through focus…

  6. Knowledge Mobilisation in the Polish Education System

    Science.gov (United States)

    Fazlagic, Jan; Erkol, Arif

    2015-01-01

    Poland has made substantial progress in improving the quality of its education system in recent years. This paper aims to describe the situation of the Polish education system from a knowledge management perspective and, to some extent, through innovation policies in education. The many challenges, this paper argues, can be tackled only through…

  7. Polish Youth: A Dychotomic World of Values.

    Science.gov (United States)

    Bodnar, Artur; Zelichowski, Ryszard

    Research results show a skepticism among Polish youth concerning the possibility of implementing the accepted socialist values in political practice and denote a steady erosion of socialism's image. Youth organizations are many and varied, but it appears that most join because of the opportunity to meet friends, not because of political…

  8. Sexual Health of Polish Athletes with Disabilities

    Directory of Open Access Journals (Sweden)

    Ryszard Plinta

    2015-06-01

    Full Text Available The purpose of this study was to determine sexual functioning of Polish athletes with disabilities (including paralympians. The study encompassed 218 people with physical disabilities, aged between 18 and 45 (149 men and 69 women. The entire research population was divided into three groups: Polish paralympians (n = 45, athletes with disabilities (n = 126 and non-athletes with disabilities (n = 47. The quality of sexual life of Polish paralympians was measured by using the Polish version of Female Sexual Function Index and International Index of Erectile Function. Clinically significant erectile dysfunctions were most often diagnosed in non-athletes (83.33% with 50% result of severe erectile dysfunctions, followed by athletes and paralympians with comparable results of 56.98% and 54.17% respectively (p = 0.00388. Statistically significant clinical sexual dysfunctions concerned lubrication, orgasm as well as pain domains, and prevailed among female non-athletes (68.42%, 68.42% and 57.89%. Practising sports at the highest level has a favourable effect on the sexuality of men and women with physical disabilities. Men with physical disabilities manifest more sexual disorders than women, an aspect which should be considered by health-care professionals working with people with disabilities.

  9. Information Systems in the Polish Payment System

    OpenAIRE

    Murowaniecki, Łukasz; Woźniacki, Konrad

    2007-01-01

    The paper focuses on computerised information systems responsible for payment information exchange in Polish payment system. Firstly some terms, connected with the topic of funds transfer system, are ordered. Then, relying on the taxonomy, the paper presents a comprehensive view of domestic payment system.

  10. Towards an event annotated corpus of Polish

    Directory of Open Access Journals (Sweden)

    Michał Marcińczuk

    2015-12-01

    Full Text Available Towards an event annotated corpus of PolishThe paper presents a typology of events built on the basis of TimeML specification adapted to Polish language. Some changes were introduced to the definition of the event categories and a motivation for event categorization was formulated. The event annotation task is presented on two levels – ontology level (language independent and text mentions (language dependant. The various types of event mentions in Polish text are discussed. A procedure for annotation of event mentions in Polish texts is presented and evaluated. In the evaluation a randomly selected set of documents from the Corpus of Wrocław University of Technology (called KPWr was annotated by two linguists and the annotator agreement was calculated. The evaluation was done in two iterations. After the first evaluation we revised and improved the annotation procedure. The second evaluation showed a significant improvement of the agreement between annotators. The current work was focused on annotation and categorisation of event mentions in text. The future work will be focused on description of event with a set of attributes, arguments and relations.

  11. Food patterns of Polish older people

    DEFF Research Database (Denmark)

    Wadolowska, L.; Danowska-Oziewicz, M.; Niedzwiedzka, E.;

    2006-01-01

    Food patterns of Polish older people were separated and described. The research included 422 people aged 65+ years, living in 5 geographical locations. Participants of the study were selected in quota sampling. Criteria for recruitment included sex, age (65-^74 or 75+ years) and family status...

  12. Freeform grinding and polishing with PROSurf

    Science.gov (United States)

    Wolfs, Franciscus; Fess, Edward; DeFisher, Scott; Torres, Josh; Ross, James

    2015-10-01

    Recently, the desire to use freeform optics has been increasing, including shapes such as torics and anamorphic aspheres. Freeform optics can be used to expand capabilities of optical systems. They can compensate for limitations in rotationally symmetric optics. These same traits that give freeform optics the ability to improve optical systems also makes them more challenging to manufacture. This holds true for grinding, polishing, and metrology. As freeform optics become more prevalent in the industry, tolerances will become more stringent, requiring deterministic manufacturing processes. To generate freeforms, it is crucial to have control over all aspects of the process. Controlling the surface definition is important for achieving a better surface finish during processing. Metrology will be required to adjust tool paths at various stages in manufacturing. During grinding, metrology will be used to adjust tool positions relative to the nominal tool path to compensate for repeatable machine and tooling error. For polishing, metrology will be used to deterministically adjust dwell relative to the amount of the error in different surface locations, allowing for convergence towards the desired surface at a uniform rate. OptiPro has developed PROSurf, a CAM software package for creating freeform tool paths and applying metrology-based corrections. The software can be used for both grinding and polishing freeform optics. The software has flexibility to allow for different methods of modelling the surface: mathematical equations, solid models, and point clouds. The software is designed to make it easier to manufacture and polish complex freeform optics.

  13. Temporal Expressions in Polish Corpus KPWr

    Directory of Open Access Journals (Sweden)

    Jan Kocoń

    2015-12-01

    Full Text Available Temporal Expressions in Polish Corpus KPWrThis article presents the result of the recent research in the interpretation of Polish expressions that refer to time. These expressions are the source of information when something happens, how often something occurs or how long something lasts. Temporal information, which can be extracted from text automatically, plays significant role in many information extraction systems, such as question answering, discourse analysis, event recognition and many more. We prepared PLIMEX — a broad description of Polish temporal expressions with annotation guidelines, based on the state-of-the-art solutions for English, mainly TimeML specification. We also adapted the solution to capture the local semantics of temporal expressions, called LTIMEX. Temporal description also supports further event identification and extends event description model, focusing at anchoring events in time, ordering events and reasoning about the persistence of events. We prepared the specification, which is designed to address these issues and we annotated all documents in Polish Corpus of Wroclaw University of Technology (KPWr using our annotation guidelines.

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  15. Transformation of the Polish Banking Sector

    Directory of Open Access Journals (Sweden)

    Marek Stefański

    2009-07-01

    Full Text Available In the post-war period the banking system in Poland underwent two important system transitions: after 1946 and after 1989. The third transformation began after May 1, 2004, but it did not have a systemic character. The Polish banking sector started to operate on the Single European Market. The first part of the paper is devoted to the problems of the banks transformations after 1989 with a special focus on the quantitative development of banks in 19892008, and on subsequent privatisation and consolidation processes. The former intensified in 19891999, and the latter in 19992002. The consolidation process was very noticeable in the sector of cooperative banks after 1994. The second part of the paper includes an economic and financial analysis of the banks. A lot of attention was paid to the liquidity of the banking sector. It was assessed as good, which was confirmed by a short-term rating of Moodys and by the Financial Stability Report 2009, published by the National Bank of Poland in June 2009. The comparison of the net profit of the banking sector in 19972008 shows its dependence on the economic situation and policy. The number of banks with capital adequacy ratio well above the minimum required by the banking supervision is rising. The financial power ratings are not favorable for the domestic banks. The third part of the paper focuses on the development directions of the Polish banking sector. It may be concluded on the basis of the analysis that privatisation and consolidation processes will be continued. They will concentrate on the capital of foreign banks already operating in Poland. As compared with individual foreign banks, the potential of the Polish banking sector is week. The fourth part of the paper focuses on the presentation Polish banking sector in the context of European Union banking sector. The paper finishes with conclusions. Generally, Polish banks have to implement a strategy to enable them to compete on the Single

