WorldWideScience

Sample records for chemical hydration enthalpies

  1. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium-Nitrate Example.

    Science.gov (United States)

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L; Skanthakumar, S; Soderholm, L

    2017-12-13

    The influence of countercations (A n+ ) in directing the composition of monomeric metal-ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)-nitrate molecular compounds obtained by evaporating acidic aqueous Th-nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th-nitrato complexes but also influences the composition of the Th-nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th-nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+ , opens a new avenue for the design and synthesis of targeted metal-ligand complexes.

  2. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    K. Kubatko; K. Helean; A. Navrotsky; P.C. Burns

    2005-05-11

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO{sub 2}){sub 4}O(OH){sub 6}](H{sub 2}O){sub 5}, metaschoepite; {beta}-UO{sub 2}(OH){sub 2}; CaUO{sub 4}; Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 8}, becquerelite; Ca(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}(H{sub 2}O){sub 2}; Na(UO{sub 2})O(OH), clarkeite; Na{sub 2}(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 7}, the sodium analogue of compreignacite and Pb{sub 3}(UO{sub 2}){sub 8}O{sub 8}(OH){sub 6}(H{sub 2}O){sub 2}, curite. The enthalpy of formation from the binary oxides, {Delta}H{sub f-ox}, at 298 K was calculated for each compound from the respective drop solution enthalpy, {Delta}H{sub ds}. The standard enthalpies of formation from the elements, {Delta}H{sub f}{sup o}, at 298 K are -1791.0 {+-} 3.2, -1536.2 {+-} 2.8, -2002.0 {+-} 3.2, -11389.2 {+-} 13.5, -6653.1 {+-} 13.8, -1724.7 {+-} 5.1, -10936.4 {+-} 14.5 and -13163.2 {+-} 34.4 kJ mol{sup -1}, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

  3. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2018-01-01

    The swapping of methane with carbon dioxide in hydrate has been proposed as a potential strategy for geologic sequestration of carbon dioxide and production of methane from natural hydrate deposits. However, this strategy requires a better understanding of the thermodynamic characteristics of CH4...... and CO2 hydrate as well as (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates (since (CO2 + N2) gas mixture is often used as the swapping gas), along with the thermal physics property changes during gas exchange. In this study, a high pressure micro-differential scanning calorimetry (HP μ-DSC) was performed...... on synthesized gas hydrates to investigate the dissociation behavior of various hydrates. The hydrate dissociation enthalpies were determined by both μ-DSC measurement and Clapeyron equation. For the single guest molecule hydrate system, the average dissociation enthalpies of CH4 hydrate and CO2 hydrate measured...

  4. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  5. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism.

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-04-30

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h ≈ 0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in a significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding.

  6. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  7. Crystal structures of highly simplified BPTIs provide insights into hydration-driven increase of unfolding enthalpy.

    Science.gov (United States)

    Islam, Mohammad Monirul; Yohda, Masafumi; Kidokoro, Shun-Ichi; Kuroda, Yutaka

    2017-03-07

    We report a thermodynamic and structural analysis of six extensively simplified bovine pancreatic trypsin inhibitor (BPTI) variants containing 19-24 alanines out of 58 residues. Differential scanning calorimetry indicated a two-state thermal unfolding, typical of a native protein with densely packed interior. Surprisingly, increasing the number of alanines induced enthalpy stabilization, which was however over-compensated by entropy destabilization. X-ray crystallography indicated that the alanine substitutions caused the recruitment of novel water molecules facilitating the formation of protein-water hydrogen bonds and improving the hydration shells around the alanine's methyl groups, both of which presumably contributed to enthalpy stabilization. There was a strong correlation between the number of water molecules and the thermodynamic parameters. Overall, our results demonstrate that, in contrast to our initial expectation, a protein sequence in which over 40% of the residues are alanines can retain a densely packed structure and undergo thermal denaturation with a large enthalpy change, mainly contributed by hydration.

  8. Absolute ion hydration enthalpies from absolute hardness and some VBT relationships

    Science.gov (United States)

    Kaya, Savaş; Fernandes de Farias, Robson

    2018-01-01

    In the present work, absolute hydration enthalpies are calculated from ion absolute hardness for a series of +1 and -1 ions. The calculated values are compared with those previously reported (Housecroft, 2017) [2] and relationships between Vm-1/3 and absolute hardness are stablished. The following empirical equations have been derived, for cations and anions, respectively: ΔhydHo = -(9.645 η+ + 245.930) and ΔhydHo = -(64.601 η- + 12.321). In such equations, η+ and η- are the absolute hardness. It is shown that for d block monocations (Cu+, Ag+ and Au+), hydration enthalpy is closely related with Clementi effective nuclear charge by the equation: ΔhydHo = -(9.645 η+ + 245.930) (Zeff/(n - 1)), where n is the main quantum number. Furthermore, is shown that a typical VBT parameter (Vm-1/3) is related with η+ and η- values and so, with the energies of the frontier orbitals, that is, is stablished a direct relationship between a structural parameter available by X-ray data and the energy of atomic/molecular orbitals.

  9. Hydration of lysozyme: the protein-protein interface and the enthalpy-entropy compensation.

    Science.gov (United States)

    Kocherbitov, Vitaly; Arnebrant, Thomas

    2010-03-16

    Water sorption isotherms of proteins are usually interpreted with such models as BET or GAB that imply the formation of multilayers at solid-gas interface. However, this approach is not applicable to globular proteins such as humid lysozyme where a solid-gas interface does not exist. Another popular approach is the D'Arcy-Watt model, where besides the formation of multilayers the heterogeneity of energies of sorption sites of proteins is taken into account. Here we present sorption calorimetric data on the hydration of lysozyme that confirms the existence of the heterogeneity. The magnitude of the heterogeneity is, however, lower than one can expect on the basis of the existence of a solid-gas interface. Moreover, the calorimetric data show a strong enthalpy-entropy compensation that leads to almost constant effective free energy of hydration in the activity range normally used for fitting the data to sorption models. This allows the use of the Langmuir equation for the fitting of the initial part of the sorption isotherm of lysozyme. Assuming the formation of a monolayer of water at the protein-protein interface, one can estimate the size of the lysozyme molecules from the sorption isotherm. The result of this estimation is in good agreement with the structural data on lysozyme, which supports the presented approach.

  10. Adsorption Enthalpies of Hydrogen on Chemically Enhanced Carbon Nanospaces

    Science.gov (United States)

    Gillespie, Andrew; Dohnke, Elmar; Schaeperkoetter, Joseph; Stalla, David; Pfeifer, Peter

    2014-03-01

    Chemical functionalization of carbon nanopore spaces has been shown to significantly increase the differential enthalpy of adsorption of hydrogen (ca. 9kJ/mol). This improved surface interaction corresponds to an increased density of the adsorbed film. Functionalized carbon samples have been produced through KOH activation, deposition of decaborane, and high temperature annealing. Hydrogen sorption measurements have shown significant improvements to stored film densities and binding energies. In this talk, a systematic study of the effect that boron concentration has on the samples' pore structures, binding energies, surface excess concentrations, and volumetric storage capacities is presented. Work supported by DOE-EERE, Award No. DE-FG36-08GO18142.

  11. Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins.

    Science.gov (United States)

    Schauperl, Michael; Podewitz, Maren; Ortner, Teresa S; Waibl, Franz; Thoeny, Alexander; Loerting, Thomas; Liedl, Klaus R

    2017-09-19

    Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.

  12. Solvation enthalpy and the thermodynamics of hydration of trans-cyclohexyl-1,4-diamine and cis-cyclohexyl-1,2-diamine

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Luciana I.N.; Jesus, A.J. Lopes [Department of Chemistry, Rua Larga 3004-535, University of Coimbra (Portugal); Esteves de Castro, R.A. [Faculty of Pharmacy, Rua do Norte 3000-295, University of Coimbra (Portugal); Teixeira, M. Helena S.F. [Department of Chemistry, Rua Larga 3004-535, University of Coimbra (Portugal); Canotilho, Joao [Faculty of Pharmacy, Rua do Norte 3000-295, University of Coimbra (Portugal); Eusebio, M. Ermelinda S. [Department of Chemistry, Rua Larga 3004-535, University of Coimbra (Portugal)], E-mail: quierme@ci.uc.pt

    2007-10-15

    The enthalpy of solution of trans-cyclohexyl-1,4-diamine and cis-cyclohexyl-1,2-diamine in water was determined by calorimetry. The enthalpy of hydration was determined from this quantity and from the enthalpy of sublimation/vaporization presented in another paper by the authors. Considering the solvation process resulting from cavity creation in the solvent and variation of solute conformation transfer steps, the enthalpy corresponding to solute-solvent interaction was estimated. The entropies of solvation and interaction were calculated from the values given for the enthalpies in the present paper and those available for the Gibbs free energies.

  13. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.

    Science.gov (United States)

    Athawale, Manoj V; Sarupria, Sapna; Garde, Shekhar

    2008-05-08

    Salts and additives can significantly affect the strength of water-mediated interactions in solution. We present results from molecular dynamics simulations focused on the thermodynamics of hydrophobic hydration, association, and the folding-unfolding of a hydrophobic polymer in water and in aqueous solutions of NaCl and of an osmolyte trimethylamine oxide (TMAO). It is known that addition of NaCl makes the hydration of hydrophobic solutes unfavorable and, correspondingly, strengthens their association at the pair as well as the many-body level (Ghosh, T.; Kalra, A.; Garde, S. J. Phys. Chem. B 2005, 109, 642), whereas the osmolyte TMAO has an almost negligible effect on the hydrophobic hydration and association (Athawale, M. V.; Dordick, J. S.; Garde, S. Biophys. J. 2005, 89, 858). Whether these effects are enthalpic or entropic in origin is not fully known. Here we perform temperature-dependent simulations to resolve the free energy into entropy and enthalpy contributions. We find that in TMAO solutions, there is an almost precise entropy-enthalpy compensation leading to the negligible effect of TMAO on hydrophobic phenomena. In contrast, in NaCl solutions, changes in enthalpy dominate, making the salt-induced strengthening of hydrophobic interactions enthalpic in origin. The resolution of total enthalpy into solute-solvent and solvent-solvent terms further shows that enthalpy changes originate primarily from solvent-solvent energy terms. Our results are consistent with experimental data on the hydration of small hydrophobic solutes by Ben-Naim and Yaacobi (Ben-Naim, A.; Yaacobi, M. J. Phys. Chem. 1974, 78, 170). In combination with recent work by Zangi, Hagen, and Berne (Zangi, R.; Hagen, M.; Berne, B. J. J. Am. Chem. Soc. 2007, 129, 4678) and the experimental data on surface tensions of salt solutions by Matubayasi et al. (Matubayasi, N.; Matsuo, H.; Yamamoto, K.; Yamaguchi, S.; Matuzawa, A. J. Colloid Interface Sci. 1999, 209, 398), our results highlight

  14. Formation of nitric acid hydrates - A chemical equilibrium approach

    Science.gov (United States)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  15. Case study of enthalpy-entropy noncompensation

    Science.gov (United States)

    Graziano, Giuseppe

    2004-03-01

    Enthalpy-entropy noncompensation characterizes the relative changes in the hydration thermodynamic functions upon "transforming" ethane into fluoromethane, chloromethane, bromomethane, and iodomethane. An analysis grounded on a simple statistical mechanical theory of hydration allows a plausible rationalization of such enthalpy-entropy noncompensation. It is shown that increasing the strength of solute-water attractive interactions modifying the chemical nature of a part of the solute molecule, but not its size, is a largely noncompensating process for the hydration of noncharged and nonhydrogen bonding species, and dominates the compensating contribution coming from the reorganization of water H bonds.

  16. The dependence of phase change enthalpy on the pore structure and interfacial groups in hydrated salts/silica composites via sol-gel.

    Science.gov (United States)

    Wu, Yuping; Wang, Tao

    2015-06-15

    It was found that the procedures for incorporating hydrated salts into silica, including mixing with sol in an instant (S1 procedure), mixing with sol via drop by drop (S2 procedure) and mixing until the sol forming the gel (S3 procedure), had pronounced effects on the phase change enthalpy of hydrated salts/silica composite via sol-gel process. The discrepancy of phase change enthalpies of the composites with the same content of hydrated salts can be as high as 40 kJ/kg. To unveil the mechanism behind, the pore structure of silica matrix and interfacial functional groups were investigated extensively. It was revealed that different incorporation procedures resulted in distinct pore structure of silica matrix and different intensities of interfacial Si-OH groups. The S3 procedure was beneficial to induce the silica matrix with bigger pore size and fewer Si-OH groups. Consequently, the phase change enthalpy of the hydrated salts/silica composite prepared by this procedure was the highest because of its lower size confinement effects and weaker adsorption by Si-OH groups. This study will provide insight into the preparation of shape-stabilized phase change materials for thermal energy storage applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An improved cluster pair correlation method for obtaining the absolute proton hydration energy and enthalpy evaluated with an expanded data set.

    Science.gov (United States)

    Donald, William A; Williams, Evan R

    2010-10-21

    An improved cluster pair correlation method that is based on the method originally introduced by Tuttle et al. ( Tuttle et al. J. Phys. Chem. A 2002 , 106 , 925 - 932 ) was developed and evaluated using a significantly larger data set than used previously. With this larger data set, values for the absolute proton hydration free energy of -259.3 and -265.0 kcal/mol were obtained using the original and improved method, respectively. The former value is ∼4.5 kcal/mol less negative than previously reported values obtained with the same method but with smaller data sets. The dependence of this value on data set size indicates that the uncertainty in the original method may be greater than previously realized. The improved method has the advantages of higher precision, and the effects of cluster size on the proton hydration free energy and enthalpy values can be more readily evaluated. Data for ions with extreme pK(a)s, many of which were included in previous estimates of the proton hydration free energy, were found to be unreliable and were eliminated from the extended data set. There is only a subtle effect of cluster size on the Gibbs free energy values, and within the limits of the approximation inherent in the cluster pair correlation method, the "best" value for the standard absolute proton hydration free energy obtained with this new method and larger data set is -263.4 kcal/mol (average for clusters with 4-6 water molecules). The absolute proton hydration enthalpy values decrease from -273.1 to -275.3 kcal/mol with increasing cluster size (one to six water molecules, respectively). This trend, along with an anomalously high value for the absolute proton hydration entropy, indicates that the enthalpy obtained with this method may not have converged for these relatively small clusters.

  18. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...... seven days, dilatometers were manually recorded during at least 56 days. The dispersion model was applied to fit chemical shrinkage results and to estimate the maximum (or ultimate) value for calculation of degree of hydration. Except for a pure Portland cement best fits were obtained by the general...

