Sample records for chemical kinetic models

  1. Chemical kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)


    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  2. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)


    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  3. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.


    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  4. Chemical Kinetic Modeling of Advanced Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    PItz, W J; Westbrook, C K; Herbinet, O


    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  5. Reduced Chemical Kinetic Model for Titan Entries

    Directory of Open Access Journals (Sweden)

    Romain Savajano


    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  6. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  7. A kinetic model for chemical neurotransmission (United States)

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  8. Chemical Kinetic Modeling of Biofuel Combustion (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  9. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John


    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  10. Application of Detailed Chemical Kinetics to Combustion Instability Modeling (United States)


    under two different conditions corresponding to marginally stable and unstable operation in order to evaluate the performance of the chemical kinetics...instability is a complex interaction between acoustics and the heat release due to combustion.In rocket engines, which are acoustically compact, there is...and amplitudes remains a challenge. The present article is an attempt towards addressing such discrepancies by enhancing the chemical kinetics model

  11. Chemical Kinetic Models for HCCI and Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M


    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  12. Computer-Aided Construction of Chemical Kinetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  13. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others


    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  14. Cleaner combustion developing detailed chemical kinetic models

    CERN Document Server

    Battin-Leclerc, Frédérique; Blurock, Edward


    This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the  formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of min

  15. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil


    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  16. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)


    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  17. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M


    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  18. Gompertz kinetics model of fast chemical neurotransmission currents. (United States)

    Easton, Dexter M


    At a chemical synapse, transmitter molecules ejected from presynaptic terminal(s) bind reversibly with postsynaptic receptors and trigger an increase in channel conductance to specific ions. This paper describes a simple but accurate predictive model for the time course of the synaptic conductance transient, based on Gompertz kinetics. In the model, two simple exponential decay terms set the rates of development and decline of transmitter action. The first, r, triggering conductance activation, is surrogate for the decelerated rate of growth of conductance, G. The second, r', responsible for Y, deactivation of the conductance, is surrogate for the decelerated rate of decline of transmitter action. Therefore, the differential equation for the net conductance change, g, triggered by the transmitter is dg/dt=g(r-r'). The solution of that equation yields the product of G(t), representing activation, and Y(t), which defines the proportional decline (deactivation) of the current. The model fits, over their full-time course, published records of macroscopic ionic current associated with fast chemical transmission. The Gompertz model is a convenient and accurate method for routine analysis and comparison of records of synaptic current and putative transmitter time course. A Gompertz fit requiring only three independent rate constants plus initial current appears indistinguishable from a Markov fit using seven rate constants.

  19. Reduced Models in Chemical Kinetics via Nonlinear Data-Mining

    Directory of Open Access Journals (Sweden)

    Eliodoro Chiavazzo


    Full Text Available The adoption of detailed mechanisms for chemical kinetics often poses two types of severe challenges: First, the number of degrees of freedom is large; and second, the dynamics is characterized by widely disparate time scales. As a result, reactive flow solvers with detailed chemistry often become intractable even for large clusters of CPUs, especially when dealing with direct numerical simulation (DNS of turbulent combustion problems. This has motivated the development of several techniques for reducing the complexity of such kinetics models, where, eventually, only a few variables are considered in the development of the simplified model. Unfortunately, no generally applicable a priori recipe for selecting suitable parameterizations of the reduced model is available, and the choice of slow variables often relies upon intuition and experience. We present an automated approach to this task, consisting of three main steps. First, the low dimensional manifold of slow motions is (approximately sampled by brief simulations of the detailed model, starting from a rich enough ensemble of admissible initial conditions. Second, a global parametrization of the manifold is obtained through the Diffusion Map (DMAP approach, which has recently emerged as a powerful tool in data analysis/machine learning. Finally, a simplified model is constructed and solved on the fly in terms of the above reduced (slow variables. Clearly, closing this latter model requires nontrivial interpolation calculations, enabling restriction (mapping from the full ambient space to the reduced one and lifting (mapping from the reduced space to the ambient one. This is a key step in our approach, and a variety of interpolation schemes are reported and compared. The scope of the proposed procedure is presented and discussed by means of an illustrative combustion example.

  20. Upper D region chemical kinetic modeling of LORE relaxation times (United States)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.


    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  1. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)


    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  2. Integration Strategies for Efficient Multizone Chemical Kinetics Models

    Energy Technology Data Exchange (ETDEWEB)

    McNenly, M J; Havstad, M A; Aceves, S M; Pitz, W J


    Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE) integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are found to provide more than an order of magnitude of improvement over the original, basic level of usage for the stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model. The faster strategies achieve their cost savings with no significant loss of accuracy. The pressure, temperature and major species mass fractions agree with the solution from the original integration approach to within six significant digits; and the radical mass fractions agree with the original solution to within four significant digits. The faster strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with respect to the number of zones. As a consequence of the improved scaling, the 40 zone model offers more than a 250-fold cost savings over the basic calculation.

  3. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Marinov, N.; Pitz, W.J.; Curran, H. [Lawrence Livermore National Lab., CA (United States)


    This project is intended to develop detailed and simplified kinetic reaction mechanisms for the combustion of practical systems fueled by hydrogen, and then to use those mechanisms to examine the performance, efficiency, pollutant emissions, and other characteristics of those systems. During the last year, a H2/NOx mechanism has been developed that gives much improved predictions of NOx emissions compared to experimental data. Preliminary chemical kinetic and equilibrium calculations have been performed in support of Br2-H2O experiments to be conducted at NREL. Hydrogen, hydrogen/methane and hydrogen/natural gas mixtures have been investigated in a knock-rating engine to assess their automotive knock characteristics. The authors are currently developing the simplified analog reaction mechanisms that are computationally simple, yet still reproduce many of the macroscopic features of flame propagation.

  4. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)


    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  5. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel


    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  6. Development of chemical kinetic models for lean NOx traps.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.


    Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology. Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized. Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation. A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines. We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data: (1) Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed). (2) Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed). (3) Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed). (4) Investigate the potential role of reductants other than CO and H{sub 2}. While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered. Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.

  7. A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman

    Directory of Open Access Journals (Sweden)

    James Bland


    Full Text Available The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM. The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4, followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO. At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.

  8. Principles of chemical kinetics

    CERN Document Server

    House, James E


    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  9. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.


    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  10. Chemical Kinetics Database (United States)

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  11. Chemical kinetic modeling of a methane opposed flow diffusion flame and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M., Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States); Vincitore, A.M.; Senka, S.M. [Univ. of California, Los Angeles, CA (United States); Lutz, A.E. [Sandia National Labs., Livermore, CA (United States)


    The chemical structure of an opposed flow, methane diffusion flame is studied using a chemical kinetic model and the results are compared to experimental measurements. The chemical kinetic paths leading to aromatics and polycyclic aromatics hydrocarbons (PAHs) in the diffusion flame are identified. These paths all involve resonantly stabilized radicals which include propargyl, allyl, cyclopentadienyl, and benzyl radicals. The modeling results show reasonable agreement with the experimental measurements for the large hydrocarbon aliphatic compounds, aromatics, and PAHs. the benzene was predicted to be formed primarily by the reaction sequence of Allyl plus Propargyl equals Fulvene plus H plus H followed by fulvene isomerization to benzene. Naphthalene was modeled using the reaction of benzyl with propargyl, while the combination of cyclopentadienyl radicals were shown to be a minor contributor in the diffusion flame. The agreement between the model and experiment for the four-ring PAHs was poor.

  12. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan-De [College of Chemistry, Sichuan University, Chengdu (China); Wang, Jing-Bo; Li, Juan-Qin; Tan, Ning-Xin; Li, Xiang-Yuan [College of Chemical Engineering, Sichuan University, Chengdu (China)


    The initiation mechanisms and kinetics of pyrolysis and combustion of n-dodecane are investigated by using the reactive molecular dynamics (ReaxFF MD) simulation and chemical kinetic modeling. From ReaxFF MD simulations, we find the initiation mechanisms of pyrolysis of n-dodecane are mainly through two pathways, (1) the cleavage of C-C bond to form smaller hydrocarbon radicals, and (2) the dehydrogenation reaction to form an H radical and the corresponding n-C{sub 12}H{sub 25} radical. Another pathway is the H-abstraction reactions by small radicals including H, CH{sub 3}, and C{sub 2}H{sub 5}, which are the products after the initiation reaction of n-dodecane pyrolysis. ReaxFF MD simulations lead to reasonable Arrhenius parameters compared with experimental results based on first-order kinetic analysis of n-dodecane pyrolysis. The density/pressure effects on the pyrolysis of n-dodecane are also analyzed. By appropriate mapping of the length and time from macroscopic kinetic modeling to ReaxFF MD, a simple comparison of the conversion of n-dodecane from ReaxFF MD simulations and that from kinetic modeling is performed. In addition, the oxidation of n-dodecane is studied by ReaxFF MD simulations. We find that formaldehyde molecule is an important intermediate in the oxidation of n-dodecane, which has been confirmed by kinetic modeling, and ReaxFF leads to reasonable reaction pathways for the oxidation of n-dodecane. These results indicate that ReaxFF MD simulations can give an atomistic description of the initiation mechanism and product distributions of pyrolysis and combustion for hydrocarbon fuels, and can be further used to provide molecular based robust kinetic reaction mechanism for chemical kinetic modeling of hydrocarbon fuels. (author)

  13. Semi-gas kinetics model for performance modeling of flowing chemical oxygen-iodine lasers (COIL)

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi; HU Limin; SHEN Yiqing


    A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

  14. Impact of chemical kinetic model reduction on premixed turbulent flame characteristics (United States)

    Fillo, Aaron; Niemeyer, Kyle


    The use of detailed chemical kinetic models for direct numerical simulations (DNS) is prohibitively expensive. Current best practice for the development of reduced models is to match laminar burning parameters such as flame speed, thickness, and ignition delay time to predictions of the detailed chemical kinetic models. Prior studies using reduced models implicitly assumed that matching the homogeneous and laminar properties of the detailed model will result in similar behavior in a turbulent environment. However, this assumption has not been tested. Fillo et al. recently demonstrated experimentally that real jet fuels with similar chemistry and laminar burning parameters exhibit different turbulent flame speeds under the same flow conditions. This result raises questions about the validity of current best practices for the development of reduced chemical kinetic models for turbulent DNS. This study will investigate the validity of current best practices. Turbulent burning parameters, including flame speed, thickness, and stretch rate, will be compared for three skeletal mechanisms of the Princeton POSF 4658 mechanism, reduced using current best practice methods. DNS calculations of premixed, high-Karlovitz flames will be compared to determine if these methods are valid. This material is based upon work supported by the National Science Foundation under Grant No. 1314109-DGE.

  15. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez


    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  16. Calibration of Chemical Kinetic Models Using Simulations of Small-Scale Cookoff Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoff, A P; Becker, R C; Burnham, A K


    Establishing safe handling limits for explosives in elevated temperature environments is a difficult problem that often requires extensive simulation. The largest influence on predicting thermal cookoff safety lies in the chemical kinetic model used in these simulations, and these kinetic model reaction sequences often contain multiple steps. Several small-scale cookoff experiments, notably Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), One-Dimensional Time-to-Explosion (ODTX), and the Scaled Thermal Explosion (STEX) have been performed on various explosives to aid in cookoff behavior determination. Past work has used a single test from this group to create a cookoff model, which does not guarantee agreement with the other experiments. In this study, we update the kinetic parameters of an existing model for the common explosive 2,4,6-Trinitrotoluene (TNT) using DSC and ODTX experimental data at the same time by minimizing a global Figure of Merit based on hydrodynamic simulated data. We then show that the new kinetic model maintains STEX agreement, reduces DSC agreement, and improves ODTX and TGA agreement when compared to the original model. In addition, we describe a means to use implicit hydrodynamic simulations of DSC experiments to develop a reaction model for TNT melting.

  17. Enhanced identification and exploitation of time scales for model reduction in stochastic chemical kinetics. (United States)

    Gómez-Uribe, Carlos A; Verghese, George C; Tzafriri, Abraham R


    Widely different time scales are common in systems of chemical reactions and can be exploited to obtain reduced models applicable to the time scales of interest. These reduced models enable more efficient computation and simplify analysis. A classic example is the irreversible enzymatic reaction, for which separation of time scales in a deterministic mass action kinetics model results in approximate rate laws for the slow dynamics, such as that of Michaelis-Menten. Recently, several methods have been developed for separation of slow and fast time scales in chemical master equation (CME) descriptions of stochastic chemical kinetics, yielding separate reduced CMEs for the slow variables and the fast variables. The paper begins by systematizing the preliminary step of identifying slow and fast variables in a chemical system from a specification of the slow and fast reactions in the system. The authors then present an enhanced time-scale-separation method that can extend the validity and improve the accuracy of existing methods by better accounting for slow reactions when equilibrating the fast subsystem. The resulting method is particularly accurate in systems such as enzymatic and protein interaction networks, where the rates of the slow reactions that modify the slow variables are not a function of the slow variables. The authors apply their methodology to the case of an irreversible enzymatic reaction and show that the resulting improvements in accuracy and validity are analogous to those obtained in the deterministic case by using the total quasi-steady-state approximation rather than the classical Michaelis-Menten. The other main contribution of this paper is to show how mass fluctuation kinetics models, which give approximate evolution equations for the means, variances, and covariances of the concentrations in a chemical system, can feed into time-scale-separation methods at a variety of stages.

  18. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N


    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  19. Modeling the Emission of CO from Wood Fires using Detailed Chemical Kinetics

    DEFF Research Database (Denmark)

    Dederichs, Anne

    Carbon monoxide is treated as one of the most common and dangerous of gases evolving in fires. Modeling the formation of the toxic gas CO from in fire enclosures using detailed chemical kinetics is the topic of this manuscript. A semi-empirical model is developed to study the formation of CO from......, the model separately treats the process of pyrolysis and combustion. For under ventilated conditions and at high temperatures during pyrolysis it is found that the process of pyrolysation strongly influences the formation of CO in fire. CO2 follows the same trend....

  20. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour


    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.

  1. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics (United States)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.


    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  2. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran. (United States)

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A


    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  3. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling. (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela


    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.

  4. Quasi-Dimensional Modeling of a CNG Fueled HCCI Engine Combustion Using Detailed Chemical Kinetic

    Directory of Open Access Journals (Sweden)

    Younes Bakhshan


    Full Text Available In this study, an in-house quasi dimensional code has been developed which simulates the intake, compression, combustion, expansion and exhaust strokes of a homogeneous charge compression ignition (HCCI engine. The compressed natural gas (CNG has been used as fuel. A detailed chemical kinetic scheme constituting of 310 and 1701 elementary equations developed by Bakhshan et al. has been applied for combustion modeling and heat release calculations. The zero-dimensional k-ε turbulence model has been used for calculation of heat transfer. The output results are the performance and pollutants emission and combustion characteristics in HCCI engines. Parametric studies have been conducted to discussing the effects of various parameters on performance and pollutants emission of these engines.

  5. Modeling Multiphase Chemical Kinetics of OH Radical Reacting with Biomass Burning Organic Aerosol (United States)

    Arangio, Andrea; Slade, Jonathan H.; Berkemeier, Thomas; Knopf, Daniel A.; Shiraiwa, Manabu


    Levoglucosan, abietic acid and nitroguaiacol are commonly used as molecular tracers of biomass burning in source apportionment. Recent studies have demonstrated the decay of levoglucosan when the particles were exposed to atmospherically relevant concentration of OH radicals [1-3]. However, multiphase chemical kinetics of OH radical reacting with such compounds has not fully understood. Here we apply the kinetic multi-layer model for gas-particle interactions (KM-GAP) [4] to experimental data of OH exposure to levoglucosan, abietic acid and nitroguaiacol [1]. KM-GAP resolves the following mass transport and chemical reactions explicitly: gas-phase diffusion, reversible surface adsorption, surface reaction, surface-bulk transport, bulk diffusion and reaction. The particle shrink due to the evaporation of volatile reaction products is also considered. The time- and concentration-dependence of reactive uptake coefficient of OH radicals were simulated by KM-GAP. The measured OH uptake coefficients were fitted by a Monte Carlo (MC) filtering coupled with a genetic algorithm (GA) to derive physicochemical parameters such as bulk diffusion coefficient, Henry's law coefficient and desorption lifetime of OH radicals. We assessed the relative contribution of surface and bulk reactions to the overall uptake of OH radicals. Chemical half-life and the evaporation time scale of these compounds are estimated in different scenarios (dry, humid and cloud processing conditions) and at different OH concentrations. REFERENCES [1] J. H. Slade, D. A. Knopf, Phys. Chem. Chem. Phys., 2013, 15, 5898. [2] S. H. Kessler, J. D. Smith, D.L. Che, D.R. Worsnop, K. R. Wilson, J. H. Kroll, Environ. Sci. Technol., 2010, 44, 7005. [3] C. J. Hennigan, A. P. Sullivan, J. L. Collett Jr, A. L. Robinson, Geophys. Res. Lett., 2010, 37, L09806. [4] M. Shiraiwa, C. Pfrang, T. Koop, U. Pöschl, Atmos. Chem. Phys, 2012, 12, 2777.

  6. Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc (United States)

    Wang, Xiaohua; Gao, Qingqing; Fu, Yuwei; Yang, Aijun; Rong, Mingzhe; Wu, Yi; Niu, Chunping; Murphy, Anthony B.


    This paper is devoted to the computation of the non-equilibrium composition of an SF6 plasma, and determination of the dominant particles and reactions, at conditions relevant to high-voltage circuit breakers after current zero (temperatures from 12 000 K to 1000 K and a pressure of 4 atm). The non-equilibrium composition is characterized by departures from both thermal and chemical equilibrium. In thermal non-equilibrium process, the electron temperature (T e) is not equal to the heavy-particle temperature (T h), while for chemical non-equilibrium, a chemical kinetic model is adopted. In order to evaluate the reasonableness and reliability of the non-equilibrium composition, calculation methods for equilibrium composition based on Gibbs free energy minimization and kinetic composition in a one-temperature kinetic model are first considered. Based on the one-temperature kinetic model, a two-temperature kinetic model with the ratio T e/T h varying as a function of the logarithm of electron density ratio (n e/n\\text{e}\\max ) was established. In this model, T* is introduced to allow a smooth transition between T h and T e and to determine the temperatures for the rate constants. The initial composition in the kinetic models is obtained from the asymptotic composition as infinite time is approached at 12 000 K. The molar fractions of neutral particles and ions in the two-temperature kinetic model are consistent with the equilibrium composition and the composition obtained from the one-temperature kinetic model above 10 000 K, while significant differences appear below 10 000 K. Based on the dependence of the particle distributions on temperature in the two-temperature kinetic model, three temperature ranges, and the dominant particles and reactions in the respective ranges, are determined. The full model is then simplified into three models and the accuracy of the simplified models is assessed. The simplified models reduce the number of species and

  7. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark


    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  8. History and Philosophy of Science through Models: The Case of Chemical Kinetics. (United States)

    Justi, Rosaria; Gilbert, John K.


    A greater role for the history and philosophy of science in science education can only be realized if it is based on both a credible analytical approach--such as that of Lakatos--and if the evolution of a sufficient number of major themes in science is known in suitable detail. Considers chemical kinetics as an example topic. Contains 62…

  9. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Damen, K.; Jager, T.; Vaes, W.H.J.


    In the current study, a new method is introduced with which the rate-limiting factor of biodegradation processes of hydrophobic chemicals in organic and aqueous systems can be determined. The novelty of this approach lies in the combination of a free concentration-based kinetic model with measuremen

  10. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie


    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.

  11. A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation. (United States)

    Yasunaga, K; Gillespie, F; Simmie, J M; Curran, H J; Kuraguchi, Y; Hoshikawa, H; Yamane, M; Hidaka, Y


    The pyrolysis and oxidation of diethyl ether (DEE) has been studied at pressures from 1 to 4 atm and temperatures of 900-1900 K behind reflected shock waves. A variety of spectroscopic diagnostics have been used, including time-resolved infrared absorption at 3.39 mum and time-resolved ultraviolet emission at 431 nm and absorption at 306.7 nm. In addition, a single-pulse shock tube was used to measure reactant, intermediate, and product species profiles by GC samplings at different reaction times varying from 1.2 to 1.8 ms. A detailed chemical kinetic model comprising 751 reactions involving 148 species was assembled and tested against the experiments with generally good agreement. In the early stages of reaction the unimolecular decomposition and hydrogen atom abstraction of DEE and the decomposition of the ethoxy radical have the largest influence. In separate experiments at 1.9 atm and 1340 K, it is shown that DEE inhibits the reactivity of an equimolar mixture of hydrogen and oxygen (1% of each).

  12. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)


    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  13. Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models. (United States)

    Srivastava, Rishi; Anderson, David F; Rawlings, James B


    Sensitivity analysis is a powerful tool in determining parameters to which the system output is most responsive, in assessing robustness of the system to extreme circumstances or unusual environmental conditions, in identifying rate limiting pathways as a candidate for drug delivery, and in parameter estimation for calculating the Hessian of the objective function. Anderson [SIAM J. Numer. Anal. 50, 2237 (2012)] shows the advantages of the newly developed coupled finite difference (CFD) estimator over the common reaction path (CRP) [M. Rathinam, P. W. Sheppard, and M. Khammash, J. Chem. Phys. 132, 034103 (2010)] estimator. In this paper, we demonstrate the superiority of the CFD estimator over the common random number (CRN) estimator in a number of scenarios not considered previously in the literature, including the sensitivity of a negative log likelihood function for parameter estimation, the sensitivity of being in a rare state, and a sensitivity with fast fluctuating species. In all examples considered, the superiority of CFD over CRN is demonstrated. We also provide an example in which the CRN method is superior to the CRP method, something not previously observed in the literature. These examples, along with Anderson's results, lead to the conclusion that CFD is currently the best estimator in the class of finite difference estimators of stochastic chemical kinetic models.

  14. Selected readings in chemical kinetics

    CERN Document Server

    Back, Margaret H


    Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti

  15. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.


    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  16. Kinetics and Modeling of Chemical Leaching of Sphalerite Concentrate Using Ferric Iron in a Redox-controlled Reactor

    Institute of Scientific and Technical Information of China (English)

    宋健; 高玲; 林建群; 吴洪斌; 林建强


    This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+concentration and Fe3+/Fe2+ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.

  17. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J


    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  18. Chemical kinetics and reaction dynamics

    CERN Document Server

    Houston, Paul L


    This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying qu

  19. Chemical reduction of complex kinetic models of combustion; Reduction chimique des modeles cinetiques complexes de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fournet, R.; Glaude, P.A.; Warth, V.; Battin-Leclerc, F.; Scacchi, G.; Come, G.M. [Institut National Polytechnique de Lorraine, Ecole Nationale Superieure des Industries Chimiques, CNRS UMR 7630, INPL ENSIC, Dept. de Chimie Physique des Reacteurs, 54 - Nancy (France)


    This paper presents an automatized method allowing to notably reduce the size of the primary mechanism of alkane combustion. The free radicals having the same raw formulation and the same functional groups are presented in a global way as a unique species. In this way, the number of radicals can be divided by a factor of 16 in the case of n-heptane combustion. The kinetic parameters linked with the global mechanism are obtained from a weighted average of the kinetic constants of the detailed mechanism, and this without any adjustment.The simulations performed for the combustion mechanisms of the n-heptane and of a mixture of n-heptane and 2,2,3 trimethyl butane are presented in order to show the validity of the proposed method. (J.S.)

  20. Chemical kinetics on extrasolar planets. (United States)

    Moses, Julianne I


    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately extrasolar planets.

  1. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    Directory of Open Access Journals (Sweden)

    Amir Azimi, Javad Aminian


    Full Text Available Computational Fluid Dynamics (CFD study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results using the Eddy Dissipation Concept (EDC combustion model as well as the experimental data available in the literature. Results show that global chemical mechanisms provide acceptable predictions of temperature and major species fields in flameless mode with much lower computational costs comparing with the detailed chemical mechanisms. However, incorporation of detailed chemical mechanisms with proper combustion models is crucial to account for finite-rate chemistry effects and accurately predict net production of minor species.

  2. Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions. (United States)

    Wehrer, Markus; Jaesche, Philipp; Totsche, Kai Uwe


    A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by joint analysis of lab experiments with numerical simulation models. In the present study, published experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns were simulated inversely to receive the parameters of degradation. We evaluated different scenarios of an advection-dispersion model including different terms for degradation, such as zero order, first order and inclusion of a growing and decaying biomass for their ability to explain the data. The general break-through behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions.

  3. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods. (United States)

    Ross, E W; Taub, I A; Doona, C J; Feeherry, F E; Kustin, K


    Knowledge of the mathematical properties of the quasi-chemical model [Taub, Feeherry, Ross, Kustin, Doona, 2003. A quasi-chemical kinetics model for the growth and death of Staphylococcus aureus in intermediate moisture bread. J. Food Sci. 68 (8), 2530-2537], which is used to characterize and predict microbial growth-death kinetics in foods, is important for its applications in predictive microbiology. The model consists of a system of four ordinary differential equations (ODEs), which govern the temporal dependence of the bacterial life cycle (the lag, exponential growth, stationary, and death phases, respectively). The ODE system derives from a hypothetical four-step reaction scheme that postulates the activity of a critical intermediate as an antagonist to growth (perhaps through a quorum sensing biomechanism). The general behavior of the solutions to the ODEs is illustrated by several examples. In instances when explicit mathematical solutions to these ODEs are not obtainable, mathematical approximations are used to find solutions that are helpful in evaluating growth in the early stages and again near the end of the process. Useful solutions for the ODE system are also obtained in the case where the rate of antagonist formation is small. The examples and the approximate solutions provide guidance in the parameter estimation that must be done when fitting the model to data. The general behavior of the solutions is illustrated by examples, and the MATLAB programs with worked examples are included in the appendices for use by predictive microbiologists for data collected independently.