  16. Contemporary Contrastive Studies of Polish, Bulgarian and Russian Neologisms versus Language Corpora

    Directory of Open Access Journals (Sweden)

    Joanna Satoła-Staśkowiak

    2015-06-01

    Full Text Available Contemporary Contrastive Studies of Polish, Bulgarian and Russian Neologisms versus Language CorporaIn the field of Slavonic linguistics contrastive studies of neologisms occupy little place, the newest words are insufficiently described and classified. The aim of this article is to draw attention to the need for contrastive description of the newest lexis and checking exclusively one of many possibilities of obtaining Polish, Bulgarian and Russian neologisms. Language corpora, as this possibility is in question, are not the only source from which the author obtains her research material, yet a growing interest in corpora has inspired her to also use this method. The author wants to show the reader to what degree language corpora can help in building the thesaurus of Polish, Bulgarian and Russian neologisms. Making an attempt to confront a collection of neologisms of contemporary Polish, Bulgarian and Russian language, the author points out the need to standardize the description (identical for each of the analysed languages, which she intends to propose in another publications on neologisms in Polish, Bulgarian and Russian language. The application of contrastive method to three different but related languages from the Slavonic group will help, in her opinion, to discover more mechanisms of new words coming into existence and examine the newest derivative processes and their productivity.

  17. Magnetic field sensor based on double-sided polished fibre-Bragg gratings

    International Nuclear Information System (INIS)

    A new magnetic field sensor based on double-sided polished fibre-Bragg gratings (FBGs) coated with an iron thin film for measuring magnetic flux density was experimentally demonstrated with the sensitivity of 25.6 nm T−1. The sensing mechanism is based on the Bragg wavelength shift as the magnetic field is measured by the proposed sensing head. Results of this study present the intensity of the reflected optical signal as a function of the applied strain on the FBG. This paper shows that an improved method for sensing the wavelength shift with changes in external magnetic field is developed by use of the double-sided polished FBGs

  18. Study of the Contact Force in Free-form Surfaces Compliant EDM Polishing by Robot

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With an elastic negative pole being driven by ultra so nic vibration and being moved along the surface of work-piece compliantly by ro bot, a new kind of effective EDM, the compliant EDM, cuts the electrically condu ctive materials away and polishes work-piece of free-form surface. The study o f the contact force between the end of polishing tool and the surface of work-p iece is the key for the compliant EDM to study its cutting mechanism and to make better use of it. This paper makes a model for the cont...

  19. Quantum mechanics of chemical reactions: Recent developments in reactive scattering and in reaction path Hamiltonians

    International Nuclear Information System (INIS)

    Two recent developments in the theory of chemical reaction dynamics are reviewed. First, it has recently been discovered that the S- matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has considerably simplified quantum mechanical reactive scattering calculations, which provide the rigorous characterizations of bimolecular reactions. Second, a new kind of reaction path Hamiltonian has been developed, one based on the ''least motion'' path that interpolates linearly between the reactant and product geometry of the molecule (rather than the previously used minimum energy, or ''intrinsic'' reaction path). The form of Hamiltonian which results is much simpler than the original reaction path Hamiltonian, but more important is the fact that it provides a more physically correct description of hydrogen atom transfer reactions. 44 refs., 4 figs

  20. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    International Nuclear Information System (INIS)

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system

  1. Band gap engineering in polymers through chemical doping and applied mechanical strain.

    Science.gov (United States)

    Lanzillo, Nicholas A; Breneman, Curt M

    2016-08-17

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage. PMID:27324304

  2. Hybrid Cleaning Technology for Enhanced Post-Cu/Low-Dielectric Constant Chemical Mechanical Planarization Cleaning Performance

    Science.gov (United States)

    Ramachandran, Manivannan; Cho, Byoung-Jun; Kwon, Tae-Young; Park, Jin-Goo

    2013-05-01

    During chemical mechanical planarization (CMP), a copper/low-k surface is often contaminated by abrasive particles, organic materials and other additives. These contaminants need to be removed in the subsequent cleaning process with minimum material loss. In this study, a dilute amine-based alkaline cleaning solution is used along with physical force in the form of megasonic energy to remove particles and organic contaminants. Tetramethylammonium hydroxide (TMAH) and monoethanolamine (MEA) are used as an organic base and complexing agent, respectively, in the proposed solution. Ethanolamine acts as a corrosion inhibitor in the solution. Organic residue removal was confirmed through contact angle measurements and X-ray photoelectron spectroscopy analysis. Electrochemical studies showed that the proposed solution increases protection against corrosion, and that the hybrid cleaning technology resulted in higher particle removal efficiency from both the copper and low-k surfaces.

  3. Surfactant-controlled damage evolution during chemical mechanical planarization of nanoporous films

    International Nuclear Information System (INIS)

    The integration of nanoporous organosilicate thin films involving chemical mechanical planarization (CMP) is a significant challenge due the evolution of defects in the films during CMP in the form of cracking and delamination. This study shows that small changes in CMP electrolyte chemistry and surfactant additions can have dramatic effects on crack growth rates in the films. Crack growth rates were sensitive to the type of electrolyte and decreased in the presence of electrolytes that caused crack tip blunting. Growth rates were also sensitive to nonionic surfactant additions where molecular structure and weight were demonstrated to be important variables. An optimized blend of surfactants and electrolytes can significantly retard defect evolution due to molecular bridging. Surfactant self-assembly and resulting molecular bridging were characterized by in situ atomic force microscopy and used to quantify the molecular bridging observed.

  4. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  5. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    International Nuclear Information System (INIS)

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 1000C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced

  6. Band gap engineering in polymers through chemical doping and applied mechanical strain

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  7. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.

    Science.gov (United States)

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26462922

  8. Effects of He-Ne laser beam on mechanical, heat, chemical and superficial wounds

    International Nuclear Information System (INIS)

    This study summarizes the effects of low-doses of He-Ne laser radiation (λ = 6328 A), on healing of four types of wounds, including mechanical, heat, chemical and superficial wounds. The results revealed that variations between complete wound-closure in irradiated samples and that of control groups were statistically significant. Moreover, the results suggest that the stimulative action of laser is an accumulative phenomenon, that affects factors involved in the course of wound healing. The results also indicate that the skin epithelium is a highly responsive tissue towards this sort of radiation, which suggests that the stimulative action of He-Ne laser could be assayed easily by using such tissues as a test target. (author). 11 refs, 2 tabs

  9. Waste IPSC: Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation

    International Nuclear Information System (INIS)

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V and V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU, ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.