  19. D{sub 2}O−H{sub 2}O solvent isotope effects on the enthalpies of bicaret hydration and dilution of its aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeniy V., E-mail: evi@isc-ras.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation); Batov, Dmitriy V. [Incorporated Physicochemical Center of Solution Researches, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo (Russian Federation); Ivanovo' s State University of Chemistry and Technology, 7 Sheremetevsky Ave, 153000 Ivanovo (Russian Federation); Gazieva, Galina A.; Kravchenko, Angelina N. [Laboratory of Nitrogen-containing Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 199119 Moscow (Russian Federation); Abrosimov, Vladimir K. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation)

    2014-08-20

    Graphical abstract: - Highlights: • Enthalpies of solution of bicaret (tetraethylglycoluril) in H{sub 2}O and D{sub 2}O were measured. • D{sub 2}O–H{sub 2}O enthalpy-isotopic effect is negative and decreasing with temperature. • Enthalpic coefficients h{sub 22} for pairwise solute–solute interactions were derived. • Quantity of h{sub 22} is negative and becoming the more negative in heavy water. • Prevailingly hydrophobic hydration of bicaret is weakened with rising temperature. - Abstract: The molar enthalpies of solution of bicaret or 2,4,6,8-tetraethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione in ordinary (H{sub 2}O) and heavy (D{sub 2}O) water at (278.15, 288.15, 298.15, 308.15, and 318.15) K as well as the enthalpies for dilution of its H/D isotopically distinguishable aqueous solutions at 298.15 K were measured calorimetrically. The standard (at infinite dilution) molar enthalpies and heat capacities of solution, and the enthalpic coefficients for pair (h{sub 22}) and triplet (h{sub 222}) interactions between hydrated solute molecules, along with D{sub 2}O–H{sub 2}O solvent isotope effects (IEs) on the studied quantities were computed. The enthalpic effects of bicaret dissolution and corresponding IEs were found to be negative and decreasing in magnitude with increasing temperature. On the contrary, the h{sub 22} and h{sub 222} values as well as IEs on them were found to be positive. These facts indicate that the bicaret hydration being predominantly hydrophobic is enhanced in the D{sub 2}O medium. The hydration behavior of the solute considered was discussed in comparison with that for mebicar or 2,4,6,8-tetramethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione using the previously obtained data.

  20. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    Science.gov (United States)

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  1. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    been determined over the temperature range 15-60 "C as 6.3 f 0.6 kcal/mol(26.4 f 2.5 kJ/mol). From this value and the activation energy of the reverse reaction, the ea; enthalpy of formation AHf = -32.6 f 1.6 kcal/mol (-136.4 f 6.7 kJ/mol) and its standard entropy So = 16.7 f 5.4 cal/(mol deg) (69.8 f...... 22.5 J/(mol deg)) were calculated. The high entropy of solvation A& = 11.7 f 5.4 cal/(mol deg) (49 22.6 J/(mol deg)) when electrons are transferred from gas phase into aqueous solution indicates that the hydrated electron is a structure breaker....

  2. D{sub 2}O–H{sub 2}O solvent isotope effects on the enthalpy of 1,1,3,3-tetramethyl-2-thiourea hydration at temperatures from (278.15 to 313.15) K and ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeniy V., E-mail: evi_ihrras@mail.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Batov, Dmitriy V. [Incorporated Physical and Chemical Center of Solution Researches, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Ivanovo’s State University of Chemistry and Technology, 7 Sheremetevsky Av., 153000 Ivanovo (Russian Federation); Abrosimov, V.K. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation)

    2014-08-20

    Highlights: • Enthalpies of solution of 1,1,3,3-tetramethyl-2-thiourea in H{sub 2}O and D{sub 2}O were measured. • Dissolution process becomes increasingly endothermic as the temperature is rising. • Enthalpy-isotopic effect undergoes a negative-to-positive sign inversion at 304 K. • Positive heat capacity of dissolution increases significantly, going from H{sub 2}O to D{sub 2}O. • Hydration of solute, being prevailingly hydrophobic, is weakened with temperature. - Abstract: The enthalpies of solution of 1,1,3,3-tetramethyl-2-thiourea (TMTU) in ordinary (H{sub 2}O) and heavy (D{sub 2}O) water were measured at (278.15, 283.15, 288.15, 298.15, and 313.15) K and atmospheric pressure. Standard molar enthalpies and heat capacities of solution and hydration, together with D{sub 2}O–H{sub 2}O solvent isotope effects (IEs) on these quantities, were calculated. It was established that, unlike the process of forming aqueous 1,1,3,3-tetramethyl-2-urea (TMU), the dissolution of TMTU in both H{sub 2}O and D{sub 2}O is an endothermic effect over the whole temperature range studied, and the standard enthalpy-isotopic effect undergoes a negative-to-positive sign inversion nearby of T = 304 K. Going from TMTU to TMU, the standard heat capacity of solution (hydration) and corresponding IE become less positive.

  3. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  4. A millifluidic calorimeter with InfraRed thermography for the measurement of chemical reaction enthalpy and kinetics

    OpenAIRE

    Hany, Cindy; Pradere, Christophe; Toutain, Jean; Batsale, Jean-Christophe

    2012-01-01

    International audience; The aim of this work is to present an infrared calorimeter for the measurement of the kinetics and the enthalpy of high exothermic chemical reactions. The main idea is to use a millifluidic chip where the channel acts as a chemical reactor. An infrared camera is used to deduce the heat flux produced by the chemical reaction from the processing of temperature fields. Due to the size of the microchannel, a small volume of reagents (ml) is used. As the chemical reagents a...

  5. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Enthalpy-Entropy Compensation Effect in Chemical Kinetics and Experimental Errors: A Numerical Simulation Approach.

    Science.gov (United States)

    Perez-Benito, Joaquin F; Mulero-Raichs, Mar

    2016-10-06

    Many kinetic studies concerning homologous reaction series report the existence of an activation enthalpy-entropy linear correlation (compensation plot), its slope being the temperature at which all the members of the series have the same rate constant (isokinetic temperature). Unfortunately, it has been demonstrated by statistical methods that the experimental errors associated with the activation enthalpy and entropy are mutually interdependent. Therefore, the possibility that some of those correlations might be caused by accidental errors has been explored by numerical simulations. As a result of this study, a computer program has been developed to evaluate the probability that experimental errors might lead to a linear compensation plot parting from an initial randomly scattered set of activation parameters (p-test). Application of this program to kinetic data for 100 homologous reaction series extracted from bibliographic sources has allowed concluding that most of the reported compensation plots can hardly be explained by the accumulation of experimental errors, thus requiring the existence of a previously existing, physically meaningful correlation.

  7. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    OpenAIRE

    Chang, Seok-Woo

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyap...

  8. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Meier, Robert J.; Sin, Gürkan

    2013-01-01

    A model that yields chemical accuracy for a broad range of organic molecules is presented. The range of applicability of such an accurate model is very broad: it can be used by chemists to predict equilibria while fostering new chemistries and allow process engineers to make more reliable designs...

  9. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has ...

  10. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps

    International Nuclear Information System (INIS)

    Ishitobi, Hirokazu; Uruma, Keirei; Takeuchi, Masato; Ryu, Junichi; Kato, Yukitaka

    2013-01-01

    Lithium chloride (LiCl) modified magnesium hydroxide (Mg(OH) 2 ) is a potential new material for chemical heat pumps. However, there is insufficient information concerning its dehydration and hydration behavior. In this study, the dehydration and hydration reactions, corresponding to the heat storage and the heat output operations, respectively, of authentic Mg(OH) 2 and LiCl-modified Mg(OH) 2 were investigated by thermogravimetric methods and near infrared spectroscopy. The dehydration of authentic Mg(OH) 2 proceeded as a one-step reaction. In contrast, the dehydration of LiCl-modified Mg(OH) 2 occurred in two steps. The dehydration reaction rates were increased by LiCl modification of the Mg(OH) 2 surface, while the activation energy for the first-order dehydration reaction was lowered. The mechanism for the hydration reaction of magnesium oxide (MgO) was different to that for the hydration of LiCl-modified MgO. This difference was explained by the effect of the LiCl on the MgO particle surface. - Highlights: ► LiCl-modified Mg(OH) 2 is a candidate material for chemical heat pumps. ► The dehydration reaction of LiCl-modified Mg(OH) 2 is a two-step reaction. ► The dehydration reaction of Mg(OH) 2 was enhanced by LiCl modification. ► The hydration mechanisms of authentic MgO and LiCl-modified MgO were different.

  11. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental

  12. Gas-phase standard enthalpies of formation of urea-derived compounds: A quantum-chemical study

    Science.gov (United States)

    Gratzfeld, Dennis; Olzmann, Matthias

    2017-07-01

    Gas-phase standard enthalpies of formation of selected ureas and s-triazines were calculated at the CCSD(F12∗)(T)/cc-pVTZ-F12//ωB97X-D/cc-pVTZ level of theory by employing isodesmic reactions. The following values were obtained (T = 298.15 K, units: kJ mol-1, estimated confidence interval 95%): urea, -231.9 ± 2.8; biuret, -430.0 ± 4.5; triuret, -620.3 ± 6.3; cyanuric acid, -451.6 ± 6.3; ammelide, -303.9 ± 6.4; ammeline, -106.5 ± 6.2; melamine, 70.1 ± 7.0. The standard enthalpies of formation of methanimine and methylamine, which were required for the isodesmic reactions, were calculated from atomization reactions by using several variants of the HEAT approach. The following results were considered most reliable (T = 298.15 K, units: kJ mol-1, estimated confidence interval 95%): methanimine, 89.0 ± 1.0; methylamine, -20.7 ± 1.0.

  13. Effect of Hydration and Oxidation Reactions of The Chemical Composition of Kaffir lime (Cytrus hystrix DC. Oil

    Directory of Open Access Journals (Sweden)

    Warsito

    2016-05-01

    Full Text Available This research aims to determine changes of the chemical composition in the hydration and oxidation reaction of Kaffir lime (Cytrus hystrix DC. oil. The hydration reaction was carried out using a Amberlyst catalyst with variation time for 1.5, 3, and 4.5 hours. Furthermore, the oxidation process was carried out using PCC catalyst with variation time for 1, 1.5, and 3 hours. Then, the analysis of chemical composition was performed using GC-MS. The results showed that hydration reaction process for 1,5 hours has changed monoterpenes micrene and b-ocimen turned into linalool and it changes citronellal to be linalool, citronellol and dimer ether citronellyl citronellol. The longer process of hydration tends to increase the dimer ether citronellyl citronellol products. Within that process, it has turned citronellal into isopulegol and isopulegone. The longer oxidation will decrease isopulegone products.

  14. Control and management of the chemical risk linked with hydrazine hydrate storage, unloading and injection across French nuclear fleet

    International Nuclear Information System (INIS)

    Spahic, Mersiha; Dzemidzic Aida; Dijoux, Michel; Pages, Danielle; Rigal, Jean-Francois; Boize, Magali

    2012-09-01

    Across the EDF nuclear fleet, the chemical risk linked with hydrazine hydrate storage, unloading and injection has received much attention in the past decades. Since 1997, continuous investigation into the substitution of dangerous and carcinogenic chemicals has been conducted and regularly updated by EDF. As a downstream user of hydrazine hydrate, EDF is concerned by REACH legislation, in force since 1 June 2007. As part of the compliance process with REACH, EDF provided its hydrazine hydrate suppliers with information regarding the uses of the chemical. This was done by the end of 2008, as per REACH deadline. On the other hand, EDF contributed throughout European Chemicals Agency consultation phase by submitting data relating to hydrazine hydrate uses across nuclear sites. The absence of a suitable hydrazine hydrate replacement product, able to satisfy the entirety of technical requirements, entails rigorous arrangements to be implemented in order to segregate the zones where use of hydrazine is made and therefore eradicate the risk to personnel regarding hydrazine effects. Consequently, a number of engineering changes and modifications are to be carried out on the chemical injection systems of 58 French nuclear power plants over the next few years as part of the EDF Hydrazine Fleet Programme. (authors)

  15. Hydration and chemical ingredients in sport drinks: food safety in the European context

    OpenAIRE

    Urdampilleta, Aritz; Gómez-Zorita, Saioa; Soriano, José M.; Martínez Sanz, José Miguel; Medina Escudero, Sonia; Gil-Izquierdo, Ángel

    2015-01-01

    Before, during and after physical activity, hydration is a limiting factor in athletic performance. Therefore, adequate hydration provides benefits for health and performance of athletes. Besides, hydration is associated to the intake of carbohydrates, protein, sodium, caffeine and other substances by different dietary aids, during the training and/or competition by athletes. These requirements have led to the development of different products by the food industry, to cover the nutritional ne...

  16. Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

    Science.gov (United States)

    Hamad, Mazen Lee; Engen, William; Morris, Kenneth R

    2015-05-01

    Levothyroxine sodium is an important medication used primarily for treating patients with hypothyroidism. Levothyroxine sodium tablets have been recalled many times since their 1955 introduction to the US market. These recalls resulted from the failure of lots to meet their content uniformity and potency specifications. The purpose of this study is to test the hypothesis that the chemical stability of levothyroxine sodium pentahydrate is compromised upon exposing the dehydrated substance to molecular oxygen. The impact of temperature, oxygen and humidity storage conditions on the stability of solid-state levothyroxine sodium was examined. After exposure to these storage conditions for selected periods of time, high performance liquid chromatography (HPLC) was used to quantify the formation of impurities. The results showed that levothyroxine sodium samples degraded significantly over a 32-day test period when subjected to dry conditions in the presence of molecular oxygen. However, dehydrated samples remained stable when oxygen was removed from the storage chamber. Furthermore, hydrated samples were stable in the presence of oxygen and in the absence of oxygen. These results reveal conditions that will degrade levothyroxine sodium pentahydrate and elucidate measures that can be taken to stabilize the drug substance.

  17. Chemical and physical properties of gas hydrates; Chemische und physikalische Eigenschaften von Gashydraten

    Energy Technology Data Exchange (ETDEWEB)

    Meyn, V. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1997-12-31

    Numerous properties of gas hydrates can be inferred directly from their phase behaviour. The present contribution gives a short overview of the properties of gas hydrates using pressure-temperature curves to depict their phase behaviour. It also describes the growth kinetics and inhibition of gas hydrates. (MSK) [Deutsch] Eine Vielzahl der Eigenschaften von Gashydraten lassen sich direkt aus ihrem Phasenverhalten herleiten. In kurzer Form wird ein Ueberblick ueber die Eigenschaften der Gashydrate gegeben. Druck-Temperatur-Diagramme erlaeutern des Phasenverhalten. Ebenso wird die Wachstumskinetik und die Inhibierung der Gashydrate beschrieben.

  18. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  19. Enthalpy: A Metaphor for a Design Guide for Conversations.