  4. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)



    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  5. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino


    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  6. Kinetics of microbial degradation of deicing chemicals in percolated porous media - the modeling perspective (United States)

    Wehrer, Markus; Lissner, Heidi; Totsche, Kai


    A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by analysis of laboratory and field experiments with numerical simulation models. In the present study, experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns and field lysimeters were simulated to analyze the process conditions of degradation and to obtain the according parameters. Results from the column experiment were evaluated applying different scenarios of an advection-dispersion model using HYDRUS-1D. To reconstruct the data, different competing degradation models were included, i.e., zero order, first order and inclusion of a growing and decaying biomass. The general breakthrough behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. Complex experimental boundary conditions can help to avoid this. Under field conditions, the situation is far more complex than in the laboratory. Studying the fate of PG with undisturbed lysimeters we found that aerobic and anaerobic degradation occurs simultaneously. We attribute this to the physical structure and the aggregated nature of the undisturbed soil material . This results in the presence of spatially disjoint oxidative and reductive regions of microbial activity and requires, but is not fully reflected by a dual porosity model. Currently, the numerical simulation of this system is in progress, considering several flow and transport models. A stochastic global search algorithm (DREAM-ZS) is used in conjuction with HYDRUS-1D to avoid local minima in the inverse simulations. The study shows the current limitations and potentials of modeling degradation

  7. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)


    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)


    Directory of Open Access Journals (Sweden)



    Full Text Available The effect of simplified chemical kinetic model on the micro-flame structure, central axis and wall temperatures were investigated with different one-step global chemical kinetic mechanisms following Mantel, Duterque and Fernández-Tarrazo models. Numerical investigations of the premixed methane-air flame in the micro-channel and lean conditions were carried out to compare and analyze the effect of the comprehensive chemical kinetic mechanisms. The results indicate that one-step global chemical kinetic mechanism affects both the micro-flame shape and the combustion temperature. Among three simulation models, Mantel model allows a stable micro-flame with a bamboo shoot form, which anchor at the inlet. Duterque model gives a stable elongated micro-flame with a considerable ignition delay, and a dead zone with fluid accumulation is observed at the entrance, which may explain the very high combustion temperature and the fast reaction rate obtained, despite the micro-flame development presents a very hot spot and causes a broadening of the combustion zone. Fernández-Tarrazo model results in a rapid extinction and doesn't seem to take all the kinetic behavior into account for the appropriate micro-combustion simulations.

  9. Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: determining antioxidant partition constants and interfacial rate constants. (United States)

    Gu, Qing; Bravo-Díaz, Carlos; Romsted, Laurence S


    Kinetic results obtained in cationic and anionic emulsions show for the first time that pseudophase kinetic models give reasonable estimates of the partition constants of reactants, here t-butylhydroquinone (TBHQ) between the oil and interfacial region, P(O)(I), and the water and interfacial region, P(W)(I), and of the interfacial rate constant, k(I), for the reaction with an arenediazonium ion in emulsions containing a 1:1 volume ratio of a medium chain length triglyceride, MCT, and aqueous acid or buffer. The results provide: (a) an explanation for the large difference in pH, >4 pH units, required to run the reaction in CTAB (pH 1.54, added HBr) and SDS (pH 5.71, acetate buffer) emulsions; (b) reasonable estimates of PO(I) and k(I) in the CTAB emulsions; (c) a sensible interpretation of added counterion effects based on ion exchange in SDS emulsions (Na(+)/H3O(+) ion exchange in the interfacial region) and Donnan equilibrium in CTAB emulsions (Br(-) increasing the interfacial H3O(+)); and (d) the significance of the effect of the much greater solubility of TBHQ in MCT versus octane, 1000/1, as the oil. These results should aid in interpreting the effects of ionic surfactants on chemical reactivity in emulsions in general and in selecting the most efficient antioxidant for particular food applications.

  10. Enhancing Thai Students' Learning of Chemical Kinetics (United States)

    Chairam, Sanoe; Somsook, Ekasith; Coll, Richard K.


    Chemical kinetics is an extremely important concept for introductory chemistry courses. The literature suggests that instruction in chemical kinetics is often teacher-dominated at both the secondary school and tertiary levels, and this is the case in Thailand--the educational context for this inquiry. The work reported here seeks to shift students…

  11. pyJac: analytical Jacobian generator for chemical kinetics

    CERN Document Server

    Niemeyer, Kyle E; Sung, Chih-Jen


    Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical explosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source ter...

  12. Simulation of chemical kinetics in sodium-concrete interactions

    Institute of Scientific and Technical Information of China (English)


    Sodium-concrete interaction is a key safety-related issue in safety analysis of liquid metal cooled fast breeder reactors (LMFBRs). The chemical kinetics model is a key component of the sodium-concrete interaction model. Conservation equations integrated in sodium-concrete interaction model cannot be solved without a set of relationships that couple the equations together, and this may be done by the chemical kinetics model. Simultaneously,simulation of chemical kinetics is difficult due to complexity of the mechanism of chemical reactions between sodium and concrete. This paper describes the chemical kinetics simulation under some hypotheses. The chemical kinetics model was integrated with the conservation equations to form a computer code. Penetration depth, penetration rate,hydrogen flux, reaction heat, etc. can be provided by this code. Theoretical models and computational procedure were recounted in detail. Good agreements of an overall transient behavior were obtained in a series of sodium-concrete interaction experiment analysis. Comparison between analytical and experimental results showed that the chemical kinetics model presented in this paper was creditable and reasonable for simulating the sodium-concrete interactions.

  13. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T


    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  14. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. (United States)

    Somers, Kieran P; Simmie, John M; Gillespie, Fiona; Conroy, Christine; Black, Gráinne; Metcalfe, Wayne K; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Dagaut, Philippe; Togbé, Casimir; Yasunaga, Kenji; Fernandes, Ravi X; Lee, Changyoul; Tripathi, Rupali; Curran, Henry J


    The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6-1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored

  15. CHEMSIMUL: A simulator for chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kirkegaard, P.; Bjergbakke, E


    CHEMSIMUL is a computer program system for numerical simulation of chemical reaction systems. It can be used for modeling complex kinetics in many contexts, in particular radiolytic processes. It contains a translator module and a module for solving the resulting coupled nonlinear ordinary differential equations. An overview of the program system is given, and its use is illustrated by examples. A number of special features are described, in particular a method for verifying the mass balance. Moreover, the document contains a complete User`s Guide for running CHEMSIMUL on a PC or another computer. Finally, the mathematical implementation is discussed. (au) 2 tabs., 2 ills.; 20 refs.

  16. The modelling of time-dependant deformation in wood using chemical kinetics

    NARCIS (Netherlands)

    Bonfield, P.W.; Mundy, J.; Robson, D.J.; Dinwoodie, J.M.


    The development of rheological models to predict creep has led to the derivation of quite complex equations that can predict creep reasonably accurately. However, these models are conceptual and are not based on a fundamental under-standing of the actual deformation processes occurring within the ma

  17. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties (United States)

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.


    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  18. Hybrid Approach for Modeling Chemical Kinetics and Turbulence Effects on Combustion-Instability Project (United States)

    National Aeronautics and Space Administration — Combustion instabilities pose a significant technical risk in the development of liquid and solid rocket motors. Much of the effort in modeling combustion...

  19. Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas

    Directory of Open Access Journals (Sweden)

    Hamdi Mohamed


    Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.


    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A


    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  1. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. Y.; Kang, S. K.; Lee, H. Wk. [Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, H. W. [Medipl Corporation, Pohang 790-834 (Korea, Republic of); Kim, G. C. [Medipl Corporation, Pohang 790-834 (Korea, Republic of); Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Pusan 602-739 (Korea, Republic of); Lee, J. K. [Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Medipl Corporation, Pohang 790-834 (Korea, Republic of)


    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He{sup +} and He(2{sup 1}S) radicals. Second, O{sub 3} density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O{sub 3} that causes chest pain and damages lung tissue when the density is very high. H{sub 2}O{sub 2}, HO{sub 2}, and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  2. Research in Chemical Kinetics, v.3

    CERN Document Server


    This series of volumes aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the contributions and their top

  3. Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Kinetic Models for Combustion Simulation of HCCI Engines (United States)

    Kim, Sang-Kyu; Ito, Kazuma; Yoshihara, Daisuke; Wakisaka, Tomoyuki

    For numerically predicting the combustion processes in homogeneous charge compression ignition (HCCI) engines, practical chemical kinetic models have been explored. A genetic algorithm (GA) has been applied to the optimization of the rate constants in detailed chemical kinetic models, and a detailed kinetic model (592 reactions) for gasoline reference fuels with arbitrary octane number between 60 and 100 has been obtained from the detailed reaction schemes for iso-octane and n-heptane proposed by Golovitchev. The ignition timing in a gasoline HCCI engine has been predicted reasonably well by zero-dimensional simulation using the CHEMKIN code with this detailed kinetic model. An original reduced reaction scheme (45 reactions) for dimethyl ether (DME) has been derived from Curran’s detailed scheme, and the combustion process in a DME HCCI engine has been predicted reasonably well in a practical computation time by three-dimensional simulation using the authors’ GTT code, which has been linked to the CHEMKIN subroutines with the proposed reaction scheme and also has adopted a modified eddy dissipation combustion model.

  4. Chemical, physical, and theoretical kinetics of an ultrafast folding protein. (United States)

    Kubelka, Jan; Henry, Eric R; Cellmer, Troy; Hofrichter, James; Eaton, William A


    An extensive set of equilibrium and kinetic data is presented and analyzed for an ultrafast folding protein--the villin subdomain. The equilibrium data consist of the excess heat capacity, tryptophan fluorescence quantum yield, and natural circular-dichroism spectrum as a function of temperature, and the kinetic data consist of time courses of the quantum yield from nanosecond-laser temperature-jump experiments. The data are well fit with three kinds of models--a three-state chemical-kinetics model, a physical-kinetics model, and an Ising-like theoretical model that considers 10(5) possible conformations (microstates). In both the physical-kinetics and theoretical models, folding is described as diffusion on a one-dimensional free-energy surface. In the physical-kinetics model the reaction coordinate is unspecified, whereas in the theoretical model, order parameters, either the fraction of native contacts or the number of native residues, are used as reaction coordinates. The validity of these two reaction coordinates is demonstrated from calculation of the splitting probability from the rate matrix of the master equation for all 10(5) microstates. The analysis of the data on site-directed mutants using the chemical-kinetics model provides information on the structure of the transition-state ensemble; the physical-kinetics model allows an estimate of the height of the free-energy barrier separating the folded and unfolded states; and the theoretical model provides a detailed picture of the free-energy surface and a residue-by-residue description of the evolution of the folded structure, yet contains many fewer adjustable parameters than either the chemical- or physical-kinetics models.

  5. S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus (United States)

    Krasnopolsky, Vladimir A.


    Mixing ratios of S3 and S4 are obtained from reanalysis of the spectra of true absorption in the visible range retrieved by Maiorov et al. (Maiorov, B.S. et al. [2005]. Solar Syst. Res. 39, 267-282) from the Venera 11 observations. These mixing ratios are fS3 = 11 ± 3 ppt at 3-10 km and 18 ± 3 ppt at 10-19 km, fS4 = 4 ± 4 ppt at 3-10 km and 6 ± 2 ppt at 10-19 km, and show a steep decrease in both S3 and S4 above 19 km. Photolysis rates of S3 and S4 at various altitudes are calculated using the Venera 11 spectra and constant photolysis yields as free parameters. The chemical kinetic model for the Venus lower atmosphere (Krasnopolsky, V.A. [2007]. Icarus 191, 25-37) has been improved by inclusion of the S4 cycle from Yung et al. (Yung, Y.L. et al. [2009]. J. Geophys. Res. 114, E00B34), reduction of the H2SO4 and CO fluxes at the upper boundary of 47 km by a factor of 4 in accord with the recent photochemical models for the middle atmosphere, by using a closed lower boundary for OCS instead of a free parameter for this species at the surface, and some minor updates. Our model with the S4 cycle but without the SO3 + 2 OCS reaction suggested by Krasnopolsky and Pollack (Krasnopolsky, V.A., Pollack, J.B. [1994]. Icarus 109, 58-78) disagrees with the observations of OCS, CO, S3, and S4. However, inclusion of the S4 cycle improves the model fit to all observational constraints. The best-fit activation energy of 7800 K for thermolysis of S4 supports the S4 enthalpy from Mills (Mills, K.C. [1974]. Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides. Butterworths, London). Chemistry of the Venus lower atmosphere is initiated by disequilibrium products H2SO4 and CO from the middle atmosphere, photolysis of S3 and S4, and thermochemistry in the lowest scale height. The chemistry is mostly driven by sulfur that is formed in a slow reaction SO + SO, produces OCS, and results in dramatic changes in abundances of OCS, CO, and free sulfur allotropes. The SX + OCS

  6. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N


    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  7. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material. (United States)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.


    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  8. Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling. (United States)

    Wu, Zeng-Qiang; Du, Wen-Bin; Li, Jin-Yi; Xia, Xing-Hua; Fang, Qun


    Numerical simulation can provide valuable insights for complex microfluidic phenomena coupling mixing and diffusion processes. Herein, a novel finite element model (FEM) has been established to extract chemical reaction kinetics in a microfluidic flow injection analysis (micro-FIA) system using high throughput sample introduction. To reduce the computation burden, the finite element mesh generation is performed with different scales based on the different geometric sizes of micro-FIA. In order to study the contribution of chemical reaction kinetics under non-equilibrium condition, a pseudo-first-order chemical kinetics equation is adopted in the numerical simulations. The effect of reactants diffusion on reaction products is evaluated, and the results demonstrate that the Taylor dispersion plays a determining role in the micro-FIA system. In addition, the effects of flow velocity and injection volume on the reaction product are also simulated. The simulated results agree well with the ones from experiments. Although gravity driven flow is used to the numerical model in the present study, the FEM model also can be applied into the systems with other driving forces such as pressure. Therefore, the established FEM model will facilitate the understanding of reaction mechanism in micro-FIA systems and help us to optimize the manifold of micro-FIA systems.

  9. Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modelling of biodiesel fuels

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Ho, Jee Hou


    In this reported work, a generic reduced biodiesel chemical kinetic mechanism, with components of methyl decanoate (C11H22O2, MD), methyl-9-decenoate (C11H20O2, MD9D) and n-heptane (C7H16) was built to represent the methyl esters of coconut, palm, rapeseed and soybean. The reduced biodiesel...... and detailed mechanism predictions, for each zero-dimensional (0D) auto-ignition and extinction process using CHEMKIN-PRO. Maximum percentage errors of less than 40.0% were recorded when the predicted ignition delay (ID) periods for coconut, palm, rapeseed and soybean methyl esters were compared to those...

  10. Supporting interpretation of dynamic simulation. Application to chemical kinetic models; Aides a l`interpretation de simulations dynamiques. Application aux modeles de cinetique chimique

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, B.


    Numerous scientific and technical domains make constant use of dynamical simulations. Such simulators are put in the hands of a growing number of users. This phenomenon is due both to the extraordinary increase in computing performance, and to better graphical user interfaces which make simulation models easy to operate. But simulators are still computer programs which produce series of numbers from other series of numbers, even if they are displayed graphically. This thesis presents new interaction paradigms between a dynamical simulator and its user. The simulator produces a self-made interpretation of its results, thanks to a dedicated representation of its domain with objects. It shows dominant cyclic mechanisms identified by their instantaneous loop gain estimates, it uses a notion of episodes for splitting the simulation into homogeneous time intervals, and completes this by animations which rely on the graphical structure of the system. These new approaches are demonstrated with examples from chemical kinetics, because of the energic and exemplary characteristics of the encountered behaviors. They are implemented in the Spike software, Software Platform for Interactive Chemical Kinetics Experiments. Similar concepts are also shown in two other domains: interpretation of seismic wave propagation, and simulation of large projects. (author) 95 refs.

  11. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP: linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa


    Full Text Available We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007, and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds.

    In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the

  12. Oxidative desulfurization: kinetic modelling. (United States)

    Dhir, S; Uppaluri, R; Purkait, M K


    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  13. Inflation Rates, Car Devaluation, and Chemical Kinetics (United States)

    Pogliani, Lionello; Berberan-Santos, Màrio N.


    The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions. In fact, capital devaluation during periods of rather low inflation rates or inflation measured over short periods shows a dynamics formally similar to that followed by first-order chemical reactions and they can thus be treated by the aid of the same mathematical formalism. Deviations from this similarity occurs for higher inflation rates. The dynamics of price devaluation for two different types of car, a compact car and a luxury car, has been followed for seven years long and it has been established that car devaluation is a process that is formally similar to a zeroth-order chemical kinetic process disregarding the type of car, if car devaluation is much faster than money devaluation. In fact, expensive cars devaluate with a faster rate than inexpensive cars.

  14. Kinetic Modeling of Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Petzold, Linda; Pettigrew, Michel F.


    The dynamics of how its constituent components interact define the spatio-temporal response of a natural system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided.

  15. Chemical Dosing and First-Order Kinetics (United States)

    Hladky, Paul W.


    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  16. Perspective: Stochastic algorithms for chemical kinetics (United States)

    Gillespie, Daniel T.; Hellander, Andreas; Petzold, Linda R.


    We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.

  17. Perspective: Stochastic algorithms for chemical kinetics. (United States)

    Gillespie, Daniel T; Hellander, Andreas; Petzold, Linda R


    We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.

  18. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)


    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  19. A kinetic model for predicting biodegradation. (United States)

    Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O


    Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.

  20. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP: linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Directory of Open Access Journals (Sweden)

    M. Shiraiwa


    Full Text Available We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007, and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds.

    In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at ~270 K is close to unity (Winkler et al., 2006. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative

  1. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry


    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)


    Bittker, D. A.


    which provides the relationships between the predictions of a kinetics model and the input parameters of the problem. LSENS provides for efficient and accurate chemical kinetics computations and includes sensitivity analysis for a variety of problems, including nonisothermal conditions. LSENS replaces the previous NASA general chemical kinetics codes GCKP and GCKP84. LSENS is designed for flexibility, convenience and computational efficiency. A variety of chemical reaction models can be considered. The models include static system, steady one-dimensional inviscid flow, reaction behind an incident shock wave including boundary layer correction, and the perfectly stirred (highly backmixed) reactor. In addition, computations of equilibrium properties can be performed for the following assigned states, enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static problems LSENS computes sensitivity coefficients with respect to the initial values of the dependent variables and/or the three rates coefficient parameters of each chemical reaction. To integrate the ODEs describing chemical kinetics problems, LSENS uses the packaged code LSODE, the Livermore Solver for Ordinary Differential Equations, because it has been shown to be the most efficient and accurate code for solving such problems. The sensitivity analysis computations use the decoupled direct method, as implemented by Dunker and modified by Radhakrishnan. This method has shown greater efficiency and stability with equal or better accuracy than other methods of sensitivity analysis. LSENS is written in FORTRAN 77 with the exception of the NAMELIST extensions used for input. While this makes the code fairly machine independent, execution times on IBM PC compatibles would be unacceptable to most users. LSENS has been successfully implemented on a Sun4 running SunOS and a DEC VAX running VMS. With minor modifications, it should also be easily implemented on other

  3. Modelling Chemical Kinetics of Soybean Oil Transesterification Process for Biodiesel Production: An Analysis of Molar Ratio between Alcohol and Soybean Oil Temperature Changes on the Process Conversion Rate

    Directory of Open Access Journals (Sweden)

    Maicon Tait


    Full Text Available A mathematical model describing chemical kinetics of transesterification of soybean oil for biodiesel production has been developed. The model is based on the reverse mechanism of transesterification reactions and describes dynamics concentration changes of triglycerides, diglycerides, monoglycerides, biodiesel, and glycerol production. Reaction rate constants were written in the Arrhenius form. An analysis of key process variables such as temperature and molar ratio soybean oil- alcohol using response surface analysis was performed to achieve the maximum soybean conversion rate to biodiesel. The predictive power of the developed model was checked for the very wide range of operational conditions and parameters values by fitting different experimental results for homogeneous catalytic and non-catalytic processes published in the literature. A very good correlation between model simulations and experimental data was observed.

  4. Decomposition Mechanisms and Kinetics of Novel Energetic Molecules BNFF-1 and ANFF-1: Quantum-Chemical Modeling

    Directory of Open Access Journals (Sweden)

    Maija M. Kuklja


    Full Text Available Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (BNFF-1, and 3-(4-amino-1,2,5-oxadiazol-3-yl-4-(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (ANFF-1 were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO2 homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  5. Kinetic modelling of hydro-treatment reactions by study of different chemical groups; Modelisation cinetique des reactions d`hydrotraitement par regroupement en familles chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardot, J.


    Hydro-treatment of petroleum shortcuts permits elimination of unwanted components in order to increase combustion in engine and to decrease atmospheric pollution. Hydro-desulfurization (HDS), Hydro-denitrogenation (HDN) and Hydrogenation of aromatics (HDA) of a LCO (Light Cycle Oil)-Type gas oil have been studied using a new pilot at a fixed temperature with a NiMo/Al{sub 2}O{sub 3} catalyst. A hydrodynamic study showed that reactions occurring in the up-flow fixed bed reactor that has been used during the experiments, were governed exclusively by chemical reaction rates and not by diffusion. Through detailed chemical analysis, height chemical groups have been considered: three aromatics groups, one sulfided group, one nitrogenized and NH{sub 3}, H{sub 2}S, H{sub 2}. Two Langmuir-Hinshelwood-type kinetic models with either one or two types of sites have been established. The model with two types of site - one site of hydrogenation and one site of hydrogenolysis - showed a better fit in the modeling of the experimental results. This model enables to forecast the influence of partial pressure of H{sub 2}S and partial pressure of H{sub 2} on hydro-treatment reactions of a LCO-type gas oil. (author) 119 refs.

  6. A fundamental research on combustion chemical kinetic model’s precision property

    Institute of Scientific and Technical Information of China (English)


    Uncertainty analysis was used to investigate the precision property of detailed chemical kinetic models.A general-purpose algorithm for assessing and evaluating the impact of uncertainties in chemical kinetic models is presented.The method was also validated through analysis of different kinetic mechanisms applied in the process of modeling NOx emission in methane flame. The algorithm,which provided a basis for further studies,was more efficient and general compared with other methods.

  7. Study on the chemical reaction kinetics of detonation models%详细化学反应模型中温度修正项特性研究

    Institute of Scientific and Technical Information of China (English)

    刘云峰; 姜宗林


    本研究主要讨论了爆轰过程中混合气体比热比的变化、详细化学反应模型中温度修正项的函数表达形式、以及活化能对化学反应动力学特性的影响.通过对传统Arrhenius定律的分析完善,提出了具有温度指数修正的总包一步爆轰计算模型.采用几个常用的爆轰计算模型,对满足化学当量比的H2/Air混合气体,开展了爆轰特性的数值模拟对比研究.计算结果表明,新提出的爆轰计算模型能够得到的胞格尺度与实验值符合良好,首次实现了爆轰波胞格尺度的定量数值模拟.论文进一步建立了总包反应模型与详细化学反应模型之间的关系,讨论了详细化学反应模型中温度修正项的物理意义.%In this paper, the influences of specific heat ratio, the modification term in the detailed reaction kinetics, and the activation energy on the properties of chemical reaction kinetics of detonation models are studied. The results first demonstrate that the temperature power function to modify the chemical reaction rates of detailed chemical reaction kinetics should be replaced by a temperature exponential function, which is produced by the variation of specific heat ratio during the reaction process, physically. A new overall one-step detonation model with variable specific ratio and gas constant is proposed to improve the property of Arrhenius law. Two dimensional numerical simulations with this new model are conducted, and the detonation cell sizes are in agreement with experimental results quantitatively.

  8. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)


    The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

  9. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation. (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J


    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  10. A Skeletal, Gas Phase, Finite Rate, Chemical Kinetics Mechanism for Modeling the Deflagration of Ammonium Perchlorate - Hydroxyl-Terminated Polybutadiene Composite Propellants (United States)


    expressions that sensitivity analyses indicated were important. Addressing this issue through the application of computational - chemistry -based methods...Lin MC. Computational studies on the kinetics and mechanisms for NH3 reactions with ClOx (x = 0 - 4) radicals. Journal of Physical Chemistry A...ABSTRACT A (full) detailed, gas-phase, finite-rate chemical kinetics mechanism for representing the combustion- chemistry -associated ammonium

  11. Kinetic modeling of reactions in Foods

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.


    The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to effec

  12. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario


    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  13. Optimization of KINETICS Chemical Computation Code (United States)

    Donastorg, Cristina


    NASA JPL has been creating a code in FORTRAN called KINETICS to model the chemistry of planetary atmospheres. Recently there has been an effort to introduce Message Passing Interface (MPI) into the code so as to cut down the run time of the program. There has been some implementation of MPI into KINETICS; however, the code could still be more efficient than it currently is. One way to increase efficiency is to send only certain variables to all the processes when an MPI subroutine is called and to gather only certain variables when the subroutine is finished. Therefore, all the variables that are used in three of the main subroutines needed to be investigated. Because of the sheer amount of code that there is to comb through this task was given as a ten-week project. I have been able to create flowcharts outlining the subroutines, common blocks, and functions used within the three main subroutines. From these flowcharts I created tables outlining the variables used in each block and important information about each. All this information will be used to determine how to run MPI in KINETICS in the most efficient way possible.