  10. Optimization of mechanical and chemical properties of sulphuric anodized aluminium using statistical experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, W. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia); Elleuch, K. [Laboratoire des Systemes Electromecaniques (LASEM), ENIS, B.P.W. Sfax (Tunisia); Feki, M. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia); Wery, M. [IUT Mesures Physiques d' Orsay, Plateau du Moulon, 91400 Orsay (France); Gigandet, M.P. [LCMI-Corrosion et Traitements de surface 16, Route de Gray, 25030 Besancon Cedex (France); Ayedi, H.F. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia)], E-mail: feridayedi@yahoo.fr

    2008-04-15

    We described a three-step strategy to achieve simultaneous optimization of mechanical and chemical properties of an anodic aluminium oxide layer elaborated in a sulphuric acid solution. In the first two steps, a Doehlert design was carried out and then the canonical analysis has been conducted to study the four fitted models of the responses, namely: dissolution rate, Vickers microhardness, weight loss after abrasion and deflection at failure of the anodic oxide layer. Canonical analysis showed that the experimental conditions where the optima are found for each individual response are just opposite, so it is required to look for a certain compromise, which was achieved using the desirability function, in the last step. The morphology and the composition of 'optimum' layer was examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES)

  11. Insight into the mechanisms of chemical doping of graphene on silicon carbide

    Science.gov (United States)

    Giannazzo, Filippo

    2016-02-01

    Graphene (Gr) is currently the object of intense research investigations, owing to its rich physics and wide potential for applications. In particular, epitaxial Gr on silicon carbide (SiC) holds great promise for the development of new device concepts based on the vertical current transport at Gr/SiC heterointerface. Precise tailoring of Gr workfunction (WF) represents a key requirement for these device structures. In this context, Günes et al (2015 Nanotechnology 26 445702) recently reported a straightforward approach for WF modulation in epitaxial Gr on silicon carbide by using nitric acid solutions at different dilutions. This paper provides a deep insight on the peculiar mechanisms of chemical doping of epitaxial Gr on 4H-SiC(0001), using several characterization techniques (Raman, UPS, AFM) and density functional theory calculations. The relevance of these findings and their perspective applications in emerging device concepts based on monolithic integration of Gr and SiC will be discussed.

  12. Freeform correction polishing for optics with semi-kinematic mounting

    Science.gov (United States)

    Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao

    2015-10-01

    Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).

  13. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. PMID:26282766

  14. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2016-03-01

    To identify a route for organic wastes utilisation, biochar made from various feedstocks (landfill pine saw dust, sewage sludge, and poultry litter) and at diverse pyrolysis conditions, were collected. These biochars were used to fabricate wood and polypropylene biocomposites with a loading level of 24 mass%. The composites were tested for their mechanical, chemical, thermal, morphological, and fire properties. The poultry litter biochar biocomposite, with highest ash content, was found to have high values of tensile/flexural strength, tensile/flexural modulus, and impact strength, compared to other composites. In general, addition of all the biochars enhanced the tensile/flexural moduli of the composites. The crystal structure of polypropylene in the composite was intact after the incorporation of all the biochars. The final chemical and crystal structure of the composite were an additive function of the individual components. The biochar particles along with wood acted as nucleating agents for the recrystallization of polypropylene in composite. Each component in the composites was found to decompose individually under thermal regime. The electron microscopy revealed the infiltration of polypropylene into the biochar pores and a general good dispersion in most composites. The poultry litter composite was found to have lower heat release rate under combustion regime. PMID:26724232

  15. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  16. Preparation of High Impermeable and Crack-resistance Chemical Admixture and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kind of high impermeable and crack-resistance chemical admixture (HICRCA) was prepared, which is a compound chemical admixture composed of an expansion ingredient,density ingredient, and organic hydrophobic poreblocking ingredient. The results of the experiments indicate that the addition of HICRCA improves mortar and concrete in the following performances:(1) perfect workability: slump is more than 22cm, the slump after 3h is about 16cm; (2)high impermeability:for the mortar,the pervious height under a water pressure of 1.5MPa is 1.5cm,for the concrete, the pervious height under a water pressure of 5.0MPa is 2.2cm;(3)high crack-resistance:there is a micro-expansion at the age of 90d;(4)high compressivestrength:compared with the controlled concrete,the compressive strengths at the age of 3d and 28d are improved by 66.4% and 62.0%, respectively.At the same time,the effects of different curing condition on mortar and concrete expansive and shrinkage performance were studied.In addition,the impermeable and crack-resistance mechanism was investigated in the present paper.

  17. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  18. Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism

    Science.gov (United States)

    Pompella, Alfonso; Kubacki, Jerzy; Szade, Jacek; Roy, Robert A.; Hedzelek, Wieslaw

    2016-01-01

    Objectives To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration. Methods In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization) in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface. Results UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2O and increases TiOH with many –OH groups being produced. These groups explain the super-hydrophilic effect from photofunctionalization when these groups come into contact with water. Significance Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level. PMID:27309723

  19. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    Science.gov (United States)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.

  20. Optimization of TiO2 and PMAPTAC Concentrations of a Chemical Humidity Sensing Mechanism

    Directory of Open Access Journals (Sweden)

    Samir Barra

    2009-09-01

    Full Text Available This work aims to achieve an optimization of the TiO2 and PMAPTAC concentrations in a chemical resistive-type humidity sensing mechanism (RHSM. Our idea is based primarily on the modeling of the sensing mechanism. This model takes into account the parameters of non-linearity, hysteresis, temperature, frequency, substrate type. Furthermore, we investigated the TiO2 and PMAPTAC effects concentrations on the humidity sensing properties in our model. Secondly, we used the Matlab environment to create a database for an ideal model for the sensing mechanism, where the response of this ideal model is linear for any value of the above parameters. We have done the training to create an analytical model for the sensing mechanism (SM and the ideal model (IM. After that, the SM and IM models are established on PSPICE simulator, where the output of the first is identical to the output of the RHSM used and the output of the last is the ideal response. Finally a “DIF bloc” was realized to make the difference between the SM output and the IM output, where this difference represents the linearity error, we take the minimum error, to identify the optimal TiO2 and PMAPTAC concentrations. However, a compromise between concentrations, humidity and temperature must be performed. The simulation results show that in low humidity and at temperature more than 25 °C, sample 1 is the best (in alumina substrate. However, the sample 9 represents the best sensor (in PET substrate predominately for the lowest humidity and temperature.

  1. Global mechanistic model of SOA formation: effects of different chemical mechanisms

    Directory of Open Access Journals (Sweden)

    G. Lin

    2011-09-01

    Full Text Available Recent experimental findings indicate that Secondary Organic Aerosol (SOA represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-d model (IMPACT to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles. We also include the formation of non-evaporative SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 113.5 Tg. The global production of SOA is substantially decreased to 85.0 Tg yr−1 if the HOx regeneration mechanism proposed by Peeters et al. (2009 is used. Model predictions with and without this HOx regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE for the United States, the European Monitoring and Evaluation Programme (EMEP as well as Aerosol Mass Spectrometry (AMS data measured in both Northern Hemisphere and tropical forest regions. All model simulations realistically predict the organic carbon mass observed in the Northern Hemisphere, although they tend to overestimate the concentrations in tropical forest regions. This overestimate may result from an unrealistically high uptake rate of glyoxal and methylglyoxal on aqueous aerosols and in cloud drops. The modeled OC in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over the North America and in pollution layers in Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere during the ACE-Asia campaign off the

  2. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  3. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    New machining and polishing techniques have been developed for large barium fluoride scintillating crystals that provide crystalline surfaces without sub-surface damage or deformation as verified by Atomic Force Microscopy (AFM) and Rutherford Back-scattering (RBS) analyses. Surface roughness of about 10-20 angstroms and sub-micron mechanical tolerances have been demonstrated on large crystal samples. Mass production techniques have also been developed for machining and polishing up to five 50 cm long crystals at one time. The authors present this technology along with surface studies of barium fluoride crystals polished with this technique. This technology is applicable for a number of new crystal detectors proposed at Colliders including the Barium Fluoride Electromagnetic Calorimeter at SSC, the Crystal Clear Collaboration's cerium fluoride calorimeter at LHC, and the KTeV and PHENIX scintillating hodoscopes at Fermilab, and RHIC, respectively

  4. Magnetic force improvement and parameter optimization for magnetic abrasive polishing of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic force acting on workpieee to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very low and it leads lower polishing efficiency.The magnesium alloy that has superior mechanical properties for industrial application such as a lightweight and high specific strength is one of the most famous nonferrous materials.An improving strategy of the magnetic force for me AZ31 magnesium alloy installed with a permanent magnet was proposed and experimental verification Was carded out.For the proposed strategy,the effect of process parameters on the surface roughness of the AZ31 magnesium alloy Was evaluated by a design of experimental method.