    Science.gov (United States)

    Dyer, Gordon

    1996-01-01

    Provides insights into the design of effective educational planning conversations derived from the metaphor of enthalpy (the amount of heat energy released when chemical reactions occur). Interprets enthalpy changes in the context of energy and the dynamics necessary to sustain an effective systems design conversation. (AEF)

  20. Hydration and chemical ingredients in sport drinks: food safety in the European context.

    Science.gov (United States)

    Urdampilleta, Aritz; Gómez-Zorita, Saioa; Soriano, José M; Martínez-Sanz, José M; Medina, Sonia; Gil-Izquierdo, Angel

    2015-05-01

    Before, during and after physical activity, hydration is a limiting factor in athletic performance. Therefore, adequate hydration provides benefits for health and performance of athletes. Besides, hydration is associated to the intake of carbohydrates, protein, sodium, caffeine and other substances by different dietary aids, during the training and/or competition by athletes. These requirements have led to the development of different products by the food industry, to cover the nutritional needs of athletes. Currently in the European context, the legal framework for the development of products, substances and health claims concerning to sport products is incomplete and scarce. Under these conditions, there are many products with different ingredients out of European Food Safety Authority (EFSA) control where claims are wrong due to no robust scientific evidence and it can be dangerous for the health. Further scientific evidence should be constructed by new clinical trials in order to assist to the Experts Commitees at EFSA for obtaining robust scientific opinions concerning to the functional foods and the individual ingredients for sport population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Free enthalpy landscape of SrO.

    Science.gov (United States)

    Schön, J C; Cancarević, Z P; Hannemann, A; Jansen, M

    2008-05-21

    Trying to predict thermodynamically stable and metastable solid compounds as function of pressure and temperature requires the global exploration of the enthalpy landscapes of chemical systems and the subsequent construction of their free enthalpy landscapes. In this work, we present a general approach to the determination of a free energy landscape. As an example, we construct the free enthalpy landscape of SrO for two different pressures on the empirical potential level and also compute various thermodynamic and elastic properties of SrO in the NaCl-, CsCl-, NiAs-, NbS-, TiP-, beta-BeO, sphalerite-, and wurtzite-structure type on an ab initio level. We employ density functional theory within the hybrid B3LYP approximation. The results show good agreement with experimental and theoretical data.

  2. Textural and chemical evolution of pyroxene during hydration and deformation: A consequence of retrograde metamorphism

    Science.gov (United States)

    Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon

    2018-01-01

    Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which fluid has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and hydration in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the hydrated part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of hydration. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid phases whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of phase equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.

  3. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Travis [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Beck, Thomas L. [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters of size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.

  4. Study on the enthalpy of solution and enthalpy of dilution for the ionic liquid [C3mim][Val] (1-propyl-3-methylimidazolium valine)

    International Nuclear Information System (INIS)

    Guan Wei; Li Long; Ma Xiaoxue; Tong Jing; Fang Dawei; Yang Jiazhen

    2012-01-01

    Graphical abstract: The thermodynamic cycle for estimation of the hydration enthalpy of ionic liquid [C 3 mim][Val]. Highlights: ► A new amino acid ionic liquid [C 3 mim][Val] was prepared. ► The molar enthalpies of solution of the ionic liquid. ► The hydration enthalpy of the cation [C 3 mim] + was estimated. ► The molar enthalpies of dilution, of aqueous [C 3 mim][Val] were measured. - Abstract: A new amino acid ionic liquid (AAIL) [C 3 mim][Val] (1-propyl-3-methylimidazolium valine) was prepared by the neutralization method. Using the solution-reaction isoperibol calorimeter, molar solution enthalpies of the ionic liquid [C 3 mim][Val] with known amounts of water and with different concentrations in molality were measured at T = 298.15 K. In terms of standard addition method (SAM) and Archer’s method, the standard molar enthalpy of solution for [C 3 mim][Val] without water, Δ s H m ∘ = (−55.7 ± 0.4) kJ · mol −1 , was obtained. The hydration enthalpy of the cation [C 3 mim] + , ΔH + ([C 3 mim] + ) = −226 kJ · mol −1 , was estimated in terms of Glasser’s theory. Using the RD496-III heat conduction microcalorimeter, the molar enthalpies of dilution, Δ D H m (m i → m f ), of aqueous [C 3 mim][Val] with various values of molality were measured. The values of Δ D H m (m i → m f ) were fitted to Pitzer’s ion-interaction model and the values of apparent relative molar enthalpy, φ L, calculated using Pitzer’s ion-interaction model.

  5. Generating Hydrated Electrons for Chemical Syntheses by Using a Green Light-Emitting Diode (LED).

    Science.gov (United States)

    Naumann, Robert; Lehmann, Florian; Goez, Martin

    2018-01-22

    We present the first working system for accessing and utilizing laboratory-scale concentrations of hydrated electrons by photoredox catalysis with a green light-emitting diode (LED). Decisive are micellar compartmentalization and photon pooling in an intermediate that decays with second-order kinetics. The only consumable is the nontoxic and bioavailable vitamin C. A turnover number of 1380 shows the LED method to be on par with electron generation by high-power pulsed lasers, but at a fraction of the cost. The extreme reducing power of the electron and its long unquenched life as a ground-state species are synergistic. We demonstrate the applicability to the dechlorination, defluorination, and hydrogenation of compounds that are inert towards all other visible-light photoredox catalysts known to date. A comprehensive mechanistic investigation from microseconds to hours yields results of general validity for photoredox catalysis with photon pooling, allowing optimization and upscaling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  7. Effect of isotopy and temperature on hydration of alkanols

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.P.; Batov, D.V.; Krestov, G.A.

    1987-07-10

    The authors determine isotope and temperature effects on the hydration of alkanols at a temperature of 278.15 K in solutions of water and heavy water. Aspects of isotopic exchange between hydrogen and deuterium are given as are enthalpies of hydration, evaporation, and dissolution for the alkanols. The possibility of weak hydrogen bond formation was examined.

  8. High enthalpy hypersonic boundary layer flow

    Science.gov (United States)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  9. Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    Science.gov (United States)

    Anandan, K.; Kolandaivel, P.; Kumaresan, R.

    Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller-Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (η and μ) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree-Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the

  10. Enthalpy screen of drug candidates.

    Science.gov (United States)

    Schön, Arne; Freire, Ernesto

    2016-11-15

    The enthalpic and entropic contributions to the binding affinity of drug candidates have been acknowledged to be important determinants of the quality of a drug molecule. These quantities, usually summarized in the thermodynamic signature, provide a rapid assessment of the forces that drive the binding of a ligand. Having access to the thermodynamic signature in the early stages of the drug discovery process will provide critical information towards the selection of the best drug candidates for development. In this paper, the Enthalpy Screen technique is presented. The enthalpy screen allows fast and accurate determination of the binding enthalpy for hundreds of ligands. As such, it appears to be ideally suited to aid in the ranking of the hundreds of hits that are usually identified after standard high throughput screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Low enthalpy Na-chloride waters from the Lunigiana and Garfagnana grabens, Northern Apennines, Italy: Tracing fluid connections and basement interactions via chemical and isotopic compositions

    Science.gov (United States)

    Boschetti, Tiziano; Toscani, Lorenzo; Barbieri, Maurizio; Mucchino, Claudio; Marino, Tiziana

    2017-12-01

    The Na-Cl waters from NW Tuscany (central Italy) record similar water isotopic and major chemical compositions, which demonstrate their meteoric origin and interactions with Upper Triassic evaporites and the metamorphic units of the Paleozoic basement. Slight differences are found in the deep temperature-pressure conditions of the Lunigiana graben (39-42 °C/143-145 bar) and the Garfagnana graben (73-78 °C/250-256 bar). In particular, the thermal fluids outpouring from Garfagnana are probably related to a common deep reservoir or interconnected fluids. Their differences are mainly evidenced by strontium isotopic ratio data (87Sr/86Sr), which combined with previously published sulfur isotope ratios (34S/32S) demonstrate the involvement of vein barites in water-rock interactions. Most likely, these minerals formed during Upper Oligocene-Miocene tectogenesis due to the mixing of fluids from the Verrucano Group and Upper Triassic units. The results of this hydrogeochemical study of the deep Na-Cl fluids could better clarify the distribution of the Verrucano Group within this area and the related discrepancies in the stratigraphic interpretations of the Palaeozoic-Mesozoic transition. Furthermore, the possible presence of an interconnected reservoir could be used to help interpret data produced by the local geochemical monitoring of seismic activity.

  12. A study of the hydration of lysozyme in neat organic solvents using isothermal calorimetry: Effect of water solvation

    Science.gov (United States)

    Sirotkin, Vladimir A.; Dudkina, Elena V.

    2015-08-01

    The interaction enthalpies of the dried and hydrated lysozyme with neat organic solvents (DMSO, formamide, ethylene glycol, and methanol) were obtained at 25 °C. These organic solvents represent a series of liquids in which the water solvation enthalpy is gradually changed over a wide range. The interaction enthalpies of the dried lysozyme with neat organic solvents are exothermic. At high water content, the interaction enthalpies are endothermic for formamide and exothermic for DMSO, methanol, and ethylene glycol. The dehydration enthalpies of lysozyme in organic liquids may be endothermic or exothermic depending on the initial water content and the water solvation enthalpy.

  13. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  14. Modelling of high-enthalpy, high-Mach number flows

    International Nuclear Information System (INIS)

    Degrez, G; Lani, A; Panesi, M; Chazot, O; Deconinck, H

    2009-01-01

    A review is made of the computational models of high-enthalpy flows developed over the past few years at the von Karman Institute and Universite Libre de Bruxelles, for the modelling of high-enthalpy hypersonic (re-)entry flows. Both flows in local thermo-chemical equilibrium (LTE) and flows in thermo-chemical non-equilibrium (TCNEQ) are considered. First, the physico-chemical models are described, i.e. the set of conservation laws, the thermodynamics, transport phenomena and chemical kinetics models. Particular attention is given to the correct modelling of elemental (LTE flows) and species (chemical non-equilibrium-CNEQ-flows) transport. The numerical algorithm, based on a state-of-the-art finite volume discretization, is then briefly described. Finally, selected examples are included to illustrate the capabilities of the developed solver. (review article)

  15. Effect of Calcium chloride and Cadmium chloride on the enthalpy of ...

    African Journals Online (AJOL)

    user

    Enthalpy of mixing of methanol + benzene + mercuric chloride at 303.15 K, Journal of Chemical Engineering Data, Vol.44, pp248- 250. Dharmendira Kumar. M. and Rajendran. M. 1999. Salt effect on enthalpy of mixing of water + methanol at 303.15 K, Fluid Phase. Equilibria, Vol.164, pp. 217-224. Furter.W.F. and Cook.

  16. Enthalpy Differences of the n-Pentane Conformers.

    Science.gov (United States)

    Csontos, József; Nagy, Balázs; Gyevi-Nagy, László; Kállay, Mihály; Tasi, Gyula

    2016-06-14

    The energy and enthalpy differences of alkane conformers in various temperature ranges have been the subject for both experimental and theoretical studies over the last few decades. It was shown previously for the conformers of butane [G. Tasi et al., J. Chem. Theory Comput. 2012, 8, 479-486] that quantum chemical results can compete with spectroscopic techniques and results obtained even from the most carefully performed experiments could be biased due to the improper statistical model utilized to evaluate the raw experimental data. In the current study, on one hand, the experimental values and their uncertainties for the enthalpy differences for pentane conformers are re-evaluated using the appropriate statistical model. On the other hand, a coupled-cluster-based focal-point analysis has been performed to calculate energy and enthalpy differences for the conformers of pentane. The model chemistry defined in this study includes contributions up to the perturbative quadruple excitations augmented with further small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. Benchmark quality energy and enthalpy differences for the pentane conformers are given at temperatures 0 and 298.15 K as well as for the various temperature ranges used in the gas-phase experimental measurements. Furthermore, a slight positive shift for the experimental enthalpy differences is also predicted due to an additional Raman active band belonging to the gauche-gauche conformer.

  17. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  18. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  19. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  20. Enthalpy of formation of zircon

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Navrotsky, A.

    1992-01-01

    Using high-temperature solution calorimetry in molt 2PbO · B 2 O 3 , the enthalpy of reaction of the formation of zircon, ZrSiO 4 , from its constituent oxides has been determined: Δ 4 H 977 (ZrSiO 4 ) = -27.9 (±1.9) kJ/mol. With previously reported data for the heat contents of ZrO 2 SiO 2 and ZrSiO 4 and standard-state enthalpies of formation of ZrO 2 and SiO 2 , we obtain Δ f H 298 degrees. (ZrSiO 4 ) = -2034.2 (±3.1) kJ/mol and Δ t G 298 degrees (ZrSiO 4 ) = -1919.8 kJ/mol. The free energy value is in excellent agreement with a range previously estimated from solid-state reaction equilibria. At higher temperature also the data are in close agreement with existing data, though the data sets diverge somewhat with increasing T. In this paper the limitations of the data for predicting the breakdown temperature of zircon into its constituent oxides are discussed

  1. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Fuels in India’s Energy Future. Workshop on “Alternate Fuels in India’s Energy Future”, held at Hotel International, New Delhi,19 Sept 2006 , Jointly organised by CII,ERM and British High Commission Bangs, N.L., D.S. Sawyer, X. Golovchenko... hydrates: relevance to world margin stability and climatic change, Tutorial book: Gent, Belgium, pp. 1-37. Sloan, E. D., 1998, Clathrate hydrates of natural gases. 2 nd edition: Marcel Dekker, Inc., New York, pp705. Stakes...

  2. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  3. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration

    International Nuclear Information System (INIS)

    Irudayam, Sheeba Jem; Henchman, Richard H

    2010-01-01

    An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different

  4. Polymer-Polymer Miscibility and Enthalpy Relaxations

    NARCIS (Netherlands)

    Bosma, Martin; Brinke, Gerrit ten; Ellis, Thomas S.

    Annealing of polymers below the glass transition temperature results in a decrease in enthalpy that is recovered during heating. The enthalpy recovery is visible as an endothermic peak in a differential scanning calorimetry (DSC) scan. The position of this peak depends on the thermal treatment given

  5. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...

  6. Enthalpy damping for the steady Euler equations

    Science.gov (United States)

    Jespersen, D. C.

    1985-01-01

    For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.

  7. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  8. Hydration mechanisms of mineral trioxide aggregate.

    Science.gov (United States)

    Camilleri, J

    2007-06-01

    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  9. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  10. Enthalpy-Entropy Compensation upon Molecular Conformational Changes.

    Science.gov (United States)

    Ahmad, Mazen; Helms, Volkhard; Lengauer, Thomas; Kalinina, Olga V

    2015-04-14

    The change in free energy is the dominant factor in all chemical processes; it usually encompasses enthalpy-entropy compensation (EEC). Here, we use the free energy perturbation formalism to show that EEC is influenced by the molecular conformational changes (CCs) of the entire system comprising the solute and by the already known solvent reorganization. The internal changes of enthalpy and the entropy due to CCs upon modifying the interactions (perturbation) cancel each other exactly. The CCs influence the dissipation of the modified interactions and their contributions to the free energy. Using molecular simulations, we show that, for solvation of six different HIV-1 protease inhibitors, CCs in the solute cause EEC as large as 10-30 kcal/mol. Moreover, the EEC due to CCs in HIV-1 protease is shown to vary significantly upon modifying its bound ligand. These findings have important implications for understanding of EEC phenomena and for interpretation of thermodynamic measurements.