  14. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)


    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  15. Onsager reciprocity principle for kinetic models and kinetic schemes

    CERN Document Server

    Mahendra, Ajit Kumar


    Boltzmann equation requires some alternative simpler kinetic model like BGK to replace the collision term. Such a kinetic model which replaces the Boltzmann collision integral should preserve the basic properties and characteristics of the Boltzmann equation and comply with the requirements of non equilibrium thermodynamics. Most of the research in development of kinetic theory based methods have focused more on entropy conditions, stability and ignored the crucial aspect of non equilibrium thermodynamics. The paper presents a new kinetic model formulated based on the principles of non equilibrium thermodynamics. The new kinetic model yields correct transport coefficients and satisfies Onsager's reciprocity relationship. The present work also describes a novel kinetic particle method and gas kinetic scheme based on this linkage of non-equilibrium thermodynamics and kinetic theory. The work also presents derivation of kinetic theory based wall boundary condition which complies with the principles of non-equili...

  16. New Chemical Kinetics Approach for DSMC Applications to Nonequilibrium Flows Project (United States)

    National Aeronautics and Space Administration — A new chemical kinetics model and database will be developed for aerothermodynamic analyses on entry vehicles. Unique features of this model include (1) the ability...

  17. Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

    Directory of Open Access Journals (Sweden)

    Xue Zhang


    Full Text Available As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs and polychlorinated biphenyls (PCBs are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD. Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.

  18. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Herbinet, O; Pitz, W J; Westbrook, C K


    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  19. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Herbinet, O; Pitz, W J; Westbrook, C K


    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  20. Kinetics Modeling of Cancer Immunology. (United States)


    CANCER IMMUNOLOGY -1 DTICS ELECTED SEP 9 8 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND V ,1986 %,e docment ha le approved for public A." I and sale...1986 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED KINETICS MODELING OF CANCER IMMUNOLOGY Final: 1985/1986 6. PERFORMING ORG. REPORT...137 (1986) "Kinetics Modeling of Cancer Immunology " A Trident Scholar Project Report by Midn I/C Scott Helmers, Class of 1986 United States Naval

  1. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling. (United States)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen


    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (Xmax), biodegradation constant of DEHP (k), half-life (t1/2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L). The greatest μ and the largest Xmax occurred in media supplemented with 1000mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000mg/L) within 60h of growth. The k and t1/2 were 0.024h(-1) and 28h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC-MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP.

  2. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics. (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V


    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  3. Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory

    CERN Document Server

    Ge, Hao


    From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...

  4. Crystallization Kinetics within a Generic Modelling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist;


    An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....

  5. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.


    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  6. Investigating the chemical mechanisms of the functionalization and fragmentation of hydrocarbons in the heterogeneous oxidation by OH using a stochastic kinetics model (United States)

    Wiegel, A. A.; Wilson, K. R.; Hinsberg, B.; Houle, F. A.


    While the heterogeneous oxidation of atmospheric organic aerosols influences their effects on climate, air quality, and visibility, a more detailed understanding of the chemical mechanisms in heterogeneous oxidation is crucial for improving models of their chemical evolution in the atmosphere. Previous experimental work in our lab has shown two general reaction pathways for organic aerosol upon oxidation: functionalization, which adds additional oxygen functional groups to the carbon skeleton, and fragmentation, which leads to C-C bond scission and lower molecular weight oxidized products. Furthermore, these pathways were also found to be dependent on molecular structure, with more branched or oxidized hydrocarbons undergoing more fragmentation than less branched or oxidized hydrocarbons. However, while the mechanisms of hydrocarbon oxidation have been studied extensively in the gas phase, to what extent the gas phase mechanisms of hydrocarbon oxidation can be reliably applied to heterogeneous or bulk oxidation in aerosol remains unclear. To investigate the role of the condensed phase and molecular structure in the mechanism of heterogeneous organic aerosol oxidation, stochastic kinetics models are developed and compared to measurements of the products in the oxidation of hydrocarbons. Within the aerosol bulk, condensed phase rate coefficients and product branching ratios for peroxy reactions lead to different product distributions than those expected from gas phase peroxy reactions due to the presence of the liquid radical cage at the reaction site. As a result, tertiary alcohols and ketones were found to be the predominate products in the oxidation of squalane as observed in experiments. As the aerosol becomes further oxidized, β-scission of alkoxy radicals with neighboring functional groups is the primary fragmentation pathway leading to lower volatility products. In conjunction with this fragmentation mechanism, elimination of CO2 from acyloxy radicals was

  7. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks (United States)

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.


    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  8. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove;


    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based...

  9. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.


    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  10. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker;


    It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...... mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models...

  11. Accounting for chemical kinetics in field scale transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, N.D. [Manchester Univ. (United Kingdom). Dept. of Chemistry


    The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)

  12. Hungarian University Students' Misunderstandings in Thermodynamics and Chemical Kinetics (United States)

    Turanyi, Tamas; Toth, Zoltan


    The misunderstandings related to thermodynamics (including chemical equilibrium) and chemical kinetics of first and second year Hungarian students of chemistry, environmental science, biology and pharmacy were investigated. We demonstrated that Hungarian university students have similar misunderstandings in physical chemistry to those reported in…

  13. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.


    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch. A


    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  15. The thermodynamic natural path in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    Moishe garfinkle


    Full Text Available The Natural Path approach to chemical reaction kinetics was developed to bridge the considerable gap between the Mass Action mechanistic approach and the non-mechanistic irreversible thermodynamic approach. The Natural Path approach can correlate empirical kinetic data with a high degree precision, as least equal to that achievable by the Mass-Action rate equations, but without recourse mechanistic considerations. The reaction velocities arising from the particular rate equation chosen by kineticists to best represent the kinetic behavior of a chemical reaction are the natural outcome of the Natural Path approach. Moreover, by virtue of its thermodynamic roots, equilibrium thermodynamic functions can be extracted from reaction kinetic data with considerable accuracy. These results support the intrinsic validity of the Natural Path approach.

  16. A Review of Kinetic Modeling Methodologies for Complex Processes

    Directory of Open Access Journals (Sweden)

    de Oliveira Luís P.


    Full Text Available In this paper, kinetic modeling techniques for complex chemical processes are reviewed. After a brief historical overview of chemical kinetics, an overview is given of the theoretical background of kinetic modeling of elementary steps and of multistep reactions. Classic lumping techniques are introduced and analyzed. Two examples of lumped kinetic models (atmospheric gasoil hydrotreating and residue hydroprocessing developed at IFP Energies nouvelles (IFPEN are presented. The largest part of this review describes advanced kinetic modeling strategies, in which the molecular detail is retained, i.e. the reactions are represented between molecules or even subdivided into elementary steps. To be able to retain this molecular level throughout the kinetic model and the reactor simulations, several hurdles have to be cleared first: (i the feedstock needs to be described in terms of molecules, (ii large reaction networks need to be automatically generated, and (iii a large number of rate equations with their rate parameters need to be derived. For these three obstacles, molecular reconstruction techniques, deterministic or stochastic network generation programs, and single-event micro-kinetics and/or linear free energy relationships have been applied at IFPEN, as illustrated by several examples of kinetic models for industrial refining processes.

  17. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)


    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  18. Kinetic models of conjugated metabolic cycles (United States)

    Ershov, Yu. A.


    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  19. Parameter Optimization of Nitriding Process Using Chemical Kinetics (United States)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils


    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  20. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)


    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  1. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H


    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  2. Prospective Chemistry Teachers' Conceptions of Chemical Thermodynamics and Kinetics (United States)

    Sozbilir, Mustafa; Pinarbasi, Tacettin; Canpolat, Nurtac


    This study aimed at identifying specifically prospective chemistry teachers' difficulties in determining the differences between the concepts of chemical thermodynamics and kinetics. Data were collected from 67 prospective chemistry teachers at Kazim Karabekir Education Faculty of Ataturk University in Turkey during 2005-2006 academic year. Data…

  3. Chemical Kinetics at the Single-Molecule Level (United States)

    Levitus, Marcia


    For over a century, chemists have investigated the rates of chemical reactions using experimental conditions involving huge numbers of molecules. As a consequence, the description of the kinetics of the reaction in terms of average values was good enough for all practical purposes. From the pedagogical point of view, such a description misses the…

  4. A model of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.S.; Thompson, B.R.


    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  5. Hybrid framework for the simulation of stochastic chemical kinetics (United States)

    Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos


    Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.

  6. A Rapid Compression Expansion Machine (RCEM) for studying chemical kinetics: Experimental principle and first applications

    CERN Document Server

    Werler, Marc; Maas, Ulrich


    A novel extension of a rapid compression machine (RCM), namely a Rapid Compression Expansion Machine (RCEM), is described and its use for studying chemical kinetics is demonstrated. Like conventional RCMs, the RCEM quickly compresses a fuel/air mixture by pushing a piston into a cylinder; the resulting high temperatures and pressures initiate chemical reactions. In addition, the machine can rapidly expand the compressed gas in a controlled way by pulling the piston outwards again. This freezes chemical activity after a pre-defined reaction duration, and therefore allows a convenient probe sampling and ex-situ gas analysis of stable species. The RCEM therefore is a promising instrument for studying chemical kinetics, including also partially reacted fuel/air mixtures. The setup of the RCEM, its experimental characteristics and its use for studying chemical reactions are outlined in detail. To allow comparisons of RCEM results with predictions of chemical reaction mechanisms, a simple numerical model of the RCE...

  7. Kinetics model for lutate dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.F.; Mesquita, C.H., E-mail:, E-mail: [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  8. Crystallization Kinetics within a Generic Modeling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.


    to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter...

  9. Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Zhenhua Li; Pa Du


    The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.

  10. A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction (United States)

    Lian, Yongsheng; Xu, Kun


    This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.

  11. Kinetic models in industrial biotechnology - Improving cell factory performance. (United States)

    Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats


    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.

  12. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)


    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  13. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés


    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  14. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.


    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  15. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.


    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  16. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. (United States)

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan


    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from

  17. Biomass torrefaction: modeling of volatile and solid product evolution kinetics. (United States)

    Bates, Richard B; Ghoniem, Ahmed F


    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  18. Chemical kinetic mechanism for the oxidation of paraffinic hydrocarbons needed for primary reference fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Pitz, W.J.


    A detailed chemical kinetic reaction mechanism is described which simulates the oxidation of the primary reference fuels n-heptane and iso-octane. The high temperature subset of these mechanisms is identified, and the extensions to deal with low temperature conditions are also explained. The algorithms used to assign reaction rates to elementary steps in the reaction mechanism are described, and the means of identifying the different chemical species and the relevant reactions are outlined. Finally, we show how interested kinetic modeling researchers can obtain copies of this reaction mechanism.

  19. Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin


    The aim of this study is to evaluate the existing chemical kinetic mechanism reduction techniques. From here, an appropriate reduction scheme was developed to create compact yet comprehensive surrogate models for both diesel and biodiesel fuels for diesel engine applications. The reduction techni...

  20. A multipurpose reduced chemical-kinetic mechanism for methanol combustion (United States)

    Fernández-Tarrazo, Eduardo; Sánchez-Sanz, Mario; Sánchez, Antonio L.; Williams, Forman A.


    A multipurpose reduced chemical-kinetic mechanism for methanol combustion comprising 8 overall reactions and 11 reacting chemical species is presented. The development starts by investigating the minimum set of elementary reactions needed to describe methanol combustion with reasonable accuracy over a range of conditions of temperature, pressure, and composition of interest in combustion. Starting from a 27-step mechanism that has been previously tested and found to give accurate predictions of ignition processes for these conditions, it is determined that the addition of 11 elementary reactions taken from its basis (San Diego) mechanism extends the validity of the description to premixed-flame propagation, strain-induced extinction of non-premixed flames, and equilibrium composition and temperatures, giving results that compare favourably with experimental measurements and also with computations using the 247-step detailed San Diego mechanism involving 50 reactive species. Specifically, premixed-flame propagation velocities and extinction strain rates for non-premixed counterflow flames calculated with the 38-step mechanism show departures from experimental measurements and detailed-chemistry computations that are roughly on the order of 10%, comparable with expected experimental uncertainties. Similar accuracy is found in comparisons of autoignition times over the range considered, except at very high temperatures, under which conditions the computations tend to overpredict induction times for all of the chemistry descriptions tested. From this 38-step mechanism, the simplification is continued by introducing steady-state approximations for the intermediate species CH3, CH4, HCO, CH3O, CH2OH, and O, leading to an 8-step reduced mechanism that provides satisfactory accuracy for all conditions tested. The flame computations indicate that thermal diffusion has a negligible influence on methanol combustion in all cases considered and that a mixture-average species

  1. The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, S.; Black, G.; Simmie, J.M.; Curran, H.J. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Chaumeix, N.; Yahyaoui, M. [Institut de Combustion Aerothermique Reactivite et Environnement, CNRS, Orleans (France); Donohue, R. [Information Technology, National University of Ireland, Galway (Ireland)


    Acetone ignition delay and stretch-free laminar flame speed measurements have been carried out and a kinetic model has been developed to simulate these and literature data for acetone and for ketene, which was found to be an important intermediate in its oxidation. The mechanism has been based on one originally devised for dimethyl ether and modified through validation of the hydrogen, carbon monoxide and methane sub-mechanisms. Acetone oxidation in argon was studied behind reflected shock waves in the temperature range 1340-1930 K, at 1 atm and at equivalence ratios of 0.5, 1 and 2; it is also shown that the addition of up to 15% acetone to a stoichiometric n-heptane mixture has no effect on the measured ignition delay times. Flame speeds at 298 K and 1 atm of pure acetone in air were measured in a spherical bomb; a maximum flame speed of {proportional_to}35 cm s{sup -1} at {phi}=1.15 is indicated. (author)

  2. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov


    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  3. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory (United States)

    Ge, Hao; Qian, Hong


    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  4. Modeling chlorine dioxide bleaching of chemical pulp


    Tarvo, Ville


    This doctoral thesis deals with the phenomenon-based modeling of pulp bleaching. Previous bleaching models typically utilize one or two empirical correlations to predict the kinetics in kappa number development. Empirical correlations are simple to develop, but their parameters are often tied to the validation system. A major benefit of physico-chemical phenomenon models is that they are valid regardless of the reaction environment. Furthermore, modeling the bleaching processes at molecular l...

  5. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. (United States)

    Shah, Bhavna; Mistry, Chirag; Shah, Ajay


    Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)-an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer-Emmett-Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.

  6. Chemical kinetics study of hydrocarbon regeneration from organic matter in carbonate source rocks and its significance

    Institute of Scientific and Technical Information of China (English)

    LU ShuangFang; ZHONG NingNing; XUE HaiTao; PAN ChangChun; LI JiJun; LI HongTao


    In the comparison research of hydrocarbon regeneration, a low maturity carbonate source rock is heated to different temperatures in a gold tube to obtain a series of samples with different maturities. Then, the heated samples, before and after extraction, are subjected to Rock-Eval pyrolysis through a thermal simulation of hydrocarbon regeneration in order to inspect pyrolysis characteristics and probe into the characteristics of the chemical kinetics of each sample. The results indicate that, whether hydrocarbon regeneration peak is delayed or advanced, the potential of hydrocarbon regeneration is closely related to the expulsion amount and breakdown maturity of primary hydrocarbon generation. After extraction, the average activation energy of artificially maturated samples increases with the in creasing maturity, but the chemical kinetic properties of un-extracted samples decrease. The calibrated chemical kinetic models that describe extracted and un-extracted samples are applied to the Bohai Bay and the Songliao Basin, and the results indicate that the combination of the two models can explain some contradictory conclusions previously reported. These results also facilitate the quantitative evaluation of the amount of hydrocarbon regeneration by the chemical kinetic method.

  7. Chemical kinetics study of hydrocarbon regeneration from organic matter in carbonate source rocks and its significance

    Institute of Scientific and Technical Information of China (English)


    In the comparison research of hydrocarbon regeneration, a low maturity carbonate source rock is heated to different temperatures in a gold tube to obtain a series of samples with different maturities. Then, the heated samples, before and after extraction, are subjected to Rock-Eval pyrolysis through a thermal simulation of hydrocarbon regeneration in order to inspect pyrolysis characteristics and probe into the characteristics of the chemical kinetics of each sample. The results indicate that, whether hy- drocarbon regeneration peak is delayed or advanced, the potential of hydrocarbon regeneration is closely related to the expulsion amount and breakdown maturity of primary hydrocarbon generation. After extraction, the average activation energy of artificially maturated samples increases with the in- creasing maturity, but the chemical kinetic properties of un-extracted samples decrease. The calibrated chemical kinetic models that describe extracted and un-extracted samples are applied to the Bohai Bay and the Songliao Basin, and the results indicate that the combination of the two models can explain some contradictory conclusions previously reported. These results also facilitate the quantitative evaluation of the amount of hydrocarbon regeneration by the chemical kinetic method.

  8. An Axisymmetric Numerical Model for Simulating Kinetically-Limited Growth of a Cylindrical Rod in 3D Laser-induced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)


    Laser-induced chemical vapor deposition (LCVD) is an important process for freeform microfabrication of high aspect ratio prototypes. The system consists of a laser beam focused onto a movable substrate in a vacuum chamber.Heat from the laser at or near the focal spot of the beam causes gas in the chamber to react. As a result, solidphase reaction products are deposited on the substrate to form the microstructure. In this paper, we develop a numerical model for simulating growth of an axisymmetric cylindrical rod by pre-specifying the surface temperatures required for growing the rod and then by solving for the laser power that satisfies the pre-specified temperatures.The solution using least squares is obtained by minimizing the sum of square deviations between the pre-specified surface temperatures and the calculated temperatures from the heat equation with a given laser power as a heat source. Model predictions of the laser power over growth time helped in optimizing the growth process. Rods grown based on the predicted laser power from the numerical model were very close to being cylindrical in shape. Ways to further improve the model are being investigated.

  9. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)


    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  10. Kinetic exchange models for social opinion formation

    CERN Document Server

    Lallouache, Mehdi; Chakrabarti, Bikas K


    We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society.

  11. Solutions of the chemical kinetic equations for initially inhomogeneous mixtures. (United States)

    Hilst, G. R.


    Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.

  12. Hard-sphere kinetic models for inert and reactive mixtures (United States)

    Polewczak, Jacek


    I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A *, B *, in which the chemical reactions are of the type A+B\\rightleftharpoons {{A}\\ast}+{{B}\\ast} , with A * and B * being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided.

  13. Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics. (United States)

    Hoy, Robert S; Fredrickson, Glenn H


    Hybrid molecular dynamics/Monte Carlo simulations are used to study melts of unentangled, thermoreversibly associating supramolecular polymers. In this first of a series of papers, we describe and validate a model that is effective in separating the effects of thermodynamics and chemical kinetics on the dynamics and mechanics of these systems, and is extensible to arbitrarily nonequilibrium situations and nonlinear mechanical properties. We examine the model's quiescent (and heterogeneous) dynamics, nonequilibrium chemical dynamics, and mechanical properties. Many of our results may be understood in terms of the crossover from diffusion-limited to kinetically limited sticky bond recombination, which both influences and is influenced by polymer physics, i.e., the connectivity of the parent chains.

  14. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.


    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  15. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen (United States)

    Opila, Elizabeth J.


    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  16. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models. (United States)

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S


    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  17. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics. (United States)

    Otero, Toribio F


    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (Ea), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. Ea, k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  18. Kinetics Modeling of Hypergolic Propellants (United States)


    reaction OH + NO + M −−→ HONO + M as a function of temperature and pressure in the presence of argon, sf6 , and n2 bath gas . Chemical physics, 171(1-2...understand fundamental processes such as gas phase ignition, vaporization and liquid phase chemistry for characterizing ignition. Such understanding will be...critical for future design efforts targeting rapidly repeatable cyclic ignition of these propellants. Three test cases are considered: gas and liquid

  19. Kinetics of diamond-like film growth using filament-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gorsuch, G.; Jin, Y.; Ingle, N.K.; Mountziaris, T.J.; Yu, W.Y.; Petrou, A. [State Univ. of New York, Buffalo, NY (United States)


    A detailed kinetic model of diamond-like film growth from methane diluted in hydrogen using low-pressure, filament-assisted chemical vapor deposition (FACVD) has been developed. The model includes both gas-phase and surface reactions. The surface kinetics include adsorption of CH{sub 3}{center_dot} and H{center_dot}, abstraction reactions by gas phase radicals, desorption, and two pathways for diamond (sp{sup 3}) and graphitic carbon (sp{sup 2}) growth. It is postulated that adsorbed CH{sub 2}{center_dot} species are the major film precursors. The proposed kinetic model was incorporated into a transport model describing flow, heat and mass transfer in stagnation flow FACVD reactors. Diamond-like films were deposited on preceded Si substrates in such a reactor as a pressure of 26 Torr, inlet gas composition ranging from 0.5% to 1.5% methane in hydrogen and substrate temperatures ranging from 600 to 950 C. The best films were obtained at low methane concentrations and substrate temperature of 700 C. The films were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. Observations from their experiments and growth rates, compositions and stable species distributions in the gas phase. It is the first complete model of FACVD that includes gas-phase and surface kinetics coupled with transport phenomena.

  20. Stochastic kinetic models: Dynamic independence, modularity and graphs

    CERN Document Server

    Bowsher, Clive G


    The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition $[A,D,B]$ of the vertices, the graphical separation $A\\perp B|D$ in the undirected KIG has an intuitive chemical interpretation and implies that $A$ is locally independent of $B$ given $A\\cup D$. It is proved that this separation also results in global independence of the internal histories of $A$ and $B$ conditional on a history of the jumps in $D$ which, under conditions we derive, corresponds to the internal history of $D$. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Gra...

  1. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics

    CERN Document Server

    van der Schaft, Arjan; Jayawardhana, Bayu


    Motivated by recent progress on the interplay between graph theory, dynamics, and systems theory, we revisit the analysis of chemical reaction networks described by mass action kinetics. For reaction networks possessing a thermodynamic equilibrium we derive a compact formulation exhibiting at the same time the structure of the complex graph and the stoichiometry of the network, and which admits a direct thermodynamical interpretation. This formulation allows us to easily characterize the set of equilibria and their stability properties. Furthermore, we develop a framework for interconnection of chemical reaction networks. Finally we discuss how the established framework leads to a new approach for model reduction.

  2. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H.D.


    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  3. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H.D.


    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  4. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong


    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  5. KINETICS: A computer program to analyze chemical reaction data. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.L.; Burnham, A.K.


    KINETICS (Version 3.2) is a copyrighted, user-friendly kinetics analysis computer program designed for reactions such-as kerogen or polymer decomposition. It can fit rate parameters to chemical reaction data (rate or cumulative reacted) measured at a series of constant temperatures, constant heating rates, or arbitrary thermal histories. The program uses two models with conversion-dependent Azrhenius parameters and two models with activation energy distributions. The discrete distribution model fits an average frequency factor and relative fractions and activation energies for up to 25 parallel, fast-order reactions. The Gaussian distribution model fits a frequency factor, activation energy, Gaussian distribution parameter, and reaction order for up to 3 parallel reactions. For both distribution models, if the experiments are at a series of constant heating rates, the program uses a very fast approximate fitting procedure to determine possible initial parameter-estimates for the subsequent nonlinear regression analysis. This increases the probability that the regression analysis will properly. converge with a minimum of computer time. Once convergence is reached by the discrete model, the parameter space is further systematically searched to achieve global convergence. With the Gaussian model, the calculated rates or integrals can be convoluted with an experimental tracer signal during the nonlinear regression to account for dispersion effects often found in real chemical reaction data. KINETICS can also be used in an application mode to calculate reaction rates and integrals for previously determined Gaussian or discrete, parameters, using an arbitrary thermal history. Four additional models have been incorporated for the kinetics analysis of polymers and other materials, including some kerogens, which have a reaction-rate profile that is narrower than that for a single first-order reaction.

  6. Accelerating finite-rate chemical kinetics with coprocessors: comparing vectorization methods on GPUs, MICs, and CPUs

    CERN Document Server

    Stone, Christopher P


    Efficient ordinary differential equation solvers for chemical kinetics must take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and nonstiff Runge-Kutta solver are implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms with OpenCL. The performances of these parallel implementations were measured with three chemical kinetic models across several multicore and many-core platforms. Two runtime benchmarks were conducted to clearly determine any performance advantage offered by either method: evaluating the right-hand-side source terms in parallel, and integrating a series of constant-pressure homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three ti...

  7. An open-source chemical kinetics network: VULCAN (United States)

    Tsai, Shang-Min; Lyons, James; Heng, Kevin


    I will present VULCAN, an open-source 1D chemical kinetics code suited for the temperature and pressure range relevant to observable exoplanet atmospheres. The chemical network is based on a set of reduced rate coefficients for C-H-O systems. Most of the rate coefficients are based on the NIST online database, and validated by comparing withthermodynamic equilibrium codes (TEA, STANJAN). The difference between the experimental rates and those from the thermodynamical data is carefully examined and discussed. For the numerical method, a simple, quick, semi-implicit Euler integrator is adopted to solve the stiff chemical reactions, within an operator-splitting scheme for computational efficiency.Several test runs of VULCAN are shown in a hierarchical way: pure H, H+O, H+O+C, including controlled experiments performed with a simple analytical temperature-pressure profiles, so that different parameters, such as the stellar irradiation, atmospheric opacities and albedo can be individually explored to understand how these properties affect the temperaturestructure and hence the chemical abundances. I will also revisit the "transport-induced-quenching” effects, and discuss the limitation of this approximation and its impact on observations. Finally, I will discuss the effects of C/O ratio and compare with published work in the literature.VULCAN is written in Python and is part of the publicly-available set of community tools we call the Exoclimes Simulation Platform (ESP; I am a Ph.D student of Kevin Heng at the University of Bern, Switzerland.

  8. Kinetic models with randomly perturbed binary collisions

    CERN Document Server

    Bassetti, Federico; Toscani, Giuseppe


    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases.