  5. PROBABILISTIC STATISTICAL ASSESSMENT OF SURFACE ROUGHNESS OF PARTS BEING POLISHED WHILE USING ELECTRIC PULSE METHOD

    Directory of Open Access Journals (Sweden)

    Y. V. Sinkevich

    2011-01-01

    Full Text Available The paper presents methodology and results of investigations pertaining to profilograms of specimen surfaces being polished using electric pulse method and being made of steel 10 и 20Х13 with the help of correlative transformation. It has been established that in the process of polishing topography formation is initiated due to simultaneous surfacing of micro- and sub-micro-irregularities with equal probability and equal intensity. The obtained mechanism for topography formation is justified by the fact that break-down of gas-vapor shell takes place with equal probability as on the micro-profile top so in its cavities on the polished surface in the zones of accidental  non-homogeneity of electric field.

  6. Development of a chlorine chemistry module for the Master Chemical Mechanism

    Science.gov (United States)

    Xue, L. K.; Saunders, S. M.; Wang, T.; Gao, R.; Wang, X. F.; Zhang, Q. Z.; Wang, W. X.

    2015-10-01

    The chlorine atom (Cl·) has a high potential to perturb atmospheric photochemistry by oxidizing volatile organic compounds (VOCs), but the exact role it plays in the polluted troposphere remains unclear. The Master Chemical Mechanism (MCM) is a near-explicit mechanism that has been widely applied in the atmospheric chemistry research. While it addresses comprehensively the chemistry initiated by the OH, O3 and NO3 radicals, its representation of the Cl· chemistry is incomplete as it only considers the reactions for alkanes. In this paper, we develop a more comprehensive Cl· chemistry module that can be directly incorporated within the MCM framework. A suite of 205 chemical reactions describes the Cl·-initiated degradation of alkenes, aromatics, alkynes, aldehydes, ketones, alcohols, and some organic acids and nitrates, along with the inorganic chemistry involving Cl· and its precursors. To demonstrate the potential influence of the new chemistry module, it was incorporated into a MCM box model to evaluate the impacts of nitryl chloride (ClNO2), a product of nocturnal halogen activation by nitrogen oxides (NOX), on the following day's atmospheric photochemistry. With constraints of recent observations collected at a coastal site in Hong Kong, southern China, the modeling analyses suggest that the Cl· produced from ClNO2 photolysis may substantially enhance the atmospheric oxidative capacity, VOC oxidation and O3 formation, particularly in the early morning period. The results demonstrate the critical need for photochemical models to include more detailed chlorine chemistry in order to better understand the atmospheric photochemistry in polluted environments subject to intense emissions of NOX, VOCs and chlorine-containing constituents.

  7. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  8. Between Polish Positivism and American Capitalism: The Educational Agents' Experiment in the Polish-American Community, 1889-1914

    Science.gov (United States)

    Jaroszynska-Kirchmann, Anna D.

    2008-01-01

    "Ameryka-Echo" was one of the most popular Polish-language weeklies, published in the United States between 1889 and 1972. Its founder and owner, Antoni A. Paryski, consciously sought to transplant ideas of Polish Positivism to the Polish-American immigrant communities in the United States. Reading was a central concept of self-education, promoted…

  9. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.

    Science.gov (United States)

    Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R

    2011-05-01

    An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment

  10. Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2009-01-01

    Purpose: This paper presents Neuro-Lab. It is an authorship programme, which use algorithms of artificial intelligence for structural steels mechanical properties estimation.Design/methodology/approach: On the basis of chemical composition, parameters of heat and mechanical treatment and elements of geometrical shape and size this programme has the ability to calculate the mechanical properties of examined steel and introduce them as raw numeric data or in graphic as influence charts. Possibl...

  11. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    New machining and polishing techniques have been developed for large barium fluoride scintillating crystals that provide crystalline surfaces without sub-surface damage or deformation as verified by Atomic Force Microscopy (AFM) and Rutherford Back-scattering (RBS) analyses. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large crystal samples. Mass production techniques have also been developed for machining and polishing up to five 50 cm long crystals at one time. We present this technology along with surface studies of barium fluoride crystals polished with this technique. This technology is applicable for a number of new crystal detectors proposed at Colliders including the Barium Fluoride Electromagnetic Calorimeter at SSC, the Crystal Clear Collaboration's cerium fluoride calorimeter at LHC, and the KTeV and PHENIX scintillating hodoscopes at Fermilab, and RHIC, respectively. Lawrence Livermore National Laboratory (LLNL) has an active program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration and cerium fluoride and lead fluoride for the Crystal Clear Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long crystals to be polished and lapped at the same time with tolerances satisfying the stringent requirements of crystal calorimeters. We also discuss results on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  12. Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping

    International Nuclear Information System (INIS)

    The effect of pretreatment bias on the nucleation and growth mechanisms of the ultrananocrystalline diamond (UNCD) films on the Si substrate via bias-enhanced nucleation and bias-enhanced growth (BEN-BEG) was investigated using cross-sectional high-resolution transmission electron microscopy, chemical bonding mapping, and Raman spectroscopy. The mirror-polished substrate surface showed the formation of a triangular profile produced by a dominant physical sputtering mechanism induced by ion bombardment of ions from the hydrogen plasma accelerated toward the substrate due to biasing and a potential hydrogen-induced chemical reaction component before synthesizing the UNCD films. The BEN-BEG UNCD films grown on the Si substrate with biased and unbiased pretreatments in the hydrogen plasma were compared. In the case of the bias-pretreated substrate, the SiC phases were formed at the peaks of the Si surface triangular profile due to the active unsaturated Si bond and the enhanced local electrical field. The UNCD grains grew preferentially at the peaks of the triangular substrate surface profile and rapidly covered the amorphous carbon (a-C) and oriented graphite phases formed in the valley of the surface profile. In the case of the substrate with unbiased pretreatment, the SiC phases were formed via the reactions between the hydrocarbon species and the active Si atoms released from the substrate with assistance of the hydrogen plasma. The UNCD grains nucleated on the nucleating sites consisting of the SiC, a-C, and graphite phases. Growth mechanisms for the BEN-BEG UNCD films on both Si substrates were proposed to elucidate the different nucleation processes. Applying bias on the Si substrate pretreated in the hydrogen plasma optimized the nucleation sites for growth of UNCD grains, resulting in the low content of the nondiamond phases in UNCD films

  13. Tooth polishing: Relevance in present day periodontal practice

    Directory of Open Access Journals (Sweden)

    Madan Charu

    2009-01-01

    Full Text Available Time has seen the emergence of more efficient and effective devices like jet abrasives. However, the role of rubber cups with prophy angles cannot be overlooked as they are still being widely used and provide an economical alternative. Owing to several shortcomings associated with the air polishing device using sodium bicarbonate (NaHCO 3 , trends are shifting towards the usage of low abrasive powders. Recent demonstration of Glycine Powder Air Polishing (GPAP in removing subgingival biofilm results in less gingival erosion than hand instrumentation or NaHCO 3 air-polishing. Despite the emergence of latest advances in polishing, data suggesting selective polishing of teeth is compelling.