  11. Enthalpy-Entropy Compensation (EEC) Effect: A Revisit.

    Science.gov (United States)

    Pan, Animesh; Biswas, Tapas; Rakshit, Animesh K; Moulik, Satya P

    2015-12-31

    A short account of the developments and perspectives of IKR (iso-kinetic relation) and EEC (enthalpy (H) - entropy (S) compensation) has been presented. The IKR and EEC are known to be extra thermodynamic or empirical correlations though linear H-S correlation can be thermodynamically deduced. Attempt has also been made to explain the phenomena in terms of statistical thermodynamics. In this study, we have briefly revisited the fundamentals of both IKR and EEC from kinetic and thermodynamic grounds. A detailed revisit of the EEC phenomenon on varied kinetic and equilibrium processes has been also presented. Possible correlations among the free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes of different similar and nonsimilar chemical processes under varied conditions have been discussed with possible future projections.

  12. In-situ study of the thermal properties of hydrate slurry by high pressure DSC

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Brun, F.; Erbeau, N. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2008-07-01

    Knowing the enthalpy of hydrate slurry is very essential for energy balance and industrial applications. No direct measurement processes had been developed in this field in the past time. A new experimental method with special device has been developed to carry out on-line measurement of the thermal properties for hydrate slurry under dynamic conditions. With this special device, it is possible to deliver the hydrate slurry to the high pressure DSC (Differential Scanning Calorimetry) directly from the production tank or pipes. Thermal data acquisition will be performed afterwards by DSC. The investigated conditions were at pressure of 30 bar and temperature of {approx}+7 {sup o}C. The dissociation enthalpy of CO{sub 2} hydrate slurry was about 54 kJ/kg, corresponding 10.8% of solid fraction. The on-line measurement results for CO{sub 2} hydrate slurry give a good tendency to apply this phase change slurry to the industrial refrigeration process. (author)

  13. A QUANTUM MECHANICAL STUDY OF THE PROTONATION AND COVALENT HYDRATION OF QUINAZOLINE IN THE PRESENCE OF METAL CATIONS

    Science.gov (United States)

    We have investigated the protonation and reversible covalent hydration of quinazoline in the presence of Li+, Na+, and Ca2+ ions using ab initio quantum mechanical calculations at the MP2/6-31G**//HF/6-31G*level of theory. Proton affinities, enthalpies of hydration at 298.15K (DH...

  14. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    Energy Technology Data Exchange (ETDEWEB)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1N 6N5 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  15. Fundamentals and applications of gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  16. What is the enthalpy of formation of pyrazine-2-carboxylic acid?

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Duarte, Darío J.R.; Liebman, Joel F.

    2016-01-01

    There are two contemporary conflicting, indeed, incompatible determinations of measurements of the enthalpies of combustion and of formation of pyrazine-2-carboxylic acid in the literature, (−2268.0 ± 0.9 and −271.2 ± 1.1 kJ · mol −1 ) and (−2211.4 ± 0.9 and −327.8 ± 1.1 kJ · mol −1 ). The current paper discusses these two sets of values and from the use of a measurement of the enthalpy of sublimation, a newly evaluated enthalpy of formation of pyrazine itself, and of the quantum chemical calculations at the G3(MP2)//B3LYP level, the former results are accepted and the derived gas phase enthalpy of formation, −(167.6 ± 3.1) kJ · mol −1 , suggested.

  17. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  18. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  19. Structure of metal β-diketonates and their enthalpies of vaporization

    International Nuclear Information System (INIS)

    Domrachev, G.A.; Sevast'yanov, V.G.; Zakharov, L.N.; Krasnodubskaya, S.V.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1987-01-01

    Using the method of additive schemes in combinaion with the structural estimation of the degree of screening of the central atom and other elements of β-diketonate molecule while analyzing the experimental enthalpies of vaporization, the contributions of separate fragments of complexes into the enthalpy of vaporization are found. It is shown that energies of intermolecular interaction in a condensed phase of monomeric metal β-diketonates with identical substituents do not depend on the central atom type. The enthalpies of dimer dissociation in a series of rare earth dipivaloylmethanates calculated. The proposed approach is advisable fo selecting forms of metal β-diketonates, the most suitable for the purposes of deep purificaion, which are characterized by maximum chemical and physico-chemical selectivity with respect to impurities, chemical inertness to equipment material, container, etc

  20. Undergraduate Students' Conceptions of Enthalpy, Enthalpy Change and Related Concepts

    Science.gov (United States)

    Nilsson, Tor; Niedderer, Hans

    2014-01-01

    Research shows that students have problems understanding thermodynamic concepts and that a gap exists at the tertiary level related to more specific chemistry concepts such as enthalpy. Therefore, the aim of this study is to construct undergraduate students' conceptions of enthalpy, its change and related concepts. Three explorative small-scale…

  1. Enthalpy relaxation and annealing effect in polystyrene.

    Science.gov (United States)

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  2. Standard enthalpies of formation of uranium compounds

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Ouweltjes, W.

    1977-01-01

    Enthalpies of solution of β-UO 2 SO 4 and α-UO 2 SeO 4 in H 2 SO 4 (aq) and of UO 2 SeO 3 in H 2 SO 4 (aq) + Ce(SO 4 ) 2 have been measured calorimetrically. Together with measurements of the enthalpy of solution of γ-UO 3 in these solvents, the standard enthalpies of formation of anhydrous β-UO 2 SO 4 , α-UO 2 SeO 4 , and UO 2 SeO 3 have been derived. The results obtained are: ΔHsub(f) 0 (s, 298.15 K)/ kcalsub(th) mol -1 : β-UO 2 SO 4 , -(440.9 +- 0.2); α-UO 2 SeO 4 , -(367.9 +- 0.8); UO 2 SeO 3 , -(363.8 +- 0.2). (author)

  3. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  4. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal-gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  5. The Optimal Use of Entropy and Enthalpy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. The Optimal Use of Entropy and Enthalpy. M S Ananth R Ravi. General Article Volume 6 Issue 9 September 2001 pp 67-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0067-0081 ...

  6. Development of equations for differential and integral enthalpy change of adsorption for simulation studies.

    Science.gov (United States)

    Do, D D; Nicholson, D; Fan, Chunyan

    2011-12-06

    We present equations to calculate the differential and integral enthalpy changes of adsorption for their use in Monte Carlo simulation. Adsorption of a system of N molecules, subject to an external potential energy, is viewed as one of transferring these molecules from a reference gas phase (state 1) to the adsorption system (state 2) at the same temperature and equilibrium pressure (same chemical potential). The excess amount adsorbed is the difference between N and the hypothetical amount of gas occupying the accessible volume of the system at the same density as the reference gas. The enthalpy change is a state function, which is defined as the difference between the enthalpies of state 2 and state 1, and the isosteric heat is defined as the negative of the derivative of this enthalpy change with respect to the excess amount of adsorption. It is suitable to determine how the system behaves for a differential increment in the excess phase adsorbed under subcritical conditions. For supercritical conditions, use of the integral enthalpy of adsorption per particle is recommended since the isosteric heat becomes infinite at the maximum excess concentration. With these unambiguous definitions we derive equations which are applicable for a general case of adsorption and demonstrate how they can be used in a Monte Carlo simulation. We apply the new equations to argon adsorption at various temperatures on a graphite surface to illustrate the need to use the correct equation to describe isosteric heat of adsorption. © 2011 American Chemical Society

  7. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  8. Determination of the free enthalpies of formation of borosilicate glasses

    International Nuclear Information System (INIS)

    Linard, Y.

    2000-01-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  9. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    Science.gov (United States)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  10. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  11. Entropy-enthalpy Compensation of Biomolecular Systems in Aqueous Phase: a Dry Perspective.

    Science.gov (United States)

    Movileanu, Liviu; Schiff, Eric A

    2013-01-01

    We survey thermodynamic measurements on processes involving biological macromolecules in aqueous solution, which illustrate well the ubiquitous phenomenon of entropy-enthalpy compensation. The processes include protein folding/unfolding and ligand binding/unbinding, with compensation temperatures varying by about 50 K around an average near 293 K. We show that incorporating both near-exact entropy-enthalpy compensation (due to solvent relaxation) and multi-excitation entropy (from vibrational quanta) leads to a compensation temperature in water of about 230 K. We illustrate a general procedure for subtracting solvent and environment-related terms to determine the bare Gibbs free energy changes of chemical processes.

  12. Molar heat capacity and molar excess enthalpy measurements in aqueous amine solutions

    Science.gov (United States)

    Poozesh, Saeed

    Experimental measurements of molar heat capacity and molar excess enthalpy for 1, 4-dimethyl piperazine (1, 4-DMPZ), 1-(2-hydroxyethyl) piperazine (1, 2-HEPZ), I-methyl piperazine (1-MPZ), 3-morpholinopropyl amine (3-MOPA), and 4-(2-hydroxy ethyl) morpholine (4, 2-HEMO) aqueous solutions were carried out in a C80 heat flow calorimeter over a range of temperatures from (298.15 to 353.15) K and for the entire range of the mole fractions. The estimated uncertainty in the measured values of the molar heat capacity and molar excess enthalpy was found to be +/- 2%. Among the five amines studied, 3-MOPA had the highest values of the molar heat capacity and 1-MPZ the lowest. Values of molar heat capacities of amines were dominated by --CH 2, --N, --OH, --O, --NH2 groups and increased with increasing temperature, and contributions of --NH and --CH 3 groups decreased with increasing temperature for these cyclic amines. Molar excess heat capacities were calculated from the measured molar heat capacities and were correlated as a function of the mole fractions employing the Redlich-Kister equation. The molar excess enthalpy values were also correlated as a function of the mole fractions employing the Redlich-Kister equation. Molar enthalpies at infinite dilution were derived. Molar excess enthalpy values were modeled using the solution theory models: NRTL (Non Random Two Liquid) and UNIQUAC (UNIversal QUAsi Chemical) and the modified UNIFAC (UNIversal quasi chemical Functional group Activity Coefficients - Dortmund). The modified UNIFAC was found to be the most accurate and reliable model for the representation and prediction of the molar excess enthalpy values. Among the five amines, the 1-MPZ + water system exhibited the highest values of molar excess enthalpy on the negative side. This study confirmed the conclusion made by Maham et al. (71) that -CH3 group contributed to higher molar excess enthalpies. The negative excess enthalpies were reduced due to the contribution of

  13. Calibration models for high enthalpy calorimetric probes.

    Science.gov (United States)

    Kannel, A

    1978-07-01

    The accuracy of gas-aspirated liquid-cooled calorimetric probes used for measuring the enthalpy of high-temperature gas streams is studied. The error in the differential temperature measurements caused by internal and external heat transfer interactions is considered and quantified by mathematical models. The analysis suggests calibration methods for the evaluation of dimensionless heat transfer parameters in the models, which then can give a more accurate value for the enthalpy of the sample. Calibration models for four types of calorimeters are applied to results from the literature and from our own experiments: a circular slit calorimeter developed by the author, single-cooling jacket probe, double-cooling jacket probe, and split-flow cooling jacket probe. The results show that the models are useful for describing and correcting the temperature measurements.

  14. Gas hydrate and humans

    Science.gov (United States)

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  15. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  16. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...

  17. Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition Étude de la formation de l'hydrate de méthane dans une conduite de recirculation : modélisation de la cinétique et tests d'efficacité d'additifs chimiques inhibiteurs d'hydrates de gaz

    Directory of Open Access Journals (Sweden)

    Peytavy J. L.

    2006-12-01

    Full Text Available Gas hydrates can be formed when light gases, such as the components of natural gas, come into contact with water under particular conditions of temperature and pressure. These solid compounds give rise to problems in natural gas and oil industry because they can plug pipelines and process equipment. To prevent hydrate formation methanol and glycols are commonly and extensively used as inhibitors. Today, the thermodynamic equilibria of hydrate formation are well known, but the kinetics of gas hydrate formation and growth has to be studied in order to find means of controlling these processes and to explore the mechanisms for hydrate formation that follows non equilibrium laws. The present work deals with the kinetics of methane hydrate formation studied in a laboratory loop where the liquid blend saturated with methane is circulated up to a pressure of 75 bar. Pressure is maintained at a constant value during experimental runs by means of methane gas make-up. First the effects of pressure (35-75 bar, liquid velocity (0. 5-3 m/s, liquid cooling temperature ramp (2-15°C/h, and liquid hydrocarbon amount (0-96%, on hydrate formation kinetics are investigated. Then a new method is proposed to predict firstly the thermodynamic conditions (pressure and temperature at the maximum values of the growth rate of methane hydrate and secondly the methane hydrate growth rate. A good agreement is found between calculated and experimental data. Finally the evaluation of the efficiency of some kinetic additives and some surfactants developed to avoid either nucleation or crystal growth and agglomeration of methane hydrates is tested based on the proposed experimental procedure. Les hydrates de gaz des composés légers du gaz naturel se forment lorsque ceux-ci entrent en contact avec l'eau dans certaines conditions de température et de pression. Ces composés solides sont nuisibles pour les industries gazière et pétrolière car des bouchons solides peuvent

  18. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    Science.gov (United States)

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Clathrate hydrate tuning for technological purposes

    Science.gov (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco

    2010-05-01

    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  20. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  1. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  2. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.

    Science.gov (United States)

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K

    2012-05-07

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

  3. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  4. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  5. Spectroscopic methods in gas hydrate research.

    Science.gov (United States)

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  6. Enthalpy?entropy compensation: the role of solvation

    OpenAIRE

    Dragan, Anatoliy I.; Read, Christopher M.; Crane-Robinson, Colyn

    2016-01-01

    Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e. a compensating conformational entropy reduct...

  7. Effects of partitioned enthalpy of mixing on glass-forming ability.

    Science.gov (United States)

    Song, Wen-Xiong; Zhao, Shi-Jin

    2015-04-14

    We explore the inherent reason at atomic level for the glass-forming ability of alloys by molecular simulation, in which the effect of partitioned enthalpy of mixing is studied. Based on Morse potential, we divide the enthalpy of mixing into three parts: the chemical part (ΔEnn), strain part (ΔEstrain), and non-bond part (ΔEnnn). We find that a large negative ΔEnn value represents strong AB chemical bonding in AB alloy and is the driving force to form a local ordered structure, meanwhile the transformed local ordered structure needs to satisfy the condition (ΔEnn/2 + ΔEstrain) enthalpy of mixing is helpful to design a new metallic glass with a good glass forming ability. Moreover, two types of metallic glasses (i.e., "strain dominant" and "chemical dominant") are classified according to the relative importance between chemical effect and strain effect, which enriches our knowledge of the forming mechanism of metallic glass. Finally, a soft sphere model is established, different from the common hard sphere model.

  8. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  9. Entropy-enthalpy compensation may be a useful interpretation tool for complex systems like protein-DNA complexes: An appeal to experimentalists

    KAUST Repository

    Starikov, E. B.