  9. Chemical Kinetics in Support of Syngas Turbine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, Frederick


    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We

  10. Kinetic and hydrodynamic models of chemotactic aggregation

    CERN Document Server

    Chavanis, Pierre-Henri


    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  11. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C


    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  12. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter


    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... have been compared to the experimental results of de Wilde and van Tiggelen (1968) who measured the laminar burning velocities for HOCHO flames over a range of stoichiometries and dilution ratios. The modeling predictions are generally satisfactory. The governing reaction mechanisms are outlined based...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  13. Gaussian kinetic model for granular gases. (United States)

    Dufty, James W; Baskaran, Aparna; Zogaib, Lorena


    A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.

  14. Methods of nonlinear kinetics


    Gorban, A. N.; Karlin, I.V.


    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  15. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics (United States)

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf


    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  16. A Review of Research on the Teaching and Learning of Chemical Kinetics (United States)

    Bain, Kinsey; Towns, Marcy H.


    We review literature on the teaching and learning of chemical kinetics at both the secondary and tertiary levels. Our aim in doing so is to summarize research literature, synthesize recommendations for future research, and suggest implications for practitioners. Two main bodies of literature emerged from the chemical kinetics education research:…

  17. Identifying Alternative Conceptions of Chemical Kinetics among Secondary School and Undergraduate Students in Turkey (United States)

    Cakmakci, Gultekin


    This study identifies some alternative conceptions of chemical kinetics held by secondary school and undergraduate students (N = 191) in Turkey. Undergraduate students who participated are studying to become chemistry teachers when they graduate. Students' conceptions about chemical kinetics were elicited through a series of written tasks and…

  18. KinChem: A Computational Resource for Teaching and Learning Chemical Kinetics (United States)

    da Silva, Jose´ Nunes, Jr.; Sousa Lima, Mary Anne; Silva Sousa, Eduardo Henrique; Oliveira Alexandre, Francisco Serra; Melo Leite, Antonio Jose´, Jr.


    This paper presents a piece of educational software covering a comprehensive number of topics of chemical kinetics, which is available free of charge in Portuguese and English. The software was developed to support chemistry educators and students in the teaching-learning process of chemical kinetics by using animations, calculations, and…

  19. Kinetics model development of cocoa bean fermentation (United States)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny


    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  20. Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chiarioni, A.; Reverberi, A.P.; Dovi, V.G. [Universita degli Studi di Genova (Italy). Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' ; El-Shaarawi, A.H. [National Water Research Institute, Burlington, Ont. (Canada)


    The main objective of this work is focused on the modelling of a steady-state reactor where an automotive shredder residue (ASR) is subject to pyrolysis. The gas and solid temperature inside the reactor and the relevant density profiles of both phases are simulated for fixed values of the geometry of the apparatus and a lumped kinetic model is adopted to take into account the high heterogeneity of the ASR material. The key elements for the simulation are the inlet solid temperature and the outlet gas temperature. The problem is modelled by a system of first-order boundary-value ordinary differential equations and it is solved by means of a relaxation technique owing to the nonlinearities contained in the chemical kinetic expression. (author)

  1. Computational model for Halorhodopsin photocurrent kinetics (United States)

    Bravo, Jaime; Stefanescu, Roxana; Talathi, Sachin


    Optogenetics is a rapidly developing novel optical stimulation technique that employs light activated ion channels to excite (using channelrhodopsin (ChR)) or suppress (using halorhodopsin (HR)) impulse activity in neurons with high temporal and spatial resolution. This technique holds enormous potential to externally control activity states in neuronal networks. The channel kinetics of ChR and HR are well understood and amenable for mathematical modeling. Significant progress has been made in recent years to develop models for ChR channel kinetics. To date however, there is no model to mimic photocurrents produced by HR. Here, we report the first model developed for HR photocurrents based on a four-state model of the HR photocurrent kinetics. The model provides an excellent fit (root-mean-square error of 3.1862x10-4, to an empirical profile of experimentally measured HR photocurrents. In combination, mathematical models for ChR and HR photocurrents can provide effective means to design test light based control systems to regulate neural activity, which in turn may have implications for the development of novel light based stimulation paradigms for brain disease control. I would like to thank the University of Florida and the Physics Research Experience for Undergraduates (REU) program, funded through NSF DMR-1156737. This research was also supported through start-up funds provided to Dr. Sachin Talathi

  2. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  3. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems (United States)

    Liu, Di


    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples.

  4. Development of a chemical kinetic model for a biosolids fluidized-bed gasifier and the effects of operating parameters on syngas quality. (United States)

    Champion, Wyatt M; Cooper, C David; Mackie, Kevin R; Cairney, Paul


    In an effort to decrease the land disposal of sewage sludge biosolids and to recover energy, gasification has become a viable option for the treatment of waste biosolids. The process of gasification involves the drying and devolatilization and partial oxidation of biosolids, followed closely by the reduction of the organic gases and char in a single vessel. The products of gasification include a gaseous fuel composed largely of N2, H2O, CO2, CO, H2, CH4, and tars, as well as ash and unburned solid carbon. A mathematical model was developed using published devolatilization, oxidation, and reduction reactions, and calibrated using data from three different experimental studies of laboratory-scale fluidized-bed sewage sludge gasifiers reported in the literature. The model predicts syngas production rate, composition, and temperature as functions of the biosolids composition and feed rate, the air input rate, and gasifier bottom temperature. Several data sets from the three independent literature sources were reserved for model validation, with a focus placed on five species of interest (CO, CO2, H2, CH4, and C6H6). The syngas composition predictions from the model compared well with experimental results from the literature. A sensitivity analysis on the most important operating parameters of a gasifier (bed temperature and equivalence ratio) was performed as well, with the results of the analysis offering insight into the operations of a biosolids gasifier.

  5. Chemical Kinetics of the TPS and Base Bleeding During Flight Test (United States)

    Osipov, Viatcheslav; Ponizhovskaya, Ekaterina; Hafiychuck, Halyna; Luchinsky, Dmitry; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.


    The present research deals with thermal degradation of polyurethane foam (PUF) during flight test. Model of thermal decomposition was developed that accounts for polyurethane kinetics parameters extracted from thermogravimetric analyses and radial heat losses to the surrounding environment. The model predicts mass loss of foam, the temperature and kinetic of release of the exhaust gases and char as function of heat and radiation loads. When PUF is heated, urethane bond break into polyol and isocyanate. In the first stage, isocyanate pyrolyses and oxidizes. As a result, the thermo-char and oil droplets (yellow smoke) are released. In the second decomposition stage, pyrolysis and oxidization of liquid polyol occur. Next, the kinetics of chemical compound release and the information about the reactions occurring in the base area are coupled to the CFD simulations of the base flow in a single first stage motor vertically stacked vehicle configuration. The CFD simulations are performed to estimate the contribution of the hot out-gassing, chemical reactions, and char oxidation to the temperature rise of the base flow. The results of simulations are compared with the flight test data.

  6. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model. (United States)

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A


    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations.

  7. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations (United States)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George


    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  8. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H


    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  9. The Mechanism of Surface Chemical Kinetics of Dissolution of Minerals

    Institute of Scientific and Technical Information of China (English)

    谭凯旋; 张哲儒; 等


    This paper deals with the mechanism of dissolution reaction kinetics of minerals in aqueous solution based on the theory of surface chemistry.Surface chemical catalysis would lead to an obvous decrease in active energy of dissolution reaction of minerals.The dissolution rate of minerals is controlled by suface adsorption,surface exchange reaction and desorption,depending on pH of the solution and is directly proportional to δHn0+,When controlled by surface adsorption,i.e.,nθ=1,the dissolution rate will decrease with increasing pH;when controlled by surface exchane reaction,i.e.,nθ=0,the dissolution rate is independent of pH;when controlled by desorption,nθis a positive decimal between 0 and 1 in acidic solution and a negative decimal between-1 and 0 in alkaline solution.Dissolution of many minerals is controlled by surface adsorption and/or surface exchange reactions under acid conditions and by desorption under alkaline conditions.

  10. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled. (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich


    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  11. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson


    particles and coarsening of MX, M23C6 and Laves phase particles. The modelling provided new insight into the long term stability of new steels. Modelling of the detrimental precipitation of Z phase Cr(V,Nb)N is described, which points to new approaches in alloy development for higher temperatures......The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  12. Reduction of chemical reaction models (United States)

    Frenklach, Michael


    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Kinetic model of induced codeposition of Ni-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    ZENG, Yue; MA, Ming; XIAO, Xiao-Ming; LI, Ze-Lin; LIAN, Shi-Xun; ZHOU, Shao-Min


    The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrodeposition. Ihe molybdate (MoO42-) could be firstly electrochemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys.The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1 ( E ) = 1. 23 × 10-9 CNexp( - 0. 198FE/ RT )mol/(dm2. s), k2 (E) = 3.28 × 10-10 CMoexp ( - 0.208FE/RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/RT) mol/(dm2 ·s), where CN and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs, saturated calornel electrode (SCE).The codeposition process could be well simulated by this model.

  14. The chemical shock tube as a tool for studying high-temperature chemical kinetics (United States)

    Brabbs, Theodore A.


    Although the combustion of hydrocarbons is our primary source of energy today, the chemical reactions, or pathway, by which even the simplest hydro-carbon reacts with atmospheric oxygen to form CO2 and water may not always be known. Furthermore, even when the reaction pathway is known, the reaction rates are always under discussion. The shock tube has been an important and unique tool for building a data base of reaction rates important in the combustion of hydrocarbon fuels. The ability of a shock wave to bring the gas sample to reaction conditions rapidly and homogeneously makes shock-tube studies of reaction kinetics extremely attractive. In addition to the control and uniformity of reaction conditions achieved with shock-wave methods, shock compression can produce gas temperatures far in excess of those in conventional reactors. Argon can be heated to well over 10 000 K, and temperatures around 5000 K are easily obtained with conventional shock-tube techniques. Experiments have proven the validity of shock-wave theory; thus, reaction temperatures and pressures can be calculated from a measurement of the incident shock velocity. A description is given of the chemical shock tube and auxiliary equipment and of two examples of kinetic experiments conducted in a shock tube.

  15. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole


    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano\\'s thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attributed to the higher cetane number of palm biodiesel. The fuel spray ignition properties depend on both the physical ignition delay and chemical ignition delay. From the detailed chemical kinetic results it was observed that at the low temperature, high ambient pressure conditions reactivity increased as equivalent ratio

  16. Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation

    Energy Technology Data Exchange (ETDEWEB)

    Akinyami, O C; Dec, J E; Durrett, R P; Flynn, P F; Hunter, G L; Loye, A O; Westbrook, C


    This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.

  17. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor (United States)

    Takizuka, T.


    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  18. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2 (United States)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.


    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.


    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa


    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  20. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio


    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  1. Predicting chemical kinetics with computational chemistry: is QOO&(H)rarr;HOQO important in fuel ignition? (United States)

    Green, William H.; Wijaya, Catherina D.; Yelvington, Paul E.; Sumathi, R.

    An overview of predictive chemical kinetics is presented, with an application to the simulation and design of homogeneous charge compression ignition (HCCI) engines. The engine simulations are sensitive to the details of hydroperoxyalkyl (QOOH) radical chemistry, which are only partially understood, and there is a significant discrepancy between the simulations and experiment that limits the usefulness of the simulations. One possible explanation is that QOOH decomposes by other channels not considered in existing combustion chemistry models. Rate constants for one of these neglected channels, the intramolecular radical attack on the QOOH peroxide linkage to form hydroxyalkoxyl (HOQO) radicals, are predicted using quantum chemistry (CBS-QB3), to test whether or not this proposed channel can explain the observed discrepancies in the engine simulations. Although this channel has a significant rate, the competing attack on the other O atom in the peroxide to form a cyclic ether+OH is computed to be an order of magnitude faster, so the HOQO channel does not appear to be fast enough to explain the discrepancy. Definitive judgement on the importance of this reaction channel will require a careful reconsideration of all the coupled chemically activated QOOH reaction channels using modern predictive chemical kinetics software.

  2. The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters

    CERN Document Server

    Drummond, Benjamin; Baraffe, Isabelle; Amundsen, David S; Mayne, Nathan J; Venot, Olivia; Goyal, Jayesh


    In this work we investigate the impact of calculating non-equilibrium chemical abundances consistently with the temperature structure for the atmospheres of highly-irradiated, close-in gas giant exoplanets. Chemical kinetics models have been widely used in the literature to investigate the chemical compositions of hot Jupiter atmospheres which are expected to be driven away from chemical equilibrium via processes such as vertical mixing and photochemistry. All of these models have so far used pressure--temperature (P-T) profiles as fixed model input. This results in a decoupling of the chemistry from the radiative and thermal properties of the atmosphere, despite the fact that in nature they are intricately linked. We use a one-dimensional radiative-convective equilibrium model, ATMO, which includes a sophisticated chemistry scheme to calculate P-T profiles which are fully consistent with non-equilibrium chemical abundances, including vertical mixing and photochemistry. Our primary conclusion is that, in case...

  3. Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water:Kinetics evaluation☆

    Institute of Scientific and Technical Information of China (English)

    Rajan Mariappan; Raj Vairamuthu; Alagumuthu GanapathY


    Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther-modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemical y activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemical y activated CTNSC is spon-taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models. A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride sorption.

  4. Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans

    NARCIS (Netherlands)

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C


    CONTEXT: No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. OBJECTIVE: Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that c

  5. A kinetic model of plasma turbulence (United States)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.


    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  6. Tuning kinetics to control droplet shapes on chemically stripe patterned surfaces

    NARCIS (Netherlands)

    Jansen, H.P.; Sotthewes, K.; Ganser, C.; Teichert, C.; Zandvliet, H.J.W.; Kooij, E.S.


    The typically elongated shape of droplets on chemically microstriped surfaces has been suggested to depend strongly on the kinetics during deposition. Here, we unequivocally establish the importance of impact kinetics by comparing the geometry of pico- to microliter droplets deposited from an inkjet

  7. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Healy, D.; Curran, H.J. [Combustion Chemistry Centre, School of Chemistry, NUI Galway (Ireland); Donato, N.S.; Aul, C.J.; Petersen, E.L. [Department of Mechanical Engineering, Texas A and M University, College Station, TX (United States); Zinner, C.M. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL (United States); Bourque, G. [Rolls-Royce Canada Limited, 9500 Cote de Liesse, Lachine, Quebec (Canada)


    Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study. (author)

  8. VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres (United States)

    Tsai, Shang-Min; Lyons, James R.; Grosheintz, Luc; Rimmer, Paul B.; Kitzmann, Daniel; Heng, Kevin


    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer & Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; and publicly available at

  9. Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry (Briefing Charts) (United States)

    2015-06-28 Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A...Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...COMBUSTION CHEMISTRY (Briefing Charts) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ghanshyam L

  10. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T


    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  11. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose


    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  12. On Kinetics Modeling of Vibrational Energy Transfer (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)


    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  13. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model

    Institute of Scientific and Technical Information of China (English)

    Haozhong HUANG; Wanhua SU


    The micro-genetic algorithm (μGA) as a highly effective optimization method, is applied to calibrate to a newly developed reduced chemical kinetic model (40 species and 62 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane to improve its autoignition predictions for different engine operating conditions. The seven kinetic parameters of the calibrated model are determined using a combination of the Micro-Genetic Algorithm and the SENKIN program of CHEMKIN chemical kinetics software package. Simulation results show that the autoignition predictions of the calibrated model agree better with those of the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model over the range of equivalence ratios from 0.1-1.3 and temperature from 300-3 000 K. The results of this study have demonstrated that the μGA is an effective tool to facilitate the calibration of a large number of kinetic parameters in a reduced kinetic model.


    Bowsher, Clive G


    The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition [A, D, B] of the vertices, the graphical separation A ⊥ B|D in the undirected KIG has an intuitive chemical interpretation and implies that A is locally independent of B given A ∪ D. It is proved that this separation also results in global independence of the internal histories of A and B conditional on a history of the jumps in D which, under conditions we derive, corresponds to the internal history of D. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Graphical decomposition methods are developed for the identification and efficient computation of nested modularizations. Application to an SKM of the red blood cell advances understanding of this biochemical system.

  15. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)


    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  16. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail:; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail:; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail:


    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  17. Gas phase chemical kinetics at high temperature of carbonaceous molecules: application to circumstellar envelopes (United States)

    Biennier, L.; Gardez, A.; Saidani, G.; Georges, R.; Rowe, B.; Reddy, K. P. J.


    Circumstellar shells of evolved stars are a theater of extremely rich physical and chemical processes. More than seventy molecules of varied nature have been identified in the envelopes through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals and a significant number are unique to the circumstellar medium. However, observational data remain scarce and more than half of the detected species have been observed in only one object, the nearby carbon star IRC + 10216. Chemical kinetic models are needed to describe the formation of molecules in evolved circumstellar outflows. Upcoming terrestrial telescopes such as ALMA will increase the spatial resolution by several orders of magnitude and provide a wealth of data. The determination of relevant laboratory kinetics data is critical to keep up with the development of the observations and of the refinement of chemical models. Today, the majority of reactions studied in the laboratory are the ones involved in combustion and concerning light hydrocarbons. Our objective is to provide the scientific community with rate coefficients of reactions between abundant species in these warm environments. Cyanopolyynes from HC_2N to HC_9N have all been detected in carbon rich circumstellar envelopes in up to 10 sources for HC_3N. Neutral-neutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures. Our approach aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high enthalpy source (Moudens et al. 2011) with a flow tube and a pulsed laser photolysis and laser induced fluorescence system to probe the undergoing chemical reactions. The high enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane, propene

  18. Optimization of chemical reactor feed by simulations based on a kinetic approach. (United States)

    Guinand, Charles; Dabros, Michal; Roduit, Bertrand; Meyer, Thierry; Stoessel, Francis


    Chemical incidents are typically caused by loss of control, resulting in runaway reactions or process deviations in different stages of the production. In the case of fed-batch reactors, the problem generally encountered is the accumulation of heat. This is directly related to the temperature of the process, the reaction kinetics and adiabatic temperature rise, which is the maximum temperature attainable in the event of cooling failure. The main possibility to control the heat accumulation is the use of a well-controlled adapted feed. The feed rate can be adjusted by using reaction and reactor dynamic models coupled to Model Predictive Control. Thereby, it is possible to predict the best feed profile respecting the safety constraints.

  19. The Origin of the RNA World a Kinetic Model

    CERN Document Server

    Wattis, J A D; Wattis, Jonathan A. D.; Coveney, Peter V.


    The aims of this paper are to propose, construct and analyse microscopic kinetic models for the emergence of long chains of RNA from monomeric beta-D-ribonucleotide precursors in prebiotic circumstances. Our theory starts out from similar but more general chemical assumptions to those of Eigen, namely that catalytic replication can lead to a large population of long chains. In particular, our models incorporate the possibility of (i) direct chain growth, (ii) template-assisted synthesis and (iii) catalysis by RNA replicase ribozymes, all with varying degrees of efficiency. However, in our models the reaction mechanisms are kept `open'; we do not assume the existence of closed hypercycles which sustain a population of long chains. Rather it is the feasibility of the initial emergence of a self-sustaining set of RNA chains from monomeric nucleotides which is our prime concern. We confront directly the central nonlinear features of the problem, which have often been overlooked in previous studies. Our detailed m...

  20. The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters (United States)

    Drummond, B.; Tremblin, P.; Baraffe, I.; Amundsen, D. S.; Mayne, N. J.; Venot, O.; Goyal, J.


    In this work we investigate the impact of calculating non-equilibrium chemical abundances consistently with the temperature structure for the atmospheres of highly-irradiated, close-in gas giant exoplanets. Chemical kinetics models have been widely used in the literature to investigate the chemical compositions of hot Jupiter atmospheres which are expected to be driven away from chemical equilibrium via processes such as vertical mixing and photochemistry. All of these models have so far used pressure-temperature (P-T) profiles as fixed model input. This results in a decoupling of the chemistry from the radiative and thermal properties of the atmosphere, despite the fact that in nature they are intricately linked. We use a one-dimensional radiative-convective equilibrium model, ATMO, which includes a sophisticated chemistry scheme to calculate P-T profiles which are fully consistent with non-equilibrium chemical abundances, including vertical mixing and photochemistry. Our primary conclusion is that, in cases of strong chemical disequilibrium, consistent calculations can lead to differences in the P-T profile of up to 100 K compared to the P-T profile derived assuming chemical equilibrium. This temperature change can, in turn, have important consequences for the chemical abundances themselves as well as for the simulated emission spectra. In particular, we find that performing the chemical kinetics calculation consistently can reduce the overall impact of non-equilibrium chemistry on the observable emission spectrum of hot Jupiters. Simulated observations derived from non-consistent models could thus yield the wrong interpretation. We show that this behaviour is due to the non-consistent models violating the energy budget balance of the atmosphere.

  1. Modeling of turbulent chemical reaction (United States)

    Chen, J.-Y.


    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  2. Kinetic model of gas-phase reactions in the chemical vapor deposition of propane%丙烷化学气相沉积均相热解反应动力学模拟

    Institute of Scientific and Technical Information of China (English)

    徐伟; 张中伟; 白瑞成; 李爱军; 王俊山; 孙晋良


    采用均相反应机理来考察丙烷在热解炭化学气相沉积( CVD)条件下的均相热解反应动力学。提出的反应机理包含285种气相组分和1074个基元反应,其中大部分反应可逆。该反应机理结合全混反应器模型和平推流反应器模型分别形成丙烷热解的0维和1维反应动力学模型,计算得到组分浓度随温度和滞留时间的分布函数,并与实验结果比较。结果表明,此反应机理可以复制出主要产物的形成路径,两个反应模型都能准确地预测小分子随温度和滞留时间的分布函数,并能较好地预测大分子随温度和滞留时间的变化趋势。在1248 K和滞留时间为1 s条件下,对丙烷的热解进行反应流速率分析并对重要产物进行灵敏度分析,以确定丙烷热解的主要反应路径和重要的反应步骤。最后,讨论如炔丙基、环戊二烯基和茚基等自由基在稠环芳香烃形成过程中起到的重要作用。%The chemical kinetics of propane pyrolysis in chemical vapor deposition ( CVD) is investigated in 1074 reactions con-sisting of 285 species to understand chemistry of CVD from propane. The reaction mechanism is modeled in a perfectly stirred reac-tor and a continuous tubular reactor, to produce a 0-D and a 1-D propane pyrolysis model, respectively. The concentration profiles of gas-phase products in the axial direction of the reactor as functions of temperature and residence time are computed with the DE-TCHEM software package designed for computing time-dependent homogeneous reactions. Comparison between simulated and ex-perimental results shows that the mechanism gives the formation pathway for all major products and can predict the concentration profiles of minor products. Main reaction paths and crucial reaction steps have been determined at 1248 K for 1s by analyzing the flux of the main products. The significant roles of radicals such as propargyl, cyclopentadienyl and indenyl

  3. Population balance modeling of antibodies aggregation kinetics. (United States)

    Arosio, Paolo; Rima, Simonetta; Lattuada, Marco; Morbidelli, Massimo


    The aggregates morphology and the aggregation kinetics of a model monoclonal antibody under acidic conditions have been investigated. Growth occurs via irreversible cluster-cluster coagulation forming compact, fractal aggregates with fractal dimension of 2.6. We measured the time evolution of the average radius of gyration, , and the average hydrodynamic radius, , by in situ light scattering, and simulated the aggregation kinetics by a modified Smoluchowski's population balance equations. The analysis indicates that aggregation does not occur under diffusive control, and allows quantification of effective intermolecular interactions, expressed in terms of the Fuchs stability ratio (W). In particular, by introducing a dimensionless time weighed on W, the time evolutions of measured under various operating conditions (temperature, pH, type and concentration of salt) collapse on a single master curve. The analysis applies also to data reported in the literature when growth by cluster-cluster coagulation dominates, showing a certain level of generality in the antibodies aggregation behavior. The quantification of the stability ratio gives important physical insights into the process, including the Arrhenius dependence of the aggregation rate constant and the relationship between monomer-monomer and cluster-cluster interactions. Particularly, it is found that the reactivity of non-native monomers is larger than that of non-native aggregates, likely due to the reduction of the number of available hydrophobic patches during aggregation.

  4. Kinetic modelling of coupled transport across biological membranes. (United States)

    Korla, Kalyani; Mitra, Chanchal K


    In this report, we have modelled a secondary active co-transporter (symport and antiport), based on the classical kinetics model. Michaelis-Menten model of enzyme kinetics for a single substrate, single intermediate enzyme catalyzed reaction was proposed more than a hundred years ago. However, no single model for the kinetics of co-transport of molecules across a membrane is available in the literature We have made several simplifying assumptions and have followed the basic Michaelis-Menten approach. The results have been simulated using GNU Octave. The results will be useful in general kinetic simulations and modelling.

  5. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs. (United States)

    Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D


    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  6. Prediction of Combustion Instability with Detailed Chemical Kinetics (United States)


    ABSTRACT Combustion instability in an unstable single element rocket chamber using methane as the fuel is computationally studied. Effects of the...unstable single element rocket chamber using methane as the fuel is computationally studied. Effects of the kinetics mechanism are examined by...coaxial fuel injector using gaseous methane as fuel. The oxidizer post length of the CVRC can be changed during the experiment to obtain different

  7. Leaching Kinetics of Atrazine and Inorganic Chemicals in Tilled and Orchard Soils (United States)

    Szajdak, Lech W.; Lipiec, Jerzy; Siczek, Anna; Nosalewicz, Artur; Majewska, Urszula


    The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.