  14. Polishing Material Removal Correlation on PMMA - FEM Simulation

    Science.gov (United States)

    Almeida, R.; Börret, R.; Rimkus, W.; Harrison, D. K.; DeSilva, A. K. M.

    2016-02-01

    The complexity of polishing is very high and experience in this field is required to achieve reproducible deterministic results concerning shape accuracy. The goal of this work is to predict the material removal of the polishing process on PMMA (Polymethylmethacrylate) using an industrial robot polisher. In order to predict the material removal, a FEM Model was created representing the polishing process. This model will help to predict the material removal when polishing parameters are changed. Experiments were carried out and compared to the results obtained from the different parameters tested in the simulation.

  15. Physico-chemical mechanisms governing the adherence of starch granules on materials with different hydrophobicities.

    Science.gov (United States)

    Detry, Jean G; Sindic, Marianne; Servais, Marjorie J; Adriaensen, Yasmine; Derclaye, Sylvie; Deroanne, Claude; Rouxhet, Paul G

    2011-03-01

    The factors influencing the adherence of starch were examined to improve the understanding of the mechanisms affecting soiling and cleanability. Therefore an aqueous suspension of starch granules was sprayed on four model substrates (glass, stainless steel, polystyrene and PTFE) and dried, and the substrates were cleaned using a radial-flow cell. The morphology of the soiled surfaces and the substrate chemical composition were also characterized. By influencing droplet spreading and competition between granule-substrate and granule-granule interfaces regarding the action of capillary forces, substrate wettability affected the shape and compactness of the adhering aggregates, the efficiency of shear forces upon cleaning, and finally the adherence of soiling particles. The rate of drying had an influence explained by the duration left to capillary forces for acting. X-ray photoelectron spectroscopy demonstrated the presence of macromolecules, mainly polysaccharides, which were adsorbed from the liquid phase, or carried by the retracting water film and deposited at the granule-substrate interface. These macromolecules acted as an adhesive joint, the properties of which seemed to be influenced by the detailed history of drying and subsequent exposure to humidity. In summary, the substrate surface energy affects the adherence of starch aggregates by different mechanisms which are all linked together: suspension droplet spreading, action of capillary forces, direct interaction with starch particles and interfacial macromolecules. PMID:21190696

  16. SiOxNy thin films with variable refraction index: Microstructural, chemical and mechanical properties

    International Nuclear Information System (INIS)

    In this work amorphous silicon oxynitride films with similar composition (ca. Si0.40N0.45O0.10) were deposited by reactive magnetron sputtering from a pure Si target under different N2-Ar mixtures. Rutherford backscattering (RBS) studies revealed that the coatings presented similar composition but different density. The mechanical properties evaluated by nanoindentation show also a dependence on the deposition conditions that does not correlate with a change in composition. An increase in nitrogen content in the gas phase results in a decrease of hardness and Young's modulus. The microstructural study by high resolution scanning electron microscopy (SEM-FEG) on non-metalized samples allowed the detection of a close porosity in the form of nano-voids (3-15 nm in size), particularly in the coatings prepared under pure N2 gas. It has been shown how the presence of the close porosity allows tuning the refraction index of the films in a wide range of values without modifying significantly the chemical, thermal and mechanical stability of the film.

  17. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Oats, W.J.; Ozdemir, O.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2010-04-15

    Fine minerals, mostly clays, are known to have a detrimental effect on coal flotation. This paper focuses on the effect of mechanical and chemical removals of fine minerals by hydrocyclone and dispersants on coal flotation. The experimental results showed that the flotation recovery slightly increased from medium acidic to medium alkaline ranges. The flotation experiments carried out with dispersants at different dosages showed that the dispersants did not enhance the flotation recovery significantly. However, the removal of the fine fraction from the feed using a hydrocyclone significantly increased the flotation recovery. The bubble-particle attachment tests also indicated that the attachment time between an air bubble and the coal particles increased in the presence of clay particles. These attachment time results clearly showed that the clay particles adversely affected the flotation of coal particles by covering the coal surfaces which reduced the efficiency of bubble-coal attachment. An analysis based on the colloid stability theory showed that the clay coating was governed by the van der Waals attraction and that the double-layer interaction played a secondary role. It was also concluded that the best way to increase the flotation recovery in the presence of clays was to remove these fine minerals by mechanical means such as hydrocylones.

  18. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  19. Influence of oxidant passivation on controlling dishing in alkaline chemical mechanical planarization

    International Nuclear Information System (INIS)

    The article studied the electrochemical behavior of P2 alkaline polishing slurry. The main research is the changing discipline of Ecorr and Icorr in the Cu electrolyte at different concentrations of oxidant H2O2. It compares potentiodynamic polarization curves in different P2 slurries and analyzes the passivation function of H2O2 acting on controlling dishing. The result implies that the potential increases gradually and then levels off while the current density on the contrary decreases with the augment of H2O2 concentration. In addition, dishing declines with the increasing of H2O2 along with the optimization of planarization of the alkaline P2 slurry. (paper)

  20. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  1. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O2- to H2O2, the question as to whether the resultant H2O2 is further detoxicated into H2O and O2 or not must still be evaluated. Hence, we studied the effect of

  2. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  3. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  4. Surftherm: A program to analyze thermochemical and kinetic data in gas-phase and surface chemical reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Coltrin, M.E.; Moffat, H.K.

    1994-06-01

    This report documents the Surftherm program that analyzes transport coefficient, thermochemical- and kinetic rate information in complex gas-phase and surface chemical reaction mechanisms. The program is designed for use with the Chemkin (gas-phase chemistry) and Surface Chemkin (heterogeneous chemistry) programs. It was developed as a ``chemist`s companion`` in using the Chemkin packages with complex chemical reaction mechanisms. It presents in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry and transport properties. This report serves as a user`s manual for use of the program, explaining the required input and the output.

  5. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na2SeO3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  6. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-03-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo(a)pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 ..mu..M Na/sup 2/SeO/sup 3/ (selenium) or with 7 ..mu..M ..cap alpha..-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism.

  7. Fall and Rise of Polish Shipbuilding Industry

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrobel

    2016-04-01

    Full Text Available The hereby paper describes a brief history of fall and rise of Polish shipbuilding industry in the 21st century and confronts stereotypes about it using data available from variety of statistical sources as well as impressions regarding its current and future condition presented by different authors, including industry representatives. The main goal of the article is the confrontation of political statement with the statistical data and current sectoral trends within the shipbuilding industry in Poland. Firstly, we introduce a historical background in a scope of economic transition in Poland. Then, socio-political issues are addressed together with economic condition using statistical data. Lastly, the newest trends and perspectives are analyzed. Eventually, we come to conclusion that despite encountering great difficulties and arguments about its collapse from political actors, shipbuilding sector did manage to retain its strong position in Polish economy.

  8. Social Responsibility Management in Polish Companies

    OpenAIRE

    Paliwoda-Matiolañska, Adriana

    2010-01-01

    Trends and changes occurring in the environment show that the social responsibility will play an increasingly important role in shaping the economic reality. The influence of non-material factors on the company’s value increases, as well as the social awareness. This article presents the evolution of the term of social responsibility, the model of social responsibility system and the practice of Polish companies with respect to CSR from the perspective of a survey among representatives of top...

  9. Robotic Grinding and Polishing Process Technology

    OpenAIRE

    Tecelli Opoz, Tahsin; Chen, Xun

    2009-01-01

    Robotic abrasive finishing inclusive of both high grinding efficiency in material removal and excellent polishing quality in material surface is a new challenging technology to meet demands for today’s and future front-end technology products. With the development of this technology, huge application areas are opened up especially in precision free-form component manufacturing, which is the key challenge in today’s aerospace, energy and biomedicine industries. In the ongoing project, ro...