    2012-01-01

    In various chemical systems, enthalpy-entropy compensation (EEC) is a well-known rule of behavior, although the physical roots of it are still not completely understood. It has been frequently questioned whether EEC is a truly physical phenomenon or a coincidence due to trivial mathematical connections between statistical-mechanical parameters-or even simpler: A phantom effect resulting from the misinterpretation of experimental data. Here, we review EEC from another standpoint using the notion of correlation, which is essential for the method of factor analysis but is not conventional in physics and chemistry. We conclude that the EEC may be rationalized in terms of hidden (not directly measurable with the help of the current experimental set-up) but physically real factors, implying a Carnot-cycle model in which a micro-phase transition (MPT) plays a crucial role. Examples of such MPTs underlying physically valid EEC should be typically cooperative processes in supramolecular aggregates, like changes of structured water at hydrophobic surfaces, conformational transitions upon ligand-biopolymer binding, and so on. The MPT notion could help rationalize the occurrence of EEC in connection with hydration and folding of proteins, enzymatic reactions, functioning of molecular motors, DNA de- and rehybridization, as well as similar phenomena. © 2012 American Institute of Physics.

  10. Formation enthalpy of binary magnesium, cesium selenates

    International Nuclear Information System (INIS)

    Selivanova, N.M.; Prymova, L.A.

    1975-01-01

    As a result of dehydration of schoenite, Cs 2 Mg(SeO 4 ) 2 x6H 2 O, the following compounds have been obtained: Cs 2 Mg(SeO 4 ) 2 x4H 2 O, Cs 2 Mg(SeO 4 ) 2 x2H 2 O and Cs 2 Mg(SeO 4 ) 2 . The standard enthalpies of formation from simple compounds have been determinated by calorimetric measurements: Cs 2 Mg(SeO 4 ) 2 x4H 2 O - ΔH deg 298 = -797.5+-0.9 kcal/mol; Cs 2 Mg(SeO 4 ) 2 x2H 2 O - ΔH deg 298 = -657.5+-0.9 kcal/mol; and Cs 2 Mg(SeO 4 ) 2 cryst - ΔH deg 298 = -507.0+-1.0 kcal/mol

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  12. Evaluation of a self-aspirating local total enthalpy probe in a low-density arc-heated hypersonic wind tunnel

    Science.gov (United States)

    Guy, R. W.; Kantsios, A. G.

    1972-01-01

    A shock-swallowing, self-aspirating, local total enthalpy probe has been evaluated in a low density nonequilibrium, hypervelocity airstream. The probe, which incorporated an air gap to separate the internal and external cooling passages, was tested in an electric archeated wind tunnel at an average Mach number of 11.7 and an average Reynolds number per meter of 57,000. The free stream enthalpy probe data are compared with bulk calorimeter measurements of total enthalpy at the beginning of the gas expansion and with local total enthalpy inferred from a theoretical nonequilibrium gas expansion model by using free stream velocity measurements obtained from a mass flow probe. The three techniques are in relative agreement at the lower enthalpies. However, at the higher enthalpies, the enthalpy probe data lie considerably below the other data. This low data may be caused by the chemical and vibrational energy frozen in the flow not being sensed by the probe. Other problems associated with the shock-swallowing total enthalpy probe are discussed, and recommendations for improving the probe performance are presented.

  13. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  14. Enthalpy of mixing of liquid Co–Sn alloys

    International Nuclear Information System (INIS)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    Highlights: • The enthalpies of mixing of liquid Co–Sn alloys between T = (673 and 1773) K. • The temperature dependence of the enthalpies of mixing was described. • Full report of measured values including polynomial coefficients. - Abstract: A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process

  15. Enthalpy-entropy compensation and the isokinetic temperature in ...

    Indian Academy of Sciences (India)

    Enthalpy-entropy compensation supposes that differences in activation enthalpy delta-H-++ for different reactions (or, typically inbiochemistry, the same reaction catalysed by enzymes obtained from different species) may be compensated for bydifferences in activation entropy delta-S-++. At the isokinetic temperature the ...

  16. Enthalpy of solution of rubidium nitrate in water

    International Nuclear Information System (INIS)

    Weintraub, R.; Apelblat, A.; Tamir, A.

    1984-01-01

    Molar enthalpies of solution of RbNO 3 in water at 298.15 K were measured in an LKB calorimeter. The molar enthalpies of solution extrapolated to infinite solution are: (36788 +- 30)J. mol -1 (Alfa) and (36539 +- 52)J.mol -1 (Aldrich). (author)

  17. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  18. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations.

    Science.gov (United States)

    Paschek, Dietmar

    2004-06-08

    We examine the SPCE [H. J. C. Berendsen et al., J. Chem. Phys. 91, 6269 (1987)] and TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys 112, 8910 (2000)] water models using a temperature series of molecular-dynamics simulations in order to study heat-capacity effects associated with the hydrophobic hydration and interaction of xenon particles. The temperature interval between 275 and 375 K along the 0.1-MPa isobar is studied. For all investigated models and state points we calculate the excess chemical potential for xenon employing the Widom particle insertion technique. The solvation enthalpy and excess heat capacity is obtained from the temperature dependence of the chemical potentials and, alternatively, directly by Ewald summation, as well as a reaction field based method. All three methods provide consistent results. In addition, the reaction field technique allows a separation of the solvation enthalpy into solute/solvent and solvent/solvent parts. We find that the solvent/solvent contribution to the excess heat capacity is dominating, being about one order of magnitude larger than the solute/solvent part. This observation is attributed to the enlarged heat capacity of the water molecules in the hydration shell. A detailed spatial analysis of the heat capacity of the water molecules around a pair of xenon particles at different separations reveals that even more enhanced heat capacity of the water located in the bisector plane between two adjacent xenon atoms is responsible for the maximum of the heat capacity found for the desolvation barrier distance, recently reported by Shimizu and Chan [J. Am. Chem. Soc. 123, 2083 (2001)]. The about 60% enlarged heat capacity of water in the concave part of the joint xenon-xenon hydration shell is the result of a counterplay of strengthened hydrogen bonds and an enhanced breaking of hydrogen bonds with increasing temperature. Differences between the two models with respect to the heat capacity in the xenon

  19. Structural parameterization of the binding enthalpy of small ligands.

    Science.gov (United States)

    Luque, Irene; Freire, Ernesto

    2002-11-01

    A major goal in ligand and drug design is the optimization of the binding affinity of selected lead molecules. However, the binding affinity is defined by the free energy of binding, which, in turn, is determined by the enthalpy and entropy changes. Because the binding enthalpy is the term that predominantly reflects the strength of the interactions of the ligand with its target relative to those with the solvent, it is desirable to develop ways of predicting enthalpy changes from structural considerations. The application of structure/enthalpy correlations derived from protein stability data has yielded inconsistent results when applied to small ligands of pharmaceutical interest (MW the enthalpy associated with any possible conformational change in the protein or ligand upon binding; and, (3) the enthalpy associated with protonation/deprotonation events, if present. As in the case of protein stability, the intrinsic binding enthalpy scales with changes in solvent accessible surface areas. However, an accurate estimation of the intrinsic binding enthalpy requires explicit consideration of long-lived water molecules at the binding interface. The best statistical structure/enthalpy correlation is obtained when buried water molecules within 5-7 A of the ligand are included in the calculations. For all seven protein systems considered (HIV-1 protease, dihydrodipicolinate reductase, Rnase T1, streptavidin, pp60c-Src SH2 domain, Hsp90 molecular chaperone, and bovine beta-trypsin) the binding enthalpy of 25 small molecular weight peptide and nonpeptide ligands can be accounted for with a standard error of +/-0.3 kcal x mol(-1). Copyright 2002 Wiley-Liss, Inc.

  20. What are gas hydrates?: Chapter 1

    Science.gov (United States)

    Beaudoin, Y.C.; Waite, W.; Boswell, R.; Dallimore, Scott

    2014-01-01

    The English chemistry pioneer Sir Humphry Davy first combined gas and water to produce a solid substance in his lab in 1810. For more than a century after that landmark moment, a small number of scientists catalogued various solid “hydrates” formed by combining water with an assortment of gases and liquids. Sloan and Koh (2007) review this early research, which was aimed at discerning the chemical structures of gas hydrates (Fig. 1.1), as well as the pressures and temperatures at which they are stable. Because no practical applications were found for these synthetic gas hydrates, they remained an academic curiosity.

  1. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  2. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  3. Chemical alteration of calcium silicate hydrates in saline groundwater. Mechanism of sorption of Na on C-S-H and effect of NaCl on leaching of Ca from C-S-H

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2004-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In the presence of some reactive ions in a saline groundwater, the chemical properties of cement materials should be affected. In this study, the mechanism of sorption of sodium (Na) on C-S-H and the effect of sodium chloride (NaCl) concentration on dissolution of Calcium Silicate Hydrate (C-S-H) are discussed by measuring the sorption isotherm of sodium onto C-S-H gel (Ca/Si = 0.65-1.2). Based on the experimental results, it is showed that sodium sorbs by substitution for Ca in C-S-H phases and leaching of Ca from C-S-H is enhanced in NaCl solution ( -1 mol dm -3 ). The results of sorption experiments are reasonably well modelled by the ion-exchange model assuming some calcium sites with different ion-exchange log K values. It is also suggested that the dissolution of C-S-H can be modelled reasonably well by considering the effect of ionic strength on activity coefficients of aqueous species for high Ca/Si ratio of C-S-H, and the effect of exchange of sodium with calcium of C-S-H on leaching of Ca becomes obvious for lower Ca/Si ratio of C-S-H. (author)

  4. Free enthalpies of replacing water molecules in protein binding pockets.

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  5. Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy-Entropy Compensation.

    Science.gov (United States)

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-04-28

    Herein, we present an endeavor toward exploring the lacuna underlying the host:guest chemistry of inclusion complex formation between bile salt(s) and β-cyclodextrin(s) (βCDs). An extensive thermodynamic investigation based on isothermal titration calorimetry (ITC) demonstrates a dominant contribution from exothermic enthalpy change (ΔH enthalpy-entropy compensation behavior showing indication for almost complete compensation. To this end, we have quantified the interaction of two bile salt molecules (namely, sodium deoxycholate and sodium glycocholate) with a series of varying chemical substituents on the host counterpart, namely, βCD, (2-hydroxypropyl)-βCD, and methyl βCD.

  6. How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates.

    Science.gov (United States)

    Holzammer, Christine; Finckenstein, Agnes; Will, Stefan; Braeuer, Andreas S

    2016-03-10

    We present an experimental Raman study on how the addition of sodium chloride to CO2-hydrate-forming systems inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction and the molar entropy of reaction for the reaction of weakly hydrogen-bonded water molecules to strongly hydrogen bonded water molecules are determined for different salinities from the Raman spectrum of the water-stretching vibration. Simultaneously, the influence of the salinity on the solubility of CO2 in the liquid water-rich phase right before the start of hydrate formation is analyzed. The results demonstrate that various mechanisms contribute to the inhibition of gas hydrate formation. For the highest salt concentration of 20 wt % investigated, the temperature of gas hydrate formation is lowered by 12 K. For this concentration the molar enthalpy and entropy of reaction become smaller by 50 and 20%, respectively. Concurrently, the solubility of carbon dioxide is reduced by 70%. These results are compared with data in literature for systems of sodium chloride in water (without carbon dioxide).

  7. Impact of admixtures on the hydration kinetics of Portland cement

    International Nuclear Information System (INIS)

    Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D.

    2011-01-01

    Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals. In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate-sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted.

  8. Accurate Computed Enthalpies of Spin Crossover in Iron and Cobalt Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Cirera, J

    2009-01-01

    Despite their importance in many chemical processes, the relative energies of spin states of transition metal complexes have so far been haunted by large computational errors. By the use of six functionals, B3LYP, BP86, TPSS, TPSSh, M06L, and M06L, this work studies nine complexes (seven with iron...... effects of first-row transition metal systems. Furthermore, it is shown that given an experimental structure of an iron complex, TPSSh can predict the electronic state corresponding to that experimental structure. We recommend this functional as current state-of-the-art for studying spin crossover...... and two with cobalt) for which experimental enthalpies of spin crossover are available. It is shown that such enthalpies can be used as quantitative benchmarks of a functional's ability to balance electron correlation in both the involved states. TPSSh achieves an unprecedented mean absolute error...

  9. Predicting the enthalpies of melting and vaporization for pure components

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  10. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  11. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  12. An Enthalpy of Dissolution of Potassium Chloride

    OpenAIRE

    鈴木, 隆

    2013-01-01

    When substances have changed chemically or physically, the heat of the chemical and physical change is obtained as exothermic and endothermic behavior. Therefore, it is very effective to measure the heat energy of the chemical and physical change of the substance. The heat energy can be obtained by calorimetry. There are three types of calorimeters.The adiabatic calorimeter is used mainly for the measurement of heat capacity. The isoperibolic calorimeter is suitable for the measurement of lar...

  13. A Reaction Zone Enthalpy Balance Model to Simulate Shock-to-Detonation Transition and Unsteady Detonation Wave Propagation

    Science.gov (United States)

    Froger, A.

    2004-07-01

    The standard models in use to simulate the reactive detonation wave propagation are not accurate in computing the transient evolutions because they focus on the shock front, not on the reaction zone where the coupling of thermodynamic and mechanic effects occurs. The model we propose is based on a new thermodynamic description of the constituents in the reaction zone, and on the use of the enthalpy balance of the chemical reaction as the energetic parameter instead of the heat of reaction. The enthalpy balance of the reaction results from the enthalpies of formation of all the chemical species involved in the reaction and is, therefore, a physical constant. The model is based on four basic assumptions: -1) the reaction zone is anevolving intimate mixture of non-reacted material and detonation products, -2) the energy released by thereaction is inherent to the detonation products alone, -3) the two constituents have the same pressure but different temperatures, -4) the specific energy released is not a constant but is related to the enthalpy balance and depends on the thermodynamic state. The model only needs the physical properties of the materials (equations of state of the constituents, chemical reaction and initiation delay), not the CJ state nor any other sub-model. When coupled with the Euler equations this thermodynamic description of the reaction zone permits us to simulate the transient evolution of an emerging detonation for any geometry (2D or 3D) or confinement structure.