  8. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  9. Electrothermal Model of Kinetic Inductance Detectors

    CERN Document Server

    Thomas, Christopher N; Goldie, David J


    An electrothermal model of Kinetic Inductance Detectors (KIDs) is described. The non-equilibrium state of the resonator's quasiparticle system is characterized by an effective temperature, which because of readout-power heating is higher than that of the bath. By balancing the flow of energy into the quasiparticle system, it is possible to calculate the steady-state large-signal, small-signal and noise behaviour. Resonance-curve distortion and hysteretic switching appear naturally within the framework. It is shown that an electrothermal feedback process exists, which affects all aspects of behaviour. It is also shown that generation-recombination noise can be interpreted in terms of the thermal fluctuation noise in the effective thermal conductance that links the quasiparticle and phonon systems of the resonator. Because the scheme is based on electrothermal considerations, multiple elements can be added to simulate the behaviour of complex devices, such as resonators on membranes, again taking into account r...

  10. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I


    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  11. Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization (United States)

    Krumm, Christoph

    Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order

  12. Chemical Mechanism Solvers in Air Quality Models

    Directory of Open Access Journals (Sweden)

    John C. Linford


    Full Text Available The solution of chemical kinetics is one of the most computationally intensivetasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,implicit time stepping algorithms which repeatedly solve linear systems of equations arenecessary. This paper reviews the issues and challenges associated with the construction ofefficient chemical solvers, discusses several families of algorithms, presents strategies forincreasing computational efficiency, and gives insight into implementing chemical solverson accelerated computer architectures.

  13. Solvatochromic and Kinetic Response Models in (Ethyl Acetate + Chloroform or Methanol Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    L. R. Vottero


    Full Text Available The present work analyzes the solvent effects upon the solvatochromic response models for a set of chemical probes and the kinetic response models for an aromatic nucleophilic substitution reaction, in binary mixtures in which both pure components are able to form intersolvent complexes by hydrogen bonding.

  14. VULCAN: an Open-Source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres



    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K using a reduced C- H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing ...

  15. A review on solar wind modeling: kinetic and fluid aspects

    CERN Document Server

    Echim, Marius; Lie-Svendsen, Oystein


    We review the main advantages and limitations of the kinetic exospheric and fluid models of the solar wind (SW). We discuss the hydrostatic model imagined by Chapman, the first supersonic hydrodynamic models published by Parker and the first generation subsonic kinetic model proposed by Chamberlain. It is shown that a correct estimation of the electric field as in the second generation kinetic exospheric models developed by Lemaire and Scherer, provides a supersonic expansion of the corona, reconciling the hydrodynamic and the kinetic approach. The third generation kinetic exospheric models considers kappa velocity distribution function (VDF) instead of a Maxwellian at the exobase and in addition they treat a non-monotonic variation of the electric potential with the radial distance; the fourth generation exospheric models include Coulomb collisions based on the Fokker--Planck collision term. Multi-fluid models of the solar wind provide a coarse grained description and reproduce with success the spatio-tempor...

  16. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures. (United States)

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P


    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications.

  17. Kinetic modelling of krypton fluoride laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jancaitis, K.S.


    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  18. Thermoluminescence of zircon: a kinetic model

    CERN Document Server

    Turkin, A A; Vainshtein, D I; Hartog, H W D


    The mineral zircon, ZrSiO sub 4 , belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such a model. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time anneali...

  19. Shear-Driven Reconnection in Kinetic Models (United States)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.


    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  20. Weak Dynamic Non-Emptiability and Persistence of Chemical Kinetics Systems

    CERN Document Server

    Johnston, Matthew D


    A frequently desirable characteristic of chemical kinetics systems is that of persistence, the property that no initially present species may tend toward extinction. It is known that solutions of deterministically modelled mass-action systems may only approach portions of the boundary of the positive orthant which correspond to semi-locking sets (alternatively called siphons). Consequently, most recent work on persistence of these systems has been focused on these sets. In this paper, we focus on a result which states that, for a conservative mass-action system, persistence holds if every critical semi-locking set is dynamically non-emptiable and the system contains no nested locking sets. We will generalize this result by introducing the notion of a weakly dynamically non-emptiable semi-locking set and making novel use of the well-known Farkas' Lemma. We will also connect this result to known results regarding complex balanced systems and systems with facets.

  1. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.


    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  2. VULCAN: an Open-Source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    CERN Document Server

    Tsai, Shang-Min; Grosheintz, Luc; Rimmer, Paul B; Kitzmann, Daniel; Heng, Kevin


    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K using a reduced C- H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer & Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. Further validation of VULCAN is made by examining the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching ap...

  3. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres (United States)

    Rimmer, P. B.; Helling, Ch


    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2, H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  4. Kinetic modeling and sensitivity analysis of plasma-assisted combustion (United States)

    Togai, Kuninori

    Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the

  5. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations (United States)

    Radhakrishnan, K.


    The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.

  6. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    S. R. Kawa


    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO+ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  7. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    M. L. Santee


    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  8. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Vollertsen, Jes; Hvitved-jacobsen, Thorkild


    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... parameters determined in a triplicate experiment. The kinetic parameters determined in 25 experiments on wastewater samples from a single site exhibited good constancy with a variation of the same order of magnitude as the precision of the method. It was found that the stoichiometry of the reaction could...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...

  9. The kinetics of chemical processes affecting acidity in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, J.J.; Helas, G. [Potchefstroom University of Christian Higher Education, Potchefstroom (South Africa). Atmospheric Chemistry Research Group


    The dominant chemical reactions affecting atmospheric pollution chemistry and in particular, those leading to the formation of acid rain are outlined. The factors controlling the oxidation rate of atmospheric pollutants as well as the rate laws describing these processes are discussed in the light of our latest results and the current literature.

  10. Fully implicit kinetic modelling of collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, V.A.


    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.

  11. Modeling the kinetics of carbon coagulation in explosives detonation (United States)

    Ree, F. H.; Viecelli, J. A.; Glosli, J. N.


    A typical insensitive high explosive such as LX-17 has a large carbon content. The detonation behavior of these explosives is affected by a slow coagulation of carbon atoms by diffusion and their possible transformation from one chemical bonding type to another. We have used the Brenner bond order potential to compute the melting line of diamond at high pressure and high temperature by molecular dynamics and Monte Carlo simulations, with the goal to refine the potential for the study of the kinetics of the graphite diamond transition. The slow diffusion-controlled kinetics of carbon clusters has been examined by including a time-dependent surface correction to the Gibbs free energy of these clusters in the nonequilibrium CHEQ code. We also propose a new explosive burn model which incorporates a partial release of the heat of detonation in a fast reaction zone, followed by a diffusion-limited release of the remaining energy. Hydrodynamic applications of the new burn model to LX-17 show that computed expansion and compression results both agree closely with experimental data.

  12. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.


    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  13. Kinetics of Natural Attenuation: Review of the Critical Chemical Conditions and Measurements at Bore Scale

    Directory of Open Access Journals (Sweden)

    O. Atteia


    Full Text Available This paper describes the chemical conditions that should favour the biodegradation of organic pollutants. Thermodynamic considerations help to define the reaction that can occur under defined chemical conditions. The BTEX (benzene, toluene, ethylbenzene, and xylene degradation is focused on benzene, as it is the most toxic oil component and also because it has the slowest degradation rate under most field conditions. Several studies on benzene degradation allow the understanding of the basic degradation mechanisms and their importance in field conditions. The use of models is needed to interpret field data when transport, retardation, and degradation occur. A detailed comparison of two existing models shows that the limits imposed by oxygen transport must be simulated precisely to reach correct plumes shapes and dimensions, and that first-order kinetic approaches may be misleading. This analysis led us to develop a technique to measure directly biodegradation in the field. The technique to recirculate water at the borehole scale and the CO2 analysis are depicted. First results of biodegradation show that this technique is able to easily detect the degradation of 1 mg/l of hydrocarbons and that, in oxic media, a fast degradation rate of mixed fuel is observed.

  14. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows. (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R


    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  15. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T


    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  16. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? (United States)

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui


    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice.

  17. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals. (United States)

    Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong; Mayer, Philipp; Escher, Beate I


    Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol-water partition coefficient (Kow) greater than 10(6) are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECD's screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and Kow. Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log Kow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.

  18. Innovative first order elimination kinetics working model for easy learning

    Directory of Open Access Journals (Sweden)

    Navin Budania


    Conclusions: First order elimination kinetics is easily understood with the help of above working model. More and more working models could be developed for teaching difficult topics. [Int J Basic Clin Pharmacol 2016; 5(3.000: 862-864

  19. Estimation of biological kinetic parameters from an analysis of the BOD curve of waste waters - effects of a chemical preoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Berlan, F.J.; Garcia-Araya, J.F.; Alvarez, P. [Universidad de Extremadura, Badajoz (Spain). Dept. de Ingenieria Quimica y Energetica


    Urban waste waters were treated with pure ozone or combinations of ozone, hydrogen peroxide and/or UV radiation to study the course of resulting BOD (biological oxygen demand)-time profiles and to propose a kinetic model. BOD-time profiles of chemically treated waste waters show an initial lag period that first order kinetic models cannot describe. A second order kinetic model is then proposed that satisfactorily fits experimental BOD-time profiles, except when hydrogen peroxide has been used. In these cases, BOD-time profiles present the highest lag periods observed. By applying this model, three parameters are determined: the biokinetic constant (k) which is an index of the biological removal rate; the potential amount of biodegradable matter (BOD{sub T}), and the measure of the size of inocula and microbial activities of microorganisms ({lambda}). The model was checked with experimental results of BOD-time profiles corresponding to both untreated and chemically ozonated urban waste waters. Ozonated waste waters showed the highest values of k and BOD{sub T}, which implies an improvement of waste water biodegradability after ozonation. However, values of {lambda} corrsponding to ozonated waste waters presented lower values than those of untreated waste waters. This was due to the lag period observed in the BOD-time profile, which was a consequence of a lack of micro-organism acclimation to ozonated waste waters. The effect of the ozone dose, pH and carbonates during oxonation on COD (chemical oxygen demand) and the above indicated parameters was also studies. The results suggest that ozonolysis, the direct molecular ozone way of reaction, due to its selective character, increases the biodegradability of waste water more than other chemically advancec oxidation processes based on hydroxyl radical reactions. (orig./SR)

  20. Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis (United States)

    Pratt, D. T.; Radhakrishnan, K.


    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

  1. Thermal, chemical, and mechanical cookoff modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.


    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show



    Harerimana, Casimir; Vasel, Jean-Luc; Jupsin, Hugues; Ouali, Amira


    The aim of the study was first to develop a simple and practical model of anaerobic digestion including sulphate-reduction in anaerobic ponds. The basic microbiology of our model consists of three steps, namely, acidogenesis, methanogenesis, and sulphate reduction. This model includes multiple reaction stoichiometry and substrate utilization kinetics. The second aim was to determine some kinetic parameters associated with this model. The values of these parameters for sulfidogenic bacteria ar...

  3. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng


    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  4. The Release Behavior and Kinetic Evaluation of Tramadol HCl from Chemically Cross Linked Ter Polymeric Hydrogels

    Directory of Open Access Journals (Sweden)

    Muhammad A Malana


    Full Text Available Background and the purpose of the study: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels.MethodsTer-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol % EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism.Results and major conclusion: Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n>0.5>1 showing swelling controlled mechanism. The mechanical strength and controlled release capability of

  5. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels

    Directory of Open Access Journals (Sweden)

    Malana Muhammad A


    Full Text Available Abstract Background and the purpose of the study Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. Methods Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. Results and major conclusion Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1 showing swelling controlled mechanism. The mechanical strength and controlled

  6. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik


    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  7. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells (United States)

    Hansen, Lee D.; Frank, Harvey


    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  8. Nonlinear Stochastic Dynamics of Complex Systems, I: A Chemical Reaction Kinetic Perspective with Mesoscopic Nonequilibrium Thermodynamics

    CERN Document Server

    Qian, Hong


    We distinguish a mechanical representation of the world in terms of point masses with positions and momenta and the chemical representation of the world in terms of populations of different individuals, each with intrinsic stochasticity, but population wise with statistical rate laws in their syntheses, degradations, spatial diffusion, individual state transitions, and interactions. Such a formal kinetic system in a small volume $V$, like a single cell, can be rigorously treated in terms of a Markov process describing its nonlinear kinetics as well as nonequilibrium thermodynamics at a mesoscopic scale. We introduce notions such as open, driven chemical systems, entropy production, free energy dissipation, etc. Then in the macroscopic limit, we illustrate how two new "laws", in terms of a generalized free energy of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex balance are two special classes of "simple" nonlinear kinetics. Phase transition is intrinsically related to multi-stability...

  9. Kinetic Model of Biodiesel Processing Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Bambang Susilo


    Full Text Available Ultrasound is predicted to be able to accelerate the chemical reaction, to increase the conversion of plant oil into biodiesel, and to decrease the need of catalyst and energy input. The application of ultrasound for processing of biodiesel and the mathematical model were conducted in this research. The result of the experiments showed that the ultrasound increased reaction rate and the conversion of palm oil into biodiesel up to 100%. It was better than the process with mechanical stirrer that the conversion was just 96%. The duration to complete the process using ultrasound was 1 minute. It was 30 to 120 times faster than that with mechanical stirrer. Ultrasound transforms mechanical energy into inner energy of the fluids and causes an increasing of temperature. Simultaneously, natural mixing process undergo because of acoustic circulation. Simulation with experiment data showed that the acceleration of transesterification with ultrasound was affected not only by natural mixing and increasing temperature. The cavitation, surface tension of micro bubble, and hot spot accelerate chemical reaction. In fact, transesterification of palm oil with ultrasound still needs catalyst. It needs only about 20% of catalyst compared to the process with mechanical stirrer.

  10. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics (United States)

    Shengli, Wang; Kangda, Yin; Xiang, Li; Hongwei, Yue; Yunling, Liu


    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics. Different from the international dominant acidic copper slurry, the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions, the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA), by which the problems caused by BTA can be avoided. Through the experiments and theories research, the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory, the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions, the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier. The kinetic energy at the concave position should be lower than the complexation reaction barrier, which is the key to achieve planarization.

  11. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling


    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  12. Investigating High-School Chemical Kinetics: The Greek Chemistry Textbook and Students' Difficulties (United States)

    Gegios, Theodoros; Salta, Katerina; Koinis, Spyros


    In this study we present an analysis of how the structure and content of the Greek school textbook approaches the concepts of chemical kinetics, and an investigation of the difficulties that 11th grade Greek students face regarding these concepts. Based on the structure and content of the Greek textbook, a tool was developed and applied to…

  13. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song


    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. N...

  14. Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin


    This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a re...

  15. Variable elimination in chemical reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.


    We consider chemical reaction networks taken with mass-action kinetics. The steady states of such a system are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop an algebraic framework and procedure for linear elimination...

  16. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der


    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  17. The Teaching and Learning of Chemical Kinetics Supported with MS Excel (United States)

    Zain, Sharifuddin Md; Rahman, Noorsaadah Abdul; Chin, Lee Sui


    Students in 12 secondary schools in three states of Malaysia were taught to use worksheets on the chemical kinetics topic which had been pre-created using the MS Excel worksheets. After the teaching, an opinion survey of 612 Form Six students from these schools was conducted. The results showed that almost all the students felt that MS Excel…

  18. Designing and Evaluating an Evidence-Informed Instruction in Chemical Kinetics (United States)

    Cakmakci, Gultekin; Aydogdu, Cemil


    We have investigated the effects of a teaching intervention based on evidence from educational theories and research data, on students' ideas in chemical kinetics. A quasi-experimental design was used to compare the outcomes for the intervention. The subjects of the study were 83 university first-year students, who were in two different classes in…

  19. Cooperative Learning Instruction for Conceptual Change in the Concepts of Chemical Kinetics (United States)

    Kirik, Ozgecan Tastan; Boz, Yezdan


    Learning is a social event and so the students need learning environments that enable them to work with their peers so that they can learn through their interactions. This study discusses the effectiveness of cooperative learning compared to traditional instruction in terms of students' motivation and understanding of chemical kinetics in a high…

  20. Green chemicals : A Kinetic Study on the Conversion of Glucose to Levulinic Acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J.


    Levulinic acid has been identified as a promising green, biomass derived platform chemical. A kinetic study on one of the key steps in the conversion of biomass to levulinic acid, i.e., the acid catalysed decomposition of glucose to levulinic acid has been performed. The experiments were performed i

  1. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.


    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  2. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.


    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...

  3. Laplace transform in tracer kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete B., E-mail: [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica


    The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)

  4. Kinetic derivation of a Hamilton-Jacobi traffic flow model

    CERN Document Server

    Borsche, Raul; Kimathi, Mark


    Kinetic models for vehicular traffic are reviewed and considered from the point of view of deriving macroscopic equations. A derivation of the associated macroscopic traffic flow equations leads to different types of equations: in certain situations modified Aw-Rascle equations are obtained. On the other hand, for several choices of kinetic parameters new Hamilton-Jacobi type traffic equations are found. Associated microscopic models are discussed and numerical experiments are presented discussing several situations for highway traffic and comparing the different models.

  5. Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory (United States)

    Zhang, Lei; Chen, Lingen; Sun, Fengrui


    The finite-time thermodynamic method based on probability analysis can more accurately describe various performance parameters of thermodynamic systems. Based on the relation between optimal efficiency and power output of a generalized Carnot heat engine with a finite high-temperature heat reservoir (heat source) and an infinite low-temperature heat reservoir (heat sink) and with the only irreversibility of heat transfer, this paper studies the problem of power optimization of chemically driven heat engine based on first and second order reaction kinetic theory, puts forward a model of the coupling heat engine which can be run periodically and obtains the effects of the finite-time thermodynamic characteristics of the coupling relation between chemical reaction and heat engine on the power optimization. The results show that the first order reaction kinetics model can use fuel more effectively, and can provide heat engine with higher temperature heat source to increase the power output of the heat engine. Moreover, the power fluctuation bounds of the chemically driven heat engine are obtained by using the probability analysis method. The results may provide some guidelines for the character analysis and power optimization of the chemically driven heat engines.

  6. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander


    To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  7. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole


    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  8. Modelling atypical CYP3A4 kinetics: principles and pragmatism. (United States)

    Houston, J Brian; Galetin, Aleksandra


    The Michaelis-Menten model, and the existence of a single active site for the interaction of substrate with drug metabolizing enzyme, adequately describes a substantial number of in vitro metabolite kinetic data sets for both clearance and inhibition determination. However, in an increasing number of cases (involving most notably, but not exclusively, CYP3A4), atypical kinetic features are observed, e.g., auto- and heteroactivation; partial, cooperative, and substrate inhibition; concentration-dependent effector responses (activation/inhibition); limited substrate substitution and inhibitory reciprocity necessitating sub-group classification. The phenomena listed above cannot be readily interpreted using single active site models and the literature indicates that three types of approaches have been adopted. First the 'nai ve' approach of using the Michaelis-Menten model regardless of the kinetic behaviour, second the 'empirical' approach (e.g., employing the Hill or uncompetitive inhibition equations to model homotropic phenomena of sigmoidicity and substrate inhibition, respectively) and finally, the 'mechanistic' approach. The later includes multisite kinetic models derived using the same rapid equilibrium/steady-state assumptions as the single-site model. These models indicate that 2 or 3 binding sites exist for a given CYP3A4 substrate and/or effector. Multisite kinetic models share common features, depending on the substrate kinetics and the nature of the effector response observed in vitro, which allow a generic model to be proposed. Thus although more complex than the other two approaches, they show more utility and can be comprehensively applied in relatively simple versions that can be readily generated from generic model. Multisite kinetic features, observed in isolated hepatocytes as well as in microsomes from hepatic tissue and heterologous expression systems, may be evident in substrate depletion-time profiles as well as in metabolite formation rates

  9. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies (United States)

    Abel zur Wiesch, Pia; Cohen, Ted


    Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood. PMID:28060813

  10. An investigation of GPU-based stiff chemical kinetics integration methods

    CERN Document Server

    Curtis, Nicholas J; Sung, Chih-Jen


    A fifth-order implicit Runge-Kutta method and two fourth-order exponential integration methods equipped with Krylov subspace approximations were implemented for the GPU and paired with the analytical chemical kinetic Jacobian software pyJac. The performance of each algorithm was evaluated by integrating thermochemical state data sampled from stochastic partially stirred reactor simulations and compared with the commonly used CPU-based implicit integrator CVODE. We estimated that the implicit Runge-Kutta method running on a single GPU is equivalent to CVODE running on 12-38 CPU cores for integration of a single global integration time step of 1e-6 s with hydrogen and methane models. In the stiffest case studied---the methane model with a global integration time step of 1e-4 s---thread divergence and higher memory traffic significantly decreased GPU performance to the equivalent of CVODE running on approximately three CPU cores. The exponential integration algorithms performed more slowly than the implicit inte...

  11. An integral representation of functions in gas-kinetic models (United States)

    Perepelitsa, Misha


    Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.

  12. New mass loss kinetic model for thermal decomposition of biomass

    Institute of Scientific and Technical Information of China (English)


    Based on non-isothermal experimental results for eight Chinese biomass species, a new kinetic model,named as the "pseudo bi-component separate-stage model (PBSM)", is developed in this note to describe the mass loss behavior of biomass thermal decomposition. This model gains an advantage over the commonly used "pseudo single-component overall model (PSOM)" and "pseudo multi-component overall model (PMOM)". By means of integral analysis it is indicated that the new model is suitable to describe the mass loss kinetics of wood and leaf samples under relatively low heating rates (e.g. 10°C/rin, used in this work).``

  13. Kinetic Modelling of Pesticidal Degradation and Microbial Growth in Soil

    Institute of Scientific and Technical Information of China (English)



    This paper discusses such models for the degradation kinetics of pesticides in soil as the model expressing the degradation rate as a function of two varables:the pesticide concentration and the number of pesticide degrading microorganisms,the model expressing the pesticide concentration as explicit or implicit function of time ,and the model exprssing the pesticide loss rate constants as functions of temperature,These models may interpret the degradation curves with an inflection point.A Kinetic model describing the growth processes of microbial populations in a closed system is reported as well.


    Directory of Open Access Journals (Sweden)

    M. Hamdi Karaoglu


    Full Text Available Quercus coccifera shell (QCS, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent to remove cobalt(II from water. Before the adsorption experiments, QCS was subjected to chemical treatment to provide maximum surface area. Then, the kinetics and adsorption mechanism of Co(II ions on QCS were studied using different parameters such as adsorbent dosage, initial concentration, temperature, contact time, and solution pH. The loaded metals could be desorbed effectively with dilute hydrochloric acid, nitric acid, and 0.1 M EDTA. The Langmuir and Freundlich models were used to describe the uptake of cobalt on QCS. The equilibrium adsorption data were better fitted to Langmuir adsorption isotherm model. The maximum adsorption capacity (qm of QCS for Co(II was 33 mg g-1. Various kinetic models were used to describe the adsorption process. The adsorption followed pseudo second-order kinetic model. The intraparticle diffusion was found to be the rate-limiting step in the adsorption process. The diffusion coefficients were calculated and found to be in the range of 3.11×10−6 to 168.78×10−6 cm2s-1. The negative DH* value indicated exothermic nature of the adsorption.

  15. Kinetic modelling of the Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gambaro, C.; Pollesel, P.; Zennaro, R. [Eni S.p.A., San Donato Milanese (Italy); Lietti, L.; Tronconi, E. [Politecnico di Milano (Italy)


    In this work the development of a CO conversion kinetic model of the Fischer-Tropsch process will be presented. Kinetic data were produced testing a Co-based catalyst on two lab units, equipped with a slurry autoclave and a fixed bed reactor respectively. Accordingly, information on the catalytic performances of the same catalyst in two reactor configurations were also obtained. The experimental results were then analyzed with different kinetic models, available in the literature: two mechanistic models, derived by Sarup-Wojciechowski and Yates-Satterfield, and a simple power law rate expression were compared. The parameters of the different rate expressions were estimated by non-linear regression of the kinetic data collected on the two lab units. (orig.)

  16. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics. (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin


    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  17. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach. (United States)

    Zhou, Yao; Wang, Huixuan; Lin, Wenshuang; Lin, Liqin; Gao, Yixian; Yang, Feng; Du, Mingming; Fang, Weiping; Huang, Jiale; Sun, Daohua; Li, Qingbiao


    Lacking of quantitative experimental data and/or kinetic models that could mathematically depict the redox chemistry and the crystallization issue, bottom-to-up formation kinetics of gold nanoparticles (GNPs) remains a challenge. We measured the dynamic regime of GNPs synthesized by l-ascorbic acid (representing a chemical approach) and/or foliar aqueous extract (a biogenic approach) via in situ spectroscopic characterization and established a redox-crystallization model which allows quantitative and separate parameterization of the nucleation and growth processes. The main results were simplified as the following aspects: (I) an efficient approach, i.e., the dynamic in situ spectroscopic characterization assisted with the redox-crystallization model, was established for quantitative analysis of the overall formation kinetics of GNPs in solution; (II) formation of GNPs by the chemical and the biogenic approaches experienced a slow nucleation stage followed by a growth stage which behaved as a mixed-order reaction, and different from the chemical approach, the biogenic method involved heterogeneous nucleation; (III) also, biosynthesis of flaky GNPs was a kinetic-controlled process favored by relatively slow redox chemistry; and (IV) though GNPs formation consists of two aspects, namely the redox chemistry and the crystallization issue, the latter was the rate-determining event that controls the dynamic regime of the whole physicochemical process.

  18. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.


    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  19. Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    DEFF Research Database (Denmark)

    Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.


    . These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws...... with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. Results: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation...

  20. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda


    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  1. Decomposition kinetics of dimethyl methylphospate(chemical agent simulant) by supercritical water oxidation

    Institute of Scientific and Technical Information of China (English)

    Bambang VERIANSYAH; Jae-Duck KIM; Youn-Woo LEE


    Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633 ℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.