  10. Knowledge economy policy in Polish regions

    OpenAIRE

    Sokołowska-Woźniak, Justyna

    2013-01-01

    The aim of this paper is twofold. The first is to examine the level of the development of knowledge economy in Polish regions (NUTS 2 units, voivodeships). In order to assess the advances in building the knowledge economy in regions, the composite indicator for years 2003-2008 is constructed with the use of the Hellwig method based on creation of an abstract model. The second purpose is to analyse the regional authorities’ policies directed towards supporting the pillars underlying the knowle...

  11. Polish normalization of the Body Esteem Scale

    Directory of Open Access Journals (Sweden)

    Małgorzata Lipowska

    2014-02-01

    Full Text Available Background Physical attractiveness plays an important part in one’s social functioning. The interest in one’s own appearance have been documented as widespread among the female population, but over the recent years it is more and more often emphasized that concentrating on body appearance concerns men as well. Franzoi and Shields (1984 created the Body Esteem Scale which allows to qualify the subject’s attitude towards his or her own body. The aim of the study was to create a Polish version of the Body Esteem Scale along with the norms for age and sex clusters. Participants and procedure The normalization sample consisted of 4298 participants: 1865 women aged 16 to 80 (M = 29.92; SD = 12.85 and 2433 men aged 16 to 78 (M = 28.74; SD = 11.50. Education levels among the participants were also controlled for. In order to create a Polish version of the Body Esteem Scale, translation was adopted as the adaptation strategy. Like the original one, the Polish scale comprises 35 items grouped into three gender specific subscales. The subscales for women include Sexual Attractiveness, Weight Concern, and Physical Condition, whereas the body esteem of is examined with regards to Physical Attractiveness, Upper Body Strength, and Physical Condition. Results Reliability of subscales was high both for females (Cronbach’s alpha from 0.80 to 0.89 and males (Cronbach’s alpha from 0.85 to 0.88. The given coefficients of reliability cover the original division into subscales adopted by the authors of BES. Conclusions We confirmed high reliability of the Polish version of the Body Esteem Scale, thus we recommend it as a diagnostic tool. Created norms allowed to refer results obtained in the course of research carried out on people with various disorders (e.g. eating disorders or body dysmorphic disorder with population data for corresponding age brackets.

  12. POLISH YOUTH ON THE EUROPEAN LABOUR MARKET

    OpenAIRE

    Joanna Nowakowska-Grunt; Judyta Kabus

    2014-01-01

    The starting point of this article is to attempt to analyze the current situation on the labor market in Europe. In order to characterize the European market the authors focused on the latest strategy called "Europe 2020" which aims to harmonize the functioning of the European market, to increase the competitiveness and productivity of the European economy by creating new jobs and higher standards of living. In the following part of the paper the authors present the new role of Polish univers...

  13. The Polish labour market in transition

    OpenAIRE

    Steiner, Viktor; Kwiatkowski, Eugeniusz

    1995-01-01

    The paper presents an empirical analysis of labour force dynamics in Poland in the period 1992 - 1993. Transitions between employment, unemployment and non-participation in the labour force at the individual level are derived from panel data of the Polish Labour Force Survey. These transitions are related by means of a dynamic microeconometric model to various demographic and socio-economic characteristics of the labour force, labour market indicators and other structural variables. Based on ...

  14. 'Knowledge economy policy in Polish regions'

    OpenAIRE

    Woźniak, Dariusz; Sokołowska-Woźniak, Justyna

    2012-01-01

    The aim of this paper is twofold. The first is to examine the level of development of knowledge economy in Polish regions (Voivodships). In order to assess the advances in building the knowledge economy in region, the composite indicator for years 2003-2008 is constructed. The second purpose is to analyse the regional authorities' policies directed towards supporting the pillars underlying the knowledge economy.

  15. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    Science.gov (United States)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to

  16. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  17. Robotic Automation in Computer Controlled Polishing

    Science.gov (United States)

    Walker, D. D.; Yu, G.; Bibby, M.; Dunn, C.; Li, H.; Wu, Y.; Zheng, X.; Zhang, P.

    2016-02-01

    We first present a Case Study - the manufacture of 1.4 m prototype mirror-segments for the European Extremely Large Telescope, undertaken by the National Facility for Ultra Precision Surfaces, at the OpTIC facility operated by Glyndwr University. Scale-up to serial-manufacture demands delivery of a 1.4 m off-axis aspheric hexagonal segment with surface precision computer numerically controlled ('CNC') polishing machines for optical fabrication. The objective was not to assess which is superior. Rather, it was to understand for the first time their complementary properties, leading us to operate them together as a unit, integrated in hardware and software. Three key areas are reported. First is the novel use of robots to automate currently-manual operations on CNC polishing machines, to improve work-throughput, mitigate risk of damage to parts, and reduce dependence on highly-skilled staff. Second is the use of robots to pre-process surfaces prior to CNC polishing, to reduce total process time. The third draws the threads together, describing our vision of the automated manufacturing cell, where the operator interacts at cell rather than machine level. This promises to deliver a step-change in end-to-end manufacturing times and costs, compared with either platform used on its own or, indeed, the state-of-the-art used elsewhere.

  18. Robotic Automation in Computer Controlled Polishing

    Science.gov (United States)

    Walker, D. D.; Yu, G.; Bibby, M.; Dunn, C.; Li, H.; Wu, Y.; Zheng, X.; Zhang, P.

    2016-02-01

    We first present a Case Study - the manufacture of 1.4 m prototype mirror-segments for the European Extremely Large Telescope, undertaken by the National Facility for Ultra Precision Surfaces, at the OpTIC facility operated by Glyndwr University. Scale-up to serial-manufacture demands delivery of a 1.4 m off-axis aspheric hexagonal segment with surface precision industrial optics. We report on how these ambitious requirements have stimulated an investigation into the synergy between robots and computer numerically controlled ('CNC') polishing machines for optical fabrication. The objective was not to assess which is superior. Rather, it was to understand for the first time their complementary properties, leading us to operate them together as a unit, integrated in hardware and software. Three key areas are reported. First is the novel use of robots to automate currently-manual operations on CNC polishing machines, to improve work-throughput, mitigate risk of damage to parts, and reduce dependence on highly-skilled staff. Second is the use of robots to pre-process surfaces prior to CNC polishing, to reduce total process time. The third draws the threads together, describing our vision of the automated manufacturing cell, where the operator interacts at cell rather than machine level. This promises to deliver a step-change in end-to-end manufacturing times and costs, compared with either platform used on its own or, indeed, the state-of-the-art used elsewhere.

  19. Duplication of holograms by using fingernail polish

    Science.gov (United States)

    Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Quintero-Romo, A.

    2007-08-01

    In this manuscript, we report the results of a research effort in finding an innovative recorder material which utilized fingernail polish (Super Oro One Coat®) information by means of the control of temperature as a parameter induced by hand rubbing. Analogical and computer holograms were replicated, resulting in a high quality behavior of fingernail polish through coating the polish with an average thickness of 10-15 μm, which contains some components of polyester resin with nitrocellulose. Through this material we obtained a high absolute diffraction efficiency, which was approximately equal to 90%, with gratings of 100 lines/mm. For a copy of conventional holograms at high frequencies (holographic ranges) the diffraction efficiency parameter is in the neighborhood of 22% at first order or more, depending on diffraction efficiency of the pattern of the hologram. The hologram is elaborated in the absence of any development of any process and does not need to have carefully controlled environmental conditions. Following this process, the hologram is obtained at standard atmospheric conditions of pressure and temperature. Another advantage is that it is possible to obtain a hologram at a lower cost; furthermore, the property of applicability to any substrate that it has is remarkable.