  14. A systematic method for analysing the protein hydration structure of T4 lysozyme

    Czech Academy of Sciences Publication Activity Database

    Kysilka, Jiří; Vondrášek, Jiří

    2013-01-01

    Roč. 26, č. 10 (2013), s. 479-487 ISSN 0952-3499 R&D Projects: GA ČR GAP208/10/0725; GA MŠk(CZ) LH11020 Grant - others:GA ČR(CZ) GAP302/10/0427 Institutional support: RVO:61388963 Keywords : protein hydration structure * water * X-ray crystallography * cluster algorithm * interaction enthalpy Subject RIV: CE - Biochemistry Impact factor: 2.337, year: 2013

  15. Enthalpy of Formation of N2H4(Hydrazine) Revisited.

    Science.gov (United States)

    Feller, David; Bross, David H; Ruscic, Branko

    2017-08-17

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

  16. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio

    2015-01-01

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  17. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  18. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  19. Enthalpy of mixing of liquid Co–Sn alloys

    Science.gov (United States)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process. PMID:24994940

  20. Enthalpy of mixing of liquid Co-Sn alloys.

    Science.gov (United States)

    Yakymovych, A; Fürtauer, S; Elmahfoudi, A; Ipser, H; Flandorfer, H

    2014-07-01

    A literature overview of enthalpy of mixing data for liquid Co-Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co-Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich-Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co-Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. -7820 J/mol at T  = 1173 K to -1350 J/mol at T  = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process.

  1. Enthalpy-entropy compensation: the role of solvation.

    Science.gov (United States)

    Dragan, Anatoliy I; Read, Christopher M; Crane-Robinson, Colyn

    2017-05-01

    Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation-an intrinsically compensatory process-can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.

  2. [Enthalpy stabilization of chicken egg lysozyme in aqueous dimethylsulfoxide solutions].

    Science.gov (United States)

    Kovrigin, E L; Kirkitadze, M D; Potekhin, S A

    1996-01-01

    Scanning microcalorimetry data have been used to plot the dependences of the denaturation enthalpy of hen egg lysozyme on dimethylsulfoxide concentration at fixed temperatures. It has been shown that at dimethylsulfoxide concentrations below 40% (v/v) the enthalpy does not depend on pH of the medium. An increase of dimethylsulfoxide concentrations in this range leads to a linear growth of enthalpy. The rate of enthalpy growth decreases with the temperature increase. The denaturation enthalpy begins to considerably depend on pH at dimethylsulfoxide concentrations more than 40%. Spectroscopy data indicate that conformational changes occur in the protein in this range of concentrations already at room temperature, whereas according to scanning microcalorimetry, they take place at much higher temperatures. This difference is probably due to a decrease of the real temperature of protein melting below room temperature and a very inhibited character of the denaturational transition. This results in a decrease of calorimetric enthalpy at acidic pH owing to incomplete protein renaturation upon calorimeter cooling to the starting point.

  3. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  4. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    Science.gov (United States)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  5. Hydrates plugs dissociation in pipelines; Dissociation des bouchons d'hydrates de gaz dans les conduites petrolieres sous-marines

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Hong, D.

    2005-03-15

    Natural gas hydrates plugs cause problems during drilling, well operations, production, transportation and processing of oil and gas. Especially, it is a very serious problem in off-shore oil transportation where low temperature and high pressure become more and more favourable to gas hydrate formation as the new production wells are more and more deeper. Up to now, although many studies have been developed concerning the possibility of preventing pipe plugging, there is limited information in open literature on hydrate plugs dissociation and all models in literature are numerically complicated. In this study, hydrate plugs are formed from water in n-dodecane mixture with addition of a dispersant E102B in two different experimental apparatus in order to obtain hydrates plugs with different sizes (diameter of 7, 10.75 and 12 cm). Then, the plugs are dissociated by the method of two-sided depressurization. In this paper, we propose a numerical model which describes the dissociation of gas hydrate plugs in pipelines. The numerical model, which is constructed for cylindrical coordinates and for two-sided pressurization, is based on enthalpy method. We present also an approximate analytical model which has an average error 2.7 % in comparison with the numerical model. The excellent agreement between our experimental results, literature data and the two models shows that the models give a good prediction independently of the pipeline diameter, plug porosity and gas. The simplicity of the analytical model will make it easier in industrial applications. (author)

  6. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  7. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  8. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  9. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    Science.gov (United States)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively.

  10. The Optimal Use of Entropy and Enthalpy

    Indian Academy of Sciences (India)

    In a free market, the prices of common chemicals correlate very well with the ..... The factor {-RTln(x/)} represents the work required to produce. 1 mole of pure i from the mixture state of ..... Boltzmann was the first to recognize that the entropy of a macroscopic state is related to the number of. 'micro' states consistent with that ...

  11. Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment.

    Science.gov (United States)

    Dorofeeva, Olga V; Ryzhova, Oxana N

    2016-04-21

    Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O• calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement.

  12. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.

    Science.gov (United States)

    Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-04-21

    Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate.

  13. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P....... The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry......-T data automatically during slow heating and cooling. The generated data are subjected to regression analysis leading to very close curve fitting of the P-T data and enabling appropriate enthalpy and entropy computations. The TPA system's absolute accuracy is checked by generating P-T data for pure water...

  14. The Hydrated Electron

    Science.gov (United States)

    Herbert, John M.; Coons, Marc P.

    2017-05-01

    Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters [Formula: see text], the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e-(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.

  15. The excess enthalpies of liquid Ge-Pb-Te alloys

    International Nuclear Information System (INIS)

    Blachnik, R.; Binder, J.; Schlieper, A.

    1997-01-01

    The excess enthalpies of liquid alloys in the ternary system Ge-Pb-Te were determined at 1210 K in a heat flow calorimeter for five sections Ge y Pb 1-y -Te with y = 0.2, 0.4, 0.5, 0.6 and 0.8 and at 1153 K for Ge 0.5 Pb 0.5 -Te. The enthalpy surface in the ternary system is determined by a valley of exothermic minima, stretching from an exothermic minimum at the composition GeTe to one at the composition PbTe in the respective binaries. The excess enthalpies in the limiting metallic binary were adapted with the Redlich-Kister formalism. For the description of the thermodynamic functions in the ternary system the equation of Bonnier was taken using ternary coefficients. The calculated curves are in good agreement with the experimental data. (orig.)

  16. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  17. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  18. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  19. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  20. Studies of enthalpy-entropy compensation, partial entropies, and Kirkwood-Buff integrals for aqueous solutions of glycine, L-leucine, and glycylglycine at 298.15 K.

    Science.gov (United States)

    Kurhe, Deepti N; Dagade, Dilip H; Jadhav, Jyoti P; Govindwar, Sanjay P; Patil, Kesharsingh J

    2009-12-31

    Densities and osmotic coefficient measurements for dilute aqueous solutions of glycine, l-leucine, and glycylglycine have been reported at 298.15 K. The partial molar volumes and activity coefficients of solute as well as solvent have been estimated using the density and osmotic coefficient data, respectively. Excess and mixing thermodynamic properties, such as Gibbs free energy, enthalpy, and entropy changes, have been obtained using the activity data from this study and the heat data reported in the literature. The concentration enthalpy-entropy compensation effects have been observed for the studied systems, and the compensation temperatures are reported. It has been observed that the excess free energy change for all the studied systems is almost the same over the studied concentration range, showing that the differences in properties of such solutions are largely decided by the enthalpy-entropy effects. These results, along with partial entropy data, show the effects of the presence of hydrophobic interactions and water structure making effect in the case of aqueous solutions of l-leucine. The application of the Starikov-Norden enthalpy-entropy compensation model yielded information about a "hidden Carnot cycle" and the existence of multiple microphases. Application of the Kirkwood-Buff (KB) theory of solutions for the studied systems yields pair correlation functions between the components. The variation of Kirkwood-Buff integrals with concentration further signifies the concentration dependence of the hydrophobic hydration and interactions in the solution phase. The osmotic second virial coefficients have also been obtained using the KB theory and show good agreement with those obtained using the McMillan-Mayer theory of solutions. The mean square concentration fluctuations is estimated using the KB theory, which gives information about the microheterogeneity in the solution phase, which further reflects the presence of hydration and solute association.

  1. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  2. Investigation on chemical heat pump using calcium-chloride; Enka calcium no suiwa dassui hanno wo mochiita solar chemical heat pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Arai, T.; Saito, Y. [Meiji University, Tokyo (Japan)

    1997-11-25

    With an objective of developing a room heating system utilizing a solar chemical heat pump, an experimental system was fabricated to evaluate its performance. Steam was employed as a working gas, and for a reaction material, calcium-chloride was used, which has a reaction temperature zone permitting safe use and fitting the purpose among other hydrate systems and has high standard enthalpy in hydration. Water was used as a solar heat transferring medium. The system operates under the following principle: a container I is filled with hydrated salt and a container II with water, the two containers being linked with a pipe interposed with a valve; heat is inputted and outputted by performing charging and discharging alternately; and the role of a heat pump is played by deriving from environment the heat of water evaporation in the container II during discharging. The COP must take into account the electric power consumption of the water circulation pump to transfer solar heat. A COP of 0.256 was derived as a result of the experiment. 3 refs., 5 figs.

  3. Enthalpy-driven nuclease-like activity and mechanism of peptide-chlorambucil conjugates.

    Science.gov (United States)

    Yang, Robin C K; Huang, Jonathan T B; Chen, Yu-Ling; Hung, Chia-Chun; Liao, Mokai; Yao, Wen-Chen; Chen, Chiu-Heng; Liou, Chien-Chung; Waring, Michael J; Sheh, Leung

    2014-07-21

    We report the results of attaching the anticancer drug chlorambucil (CLB) to two high-affinity DNA binding peptides: Met-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyM-10) and Gln-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyQ-10). These CLB-peptide conjugates cleave DNA very effectively and sequence-selectively without the use of chemicals, heat, or UV irradiation. Polyacrylamide gel electrophoresis identifies the sites where CLB-HyM-10 and CLB-HyQ-10 attack a complementary pair of 5'-(32)P-labeled duplexes derived from pBR322 in the absence of piperidine or other chemical additives. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has confirmed the preferential cleavage sites as well as a novel stepwise cleavage mechanism of sequence-selective DNA cleavage. Resembling restriction endonucleases, the CLB-peptide conjugates appear to be capable of producing double strand DNA breaks. Circular dichroism studies show that CLB-HyM-10 and CLB-HyQ-10 induce significant local conformational changes in DNA via the minor groove, possibly with dimeric binding stoichiometry. The energetic basis of DNA binding by these conjugates has been investigated by isothermal titration calorimetry, revealing that the binding of both the peptides and their CLB conjugates is overwhelmingly enthalpy-driven. The maintenance of a conserved negative binding free energy in DNA-conjugate interactions is a crucial feature of the universal enthalpy-entropy compensation phenomenon. The strongly enthalpy-driven binding of CLB-peptide conjugates to preferred loci in DNA furnishes the required proximity effect to generate the observed nuclease-like sequence-selective cleavage.

  4. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  5. Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Gharagheizi, Farhad, E-mail: fghara@ut.ac.ir [Saman Energy Giti Co., Postal Code 3331619636,Tehran (Iran, Islamic Republic of); Salehi, Gholam Reza [Islamic Azad University Nowshahr Branch, Nowshahr (Iran, Islamic Republic of)

    2011-07-10

    Highlights: {yields} An Artificial Neural Network-Group Contribution method is presented for prediction of enthalpy of fusion of pure compounds at their normal melting point. {yields} Validity of the model is confirmed using a large evaluated data set containing 4157 pure compounds. {yields} The average percent error of the model is equal to 2.65% in comparison with the experimental data. - Abstract: In this work, the Artificial Neural Network-Group Contribution (ANN-GC) method is applied to estimate the enthalpy of fusion of pure chemical compounds at their normal melting point. 4157 pure compounds from various chemical families are investigated to propose a comprehensive and predictive model. The obtained results show the Squared Correlation Coefficient (R{sup 2}) of 0.999, Root Mean Square Error of 0.82 kJ/mol, and average absolute deviation lower than 2.65% for the estimated properties from existing experimental values.

  6. Detecting gas hydrate behavior in crude oil using NMR.

    Science.gov (United States)

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-06

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

  7. Mesostructure from hydration gradients in demosponge biosilica.

    Science.gov (United States)

    Neilson, James R; George, Nathan C; Murr, Meredith M; Seshadri, Ram; Morse, Daniel E

    2014-04-22

    Organisms of the phylum Porifera, that is, sponges, utilize enzymatic hydrolysis to concatenate bioavailable inorganic silicon to produce lightweight, strong, and often flexible skeletal elements called spicules. In their optical transparency, these remarkable biomaterials resemble fused silica, despite having been formed under ambient marine biological conditions. Although previous studies have elucidated the chemical mechanisms of spicule formation and revealed the extensive hydration of these glasses, their precise composition and local and medium-range structures had not been determined. We have employed a combination of compositional analysis, (1) H and (29) Si solid-state nuclear magnetic resonance spectroscopy, and synchrotron X-ray total scattering to characterize spicule-derived silica produced by the demosponge Tethya aurantia. These studies indicate that the materials are highly hydrated, but in an inhomogeneous manner. The spicule-derived silica is, on average, perfectly dense for the given extent of hydration and regions of fully condensed and unstrained SiO networks persist throughout each monolithic spicule. To accommodate chemical strain and defects, the extensive hydration is concentrated in distinct regions that give rise to mesostructural features. The chemistry responsible for producing spicule silica resembles hydrolytic sol-gel processing, which offers exceptional control over the precise local atomic arrangement of materials. However, the specific processing involved in forming the sponge spicule silica further results in regions of fully condensed silica coexisting with regions of incomplete condensation. This mesostructure suggests a mechanism for atomistic defect tolerance and strain relief that may account for the unusual mechanical properties of the biogenic spicules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  9. Bond dissociation enthalpies of a pinoresinol lignin model compound

    Science.gov (United States)

    Thomas Elder

    2014-01-01

    ABSTRACT: The pinoresinol unit is one of the principal interunit linkages in lignin. As such, its chemistry and properties are of major importance in understanding the behavior or the polymer. This work examines the homolytic cleavage of the pinoresinol system, representing the initial step in thermal degradation. The bond dissociation enthalpy of this reaction has...

  10. Calculation of enthalpies of formation of actinide nitrides

    Czech Academy of Sciences Publication Activity Database

    Sedmidubský, D.; Konings, R.J.M.; Novák, Pavel

    2005-01-01

    Roč. 344, - (2005), s. 40-44 ISSN 0022-3115 Institutional research plan: CEZ:AV0Z1010914 Keywords : enthalpy * actinide nitrides * ab-initio theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.414, year: 2005

  11. THE THERMAL CHARACTERIZATION OF MULTICOMPONENT SYSTEMS BY ENTHALPY RELAXATION

    NARCIS (Netherlands)

    TENBRINKE, G; OUDHUIS, L; ELLIS, TS

    1994-01-01

    The phenomenon of enthalpy relaxation of amorphous glassy polymers has been developed into an analytical tool which can be applied to elucidate phase behavior and morphologically related phenomena of multi-component systems. We have both reviewed the experimental details concerning its application,

  12. Protein Transfer Free Energy Obeys Entropy-Enthalpy Compensation.

    Science.gov (United States)

    Mills, Eric A; Plotkin, Steven S

    2015-11-05

    We have found significant entropy-enthalpy compensation for the transfer of a diverse set of two-state folding proteins from water into water containing a diverse set of cosolutes, including osmolytes, denaturants, and crowders. In extracting thermodynamic parameters from experimental data, we show the potential importance of accounting for the cosolute concentration-dependence of the heat capacity change upon unfolding, as well as the potential importance of the temperature-dependence of the heat capacity change upon unfolding. We introduce a new Monte Carlo method to estimate the experimental uncertainty in the thermodynamic data and use this to show by bootstrapping methods that entropy-enthalpy compensation is statistically significant, in spite of large, correlated scatter in the data. We show that plotting the data at the transition midpoint provides the most accurate experimental values by avoiding extrapolation errors due to uncertainty in the heat capacity, and that this representation exhibits the strongest evidence of compensation. Entropy-enthalpy compensation is still significant at lab temperature however. We also find that compensation is still significant when considering variations due to heat capacity models, as well as typical measurement discrepancies lab-to-lab when such data is available. Extracting transfer entropy and enthalpy along with their uncertainties can provide a valuable consistency check between experimental data and simulation models, which may involve tests of simulated unfolded ensembles and/or models of the transfer free energy; we include specific applications to cold shock protein and protein L.