  2. Hybrid fluid/kinetic model for parallel heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.; Hegna, C.C.; Held, E.D. [Univ. of Wisconsin, Madison, WI (United States)


    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  3. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.


    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  4. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes. (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu


    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  5. [Kinetics of chemical reactions for quality prediction of canned fish during storage]. (United States)

    Lukoshkina, M V; Odoeva, G A


    Changes in a wide range of quality characteristics of canned fish were studied during storage at different temperatures. A number of biochemical parameters were found, which undergo significant monotonic changes in the course of storage, correlating with organoleptic scores. It was demonstrated that simulation of thermal aging of canned fish, based on the laws of chemical kinetics, may be used for predicting quality changes and determining the shelf life.

  6. Kinetic exchange models: From molecular physics to social science

    CERN Document Server

    Patriarca, Marco


    We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.

  7. Physiologically based kinetic modeling of the bioactivation of myristicin

    NARCIS (Netherlands)

    Al-Malahmeh, Amer J.; Al-Ajlouni, Abdelmajeed; Wesseling, Sebastiaan; Soffers, Ans E.M.F.; Al-Subeihi, A.; Kiwamoto, Reiko; Vervoort, Jacques; Rietjens, Ivonne M.C.M.


    The present study describes physiologically based kinetic (PBK) models for the alkenylbenzene myristicin that were developed by extension of the PBK models for the structurally related alkenylbenzene safrole in rat and human. The newly developed myristicin models revealed that the formation of th

  8. The Coupled Chemical and Physical Dynamics Model of MALDI (United States)

    Knochenmuss, Richard


    The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.

  9. Empirical modeling the ultrasound-assisted base-catalyzed sunflower oil methanolysis kinetics

    Directory of Open Access Journals (Sweden)

    Avramović Jelena M.


    Full Text Available The ultrasound-assisted sunflower oil methanolysis catalyzed by KOH was studied to define a simple empirical kinetic model useful for reactor design without complex computation. It was assumed that the neutralization of free fatty acids and the saponification reaction were negligible. The methanolysis process rate was observed to be controlled by the mass transfer limitation in the initial heterogeneous regime and by the chemical reaction in the later pseudo-homogeneous regime. The model involving the irreversible second-order kinetics was established and used for simulation of the triacylglycerol conversion and the fatty acid methyl esters formation in the latter regime. A good agreement between the proposed model and the experimental data in the chemically controlled regime was found.

  10. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models (United States)

    Hesse, Michael; Birn, Joachim


    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  11. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions


    Chang, Ivan; Baldi, Pierre


    Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus imp...

  12. Uncertainty quantification for quantum chemical models of complex reaction networks. (United States)

    Proppe, Jonny; Husch, Tamara; Simm, Gregor N; Reiher, Markus


    For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.

  13. Kinetic model for hydroisomerization reaction of C8-aromatics

    Institute of Scientific and Technical Information of China (English)

    Ouguan XU; Hongye SU; Xiaoming JIN; Jian CHU


    Based on the reported reaction networks, a novel six-component hydroisomerization reaction net-work with a new lumped species including C8-naphthenes and Cs-paraffins is proposed and a kinetic model for a commercial unit is also developed. An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke forma-tion on the catalyst surface during the long-term opera-tion. The Runge-Kutta method is used to solve the ordinary differential equations of the model. The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential vari-able metric optimization method (BFGS). The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predic-tions and the plant observations.

  14. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia


    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  15. Experimental and Modeling Study of Kinetics for Methane Hydrate Formation with Tetrahydrofuran as Promoter

    Institute of Scientific and Technical Information of China (English)

    Ning Zhengfu; Zhang Shixi; Zhang Qin; Zhen Shuangyi; Chen Guangjin


    The kinetics behavior of methane hydrate formation in the presence of tetrahydrofuran (THF) as promoter was studied. A set of experimental equipment was designed and constructed. A series of kinetics data for the formation of methane hydrate in the presence of THF were measured with the isochoric method. The influences of temperature,pressure and liquid flow rate on the methane consumption rate were studied respectively. Based on the Chen-Guo hydrate formation mechanism,a kinetics model for the formation of methane hydrate in the presence of THF by using the dimensionless Gibbs free energy difference of quasi-chemical reaction of basic hydrate formation,,as the driving force was proposed. The model was used to calculate the rate of methane consumption and it was shown that the calculated results were in good agreement with the experimental results.

  16. Repopulation Kinetics and the Linear-Quadratic Model (United States)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.


    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  17. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Pita Rengga Wara Dyah


    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.


    Grove, David B.; Stollenwerk, Kenneth G.


    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  19. Kinetic modeling of the Townsend breakdown in argon (United States)

    Macheret, S. O.; Shneider, M. N.


    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  20. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas. (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R


    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  1. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, D L


    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  2. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, Anders; Lynggaard, Hasse Harloff; Stegelmann, Carsten;


    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5–23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  3. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.;


    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  4. Validation of reduced kinetic models for simulations of non-steady combustion processes

    CERN Document Server

    Ivanov, M F; Liberman, M A; Smygalina, A E


    In the present work we compare reliability of several most widely used reduced detailed chemical kinetic schemes for hydrogen-air and hydrogen-oxygen combustible mixtures. The validation of the schemes includes detailed analysis of 0D and 1D calculations and comparison with experimental databases containing data on induction time, equilibrium temperature, composition of the combustion products, laminar flame speed and the flame front thickness at different pressures. 1D calculations are carried out using the full gasdynamical system for compressible viscous thermal conductive multicomponent mixture. The proper choice of chemical kinetics models is essential for obtaining reliable quantitative and qualitative insight into combustion phenomena such as flame acceleration and stability, ignition, transition from deflagration-to-detonation (DDT) using a multiscale numerical modeling.

  5. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law (United States)

    Nicolini, Paolo; Frezzato, Diego


    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally

  6. Information cascade, Kirman's ant colony model, and kinetic Ising model

    CERN Document Server

    Hisakado, Masato


    In this paper, we discuss a voting model in which voters can obtain information from a finite number of previous voters. There exist three groups of voters: (i) digital herders and independent voters, (ii) analog herders and independent voters, and (iii) tanh-type herders. In our previous paper, we used the mean field approximation for case (i). In that study, if the reference number r is above three, phase transition occurs and the solution converges to one of the equilibria. In contrast, in the current study, the solution oscillates between the two equilibria, that is, good and bad equilibria. In this paper, we show that there is no phase transition when r is finite. If the annealing schedule is adequately slow from finite r to infinite r, the voting rate converges only to the good equilibrium. In case (ii), the state of reference votes is equivalent to that of Kirman's ant colony model, and it follows beta binomial distribution. In case (iii), we show that the model is equivalent to the finite-size kinetic...

  7. Gas-Kinetic Navier-Stokes Solver for Hypersonic Flows in Thermal and Chemical Non-Equilibrium Project (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a gas-kinetic Navier-Stokes solver for simulation of hypersonic flows in thermal and chemical non-equilibrium. The...

  8. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    CERN Document Server

    Niemeyer, Kyle E


    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the met...

  9. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, I., E-mail: [Department of Chemical and Petroleum Engineering, University of Uyo, Uyo (Nigeria); Aluyor, E.; Audu, T. [Department of Chemical Engineering, University of Uyo, BeninCity, BeninCity (Nigeria)


    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  10. Comparison of linear modes in kinetic plasma models

    CERN Document Server

    Camporeale, Enrico


    We compare, in an extensive and systematic way, linear theory results obtained with the hybrid (ion-kinetic and electron-fluid), the gyrokinetic and the fully-kinetic plasma models. We present a test case with parameters that are relevant for solar wind turbulence at small scales, which is a topic now recognized to need a kinetic treatment, to a certain extent. We comment on the comparison of low-frequency single modes (Alfv\\'{e}n/ion-cyclotron, ion-acoustic, and fast modes) for a wide range of propagation angles, and on the overall spectral properties of the linear operators, for quasi-perpendicular propagation. The methodology and the results presented in this paper will be valuable when choosing which model should be used in regimes where the assumptions of each model are not trivially satisfied.

  11. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines

    CERN Document Server

    Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires


    The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and α-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

  12. Improving the kinetics from molecular simulations using biased Markov state models (United States)

    Rudzinski, Joseph F.; Kremer, Kurt; Bereau, Tristan

    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and experimentally-measured observables. This work presents a robust and systematic framework for reweighting the ensemble of dynamical paths sampled in a molecular simulation in order to ensure consistency with a set of given kinetic observables. The method employs the well-developed Markov state modeling framework in order to efficiently treat simulated dynamical paths. We demonstrate that, for two distinct coarse-grained peptide models, biasing the Markov state model to reproduce a small number of reference kinetic constraints significantly improves the dynamical properties of the model, while simultaneously refining the static equilibrium properties.

  13. Kinetic models for irreversible processes on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N.O.


    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.

  14. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P;


    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  15. Plasma interfacial mixing layers: Comparisons of fluid and kinetic models (United States)

    Vold, Erik; Yin, Lin; Taitano, William; Albright, B. J.; Chacon, Luis; Simakov, Andrei; Molvig, Kim


    We examine plasma transport across an initial discontinuity between two species by comparing fluid and kinetic models. The fluid model employs a kinetic theory approximation for plasma transport in the limit of small Knudsen number. The kinetic simulations include explicit particle-in-cell simulations (VPIC) and a new implicit Vlasov-Fokker-Planck code, iFP. The two kinetic methods are shown to be in close agreement for many aspects of the mixing dynamics at early times (to several hundred collision times). The fluid model captures some of the earliest time dynamic behavior seen in the kinetic results, and also generally agrees with iFP at late times when the total pressure gradient relaxes and the species transport is dominated by slow diffusive processes. The results show three distinct phases of the mixing: a pressure discontinuity forms across the initial interface (on times of a few collisions), the pressure perturbations propagate away from the interfacial mixing region (on time scales of an acoustic transit) and at late times the pressure relaxes in the mix region leaving a non-zero center of mass flow velocity. The center of mass velocity associated with the outward propagating pressure waves is required to conserve momentum in the rest frame. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  16. A Minimal Model for Large-scale Epitaxial Growth Kinetics of Graphene

    CERN Document Server

    Jiang, Huijun


    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be $C_{1}$-attachment for concave growth front segments and $C_{5}$-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  17. A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties

    KAUST Repository

    Ahmed, Ahfaz


    Gasoline is the most widely used fuel for light duty automobile transportation, but its molecular complexity makes it intractable to experimentally and computationally study the fundamental combustion properties. Therefore, surrogate fuels with a simpler molecular composition that represent real fuel behavior in one or more aspects are needed to enable repeatable experimental and computational combustion investigations. This study presents a novel computational methodology for formulating surrogates for FACE (fuels for advanced combustion engines) gasolines A and C by combining regression modeling with physical and chemical kinetics simulations. The computational methodology integrates simulation tools executed across different software platforms. Initially, the palette of surrogate species and carbon types for the target fuels were determined from a detailed hydrocarbon analysis (DHA). A regression algorithm implemented in MATLAB was linked to REFPROP for simulation of distillation curves and calculation of physical properties of surrogate compositions. The MATLAB code generates a surrogate composition at each iteration, which is then used to automatically generate CHEMKIN input files that are submitted to homogeneous batch reactor simulations for prediction of research octane number (RON). The regression algorithm determines the optimal surrogate composition to match the fuel properties of FACE A and C gasoline, specifically hydrogen/carbon (H/C) ratio, density, distillation characteristics, carbon types, and RON. The optimal surrogate fuel compositions obtained using the present computational approach was compared to the real fuel properties, as well as with surrogate compositions available in the literature. Experiments were conducted within a Cooperative Fuels Research (CFR) engine operating under controlled autoignition (CAI) mode to compare the formulated surrogates against the real fuels. Carbon monoxide measurements indicated that the proposed surrogates

  18. Implementation and evaluation of an array of chemical solvers in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Lee


    Full Text Available This paper discusses the implementation and performance of an array of gas-phase chemistry solvers for the state-of-the-science GEOS-Chem global chemical transport model. The implementation is based on the Kinetic PreProcessor (KPP. Two perl parsers automatically generate the needed interfaces between GEOS-Chem and KPP, and allow access to the chemical simulation code without any additional programming effort. This work illustrates the potential of KPP to positively impact global chemical transport modeling by providing additional functionality as follows. (1 The user can select a highly efficient numerical integration method from an array of solvers available in the KPP library. (2 KPP offers extreme flexibility for studies that involve changing the chemical mechanism (e.g., a set of additional reactions is automatically translated into efficient code and incorporated into a modified global model. (3 This work provides immediate access to tangent linear, continuous adjoint, and discrete adjoint chemical models, with applications to sensitivity analysis and data assimilation.

  19. 3D Building Model Fitting Using A New Kinetic Framework

    CERN Document Server

    Brédif, Mathieu; Pierrot-Deseilligny, Marc; Maître, Henri


    We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model (DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining the polyhedron topology, allowing the design of a simple variational optimization. This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or its boundedness, the simplest topological mod...

  20. Mathematical Modeling of Chemical Stoichiometry (United States)

    Croteau, Joshua; Fox, William P.; Varazo, Kristofoland


    In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…

  1. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva


    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  2. A kinetic model of carbon burnout in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Jian-Kuan Sun; Lunden, M. [Brown University, Providence, RI (United States). Division of Engineering


    The degree of carbon burnout is an important operating characteristic of full-scale suspension-fired coal combustion systems affecting boiler efficiency, electrostatic precipitator operation and the value of fly ash as a saleable product. Prediction of carbon loss requires special char combustion kinetics valid through the very high conversions targeted in industry (typically {gt} 99.5%), and valid for a wide-range of particle temperature histories occurring in full-scale furnaces. The paper presents high-temperature kinetic data for five coal chars in the form of time-resolved burning profiles that include the late stages of combustion. It then describes the development and validation of the Carbon Burnout Kinetic Model (CBK), a coal-general kinetics package that is specifically designed to predict the total extent of carbon burnout and ultimate fly ash carbon content for prescribed temperature/oxygen histories typical of pulverized coal combustion systems. The model combines the single-film treatment of cha oxidation with quantitative descriptions of thermal annealing, statistical kinetics, statistical densities, and ash inhibition in the late stages of combustion. In agreement with experimental observations, the CBK model predicts (1) low reactivities for unburned carbon residues extracted from commercial ash samples, (2) reactivity loss in the late stages of laboratory combustion, (3) the observed sensitivity of char reactivity to high-temperature heat treatment on second and subsecond time scales, and (4) the global reaction inhibition by mineral matter in the late stages of combustion observed in single-particle imaging studies. The model ascribes these various char deactivation phenomena to the combined effects of thermal annealing, ash inhibition, and the preferential consumption of more reactive particles (statistical kinetics), the relative contributions of which vary greatly with combustion conditions. 39 refs., 4 figs., 4 tabs., 1 app.

  3. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail:; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)


    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  4. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)


    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus......, the first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other....... The combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  5. A Discrete Velocity Traffic Kinetic Model Including Desired Speed

    Directory of Open Access Journals (Sweden)

    Shoufeng Lu


    Full Text Available We introduce the desired speed variable into the table of games and formulate a new table of games and the corresponding discrete traffic kinetic model. We use the hybrid programming technique of VB and MATLAB to develop the program. Lastly, we compared the proposed model result and the detector data. The results show that the proposed model can describe the traffic flow evolution.

  6. A physical model of nicotinic ACh receptor kinetics


    Nurowska, Ewa; Bratiichuk, Mykola; Dworakowska, Beata; Nowak, Roman J.


    We present a new approach to nicotinic receptor kinetics and a new model explaining random variabilities in the duration of open events. The model gives new interpretation on brief and long receptor openings and predicts (for two identical binding sites) the presence of three components in the open time distribution: two brief and a long. We also present the physical model of the receptor block. This picture naturally and universally explains receptor desensitization, the phenomenon of centra...

  7. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A


    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  8. Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling. (United States)

    Noé, Frank; Banisch, Ralf; Clementi, Cecilia


    Identification of the main reaction coordinates and building of kinetic models of macromolecular systems require a way to measure distances between molecular configurations that can distinguish slowly interconverting states. Here we define the commute distance that can be shown to be closely related to the expected commute time needed to go from one configuration to the other, and back. A practical merit of this quantity is that it can be easily approximated from molecular dynamics data sets when an approximation of the Markov operator eigenfunctions is available, which can be achieved by the variational approach to approximate eigenfunctions of Markov operators, also called variational approach of conformation dynamics (VAC) or the time-lagged independent component analysis (TICA). The VAC or TICA components can be scaled such that a so-called commute map is obtained in which Euclidean distance corresponds to the commute distance, and thus kinetic models such as Markov state models can be computed based on Euclidean operations, such as standard clustering. In addition, the distance metric gives rise to a quantity we call total kinetic content, which is an excellent score to rank input feature sets and kinetic model quality.

  9. A Kinetic Model for Vapor-liquid Flows (United States)


    A Kinetic Model for Vapor-liquid Flows Aldo Frezzotti, Livio Gibelli and Silvia Lorenzani Dipartimento di Matematica del Politecnico di Milano Piazza...ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32 - 20133 Milano - Italy 8. PERFORMING ORGANIZATION REPORT NUMBER

  10. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens;


    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests, or p...

  11. Second order kinetic Kohn-Sham lattice model

    CERN Document Server

    Solorzano, Sergio; Herrmann, Hans


    In this work we introduce a new semi-implicit second order correction scheme to the kinetic Kohn-Sham lattice model. The new approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two rows of the periodic table finding good agreement with the expected values. Additionally we simulate the ethane molecule where we recover the bond lengths and compare the results with standard methods. Finally, we discuss the current applicability of pseudopotentials within the lattice kinetic Kohn-Sham approach.

  12. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia


    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  13. Modeling Microscopic Chemical Sensors in Capillaries

    CERN Document Server

    Hogg, Tad


    Nanotechnology-based microscopic robots could provide accurate in vivo measurement of chemicals in the bloodstream for detailed biological research and as an aid to medical treatment. Quantitative performance estimates of such devices require models of how chemicals in the blood diffuse to the devices. This paper models microscopic robots and red blood cells (erythrocytes) in capillaries using realistic distorted cell shapes. The models evaluate two sensing scenarios: robots moving with the cells past a chemical source on the vessel wall, and robots attached to the wall for longer-term chemical monitoring. Using axial symmetric geometry with realistic flow speeds and diffusion coefficients, we compare detection performance with a simpler model that does not include the cells. The average chemical absorption is quantitatively similar in both models, indicating the simpler model is an adequate design guide to sensor performance in capillaries. However, determining the variation in forces and absorption as cells...

  14. Kinetic and chemical characterization of thermal decomposition of dicumylperoxide in cumene. (United States)

    Di Somma, Ilaria; Marotta, Raffaele; Andreozzi, Roberto; Caprio, Vincenzo


    Dicumylperoxide (DCP) is one of the most used peroxides in the polymer industry. It has been reported that its thermal decomposition can result in runaway phenomena and thermal explosions with significant economic losses and injuries to people. In the present paper thermal behaviour of dicumylperoxide in cumene was investigated over the temperature range of 393-433 K under aerated and de-aerated conditions. The results indicated that when oxygen was present, the decomposition rate did not follow a simple pseudo-first order kinetic as previously reported in literature. A satisfactory fit of the experimental data was, in this case, achieved by means of kinetic expression derived under the assumption of an autocatalytic scheme of reaction. The reaction rate was, on the contrary, correctly described by a pseudo-first order kinetic in absence of oxygen. Under both aerated and de-aerated conditions, chemical analysis showed that the decomposition mainly resulted in the formation of acetophenone and dimethylphenylcarbinol with minor occurrence of 2,3-dimethyl-2,3-diphenylbutane. The formation of methane and ethane was also invariably observed while the appearance of cumylhydroperoxide as a reaction intermediate was detected under only aerated conditions. Therefore, two reaction schemes were proposed to explain system behaviour in the presence of oxygen and after its purging.

  15. Thermodynamic Analysis of Chemically Reacting Mixtures and Their Kinetics: Example of a Mixture of Three Isomers. (United States)

    Pekař, Miloslav


    Thermodynamics provides consequences of and restrictions on chemically reacting mixtures, particularly their kinetics, which have not been fully explored. Herein, a comprehensive thermodynamic analysis is illustrated for a reacting mixture of three isomers. The rate equation is first derived on the basis of the results of nonequilibrium continuum thermodynamics of linear fluids, and is then subjected to the requirement of consistency with entropic inequality (the second law). This consistency test involves the correct representation of the reaction rate as a function of affinities. It is shown that entropic inequality restricts the signs or values of coefficients in the constitutive equations for reaction rates/rate constants. The use of reverse rate constants and the identification of thermodynamic and kinetic equilibrium constants are not necessary in this approach. Although the presented thermodynamic analysis works only for independent reactions, the rates of dependent reactions are not excluded from having effects on kinetics. It is shown that the rates of dependent reactions are combined from the rates of independent reactions differently than dependent reactions are combined from independent reactions. The results are compared to the classical mass-action rate equations, and new restrictions on the values of the classical rate constants are derived.

  16. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts (United States)

    Muryanto, S.; Djatmiko Hadi, S.


    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  17. Chemical Oxidative Polymerization of 2-Aminothiazole in Aqueous Solution: Synthesis, Characterization and Kinetics Study

    Directory of Open Access Journals (Sweden)

    Hua Zou


    Full Text Available The chemical oxidative polymerization of 2-aminothiazole (AT was studied in aqueous solution using copper chloride (CuCl2 as an oxidant. The effect of varying the reaction temperature, reaction time and oxidant/monomer molar ratio on the polymer yield was investigated. The resulting poly(2-aminothiazoles (PATs were characterized by FTIR, 1H NMR, UV-vis, gel permeation chromatography, scanning electron microscopy, thermogravimetric analysis and four-point probe electrical conductivity measurements. Compared with a previous study, PATs with higher yield (81% and better thermal stability could be synthesized. The chemical oxidative polymerization kinetics of AT were studied for the first time. The orders of the polymerization reaction with respect to monomer concentration and oxidant concentration were found to be 1.14 and 0.97, respectively, and the apparent activation energy of the polymerization reaction was determined to be 21.57 kJ/mol.

  18. Intrinsic Kinetic Modeling of Thermal Dimerization of C5 Fraction

    Institute of Scientific and Technical Information of China (English)

    Guo Liang; Wang Tiefeng; Li Dongfeng; Wang Jinfu


    This work aims to investigate the intrinsic kinetics of thermal dimerization of C5 fraction in the reactive distilla-tion process. Experiments are conducted in an 1000-mL stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy Ea is equal to 6.58×104 J/mol for the cyclopentadiene dimerization re-action. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns.

  19. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.


    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  20. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall


    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  1. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G


    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  2. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model (United States)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.


    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  3. Homogeneous gas phase models of relaxation kinetics in neon afterglow

    Directory of Open Access Journals (Sweden)

    Marković Vidosav Lj.


    Full Text Available The homogeneous gas phase models of relaxation kinetics (application of the gas phase effective coefficients to represent surface losses are applied for the study of charged and neutral active particles decay in neon afterglow. The experimental data obtained by the breakdown time delay measurements as a function of the relaxation time td (τ (memory curve is modeled in early, as well as in late afterglow. The number density decay of metastable states can explain neither the early, nor the late afterglow kinetics (memory effect, because their effective lifetimes are of the order of milliseconds and are determined by numerous collision quenching processes. The afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular neon Ne2 + and nitrogen ions N2 + (present as impurities and the approximate value of N2 + ambipolar diffusion coefficient is determined. After the charged particle decay, the secondary emitted electrons from the surface catalyzed excitation of nitrogen atoms on the cathode determine the breakdown time delay down to the cosmic rays and natural radioactivity level. Due to the neglecting of number density spatial profiles, the homogeneous gas phase models give only the approximate values of the corresponding coefficients, but reproduce correctly other characteristics of afterglow kinetics from simple fits to the experimental data.

  4. Enzymatic hydrolysis of protein:mechanism and kinetic model

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; He Zhimin


    The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves.Taking into account single-substrate hydrolysis,enzyme inactivation and substrate or product inhibition,the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations,enzyme concentrations and temperatures based on M-M equation.An exponential equation dh/dt = aexp(-bh) was also established,where parameters a and b have different expressions according to different reaction mechanisms,and different values for different reaction systems.For BSA-trypsin model system,the regressive results agree with the experimental data,i.e.the average relative error was only 4.73%,and the reaction constants were determined as Km = 0.0748 g/L,Ks = 7.961 g/L,kd = 9.358/min,k2 =38.439/min,Ea= 64.826 kJ/mol,Ed= 80.031 kJ/mol in accordance with the proposed kinetic mode.The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis,to calculate the thermodynamic and kinetic constants,and to optimize the operating parameters for bioreactor design.

  5. Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information

    CERN Document Server

    Rudzinski, Joseph F; Bereau, Tristan


    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically ...

  6. Vlasov models for kinetic Weibel-type instabilities (United States)

    Ghizzo, A.; Sarrat, M.; Del Sarto, D.


    The Weibel instability, driven by a temperature anisotropy, is investigated within different kinetic descriptions based on the semi-Lagrangian full kinetic and relativistic Vlasov-Maxwell model, on the multi-stream approach, which is based on a Hamiltonian reduction technique, and finally, with the full pressure tensor fluid-type description. Dispersion relations of the Weibel instability are derived using the three different models. A qualitatively different regime is observed in Vlasov numerical experiments depending on the excitation of a longitudinal plasma electric field driven initially by the combined action of the stream symmetry breaking and weak relativistic effects, in contrast with the existing theories of the Weibel instability based on their purely transverse characters. The multi-stream model offers an alternate way to simulate easily the coupling with the longitudinal electric field and particularly the nonlinear regime of saturation, making numerical experiments more tractable, when only a few moments of the distribution are considered. Thus a numerical comparison between the reduced Hamiltonian model (the multi-stream model) and full kinetic (relativistic) Vlasov simulations has been investigated in that regime. Although nonlinear simulations of the fluid model, including the dynamics of the pressure tensor, have not been carried out here, the model is strongly relevant even in the three-dimensional case.