  20. Application of nitriding to electroless nickel–boron coatings: Chemical and structural effects; mechanical characterization; corrosion resistance

    International Nuclear Information System (INIS)

    Highlights: ► Nitriding of electroless nickel–boron coatings is possible and improves properties. ► Nitrided electroless nickel–boron coatings are harder than heat treated coatings. ► Nitrided electroless nickel–boron coatings have a good scratch test resistance. ► Nitrided Ni–B coatings have a better corrosion resistance than untreated coatings. -- Abstract: Electroless nickel–boron coatings, synthesized on mild steel, were submitted to nitridation treatments in varying conditions of pressure, temperature and atmosphere composition. One treatment was carried out under a reduced pressure of a nitrogen-based gas, the other under ambient pressure in a ammonia-based atmosphere. The modifications of the samples’ chemistry after those treatments were investigated by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy), GD-OES (Glow Discharge-Optical Emission Spectroscopy) and ToF-SIMS (Time of flight-Secondary Ions Mass Spectroscopy) analysis. Their structures and morphology were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy. The mechanical properties of the samples were investigated by micro- and nanohardness measurements successively on the free surface of the sample and on polished cross-sections; their roughness and resistance to scratch test were measured. Electrochemical corrosion tests were also carried out. The effects of both treatments were then compared: after the treatment carried out under lowered pressure, the coatings are dense, present signs of solution hardening and are characterized by a high hardness (close to 1600 hv100). A combination layer is observable on the samples treated under an ammonia-based atmosphere. This outer layer possesses poorer mechanical properties but the inner layer of the coating presents properties similar to those of vacuum nitrided coatings. The corrosion resistance of the coatings is as good as that of heat treated coatings.

  1. IDENTIFYING CHEMICALS FOR CUMULATIVE RISK ASSESSMENT USING COMMON MECHANISMS OF ACTION AND TOXICITY

    Science.gov (United States)

    Traditionally, potential health risk assessments from exposure to contaminated food, drinking water, or environmental media have been conducted on individual pesticides or chemicals in each medium of concern. However, humans are generally exposed to multiple chemicals and stress...

  2. Development of numerical model on the coupled thermo-hydro-mechanical-chemical process for the assessment methodology of chemical effects in the buffer material

    International Nuclear Information System (INIS)

    Numerical model which is mainly paid attention on chemical effects in the buffer material has been developed, for the purpose of quantification of the early complex evolution on the coupled thermo-hydro-mechanical-chemical processes in the near-field of a HLW repository. In this paper, governing equations are described, considering heat flow, fluid flow, mass transport and a variety of chemical reactions such as mineral dissolution/precipitation, gas dissolution/exsolution, ion-exchange and surface complexation. And also limitations are described. Through the comparison analysis against another coupled model, TOUGHREACT which has been developed in the Lawrence Berkeley National Laboratory, propriety of our coupled modeling and uncertainties between models are shown. And also designed laboratory tests for the salt accumulation/precipitation are presented. As the result of verification analysis against experimental salt concentration data, the almost distribution of saturation, temperature and concentration of aqueous species and minerals in the buffer material agree. This result suggests chemical effects such as salt accumulation/precipitation is able to simulate using our numerical model. Moreover, using the geological environment data based on the existing investigation in the Horonobe Underground Research Laboratory Project, simulation on chemical changes in the near-field involving the radioactive decay heat arising from the vitrified waste and infiltration of ground water into the buffer material is also presented. (author)

  3. Loop-polishing machining technology of large area lightweight mirror

    Science.gov (United States)

    Chen, Xian-he; Zhang, Cheng-qun; Tian, Xiao-qing; Liu, Haiwei

    2010-10-01

    Lightweight mirror is a key part in image-stabilized day/night optoelectronic observe/aim system. It is made of special structure titanium alloy base with sintered layer of optical glass. To meet with the requirement to reduce weight, honeycomb structure is adopted on the titanium alloy substrate. The depth of the optical glass is very thin. Due to its special & complex structure, high index requirement on image-stabilized technology, technology efficiency is very low with traditional polishing, and the quality is not stable. The loop polishing machine characterized with its stressless machining, is a kind of plain polishing machine tool, which has unique advantage in plain polishing machining of high accuracy large size and extra thin, changeable optical elements. We adopt loop-polishing technology in large area lightweight mirror machining. After parts fine grinding, first we adopt traditional polishing technique to conform pre-polishing for parts, then perform stressless polishing in loop polishing machine. Via tests and batch production, it solves the technical problems such as facial contour control and surface quality of the large area lightweight mirror; its working efficiency is 3-5 times than the traditional polishing technology.

  4. Thulium oxide fuel characterization study: Part 2, Environmental behavior and mechanical, thermal and chemical stability enhancement

    International Nuclear Information System (INIS)

    A study was performed of the correlation between fuel form stability and exposure environment of (temperature and atmosphere). 100% Tm2O3, 80% Tm2O3/20% Yb2O3 and 100% Yb2O3 wafers were subjected to air, dynamic vacuum and static vacuum at temperatures to 20000C for times to 100 hours. Results showed the Tm2O3/Yb2O3 cubic structure to be unaffected by elemental levels of iron, aluminum, magnesium and silicon and unaffected by the environmental conditions imposed on the wafers. A second task emphasized the optimization of the thermal, mechanical and chemical stability of Tm2O3 fuel forms. Enhancement was sought through process variable optimization and the addition of metal oxides to Tm2O3. CaO, TiO2 and Al2O3 were added to form a grain boundary precipitate to control fines generation. The presence of 1% additive was inadequate to depress the melting point of Tm2O3 or to change the cubic crystalline structure of Tm2O3/Yb2O3. Tm2O3/Yb2O3 wafers containing CaO developed a grain boundary phase that improved the resistance to fines generation. The presence of Yb2O3 did not appear to measurably influence behavior

  5. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  6. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    International Nuclear Information System (INIS)

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time

  7. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  8. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    Science.gov (United States)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi; Kim, Taesung

    2016-04-01

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution by analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.

  9. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres - An exploratory investigation

    International Nuclear Information System (INIS)

    The microstructural, physical, chemical and mechanical properties of Sansevieria cylindrica fibres are described for the first time in this work. A microstructural analysis of S. cylindrica leaves showed the presence of structural fibres and arch fibres. Polarised light microscopy and scanning electron microscopy of these fibres revealed a hierarchical cell structure that consisted of a primary wall, a secondary wall, a fibre lumen and middle lamellae. The cross-sectional area and porosity fraction of the fibre were estimated to be approximately 0.0245 mm2 and 37%, respectively. The fibre density and fineness were approximately 0.915 ± 0.005 g/cm3 and 9 Tex, respectively. An X-ray diffraction and Fourier transform infrared analysis of the fibres showed the presence of cellulose Iβ with a crystallinity index of 60%. Tensile tests showed that the corrected Young's modulus was approximately 7 GPa, the tensile strength was 658 MPa, and the total elongation was between 10% and 12%.

  10. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    International Nuclear Information System (INIS)

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li

  11. Do we need an Ad hoc chemical mechanism for Mexico City's photochemical smog?

    Science.gov (United States)

    Ruiz-Suárez, L. G.; Castro, T.; Mar, B.; Ruiz-Santoyo, M. E.; Cruz, X.