  13. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  14. Enthalpy - entropy compensation effect in grain boundary phenomena

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2005-01-01

    Roč. 96, č. 10 (2005), s. 1129-1133 ISSN 0044-3093 R&D Projects: GA MPO(CZ) FF-P2/053 Institutional research plan: CEZ:AV0Z10100520 Keywords : compensation effect * enthalpy * entropy * thermodynamics * grain boundary Subject RIV: BJ - Thermodynamics Impact factor: 0.842, year: 2005

  15. Enthalpy and heat capacity of the actinide oxides

    International Nuclear Information System (INIS)

    Fink, J.K.

    1982-01-01

    The available enthalpy data on UO 2 , ThO 2 , PuO 2 , (Th, U)O 2 , and (Pu, U)O 2 have been analyzed and equations have been derived to fit the data. Phase transitions were found in UO 2 , ThO 2 (Th, U)O 2 , and (Pu, U)O 2 . The high temperature PuO 2 data were too scattered to determine whether a phase transition exists. Above the phase transition temperature, the enthalpy data were fit with a linear equation. Enthalpy data for PuO 2 and ThO 2 below the phase transition temperature were fit with two-term equations whose contributions are due to phonons and thermal expansion. For UO 2 below its phase transition, a term for an electronic contribution was added to this basic equation. Below the phase transitions for (Th, U)O 2 , enthalpy data were fit by a mole average of the equations used to fit the ThO 2 and UO 2 data below their phase transitions; however, the mole average equation was not valid for 90 and 92% ThO 2 in the mixed oxide. Since it was found that mole averages of the PuO 2 and UO 2 data do not fit the (Pu, U)O 2 data, these data were fit with an equation of the same form as that used for UO 2 . 51 references, 14 figures, 7 tables

  16. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  17. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  18. O-H bond dissociation enthalpies in oximes: order restored.

    Science.gov (United States)

    Pratt, Derek A; Blake, Jessie A; Mulder, Peter; Walton, John C; Korth, Hans-Gert; Ingold, Keith U

    2004-09-01

    The O-H bond dissociation enthalpies (BDEs) of 13 oximes, RR'C=NOH, having R and/or R' = H, alkyl, and aryl are reported. Experimental anchor points used to validate the results of theoretical calculations include (1) the O-H BDEs of (t-Bu)2C=NOH, t-Bu(i-Pr)C=NOH, and t-Bu(1-Ad)C=NOH determined earlier from the heat released in the reaction of (t-Bu)2C=NO* with (PhNH)2 in benzene and EPR spectroscopy (Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U. J. Am. Chem. Soc. 1973, 95, 8610), all of which were decreased by 1.7 kcal/mol to reflect a revision to the heat of formation of (E)-azobenzene (which has significant ramifications for other BDEs) and to correct for the heat of hydrogen bonding of (t-Bu)2C=NOH (alphaH2 = 0.43 measured in this work) to benzene, and (2) the measured rates of thermal decomposition of six RR'C=NOCH2Ph at 423 or 443 K, which were used to derive O-H BDEs for the corresponding RR'C=NOH. Claims (Bordwell, F. G.; Ji, G. Z. J. Org. Chem. 1992, 57, 3019; Bordwell, F. G.; Zhang, S. J. Am. Chem. Soc. 1995, 117, 4858; and Bordwell, F. G.; Liu, W.-Z. J. Am. Chem. Soc. 1996, 118, 10819) that the O-H BDEs in mono- and diaryloximes are significantly lower than those for alkyloximes due to delocalization of the unpaired electron into the aromatic ring have always been inconsistent with the known structures of iminoxyl radicals as are the purported perpendicular structures, i.e., phi(Calpha-C=N-O*) = 90 degrees, for sterically hindered dialkyl iminoxyl radicals. The present results confirm the 1973 conclusion that simple steric effects, not electron delocalization or dramatic geometric changes, are responsible for the rather small differences in oxime O-H BDEs. Copyright 2004 American Chemical Society

  19. Life Origination Hydrate Hypothesis (LOH-Hypothesis).

    Science.gov (United States)

    Ostrovskii, Victor; Kadyshevich, Elena

    2012-01-04

    The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their "thermodynamic front" guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  20. Life Origination Hydrate Hypothesis (LOH-Hypothesis

    Directory of Open Access Journals (Sweden)

    Victor Ostrovskii

    2012-01-01

    Full Text Available The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis, according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides, DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  1. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  2. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  3. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties; Hydratation des argiles gonflantes: sequence d'hydratation multi-echelle determination des energies macroscopiques a partir des proprietes microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Salles, F

    2006-10-15

    smectites: it is responsible for the structure of porosity in a dry state and of the evolution of the pore sizes as a function of the RH and it modifies the hydration sequence by its mobility inside the interlayer space. The distinction between various types of water in the smectite structure is also achieved by thermo-poro-metry at different RH: water bound to the cations and surfaces, water structured by porosity and free water. This distinction is important to understand the behaviour of smectite and in particular the diffusion properties in clayey materials. The importance of the cation nature is also highlighted by the energetic model. Electrostatic calculations using the PACHA formalism (Electronegativities Equalization method) show that, for the small cations, the hydration energy of the layers is predominant. To obtain these results, we determine the surface enthalpies for the dry state, which show a coherent evolution as a function of the cation partial charge with the increase of pore sizes and thus with particle sizes. Then, using a theoretical model, we calculated swelling energies, surface hydration energies and cation hydration energies. The behaviour of mixed purified clay displays a behaviour closer to that of a calcic clay for the experiments carried out, in contradiction with the fact that the Na cation is the most abundant. This observation implies results on the clay properties, different from that expected for hydration properties, swelling and interlayer cation mobility within the framework of the radioactive waste. (author)

  4. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  5. Experimental measurement of enthalpy increments of Th0.25Ce0.75O2

    International Nuclear Information System (INIS)

    Babu, R.; Balakrishnan, S.; Ananthasivan, K.; Nagarajan, K.

    2013-01-01

    Thorium has been suggested as an alternative fertile material for a nuclear fuel cycle, and an inert matrix for burning plutonium and for waste disposal. The third stage of India's nuclear power programme envisages utilization of thorium and plutonium as a fuel in Advanced Heavy Water Reactor (AHWR) and Accelerator Driven Sub-critical Systems (ADSS). Solid solutions of ThO 2 -PuO 2 are of importance because of coexistence of Th with Pu during the breeding cycle. CeO 2 is used as a PuO 2 analog due to similar ionic radii of cations and similar physico-chemical properties of the oxides. ThO 2 forms a homogeneous solid solution with the cubic fluorite structure when doped with Ce in the entire compositional range. In the development of mixed oxide nuclear fuels, knowledge of thermodynamic properties of thorium oxide and its mixtures has become extremely importance for understanding the fuel behavior during irradiation and for predicting the performance of the fuel under accidental conditions. Thermodynamic functions such as the enthalpy increment and heat capacity of the theria-ceria solid solution have not been measured experimentally. Hence, the enthalpy increments of thoria-ceria solid solutions, Th 0.25 Ce 0.75 O 2 by inverse drop calorimetry in the temperature range 523-1723 K have been measured. The measured enthalpy increments were fitted in to polynomial functions by using the least squares method and the other thermodynamic functions such as heat capacity, entropy and Gibbs energy functions were computed in the temperature range 298-1800 K. The reported thermodynamic functions for Th 0.25 Ce 0.75 O 2 forms the first experimental data and the heat capacity of (Th,Ce)O 2 solid solutions was shown to obey the Neumann-Kopp's rule. (author)

  6. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol.

    Science.gov (United States)

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas

    2014-11-20

    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  7. Sub-Tg enthalpy relaxation in an unstable oxide glass former: insights into the structural heterogeneity

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Zhang, Yanfei

    Structural heterogeneity plays a crucial role in determining functionality of glasses. In this work we have found that the sub-Tg enthalpy relaxation pattern in a hyperquenched glass is highly sensitive to structural heterogeneity. As a consequence, the former can be used as an effective approach...... to detect and quantify the structural heterogeneity in glass-forming liquids. However, the chemical nature of structural heterogeneity should be revealed by other means such as high resolution microscopic and spectroscopic methods. To study the impact of the structural heterogeneity on the sub-Tg relaxation...... chemical features and degrees of structural heterogeneity in glass-forming liquids. This finding contributes to the microscopic origin of both the primary and secondary relaxation in terms of structural heterogeneity. Finally the results provide insights into the relation between structural heterogeneity...

  8. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties

    International Nuclear Information System (INIS)

    Salles, F.

    2006-10-01

    smectites: it is responsible for the structure of porosity in a dry state and of the evolution of the pore sizes as a function of the RH and it modifies the hydration sequence by its mobility inside the interlayer space. The distinction between various types of water in the smectite structure is also achieved by thermo-poro-metry at different RH: water bound to the cations and surfaces, water structured by porosity and free water. This distinction is important to understand the behaviour of smectite and in particular the diffusion properties in clayey materials. The importance of the cation nature is also highlighted by the energetic model. Electrostatic calculations using the PACHA formalism (Electronegativities Equalization method) show that, for the small cations, the hydration energy of the layers is predominant. To obtain these results, we determine the surface enthalpies for the dry state, which show a coherent evolution as a function of the cation partial charge with the increase of pore sizes and thus with particle sizes. Then, using a theoretical model, we calculated swelling energies, surface hydration energies and cation hydration energies. The behaviour of mixed purified clay displays a behaviour closer to that of a calcic clay for the experiments carried out, in contradiction with the fact that the Na cation is the most abundant. This observation implies results on the clay properties, different from that expected for hydration properties, swelling and interlayer cation mobility within the framework of the radioactive waste. (author)

  9. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.

    Science.gov (United States)

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2015-09-01

    One α-tricalcium phosphate (α-TCP) powder was either calcined at 500°C to obtain fully crystalline α-TCP or milled for different durations to obtain α-TCP powders containing various amounts of X-ray amorphous tricalcium phosphate (ATCP). These powders containing between 0 and 71wt.% ATCP and up to 2.0±0.1wt.% β-TCP as minor phase were then hydrated in 0.1M Na2HPO4 aqueous solution and the resulting heat flows were measured by isothermal calorimetry. Additionally, the evolution of the phase composition during hydration was determined by in situ XRD combined with the G-factor method, an external standard method which facilitates the indirect quantification of amorphous phases. Maximum ATCP hydration was reached after about 1h, while that of crystalline α-TCP hydration occurred between 4 and 11h, depending on the ATCP content. An enthalpy of formation of -4065±6kJ/mol (T=23°C) was calculated for ATCP (Ca3(PO4)2), while for crystalline α-TCP (α-Ca3(PO4)2) a value of -4113±6kJ/mol (T=23°C) was determined. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  11. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    Science.gov (United States)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  12. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  13. Small molecule hydration energy and entropy from 3D-RISM

    Science.gov (United States)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  14. Small molecule hydration energy and entropy from 3D-RISM

    International Nuclear Information System (INIS)

    Johnson, J; Case, D A; Yamazaki, T; Gusarov, S; Kovalenko, A; Luchko, T

    2016-01-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases. (paper)

  15. X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.

    2010-03-01

    When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

  16. Excess enthalpy of monoethanolamine + ionic liquid mixtures: how good are COSMO-RS predictions?

    Science.gov (United States)

    Gonzalez-Miquel, Maria; Massel, Marjorie; DeSilva, Aruni; Palomar, Jose; Rodriguez, Francisco; Brennecke, Joan F

    2014-10-02

    Mixtures of ionic liquids (ILs) and molecular amines have been suggested for CO2 capture applications. The basic idea is to replace water, which volatilizes in the amine regeneration step and increases the parasitic energy load, with a nonvolatile ionic liquid solvent. To fully understand the thermodynamics of these systems, here experimental excess enthalpies for binary mixtures of monoethanolamine (MEA) and two ILs: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [hmim][NTf2], and 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [OHemim][NTf2], were obtained by calorimetry, using a Setaram C80 calorimeter, over the whole range of compositions at 313.15 K. Since it is the temperature derivative of the Gibbs energy, enthalpy is a sensitive measure of intermolecular interactions. MEA + [hmim][NTf2] is endothermic and MEA + [OHemim][NTf2] is exothermic. The reliability of COSMO-RS to predict the excess enthalpy of the (MEA+IL) systems was tested based on the implementation of two different molecular models to define the structure of the IL: the IL as separate cation and anion [C+A] and the IL as a bonded single specie [CA]. Quantum-chemical calculations were performed to gain additional insight into the intermolecular interactions between the components of the mixture. For MEA + [hmim][NTf2] both the [C+A] and [CA] models predict endothermic behavior, but the [CA] model is in better agreement with the experimental results. For MEA + [OHemim][NTf2] the [C+A] model provides the best match to the experimental exothermic results. However, what is really surprising is that two different conformations of the cation-anion pair with nearly identical energies in the [CA] model result in completely different (exothermic vs endothermic) predictions of the excess enthalpy. Nonetheless, the results do show that the influence of the structure of the IL on the thermodynamic behavior of the mixture (endothermic vs exothermic) can be attributed

  17. Interface Enthalpy-Entropy Competition in Nanoscale Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Nicola Patelli

    2018-01-01

    Full Text Available We analyzed the effect of the interfacial free energy on the thermodynamics of hydrogen sorption in nano-scaled materials. When the enthalpy and entropy terms are the same for all interfaces, as in an isotropic bi-phasic system, one obtains a compensation temperature, which does not depend on the system size nor on the relative phase abundance. The situation is different and more complex in a system with three or more phases, where the interfaces have different enthalpy and entropy. We also consider the possible effect of elastic strains on the stability of the hydride phase and on hysteresis. We compare a simple model with experimental data obtained on two different systems: (1 bi-phasic nanocomposites where ultrafine TiH2 crystallite are dispersed within a Mg nanoparticle and (2 Mg nanodots encapsulated by different phases.

  18. Flow enthalpy effects on scramjet mixing and combustion

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.