  7. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy


    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  8. Kinetic model for the pathogenesis of radiation lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H. (Institute of Cancer Research, Sutton (UK). Surrey Branch)


    The development of radiation-induced lung damage can be explained by a kinetic model, based on the assumption that this damage becomes manifest only when a critical proportion (K) of essential cells have ceased to function, and that the rate of loss of these cells following irradiation is linear and dose-dependent. The kinetic model relates the surviving fraction to the time to manifestation of radiation-induced lung damage and to constants, K and the cell cycle time, T. Predictions made from the model about the nature of the response to irradiation are, for the most part, fulfilled. The model can also be used to interpret the response to combined treatment with irradiation and cytotoxic drugs, including the much earlier manifestation of lung damage sometimes seen with such treatment.

  9. Study on Kinetics for Desulfurization of Model Diesel

    Institute of Scientific and Technical Information of China (English)

    Qian Jianhua; Zhou Yuenan; Liu Lin; Wang Yue; Xing Jinjuan; Lü Hong


    In this study, by means of the experiments for desulfurization of model diesel through oxi-dative extraction, the changes associated with the rate of desulfurization of diesel and the mechanism for oxidation of sulfides in diesel were explored. Through studying the mechanism for oxidation of sulfides and the principle of solvent extraction, the kinetic equation of desulfurization via oxidative extraction were determined. By means of the evaluation of model parameters and curve fitting, the reaction order between organic sulfide and sulfone, the intrinsic oxidation rate constant of organic sulfide and sulfone, and the equilibrium constant between suifone in model diesel and extractive sol-vent were determined. The experimental values of the desulfurization rate and the theoretical values of the corresponding model equation had closely demonstrated that the desulfurization reaction rate had high accuracy. And the reaction kinetics could provide an important basis for diesel desulfurization process in the future.

  10. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus;


    Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...... because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  11. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel

    Institute of Scientific and Technical Information of China (English)

    FENG Ning-chuan; GUO Xue-yi; LIANG Sha


    Cu(H) biosorption by orange peel that was chemically modified with sodium hydroxide and calcium chloride was investigated. The effects of temperature, contact time, initial concentration of metal ions and pH on the biosorption of Cu( II) ions were assessed. Thermodynamic parameters including change of free energy(△G~Θ), enthalpy (△H~Θ) and entropy(△S~Θ) during the biosorption were determined. The results show that the biosorption process of Cu( II) ions by chemically treated orange peel is feasible, spontaneous and exothermic under studied conditions. Equilibrium is well described by Langmuir equation with the maximum biosorption capacity(q_m) for Cu( II) as 72.73 mg/g and kinetics is found to fit pseudo-second order type biosorption kinetics. As the temperature increases from 16 ℃ to 60 ℃, copper biosorption decreases. The loaded biosorbent is regenerated using HC1 solution for repeatedly use for five times with little loss of biosorption capacity.

  12. Chemical kinetic simulation of kerosene combustion in an individual flame tube

    Directory of Open Access Journals (Sweden)

    Wen Zeng


    Full Text Available The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism.

  13. Agent dynamics in kinetic models of wealth exchange

    CERN Document Server

    Chatterjee, Arnab


    We study the dynamics of individual agents in some kinetic models of wealth exchange, particularly, the models with savings. For the model with uniform savings, agents perform simple random walks in the `"wealth space". On the other hand, we observe ballistic diffusion in the model with distributed savings. There is an associated skewness in the gain-loss distribution which explains the steady state behavior in such models. We find that in general an agent gains while interacting with an agent with a larger saving propensity.

  14. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.


    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  15. Nahoon: Time-dependent gas-phase chemical model (United States)

    Wakelam, V.


    Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.

  16. Extraction of lycopene from tomato processing waste: kinetics and modelling. (United States)

    Poojary, Mahesha M; Passamonti, Paolo


    Lycopene, a nutraceutical compound, was extracted from tomato processing waste, an abundantly available food industry by-product in Italy. The extraction kinetics was mathematically described using the first order kinetic model, the mass transfer model and Peleg's model to understand the physicochemical behaviour of the extraction. Samples were extracted using acetone/n-hexane mixtures at different ratios (1:3, 2:2 and 3:1, v/v) and at different temperatures (30, 40 and 50 °C) and simultaneously analysed using UV-VIS spectrophotometry. The lycopene yield was in the range 3.47-4.03 mg/100g, which corresponds to a percentage recovery of 65.22-75.75. All kinetic models gave a good fit to the experimental data, but the best one was Peleg's model, having the highest RAdj(2) and the lowest RMSE, MBE and χ(2) values. All the models confirmed that a temperature of 30 °C and solvent mixture of acetone/n-hexane 1:3 (v/v) provided optimal conditions for extraction of lycopene.

  17. Construction of reduced transport model by gyro-kinetic simulation with kinetic electrons in helical plasmas (United States)

    Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.


    A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.

  18. Effects of three heavy metals on the bacteria growth kinetics. A bivariate model for toxicological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rial, Diego; Vazquez, Jose Antonio; Murado, Miguel Anxo [Instituto de Investigacions Marinas (CSIC), Vigo (ES). Grupo de Reciclado y Valorizacion de Materiales Residuales (REVAL)


    The effects of three heavy metals (Co, Ni and Cd) on the growth kinetics of five bacterial strains with different characteristics (Pseudomonas sp., Phaeobacter sp. strain 27-4, Listonella anguillarum, Carnobacterium piscicola and Leuconostoc mesenteroides subsp. lysis) were studied in a batch system. A bivariate model, function of time and dose, is proposed to describe simultaneously all the kinetic profiles obtained by incubating a microorganism at increasing concentrations of individual metals. This model combines the logistic equation for describing growth, with a modification of the cumulative Weibull's function for describing the dose-dependent variations of growth parameters. The comprehensive model thus obtained - which minimizes the effects of the experimental error - was statistically significant in all the studied cases, and it raises doubts about toxicological evaluations that are based on a single growth parameter, especially if it is not obtained from a kinetic equation. In lactic acid bacteria cultures (C. piscicola and L. mesenteroides), Cd induced remarkable differences in yield and time course of characteristic metabolites. A global parameter is defined (ED{sub 50,{tau}}: dose of toxic chemical that reduces the biomass of a culture by 50% compared to that produced by the control at the time corresponding to its semi maximum biomass) that allows comparing toxic effects on growth kinetics using a single value. (orig.)

  19. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. (United States)

    Liberman, M A; Kiverin, A D; Ivanov, M F


    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  20. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics (United States)

    Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.


    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  1. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang


    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI:

  2. Kinetic model of the Buyers’ market (United States)

    Zhykharsky, Alexander V.


    In this work the following results are received. The closed mathematical apparatus describing the process of interaction of the Buyers’ market with retail Shop is created. The “statistical analogy” between the vacuum electrostatic diode and the Buyers’ market co-operating with retail Shop is considered. On the basis of the spent analysis the closed mathematical apparatus describing process of interaction of the Buyers’ market with retail Shop is created. The analytical expressions connecting a stream of Buyers, come to Shop, and a stream of the gain of Shop, with parameters of the Buyers’ market are received. For check of adequacy of the received model it is solved of some real “market” problems. On the basis of the spent researches principles of construction of Information-analytical Systems of new type which provide direct measurements of parameters of the Buyers’ market are developed. Actually these Systems are devices for measurement of parameters of this market. In this work it is shown that by means of the device developed for measurement of parameters of the Buyers’ market, creation of a new science-“demandodynamics” the Buyers’ market, is possible. Here the term “demandodynamics the Buyers’ market” is accepted by analogy to the term “thermodynamics” in physics. (In this work it is shown that for the Buyers’ market concept “demand” is similar to concept “temperature” in physics.) The construction methodology “demandodynamics” the Buyers’ market is defined and is shown that within the limits of this science working out of a technique of a direct control by a condition of the Buyers’ market is possible.

  3. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)


    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  4. Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization (United States)

    Ruslanov, Anatole D.; Bashylau, Anton V.


    We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.

  5. Pre-reheating magnetogenesis in the kinetic coupling model (United States)

    Fujita, Tomohiro; Namba, Ryo


    Recent blazar observations provide growing evidence for the presence of magnetic fields in the extragalactic regions. While natural speculation is to associate the production with inflationary physics, it is known that magnetogenesis solely from inflation is quite challenging. We therefore study a model in which a noninflaton field χ coupled to the electromagnetic field through its kinetic term, -I2(χ )F2/4 , continues to move after inflation until the completion of reheating. This leads to a postinflationary amplification of the electromagnetic field. We compute all the relevant contributions to the curvature perturbation, including gravitational interactions, and impose the constraints from the CMB scalar fluctuations on the strength of magnetic fields. We, for the first time, explicitly verify both the backreaction and CMB constraints in a simple yet successful magnetogenesis scenario without invoking a dedicated low-scale inflationary model in the weak-coupling regime of the kinetic coupling model.

  6. Kinetic Modeling of Paraffin Aromatization over Zeolites: A Design Perspective (United States)

    Bhan, Aditya; Katare, Santhoji; Caruthers, James; Lauterbach, Jochen; Venkatasubramanian, Venkat; Delgass, Nicholas


    A generic framework for catalyst design involving the solution of a forward predictive problem using hybrid models and the inverse problem using evolutionary algorithms has been proposed. In that context, we investigate the aromatization of light paraffins over HZSM-5 to obtain the catalyst descriptors and associated kinetic parameters that predict performance. A detailed kinetic model that can fundamentally quantify the catalytic properties of acid sites in terms of intrinsic parameters such as rate constants and activation energies of elementary steps is developed on the basis of the following types of reactions: adsorption/desorption, oligomerization/ beta-scission, hydride transfer, protolysis and aromatization. The reaction network so generated has been grouped under various reaction families taking into account the different stabilities and reactivities of the adsorbed carbenium/carbonium ions. The detailed parameterization of each reaction type, optimizing fits to data, linking catalyst descriptors to performance, and means of improving the robustness of the model will be presented.

  7. Stochastic effects in a discretized kinetic model of economic exchange (United States)

    Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.


    Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.

  8. Kinetic models for historical processes of fast invasion and aggression (United States)

    Aristov, Vladimir V.; Ilyin, Oleg V.


    In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.

  9. Kinetic modelling of enzyme inactivation Kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F.

    NARCIS (Netherlands)

    Schokker, E.P.


    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused by intermolecular autoproteolysis, where unfolded

  10. An autocatalytic kinetic model for describing microbial growth during fermentation. (United States)

    Ibarz, Albert; Augusto, Pedro E D


    The mathematical modelling of the behaviour of microbial growth is widely desired in order to control, predict and design food and bioproduct processing, stability and safety. This work develops and proposes a new semi-empirical mathematical model, based on an autocatalytic kinetic, to describe the microbial growth through its biomass concentration. The proposed model was successfully validated using 15 microbial growth patterns, covering the three most important types of microorganisms in food and biotechnological processing (bacteria, yeasts and moulds). Its main advantages and limitations are discussed, as well as the interpretation of its parameters. It is shown that the new model can be used to describe the behaviour of microbial growth.

  11. Cell kinetic modelling and the chemotherapy of cancer

    CERN Document Server

    Knolle, Helmut


    During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...

  12. Coulombic Models in Chemical Bonding. (United States)

    Sacks, Lawrence J.


    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  13. Modelling on corrosion inhibitor kinetics in carbon steel pipe used in oil industry (United States)

    Hasmi, A. N.; Nuraini, N.; Wahyuningrum, D.; Sumarti, N.; Bunjali, B.


    A model to explain the kinetics of corrosion inhibitor is proposed here. The model is based on Transition State Theory. Our model has many similarities with Michelis-Menten Kinetics. The kinetics difference between uninhibited corrosion and inhibited corrosion is presented. Our model showed the inhibitor could suppress the corrosion rate.

  14. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary


    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  15. Chemical equilibrium modeling of detonation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, Sorin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Furthermore the history of HE materials is long, their condensed-phase chemical properties are poorly understood.

  16. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing


    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing different reaction stages, which are determined by a systematic optimization process to ensure that the separation of different reaction stages with highest accuracy. The procedure is implemented and the model prediction was compared against that from a conventional method, yielding a significantly improved agreement with the experimental data. © 2016 American Chemical Society.

  17. Modeling organic micro pollutant degradation kinetics during sewage sludge composting. (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai


    Degradation of 13 different organic micro-pollutants in sewage sludge during aerobic composting at 5 different temperatures over a 52 day period was investigated. Adequacy of two kinetic models: a single first order, and a dual first order expression (using an early (first 7 days) and a late-time (last 45 days) degradation coefficient), for describing micro-pollutant degradation, and kinetic constant dependency on composting temperature were evaluated. The results showed that both models provide relatively good descriptions of the degradation process, with the dual first order model being most accurate. The single first order degradation coefficient was 0.025 d(-1) on average across all compounds and temperatures. At early times, degradation was about three times faster than at later times. Average values of the early and late time degradation coefficients for the dual first order model were 0.066 d(-1) and 0.022 d(-1), respectively. On average 30% of the initial micro-pollutant mass present in the compost was degraded rapidly during the early stages of the composting process. Single first order and late time dual first order kinetic constants were strongly dependent on composting temperature with maximum values at temperatures of 35-65°C. In contrast the early time degradation coefficients were relatively independent of composting temperature.

  18. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson;


    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...

  19. Direct numerical simulations of turbulent non-premixed methane-air flames modeled with reduced kinetics (United States)

    Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.


    Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).

  20. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH


    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  1. Kinetic model of metabolic network for xiamenmycin biosynthetic optimisation. (United States)

    Xu, Min-juan; Chen, Yong-cong; Xu, Jun; Ao, Ping; Zhu, Xiao-mei


    Xiamenmycins, a series of prenylated benzopyran compounds with anti-fibrotic bioactivities, were isolated from a mangrove-derived Streptomyces xiamenensis. To fulfil the requirements of pharmaceutical investigations, a high production of xiamenmycin is needed. In this study, the authors present a kinetic metabolic model to evaluate fluxes in an engineered Streptomyces lividans with xiamenmycin-oriented genetic modification based on generic enzymatic rate equations and stability constraints. Lyapunov function was used for a viability optimisation. From their kinetic model, the flux distributions for the engineered S. lividans fed on glucose and glycerol as carbon sources were calculated. They found that if the bacterium can utilise glucose simultaneously with glycerol, xiamenmycin production can be enhanced by 40% theoretically, while maintaining the same growth rate. Glycerol may increase the flux for phosphoenolpyruvate synthesis without interfering citric acid cycle. They therefore believe this study demonstrates a possible new direction for bioengineering of S. lividans.

  2. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish


    Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to

  3. Investigating chemical changes during shelf-life of thermal and high-pressure high-temperature sterilised carrot purees: A 'fingerprinting kinetics' approach. (United States)

    Kebede, Biniam T; Grauwet, Tara; Palmers, Stijn; Michiels, Chris; Hendrickx, Marc; Van Loey, Ann


    This work investigates chemical changes during shelf-life of thermally and high pressure high temperature (HPHT) sterilised carrot purees using a 'fingerprinting kinetics' approach. Fingerprinting enabled selection of Strecker aldehydes, terpenes, phenylpropanoids, fatty acid derivatives and carotenoid degradation products as volatiles clearly changing during shelf-life. Next, kinetic modelling of these volatiles was performed to compare their reaction kinetics during storage in differently sterilised samples. Immediately after processing, the Strecker aldehydes were detected at higher levels in thermally sterilised samples. During storage, the compounds increased at a comparable rate in thermally and HPHT processed samples. In contrast, immediately after processing, most of the naturally occurring terpenes and phenylpropanoids were better preserved in HPHT treated samples. Nevertheless, by the end of storage, the concentration of these compounds decreased to almost the same level in both thermal and HPHT samples (with a higher degradation rate in HPHT samples).

  4. Thermodynamic and chemical kinetic analysis of a 5 kw, compact steam reformer - PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Luis Evelio Garcia; Oliveira, Amir Antonio Martins [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], e-mail:, e-mail:


    Here we present a thermodynamic and chemical kinetic analysis of the methane steam reforming for production of 5 kw of electrical power in a PEM fuel cell. The equilibrium analysis is based on the method of element potentials to find the state of minimum Gibbs free energy for the system and provides the equilibrium concentration of the reforming products. The objective of this analysis is to obtain the range of reforming temperature, pressure and steam-methane molar ratio that results in maximum hydrogen production subjected to low carbon monoxide production and negligible coke formation. The thermal analysis provides the heat transfer rates associated with the individual processes of steam production, gas-phase superheating and reforming necessary to produce 5 kw of electrical power in a PEM fuel cell and allows for the calculation of thermal efficiencies. Then, the chemical reaction pathways for hydrogen production in steam reforming are discussed and the available chemical, adsorption and equilibrium constants are analyzed in terms of thermodynamic consistency. This analysis provides the framework for the reactor sizing and for establishing the adequate operation conditions. (author)

  5. Equilibration Kinetics and Chemical Diffusion of Indium-Doped TiO2. (United States)

    Nowotny, Janusz; Alim, Mohammad A


    The present work reports the gas/solid equilibration kinetics for In-doped TiO2 (0.4 atom % In) at elevated temperatures (1023-1273 K) in the gas phase of controlled oxygen activity [10(-13) Pa TiO2, the chemical diffusion coefficient for In-doped TiO2 exhibits a maximum at the n-p transition point. The activation energy of the chemical diffusion exhibits a decrease with temperature from 200 kJ/mol at 1023 K to an insignificant value at 1273 K. This effect is reflective of a segregation-induced electrical potential barrier blocking the transport of defects. The absolute value of the chemical diffusion coefficient for In-doped TiO2 is larger from that of pure TiO2 by a factor of approximately 10. The effect of indium on the diffusion rate is considered in terms of the associated concentration of oxygen vacancies, which are formed in order to satisfy the charge neutrality for In-doped TiO2.

  6. Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems. (United States)

    Bianca, Carlo


    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.

  7. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams (United States)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno


    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  8. Thermo-kinetic characterization and modelling of a new generation of SMC composites (United States)

    Cardinaud, R.; Boyard, N.; Le Corre, S.; Sager, M.


    Sheet Moulding Compound (SMC) materials are already extensively used in the automotive industry to manufacture semi-structural parts. In order to design and produce structural parts, the development of new SMC formulations with higher reactivity and/or containing high fibre contents is ongoing. To succeed in the optimization of the compression moulding process, it is essential to understand and to model the material behaviour and its properties. In this context, the aim of this study is to develop a thermo-kinetic model in order to be able to describe temperature fields during the compression moulding. This work is firstly focused on the characterization of thermo-physical properties according to the temperature and the degree of cure. The curing behavior is investigated in terms of the modelling kinetic reaction and the evaluation of the associated chemical shrinkage. The thermo-kinetic model is then numerically implemented by taking into account the coupling between thermal gradients and volume changes. A validation of our modelling is performed by making a comparison between results numerically calculated and those experimentally recorded thanks to the PVT-α device.

  9. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics (United States)

    Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.


    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  10. Kinetic model on coke oven gas with steam reforming

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-yuan; ZHOU Jie-min; YAN Hong-jie


    The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas with steam. The results of experiments show that the optimal conditions for methane conversion are that the molar ratio of H2O to CH4 varies from 1.1 to 1.3and the conversion temperature varies from 1 223 to 1 273 K. The methane conversion rate is more than 95% when the molar ratio ofH2O to CH4 is 1.2, the conversion temperature is above 1 223 K and the conversion time is longer than 0.75 s. Kinetic model of methane conversion was proposed. All results demonstrate that the calculated values by the kinetic model accord with the experimental data well, and the error is less than 1.5%.

  11. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest (United States)

    Cucinotta, Francis A.; Ren, Lei


    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  12. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis (United States)

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.


    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  13. Kinetic models for fermentative hydrogen production: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianlong; Wan, Wei [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)


    The kinetic models were developed and applied for fermentative hydrogen production. They were used to describe the progress of a batch fermentative hydrogen production process, to investigate the effects of substrate concentration, inhibitor concentration, temperatures, pH, and dilution rates on the process of fermentative hydrogen production, and to establish the relationship among the substrate degradation rate, the hydrogen-producing bacteria growth rate and the product formation rate. This review showed that the modified Gompertz model was widely used to describe the progress of a batch fermentative hydrogen production process, while the Monod model was widely used to describe the effects of substrate concentration on the rates of substrate degradation, hydrogen-producing bacteria growth and hydrogen production. Arrhenius model was used a lot to describe the effects of temperature on fermentative hydrogen production, while modified Han-Levenspiel model was used to describe the effects of inhibitor concentration on fermentative hydrogen production. The Andrew model was used to describe the effects of H{sup +} concentration on the specific hydrogen production rate, while the Luedeking-Piret model and its modified form were widely used to describe the relationship between the hydrogen-producing bacteria growth rate and the product formation rate. Finally, some suggestions for future work with these kinetic models were proposed. (author)

  14. Simulation of DME synthesis from coal syngas by kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Shim, H.M.; Lee, S.J.; Yoo, Y.D.; Yun, Y.S.; Kim, H.T. [Ajou University, Suwon (Republic of Korea)


    DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m{sup 3} of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steady state, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H{sub 2}/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265-275{sup o}C and 60 kg/cm{sup 2}. And DME production rate has a maximum value in the range of 1-1.5 of H{sub 2}/CO ratio in the syngas composition.

  15. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics (United States)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero


    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  16. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy. (United States)

    Schreyeck, S; Brunner, K; Kirchner, A; Bass, U; Grauer, S; Schumacher, C; Gould, C; Karczewski, G; Geurts, J; Molenkamp, L W


    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x = 0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only ≈ 75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  17. The preparation and chemical reaction kinetics of tungsten bronze thin films and nitrobenzene with and without a catalyst (United States)

    Materer, Nicholas F.; Apblett, Allen; Kadossov, Evgueni B.; Khan, Kashif Rashid; Casper, Walter; Hays, Kevin; Shams, Eman F.


    Microcrystalline tungsten bronze thin films were prepared using wet chemical techniques to reduce a tungsten oxide thin film that was prepared by thermal oxidation of a sputter deposited tungsten metal film on a quartz substrate. The crystallinity of these films was determined by X-ray diffraction and the surface was characterized by X-ray and Ultra-Violet Photoelectron spectroscopy. The total amount of hydrogen incorporated in the film was monitored using absorbance spectroscopy at 900 nm. The oxidation kinetics of the film and the hydrogenation of nitrobenzene in hexane were measured as a function of film thickness. A satisfactory fit of the resulting kinetics was obtained using a model that involves two simultaneous processes. The first one is the proton diffusion from the bulk of the film to the surface, and the second is a reaction of the surface protons with the oxidants. Finally, the dependence of the reaction rates on the presence of catalytic amounts of first row transition metals on the surface of the film was explored.

  18. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.


    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  19. Recovering kinetics from a simplified protein folding model using replica exchange simulations: a kinetic network and effective stochastic dynamics. (United States)

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M


    We present an approach to recover kinetics from a simplified protein folding model at different temperatures using the combined power of replica exchange (RE), a kinetic network, and effective stochastic dynamics. While RE simulations generate a large set of discrete states with the correct thermodynamics, kinetic information is lost due to the random exchange of temperatures. We show how we can recover the kinetics of a 2D continuous potential with an entropic barrier by using RE-generated discrete states as nodes of a kinetic network. By choosing the neighbors and the microscopic rates between the neighbors appropriately, the correct kinetics of the system can be recovered by running a kinetic simulation on the network. We fine-tune the parameters of the network by comparison with the effective drift velocities and diffusion coefficients of the system determined from short-time stochastic trajectories. One of the advantages of the kinetic network model is that the network can be built on a high-dimensional discretized state space, which can consist of multiple paths not consistent with a single reaction coordinate.

  20. XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.


    An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.

  1. A cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA) (United States)

    Bayati, Basil; Owhadi, Houman; Koumoutsakos, Petros


    We present a simple algorithm for the simulation of stiff, discrete-space, continuous-time Markov processes. The algorithm is based on the concept of flow averaging for the integration of stiff ordinary and stochastic differential equations and ultimately leads to a straightforward variation of the the well-known stochastic simulation algorithm (SSA). The speedup that can be achieved by the present algorithm [flow averaging integrator SSA (FLAVOR-SSA)] over the classical SSA comes naturally at the expense of its accuracy. The error of the proposed method exhibits a cutoff phenomenon as a function of its speed-up, allowing for optimal tuning. Two numerical examples from chemical kinetics are provided to illustrate the efficiency of the method.

  2. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sheps, Leonid; Chandler, David W.


    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  3. Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Junfeng Yang


    Full Text Available The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the chemical kinetics simulation tool: CHEMKIN-2 and the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semidetailed mechanisms for its combustion and the formation of emissions. Parametric ϕ-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O2 molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions.

  4. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report (United States)

    Curl, Robert F.; Glass, Graham P.


    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  5. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack


    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  6. New Source Model for Chemical Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    With sophisticated inversion scheme, we recover characteristics of SPE explosions such as corner frequency fc and moment M0, which are used to develop a new source model for chemical explosions.

  7. A model for recovery kinetics of aluminum after large strain

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels


    A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardnes......, comparison between the present model and a similar recently developed recovery model is made, and the result is discussed. © (2012) Trans Tech Publications, Switzerland.......A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore...