    Chemical mechanisms in mathematical models for air quality studies represent the synthesis of about 30 years of research in gas kinetics and atmospheric chemistry, and are able to represent, to a good extent, the chemistry of photochemical smog. However, due to the large amount of computer resources required by these models, different well-known approaches have been used in order to make them operative. In any of these approaches, a set of educated guesses is made, based upon the knowledge of the conditions under which the reactions occur and the competition between them, and upon the expected absolute and relative concentrations of the emitted reactive organic gases (ROG). Are those educated guesses applicable to Mexico City? Do we know enough how the prevalent conditions of temperature, total pressure, ultraviolet irradiation and water content in the atmosphere operate over the chemistry of photochemical smog? An answer to these questions has been attempted by performing variational analysis of selected hydrocarbons. Some results for n-butane, propene and trans-2-butene are shown; they show that under conditions of high reactivity, some assumptions may not be applicable to Mexico City. Also, the results serve to show the applicability of the method to preliminary reactivity studies.

  12. Assessment of insulation degradation of I and C cables from chemical and mechanical measurements

    International Nuclear Information System (INIS)

    Instrumentation and control (I and C) cables used in nuclear power plants (NPPs) are exposed to various deteriorative environmental effects during their operational lifetime. The factors consisting of long-term irradiation (at rather low dose rates, in the presence of oxygen), and enhanced temperature eventually result in insulation degradation. Monitoring of the actual state of the cable insulation and the prediction of their residual service life consist of the measurement of the properties that are directly proportional to the functionality of the cables (usually the elongation at break is used as the critical parameter). In view of this, accelerated thermal and radiation ageing of I and C cable insulation materials have been carried out and the degradation due to thermal and radiation ageing has been assessed using oxidation induction time (OIT) and oxidation induction temperature (OITp) measurements by differential scanning calorimetry (DSC). As elongation at break (EAB) is considered to be a benchmark characterization technique for polymeric materials, tensile tests have also been carried out on these cable materials to measure EAB for correlating with DSC findings. The scanning electron microscopy (SEM) performed on fresh and aged samples support relatively good correlation between chemical and mechanical properties. (author)

  13. The physical-chemical characterization of mechanically-treated CFBC fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoru Fu; Qin Li; Jianping Zhai; Guanghong Sheng; Feihu Li [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment

    2008-03-15

    The physical-chemical characteristics of mechanically-treated circulating fluidized bed combustion (CFBC) fly ash, such as 45 {mu}m sieve residue, granulometric distribution, water requirement, specific gravity, pH value, and mineralogical phases, were investigated. It was found that the grinding process can be divided into three stages. The increase in fineness of ground CFBC fly ash is very sharp in the first stage, then slows down in the second stage, and in the last stage it becomes almost invary. The water requirement decreases with prolonged grinding time, and slightly increases during the last stage of grinding. Ground CFBC fly ash shows a higher specific gravity due to the crushing of coarse particles and carbon particles. The pH of ground CFBC fly ash is greater than that of the original CFBC fly ash, indicating that ground samples react more rapidly with water. The mineralogical compositions remain unchanged with grinding, although the intensity of the crystalline phases decreases and the half peak width increases.

  14. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    Science.gov (United States)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  15. Species and diet related resistance to chemical carcinogens: biochemical mechanisms of aflatoxin B1 detoxification

    International Nuclear Information System (INIS)

    To provide insight into the biochemical mechanisms mediating species and diet related resistance to chemical carcinogens, the biotransformation and covalent binding to DNA of the potent hepatocarcinogen aflatoxin B1(AFB) was investigated in resistant and susceptible species fed standard and butylated hydroxyanisole (BHA)-supplemented diets. The rat is sensitive to the hepatocarcinogenic effects of AFB, whereas the mouse, and rats fed BHA-supplemented diet, are resistant. To differentiate between enzyme induction and direct antioxidant effects, BHA was administered to rats for 9 days, or as a single dose 4-7 hrs prior to i.p. injection of 3H-AFB. Long-term treatment with BHA doubled the biliary excretion of the glutathione conjugate of AFB and the AFP1-glucuronide, and reduced the binding of AFB to hepatic DNA to 16% of control. Single-dose BHA treatment had no effect. To determine if glutathione S-transferase (GST) activity towards the AFB-epoxide mediates both treatment and species related resistance to AFB carcinogenesis, a method was developed to measure the rate of formation of the AFB-epoxide, and the rate of inactivation of the epoxide via GST. To demonstrate the importance of GST-mediated detoxification of the AFB-epoxide in the mouse in vivo, depletion of hepatic GSH was accomplished by administration of L-buthionine-S,R-sulfoximine and diethyl maleate, prior to administration of AFB. GSH depletion was associated with a 30-fold increase in AFB-DNA binding

  16. Thermal, mechanical and chemical control of ragweed (Ambrosia artemisiifolia in different habitats

    Directory of Open Access Journals (Sweden)

    Sölter, Ulrike

    2014-02-01

    Full Text Available A small plot field experiment with transplanted ragweed (Ambrosia artemisiifolia into gravel and grassland and a large scale field experiment on a roadside banquette in Brandenburg with a natural ragweed infestation were carried out. Thermal control treatments were hot air (gravel and grassland and hot water (roadside and flaming, the mechanical treatment was mowing and the chemical treatment was the application of the herbicide combination MCPA and Dicamba. The gravel and grassland experiment was conducted at two growth stages of ragweed (BBCH 16-18 and 22-29, at the roadside ragweed was at BBCH 50-65. Dry matter yield of ragweed was assessed 9 weeks after the treatments were conducted in gravel and grassland and 4 weeks after the treatment at the roadside. In gravel and grassland the best eradication at both growth stages by thermal control was achieved by hot air in comparison to the untreated plots (significant at P <0.05. And at the roadside significant lower dry matter was determined by hot water and flaming in comparison to the untreated plots (significant at P <0.05. The results of these experiments demonstrated the efficiency of thermal control methods based on hot air and hot water as an alternative to herbicide control and mowing in habitats where herbicide application is not allowed or mowing gives no sufficient eradication results, like on roadside banquettes.

  17. Studies on the chemical mechanism of E. coli pyruvate-formate lyase

    International Nuclear Information System (INIS)

    Pyruvate-formate lyase (PFL) catalyzes the CoA dependent dismutation of pyruvate into acetyl-CoA and formate. The activated enzyme contains a radical moiety essential for this reaction. They have initiated studies to elucidate the mechanism by which this enzymic process occurs. Their studies have centered on the inactivation of PFL by a variety of pyruvate and formate analogs, including the known inhibitors O2, hypophosphite, and 3-fluoropyruvate, and by some newly discovered compounds, propargylic and acrylic acids. Inactivation is first order, and readily observable at inhibitor concentrations of 5 mM or less. Propargylic acid is especially reactive; at 1 mM the enzyme half-life is 2 minutes. Furthermore, a variety of other acetylenic analogs such as acetylene dicarboxylate, 2-butynoate, and propargyl alcohol do not inhibit PFL, suggesting some specificity for propargylic acid. Of particular significance is their finding of isotope effects on the rate of inactivation by 2H2-hypophosphite and 3-2H-propargylic acid (3.2 at 1 mM). Such data suggest to us that inactivation may involve rate-determining hydrogen abstraction or hydrogen shift from the inhibitor molecule. Anaerobic gel filtration of chemically inactivated enzyme does not lead to recovery of activity, although subsequent treatment with a PFL activating system does lead to partial activity restoration

  18. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Charles Reece, Michael Kelley, G. Ribeill

    2009-05-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  19. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

    Science.gov (United States)

    Kraka, Elfi; Cremer, Dieter

    2010-05-18

    Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists

  20. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.