  8. Kinetic models for nucleocytoplasmic transport of messenger RNA. (United States)

    Schröder, H C; Müller, W E; Agutter, P S


    Much is known about the mechanism by which mRNAs cross the nuclear envelope (the translocation stage of nucleocytoplasmic transport), but far less is known about the preceding (intranuclear migration/release) and succeeding (cytoplasmic binding) stages. Therefore, existing information suffices for articulating detailed kinetic models of translocation, but not models for the overall mRNA transport process. In this paper, we show that simple kinetic models of translocation can (i) accommodate data about nucleocytoplasmic distributions of endogenous transcripts; (ii) predict the overall effects on these distributions of effectors such as insulin and epidermal growth factor; (iii) throw some light on the mechanism(s) of action of the HIV-1 protein Rev and produce experimentally testable predictions about this mechanism; and (iv) account for the action of influenza virus NS1 protein. However, the simplest forms of translocation models apparently fail to account for some properties of viral regulators such as HIV Rev and adenovirus E1B-E4 complex. To elucidate these topics, less narrowly focused models of mRNA transport are required, describing intranuclear binding/release as well as translocation. On the basis of our examination of translocation models, we suggest some criteria that the requisite broadly based models must satisfy.

  9. Multiensemble Markov models of molecular thermodynamics and kinetics. (United States)

    Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank


    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model.

  10. Modelling Chemical Reasoning to Predict Reactions


    Segler, Marwin H. S.; Waller, Mark P.


    The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outpe...

  11. Study on kinetic model of microwave thermocatalytic treatment of biomass tar model compound. (United States)

    Anis, Samsudin; Zainal, Z A


    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.

  12. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)


    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  13. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P


    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.

  14. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.


    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  15. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.


    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  16. A Chemical Kinetic Model of PRF Oxidation for HCCI Engine I:Comparison of existing models%适用于HCCI发动机的基础燃料化学动力学模型Ⅰ:比较现有模型

    Institute of Scientific and Technical Information of China (English)

    郑朝蕾; 张庆峰; 何祖威; 王迎


    随着HCCI燃烧技术的不断发展,燃料化学动力学机理在燃烧计算中发挥着越来越重要的作用.纵览了近年来基础燃料各种不同类型反应机理与试验研究情况,为评价现有反应机理对HCCI发动机燃烧过程的适用性,将机理模型的计算结果与HCCI燃烧相关试验进行了综合比较验证.通过4种典型基础燃料机理的计算与激波管、速压机和HCCI发动机等试验数据的比较发现,由于各反应机理构建的目的和方法不同,以及针对个别验证试验作出的参数调整,各机理在不同试验状况下性能各异,为此提出了构建适用于HCCI发动机的基础燃料简化机理的必要性.%With the development of homogenous charge compression ignition (HCCI) combustion technology, the chemical kinetic mechanism becomes more important. An review on the currently available primary reference fuels (PRF)oxidation mechanisms and experiments is discussed. The mechanisms need to be compared with experiments of HCCI combustion to evaluate the prediction in HCCI engine. Comparisons of experimental data include those from shock tube, rapid compression machine, and HCCI engine with calculated results using four typical reaction mechanisms indicate that different models from different experimental conditions are presented due to different purposes and approaches, and adjusting parameters for specified validated experiment during mechanism construction. The necessity in developing PRF reduced mechanism for HCCI combustion is addressed.

  17. Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts

    KAUST Repository

    Atanda, Luqman


    Kinetics of ethylbenzene dehydrogenation to styrene was investigated over a series of quaternary mixed oxides of Mg3Fe0.25Me0.25Al0.5 (Me=Co, Mn and Ni) catalysts prepared by calcination of hydrotalcite-like compounds and compared with commercial catalyst. The study was carried out in the absence of steam using a riser simulator at 400, 450, 500 and 550°C for reaction times of 5, 10, 15 and 20s. Mg3Fe0.25Mn0.25Al0.5 afforded the highest ethylbenzene conversion of 19.7% at 550°C. Kinetic parameters for the dehydrogenation process were determined using the catalyst deactivation function based on reactant conversion model. The apparent activation energies for styrene production were found to decrease as follows: E1-Ni>E1-Co>E1-Mn. © 2011 Elsevier B.V.

  18. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering


    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  19. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu


    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  20. A millifluidic calorimeter with InfraRed thermography for the measurement of chemical reaction enthalpy and kinetics


    Hany, Cindy; Pradere, Christophe; Toutain, Jean; Batsale, Jean-Christophe


    International audience; The aim of this work is to present an infrared calorimeter for the measurement of the kinetics and the enthalpy of high exothermic chemical reactions. The main idea is to use a millifluidic chip where the channel acts as a chemical reactor. An infrared camera is used to deduce the heat flux produced by the chemical reaction from the processing of temperature fields. Due to the size of the microchannel, a small volume of reagents (ml) is used. As the chemical reagents a...

  1. Kinetic model for microbial growth and desulphurisation with Enterobacter sp. (United States)

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin


    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  2. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.;


    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate...... anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column...

  3. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter


    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  4. A simplified stoichiometric kinetic model for estimating the concentration of reaction products in anaerobic digestion. (United States)

    Kim, Moonil; Cui, Fenghao


    Modelling the anaerobic digestion process is often complex and needs to consider many input parameters. This study simplified the modelling procedure by developing an idealized stoichiometric kinetic model that simulates the anaerobic digestion process with only a few parameters: composition coefficients (α and β), maximum substrate utilization rate (qmax), endogenous-decay coefficient (b), biodegradable fraction (fd), and temperature coefficient (Ф). We validated the model with the operating results of a pilot two-phase anaerobic digester for food wastewater disposal and calculated using the MATLAB programing software. The comparison between the experimental and model simulation results demonstrated a good agreement. The developed model correctly simulated the fate of chemicals in the anaerobic digestion process.

  5. Tribo-chemical mechanisms of copper chemical mechanical planarization (CMP) - Fundamental investigations and integrated modeling (United States)

    Tripathi, Shantanu

    In this work, copper Chemical Mechanical Planarization is identified primarily as a wear enhanced corrosion process (as opposed to the corrosion enhanced wear process assumed in existing modeling work), where intermittent abrasive action enhances the local oxidation rate, and is followed by time-dependant passivation of copper. Based on this mechanism, an integrated tribo-chemical model of material removal at the abrasive scale was developed based on oxidation of copper. This considers abrasive and pad properties, process parameters, and slurry chemistry. Three important components of this model -- the passivation kinetics of copper in CMP slurry chemicals; the mechanical properties of passive films on copper; and the interaction frequency of copper and abrasives -- are introduced. The first two components, in particular the passivation kinetics of copper, are extensively studied experimentally, while the third component is addressed theoretically. The passivation kinetics of copper (i.e. decrease in oxidation currents as passive films form on bare copper) were investigated by potential step chronoamperometry. Low cost microelectrodes were developed (first of its kind for studying copper CMP) to reduce many of the problems of traditional macroelectrodes, such as interference from capacitive charging, IR drops and low diffusion limited current. Electrochemical impedance spectroscopy (EIS) was used on copper microelectrodes in CMP slurry constituents to obtain equivalent circuit elements associated with different electrochemical phenomena (capacitive, kinetics, diffusion etc.) at different polarization potentials. The circuit elements were used to simulate chronoamperometry in a system where copper actively corrodes at anodic potentials; from the simulation and the experimental results, the current decay in this system was attributed entirely to capacitive charging. The circuit elements were also used to explain the chronoamperometry results in passivating and

  6. The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    CERN Document Server

    Visscher, Channon; Saslow, Sarah A


    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carb...

  7. Hydrocarbon emissions from lean-burn natural gas engines. Kinetic modelling and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Broe Bendtsen, A.


    Motivated by emissions of unburned fuel from natural gas engines, a detailed chemical kinetic model describing NO{sub x} sensitized oxidation of methane was developed. New methods for visualization of such complex models have been developed, based on chemometrics and explorative data analysis. They may find application in combustion chemistry and in atmospheric chemistry, where detailed kinetic models are widely used. The motivation of the project was the discovery of significant emissions of unburned fuel from natural gas engines. The thesis contains a brief summary of emission levels and the sources of these emissions. Results from experiments by the Danish Gas Technology Centre on a pilot scale engine showed that oxidation of methane may occur in an extended exhaust manifold. Based on these results experiments were initiated to obtain detailed knowledge of the governing oxidation chemistry in the exhaust manifold. A series of laboratory experiments showed that at a residence time of 200 ms the threshold temperature for oxidation of methane was lowered by 200 {kappa} from 1100 {kappa} to 900 {kappa} in the presence of NO or NO{sub 2}. Experiments with a residence time of 140 ms showed that the sensitizing effect of NO was related to a longer lag time, compared to effect of NO{sub 2}. The major product of oxidation from 900 {kappa} to 1100 {kappa} was CO. Published detailed chemical kinetic models were not able to describe these phenomena. It was attempted to modify existing kinetic models to describe this sensitization by estimation of reaction rates. A literature survey of various method for estimation of reaction rates is given, and one methods for estimation of reaction rates using Partial Least Squares regression is demonstrated, but only with moderate success. To obtain a better kinetic model, a conventional approach to the refinement of the kinetic model was assisted by visualization methods and explorative data analysis. Through this approach an existing

  8. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.


    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  9. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis

    Directory of Open Access Journals (Sweden)

    Tales Tiecher


    Full Text Available Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure. All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.

  10. Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network (United States)

    Danielson, Thomas; Savara, Aditya; Hin, Celine

    Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.

  11. Dynamics and Kinetics Study of "In-Water" Chemical Reactions by Enhanced Sampling of Reactive Trajectories. (United States)

    Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin


    High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics.

  12. Langrangian model of nitrogen kinetics in the Chattahoochee river (United States)

    Jobson, H.E.


    A Lagrangian reference frame is used to solve the convection-dispersion equation and interpret water-quality obtained from the Chattahoochee River. The model was calibrated using unsteady concentrations of organic nitrogen, ammonia, and nitrite plus nitrate obtained during June 1977 and verified using data obtained during August 1976. Reaction kinetics of the cascade type are shown to provide a reasonable description of the nitrogen-species processes in the Chattahoochee River. The conceptual model is easy to visualize in the physical sense and the output includes information that is not easily determined from an Eulerian approach, but which is very helpful in model calibration and data interpretation. For example, the model output allows one to determine which data are of most value in model calibration or verification.

  13. Kinetic model of ductile iron solidification with experimental verification

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz


    Full Text Available A solidification model for ductile iron, including Weibull formula for nodule count has been presented. From this model, the following can be determined: cooling curves, kinetics of austenite and eutectic nucleation, austenite and eutectic growth velocity, volume fraction, distribution of Si and P both in austenite and eutectic grain with distribution in casting section.In the developed model of nodular graphite iron casting solidification, the correctness of the mathematical model has been experimentally verified in the range of the most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practically no data on so confronted process model and simulation program.

  14. 7-lump kinetic model for residual oil catalytic cracking

    Institute of Scientific and Technical Information of China (English)

    XU Ou-guan; SU Hong-ye; MU Sheng-jing; CHU Jian


    In this paper a novel 7-lump kinetic model is proposed to describe residual oil catalytic cracking, in which coke is lumped separately for accurate prediction. The reactor block is modeled as a combination of an ideal pipe flow reactor (PFR)and a continuously stirred tank reactor (CSTR). Unit factors are designed to correct the deviation between model predictions and practical plant data and tuned by modified Levenberg-Marquardt algorithm. The parameters estimated are reliable and good agreement between the model predictions and plant observations is observed. The model helps us get good insight into the performance of an industrial riser reactor that would be useful for optimization of residual oil catalytic cracking.

  15. Kinetic equations modelling wealth redistribution: a comparison of approaches. (United States)

    Düring, Bertram; Matthes, Daniel; Toscani, Giuseppe


    Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply, e.g., to the market model with risky investments [S. Cordier, L. Pareschi, and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.

  16. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics. (United States)

    Cerar, Janez


    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model.

  17. Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetic, and Rate Rule Optimizations for 2-Methylhexane

    KAUST Repository

    Mohamed, Samah


    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important to investigate the combustion behavior of real fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracies in certain portions of the models. This study focuses on updating thermodynamic data and the kinetic reaction mechanism for a gasoline surrogate component, 2-methylhexane, based on recently published thermodynamic group values and rate rules derived from quantum calculations and experiments. Alternative pathways for the isomerization of peroxy-alkylhydroperoxide (OOQOOH) radicals are also investigated. The effects of these updates are compared against new high-pressure shock tube and rapid compression machine ignition delay measurements. It is shown that rate constant modifications are required to improve agreement between kinetic modeling simulations and experimental data. We further demonstrate the ability to optimize the kinetic model using both manual and automated techniques for rate parameter tunings to improve agreement with the measured ignition delay time data. Finally, additional low temperature chain branching reaction pathways are shown to improve the model’s performance. The present approach to model development provides better performance across extended operating conditions while also strengthening the fundamental basis of the model.

  18. Kinetic Modeling of Plasma Methane Conversion Using Gliding Arc

    Institute of Scientific and Technical Information of China (English)

    Antonius Indarto; Jae-Wook Choi; Hwaung Lee; Hyung Keun Song


    Plasma methane (CH4) conversion in gliding arc discharge was examined. The result data of experiments regarding the performance of gliding arc discharge were presented in this paper. A simulation which is consisted some chemical kinetic mechanisms has been provided to analyze and describe the plasma process. The effect of total gas flow rate and input frequency refers to power consumption have been studied to evaluate the performance of gliding arc plasma system and the reaction mechanism of decomposition.Experiment results indicated that the maximum conversion of CH4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction was occurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene (C2H2). The plasma reaction of methane conversion was exothermic reaction which increased the product stream temperature around 30-50 ℃.

  19. Kinetic modelling of cadmium and lead removal by aquatic mosses

    Directory of Open Access Journals (Sweden)

    R. J. E. Martins


    Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.

  20. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark (United States)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.


    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  1. Kinetic model for astaxanthin aggregation in water-methanol mixtures (United States)

    Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo


    The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.

  2. Reduction of NO by n-butane in a JSR: experiments and kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dagaut, P.; Luche, J.; Cathonnet, M. [CNRS Laboratoire de Combustion et Systemes Reactifs, Orleans (France)


    A study of the reduction of nitric oxide (NO) by n-butane, in simulated conditions of a reburning zone, has been undertaken in a fused silica jet-stirred reactor operating at 1 atm. The temperatures ranged from 1100 to 1450 K, the initial mole fraction of NO was 1000 ppm, and that of n-butane was 2000-2200 ppm. The equivalence ratio was varied from 0.68 to 2. It was demonstrated that the reduction of NO varies as the temperature and that for a given temperature, a maximum NO reduction occurs, slightly above stoichiometric conditions. Generally, the present results follow those obtained in previous studies involving simple hydrocarbons or natural gas as reburn-fuel. The oxidation of n-butane was also studied without NO in the same conditions of temperature, pressure, and residence time. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (892 reversible reactions and 113 species). An overall reasonable agreement between the present data and the modeling was obtained. Furthermore, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethane, ethylene, a natural gas blend (methane-ethane 10:1), acetylene, propene and propane. According to this study, NO reduction by n-butane mainly occurs via reaction with ketenyl radical (HCCO). 16 refs., 6 figs.

  3. Reduction of NO by propane in a JSR at 1 atm: experimental and kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dagaut, P.; Luche, J.; Cathonnet, M. [CNRS, Laboratoire de Combustin et Systemes Reactifs, Orleans (France)


    The reduction of nitric oxide( NO) by propane in simulated conditions of the reburning zone has been studied in a fused silica jets-stirred reactor operating at 1 atm. The temperatures were in the range from 1150 to 1400 K. In the present experiments, the initial mole fraction of NO was 1000 ppm, that of propane was 2490-2930 ppm. The equivalence ratio has been varied fro 0.6 to 2. It was demonstrated that the reduction of NO varies with the temperature and that for a given temperature, a maximum O-reduction occurs slightly above stoichiometric conditions. The present results generally follow those obtained in previous studies involving simple hydrocarbons or natural gas as reburn fuel. The neat oxidation of propane was also studied in the same conditions of temperature, pressure and residence time. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (89 reversible reactions and 113 species). An overall reasonable agreement between the present data and the modeling was obtained. Also, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethane, ethylene, a natural gas blend (methane-ethane 10:1). According to this study, the main route to NO-reduction by propane involves the ketenyl radical. 17 refs., 6 figs.

  4. Level-lumping method for the modeling of CO2 vibrational kinetics (United States)

    Berthelot, Antonin; Bogaerts, Annemie; University of Antwerp, Plasmant Team


    The conversion of greenhouse gases, especially CO2, into value-added chemicals is gaining a very large interest among the scientific and industrial communities. It is known that the excitation of the asymmetric vibrational mode of CO2 is one of the most important processes to achieve high energy efficiencies, thus making the CO2 kinetics very complex. Due to this complexity, the only models that have been developed so far were zero-dimensional models, considering only the variations over time. These models require strong approximations on the geometry of the reactor. In order to reduce the calculation time and to allow the modeling of complex plasma problems in 2D or 3D geometries, we have simplified the chemistry set of CO2 and developed a lumped-levels model for the vibrational kinetics. It was found that a 3-groups model gives a good agreement with the state-to-state model at pressures of 100mbar and above, at the conditions under study. The important dissociation and recombination mechanisms of CO2 have also been investigated. This lumped-levels model is being implemented in a 2D self-consistent microwave plasma code. This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 606889.

  5. Kinetic Model for 1D aggregation of yeast ``prions'' (United States)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv


    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  6. Kinetic models for the VASIMR thruster helicon plasma source (United States)

    Batishchev, Oleg; Molvig, Kim


    Helicon gas discharge [1] is widely used by industry because of its remarkable efficiency [2]. High energy and fuel efficiencies make it very attractive for space electrical propulsion applications. For example, helicon plasma source is used in the high specific impulse VASIMR [3] plasma thruster, including experimental prototypes VX-3 and upgraded VX-10 [4] configurations, which operate with hydrogen (deuterium) and helium plasmas. We have developed a set of models for the VASIMR helicon discharge. Firstly, we use zero-dimensional energy and mass balance equations to characterize partially ionized gas condition/composition. Next, we couple it to one-dimensional hybrid model [6] for gas flow in the quartz tube of the helicon. We compare hybrid model results to a purely kinetic simulation of propellant flow in gas feed + helicon source subsystem. Some of the experimental data [3-4] are explained. Lastly, we discuss full-scale kinetic modeling of coupled gas and plasmas [5-6] in the helicon discharge. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev et al, J. Plasma Phys. 61, part II, 347, 1999; [6] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, -14p, 2001.

  7. Economic inequality and mobility in kinetic models for social sciences (United States)

    Letizia Bertotti, Maria; Modanese, Giovanni


    Statistical evaluations of the economic mobility of a society are more difficult than measurements of the income distribution, because they require to follow the evolution of the individuals' income for at least one or two generations. In micro-to-macro theoretical models of economic exchanges based on kinetic equations, the income distribution depends only on the asymptotic equilibrium solutions, while mobility estimates also involve the detailed structure of the transition probabilities of the model, and are thus an important tool for assessing its validity. Empirical data show a remarkably general negative correlation between economic inequality and mobility, whose explanation is still unclear. It is therefore particularly interesting to study this correlation in analytical models. In previous work we investigated the behavior of the Gini inequality index in kinetic models in dependence on several parameters which define the binary interactions and the taxation and redistribution processes: saving propensity, taxation rates gap, tax evasion rate, welfare means-testing etc. Here, we check the correlation of mobility with inequality by analyzing the mobility dependence from the same parameters. According to several numerical solutions, the correlation is confirmed to be negative.

  8. A Microscale Approach to Chemical Kinetics in the General Chemistry Laboratory: The Potassium Iodide Hydrogen Peroxide Iodine-Clock Reaction (United States)

    Sattsangi, Prem D.


    A microscale laboratory for teaching chemical kinetics utilizing the iodine clock reaction is described. Plastic pipets, 3 mL volume, are used to store and deliver precise drops of reagents and the reaction is run in a 24 well plastic tray using a total 60 drops of reagents. With this procedure, students determine the rate of reaction and the…

  9. Is Case-Based Learning an Effective Teaching Strategy to Challenge Students' Alternative Conceptions regarding Chemical Kinetics? (United States)

    Yalcinkaya, Eylem; Tastan-Kirik, Ozgecan; Boz, Yezdan; Yildiran, Demet


    Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students…

  10. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris


    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  11. Kinetic modelling of cytochrome c adsorption on SBA-15. (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi


    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  12. Investigation of kinetics model of dc reactive sputtering

    Institute of Scientific and Technical Information of China (English)

    朱圣龙; 王福会; 吴维叓


    A novel physical sputtering kinetics model for reactive sputtering is presented.Reactive gas gettering effects and interactions among the characteristic parameters have been taken into account in the model.The data derived from the model accorded fairly well with experimental results.The relationship between the values of initial oxide coverage on the target and the ready states was depicted in the model.This relationship gives reasons for the difference of the threshold of reactive gas fluxes (Q) from the metal sputtering region to the oxide sputtering region and in reverse direction.The discontinuities in oxide coverage on the target surface (θ) versus reactive gas fluxes (Q) are referred to as the effects of reactive gas partial pressure (p) upon the forming rates of oxide on the surfaces of target (V0).The diversity of the oxygen flux threshold results from the variance of the initial values of oxide coverage on target.

  13. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation (United States)

    Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui


    Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h‑1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90.

  14. Study on Lumped Kinetic Model for FDFCC II. Validation and Prediction of Model

    Institute of Scientific and Technical Information of China (English)

    Wu Feiyue; Weng Huixin; Luo Shixian


    On the basis of formulating the 9-lump kinetic model for gasoline catalytic upgrading and the 12-lump kinetic model for heavy oil FCC, this paper is aimed at development of a combined kinetic model for a typical FDFCC process after analyzing the coupled relationship and combination of these two models. The model is also verified by using commercial data, the results of which showed that the model can better predict the product yields and their quality, with the relative errors between the main products of the unit and commercial data being less than five percent. Furthermore, the combined model is used to predict and optimize the operating conditions for gasoline riser and heavy oil riser in FDFCC. So this paper can offer some guidance for the processing of FDFCC and is instructive to model research and development of such multi-reactor process and combined process.

  15. Adequacy indices for dialysis in acute renal failure: kinetic modeling. (United States)

    Debowska, Malgorzata; Lindholm, Bengt; Waniewski, Jacek


    Many aspects of the management of renal replacement therapy in acute renal failure (ARF), including the appropriate assessment of dialysis adequacy, remain unresolved, because ARF patients often are not in a metabolic steady state. The aim of this study was to evaluate a system of adequacy indices for dialysis in ARF patients using urea and creatinine kinetic modeling. Kinetic modeling was performed for two different fictitious patients (A and B) with characteristics described by the average parameters for two patient groups and for two blood purification treatments: sustained low efficiency daily dialysis (SLEDD) in Patient A and continuous venovenous hemofiltration (CVVH) in Patient B, based on data from a clinical report. Urea and creatinine generation rates were estimated according to the clinical data on the solute concentrations in blood. Then, using estimated generation rates, two hypothetical treatments were simulated, CVVH in Patient A and SLEDD in Patient B. KT/V, fractional solute removal (FSR) and equivalent renal clearance (EKR) were calculated according to the definitions developed for metabolically unstable patients. CVVH appeared as being more effective than SLEDD because KT/V, FSR, and EKR were higher for CVVH than SLEDD in Patients A and B. Creatinine KT/V, FSR, and EKR were lower and well correlated to the respective indices for urea. Urea and creatinine generation rates were overestimated more than twice in Patient A and by 30-40% in Patient B if calculated assuming the metabolically stable state than if estimated by kinetic modeling. Adequacy indices and solute generation rates for ARF patients should be estimated using the definition for unsteady metabolic state. EKR and FSR were higher for urea and creatinine with CVVH than with SLEDD, because of higher K.T and minimized compartmental effects for CVVH.

  16. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability (United States)

    Sourbron, S. P.; Buckley, D. L.


    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  17. Kinetics of solid state phase transformations: Measurement and modelling of some basic issues

    Indian Academy of Sciences (India)

    S Raju; E Mohandas


    A brief review of the issues involved in modelling of the solid state transformation kinetics is presented. The fact that apart from the standard thermodynamic parameters, certain path variables like heating or cooling rate can also exert a crucial influence on the kinetic outcome is stressed. The kinetic specialties that are intrinsic to phase changes proceeding under varying thermal history are enumerated. A simple and general modelling methodology for understanding the kinetics of non-isothermal transformations is outlined.

  18. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion. (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu


    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  19. Mass action realizations of reaction kinetic system models on various time scales

    Energy Technology Data Exchange (ETDEWEB)

    Hangos, K M; Szederkenyi, G, E-mail:, E-mail: [Process Control Research Group, Computer and Automation Reseach Institute, Kende u. 13-17, H-1111 Budapest (Hungary)


    Complex chemical reaction networks often exhibit different dynamic behaviour on different time scales. A combined approach is proposed in this work for determining physically meaningful mass action realizations of complex chemical reaction networks that describe its dynamic behaviour on different time scales. This is achieved by appropriately reducing the detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the particular time scale, and then searching for an optimal realization using mixed integer linear programing. Furthermore, the relationship between the properties (reversibility, deficiency, stability) of the obtained realizations of the same system on different time scales are also investigated and related to the same properties of the detailed overall model. It is shown that the reduced models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as oscillations, when the original detailed is globally asymptotically stable. The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified versions of the well known Brusselator model have also been investigated and presented as a case study.

  20. A generic 3D kinetic model of gene expression (United States)

    Zhdanov, Vladimir


    Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.