    1992-01-01

    The present analysis of the 3D characteristics of the mixing processes in a scramjet combustor gives attention to the streamwise, vorticity-driven macromixing, as well as shear-driven small-scale mixing, in both an unconfined Mach 6 airstream and a high-enthalpy (Mach-17) confined, Mach 6 airstream. The results obtained indicate that mixing is substantially lower for the high-enthalpy case. The effect of residence time on jet mixing is discussed in view of the production and decay of the axial vorticity, cross-flow velocities, and mean-flow velocities of these confined flows. The effective distance travelled by a fluid particle in the cross-flow, over the combustor length, is used to explain axial vorticity's contribution to mixing.

  19. Estimating the melting point, entropy of fusion, and enthalpy of ...

    Science.gov (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modeled as a function of the entropy of fusion, boiling point, and fexibility of the molecule. The melting point model is the enthlapy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapor pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol-1K-1. The enthalpy model has a RMS of 4.87 kJ mol-1. The melting point model has a RMS of 54.4°C. Published in the journal, SAR and QSAR in Environmental Research

  20. Combustion energies and formation enthalpies of 2-SH-benzazoles

    International Nuclear Information System (INIS)

    Mentado, Juan; Flores, Henoc; Amador, Patricia

    2008-01-01

    The experimental determinations of combustion energies and the standard molar enthalpies of formation of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole are presented. The combustion energies of compounds were determined by using a rotating-bomb calorimeter. The calorimeter used in the present work has been assembled, calibrated, and tested recently in our laboratory with desired results. As combustion auxiliary material, polyethene was used and its combustion energy was determined by using a static-bomb calorimeter. The combustion energies of 2-SH-benzazoles were used to derive the correspondent formation enthalpies in condensate phase at T = 298.15 K. The values of Δ f H m 0 for the compounds are (48.6 ± 1.4) kJ . mol -1 , (85.3 ± 1.5) kJ . mol -1 , and (-112.7 ± 1.4) kJ . mol -1 , respectively

  1. Standard molar enthalpies of formation of sodium alkoxides

    International Nuclear Information System (INIS)

    Chandran, K.; Srinivasan, T.G.; Gopalan, A.; Ganesan, V.

    2007-01-01

    The molar enthalpies of solution of sodium in methanol, ethanol, and n-propanol and of sodium alkoxides in their corresponding alcohols were measured at T=298.15K using an isoperibol solution calorimeter. From these results and other auxiliary data, the standard molar enthalpies of formation, Δ f H m o (RONa,cr) of sodium methoxide, sodium ethoxide, and sodium n-propoxide were calculated and found to be {(-366.21+/-1.38) (-413.39+/-1.45), and (-441.57+/-1.18)}kJ.mol -1 , respectively. A linear correlation has been found between Δ f H m o (RONa)andΔ f H m o (ROH) for R=n-alkyl, enabling the prediction of data for other sodium alkoxides

  2. Determination of the vacancy formation enthalpy for high purity Ni

    International Nuclear Information System (INIS)

    Lynn, K.G.; Snead, C.L. Jr.; Hurst, J.J.; Farrell, K.

    1979-01-01

    Positron-annihilation lifetime measurements have been made on Ni over a temperature range of 4.2 to 1700 K. We find a small change in the lifetime from 4.2 - 900 K indicating a very small thermal-expansion effect. A small precursor effect is observed before the onset of significant vacancy trapping. A monovacancy formation enthalpy of 1.54sub(+0.2)sup(-0.1) eV is extracted without taking divacancies into consideration in the analysis. No detrapping from mono-vacancies is observed even at the higher temperatures. The vacancy formation enthalpy extracted from the lifetime data is compared to values obtained by Doppler-broadening and angular-correlation techniques. (author)

  3. Kinetics and enthalpy of crystallization of uric acid dihydrate

    International Nuclear Information System (INIS)

    Sádovská, Galina; Honcová, Pavla; Sádovský, Zdeněk

    2013-01-01

    Highlights: • The kinetic constant and growth order of crystallization of uric acid dihydrate was calculated. • The equation describing first-order crystal growth was derived. • The enthalpy of crystallization of uric acid dihydrate was determined. - Abstract: The kinetics of crystallization of uric acid dihydrate in aqueous solution with a constant ionic strength 0.3 mol dm −3 NaCl and at thermodynamic and physiological temperature (25 and 37 °C) was studied using isoperibolic reaction twin calorimeter. The enthalpy of crystallization Δ cr H = −47.3 ± 0.9 and −46.2 ± 1.4 kJ mol −1 and kinetic constant k g = 2.0 × 10 −8 and 9.6 × 10 −8 m 4 s −1 mol −1 were determined at 25 and 37 °C, respectively

  4. Determination of the vacancy formation enthalpy for high purity Ni

    International Nuclear Information System (INIS)

    Lynn, K.G.; Snead, C.L. Jr.; Hurst, J.J.; Farrell, K.

    1979-01-01

    Positron-annihilation lifetime measurements have been made on Ni over a temperature range of 4.2 to 1700 K. We find a small change in the lifetime from 4.2 to 900 K indicating a very small thermal-expansion effect. A small precursor effect is observed before the onset of significant vacancy trapping. A monovacancy formation enthalpy of 1.54/sub +0.2//sup -0.1/ eV is extracted without taking divacancies into consideration in the analysis. No detrapping from mono-vacancies is observed even at the higher temperatures. The vacancy formation enthalpy extracted from the lifetime data is compared to values obtained by Doppler-broadening and angular-correlation techniques

  5. The relationship between vapour pressure, vaporization enthalpy, and enthalpy of transfer from solution to gas: An extension of the Martin equation

    International Nuclear Information System (INIS)

    Srisaipet, A.; Aryusuk, K.; Lilitchan, S.; Krisnangkura, K.

    2007-01-01

    Martin's equation, Δ sln g G=Δ sln g G o +zδ sln g G, is extended to cover vaporization free energy (Δ l g G). The extended equation is further expanded in terms of enthalpy and entropy and then used to correlate vaporization enthalpy (Δ l g H) and enthalpy of transfer from solution to gas (Δ sln g H). Data available in the literatures are used to validate and support the speculations derived from the proposed equation

  6. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  7. Major factors influencing the generation of natural gas hydrate in porous media

    Directory of Open Access Journals (Sweden)

    V.N. Khlebnikov

    2017-11-01

    Full Text Available Current researches related to natural gas hydrate mainly focus on its physical and chemical properties, as well as the approaches to the production (decomposition of hydrate. Physical modeling of the flow process in hydrate deposits is critical to the study on the exploitation or decomposition of hydrate. However, investigation of the dynamic hydrate process by virtue of porous media like sand-packed tubes which are widely used in petroleum production research is rarely reported in literature. In this paper, physical simulation of methane hydrate generation process was conducted using river sand-packed tubes in the core displacement apparatus. During the simulation, the influences of parameters such as reservoir temperature, methane pressure and reservoir model properties on the process of hydrate generation were investigated. The following results are revealed. First, the use of ice-melted water as the immobile water in the reservoir model can significantly enhance the rate of methane hydrate generation. Second, the process driving force in porous media (i.e., extents to which the experimental pressure or temperature deviating those corresponding to the hydrate phase equilibrium plays a key role in the generation of methane hydrate. Third, the induction period of methane hydrate generation almost does not change with temperature or pressure when the methane pressure is above 1.4 folds of the hydrate phase equilibrium pressure or the laboratory temperature is lower than the phase equilibrium temperature by 3 °C or more. Fourth, the parameters such as permeability, water saturation and wettability don't have much influence on the generation of methane hydrate.

  8. Symmetry-enthalpy correlations in Diels-Alder reactions.

    Science.gov (United States)

    Tuvi-Arad, Inbal; Avnir, David

    2012-08-06

    Woodward-Hoffmann (WH) rules provide strict symmetry selection rules: when they are obeyed, a reaction proceeds; when they are not obeyed, there is no reaction. However, the voluminous experimental literature provides ample evidence that strict compliance to symmetry requirements is not an obstacle for a concerted reaction to proceed, and therefore the idea has developed that it is enough to have a certain degree of the required symmetry to have reactivity. Here we provide quantitative evidence of that link, and show that as one deviates from the desired symmetry, the enthalpy of activation increases, that is, we show that concerted reactions slow down the further they are from the ideal symmetry. Specifically, we study the deviation from mirror symmetry (evaluated with the continuous symmetry measure (CSM)) of the [4+2] carbon skeleton of the transition state of a series of twelve Diels-Alder reactions in seven different solvents (and in the gas phase), in which the dienes are butadiene, cyclopentadiene, cyclohexadiene, and cycloheptadiene; the dienophiles are the 1-, 1,1-, and 1,1,2-cyanoethylene derivatives; the solvents were chosen to sample a range of dielectric constants from heptane to ethanol. These components provide twenty-four symmetry-enthalpy DFT-calculated correlation lines (out of which only one case is a relatively mild exception) that show the general trend of increase in enthalpy as symmetry decreases. The various combinations between the dienophiles, cyanoethylenes, and solvents provide all kinds of sources for symmetry deviations; it is therefore remarkable that although the enthalpy of activation is dictated by various parameters, symmetry emerges as a primary parameter. In our analysis we also bisected this overall picture into solvent effects and geometry variation effects to evaluate under which conditions the electronic effects are more dominant than symmetry effects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrate prevention in petroleum production sub sea system

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Paula L.F.; Rocha, Humberto A.R. [Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Rodrigues, Antonio P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    In spite of the merits of the several hydrate prevention techniques used nowadays, such as: chemical product injection for inhibition and use of thick thermal insulate lines; hydrates per times happen and they are responsible for considerable production losses. Depressurization techniques can be used so much for prevention as in the remediation. Some hydrate removal techniques need a rig or vessel, resources not readily available and with high cost, reason that limits such techniques just for remediation and not for prevention. In the present work it is proposed and described an innovative depressurization system, remote and resident, for hydrate prevention and removal, applicable as for individual sub sea wells as for grouped wells by manifold. Based on low cost jet pumps, without movable parts and with a high reliability, this technique allows hydrate prevention or remediation in a fast and remote way, operated from the production unit. The power fluid line and fluid return line can be integrated in the same umbilical or annulus line structure, without significant increase in the construction costs and installation. It is not necessary to wait for expensive resource mobilization, sometimes not available quickly, such as: vessels or rigs. It still reduces the chemical product consumption and permits to depressurized stopped lines. Other additional advantage, depressurization procedure can be used in the well starting, removing fluid until riser emptying. (author)

  10. Enthalpy-Entropy Compensation (EEC) Effect: Decisive Role of Free Energy.

    Science.gov (United States)

    Pan, Animesh; Kar, Tanmoy; Rakshit, Animesh K; Moulik, Satya P

    2016-10-03

    The "enthalpy-entropy compensation" (EEC) effect has been a long-standing fascinating yet unresolved phenomenon in chemical thermodynamics. The reasons for the observation of EEC are not clear. Various views such as empirical, extrathermodynamic, error-related, solvation, and so forth as reasons for the H/S linear correlation are floating. Statistical reasons and a hidden Carnot's cycle (involving microscopic "heating and cooling" machines) have also been proposed recently for the observation of EEC. In this work, we have attempted a different line of approach to understand and explain the phenomenon. In the EEC treatment, the enthalpy (ΔH) and entropy (ΔS) values of "similar processes" are considered keeping aside the role of the other important thermodynamic parameter, that is, the free energy (ΔG). Considering ΔG along with ΔH and ΔS, it is established that the conventional EEC plot is not appropriate and mathematically sound. Consideration of ΔG may account for correlations of different kinds, linear, nonlinear, and so forth. Reports of non- or anticompensation phenomenon also prevail in the literature. A realistic account of the role of ΔG along with ΔH and ΔS in the understanding of such EEC correlations using authentic literature data is presented and discussed herein. EEC has several facets. Planned studies on similar systems with a wide range of ΔG values are required for realistic evaluation of the EEC and antienthalpy entropy compensation manifestations.

  11. Determination of melting and solidification enthalpy of hypereutectic silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2008-04-01

    Full Text Available The study was related with determination of the values of enthalpy of melting and solidification of hypereutectic AlSi18, AlSi21 and AlSi24 silumins modified with phosphorus in the form of Cu-P. The calorimetry, preceded by thermal analysis and derivative thermal analysis (TA and DTA, respectively was carried out on a high-temperature scanning calorimeter, model MHTC-96, made by SETARAM, applying the method of direct determination of parameters of the high-temperature process, and in particular of the enthalpy of phase transformations. Modern control and measuring instruments coupled with PC computer provide a very precise tool for determination of these transformations. An additional advantage was development of appropriate software called „SETSOFT”, owing to which it was possible to determine in an easy way the enthalpy of the investigated phase transformations. Moreover, an additional thermal effect, related most probably with pre-eutectic crystallization of primary silicon, was observed and confirmed by calorimetric examinations.

  12. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature

  13. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  14. Compositional characteristics and hydration behavior of mineral trioxide aggregates

    Directory of Open Access Journals (Sweden)

    Wen-Hsi Wang

    2010-06-01

    Full Text Available Mineral trioxide aggregate (MTA was one of most popular biomaterials for endodontic treatment in the past decade. Its superb biocompatibility, sealing ability and surface for tissue adhesion all make MTA a potential candidate for many dental applications, such as apexification, perforation repair, repair of root resorption, and as a root-end filling material. There are many review articles regarding the physical, chemical and biological properties of MTA. However, there are few reviews discussing the relationship between the composition and hydration behavior of MTA. The aim of this article was to provide a systematic review regarding the compositional characteristics and hydration behavior of MTA.

  15. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  16. Hydration water and microstructure in calcium silicate and aluminate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Emiliano [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Ridi, Francesca [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Baglioni, Piero [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy)

    2006-09-13

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C{sub 3}S, C{sub 2}S) and aluminates (C{sub 3}A, C{sub 4}AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm{sup -1} monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the {sup 1}H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron

  17. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  18. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  19. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  20. In Situ Raman Detection of Gas Hydrates Exposed on the Seafloor of the South China Sea

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Luan, Zhendong; Wang, Xiujuan; Xi, Shichuan; Wang, Bing; Li, Lianfu; Lian, Chao; Yan, Jun

    2017-10-01

    Gas hydrates are usually buried in sediments. Here we report the first discovery of gas hydrates exposed on the seafloor of the South China Sea. The in situ chemical compositions and cage structures of these hydrates were measured at the depth of 1,130 m below sea level using a Raman insertion probe (RiP-Gh) that was carried and controlled by a remotely operated vehicle (ROV) Faxian. This in situ analytical technique can avoid the physical and chemical changes associated with the transport of samples from the deep sea to the surface. Natural gas hydrate samples were analyzed at two sites. The in situ spectra suggest that the newly formed hydrate was Structure I but contains a small amount of C3H8 and H2S. Pure gas spectra of CH4, C3H8, and H2S were also observed at the SCS-SGH02 site. These data represent the first in situ proof that free gas can be trapped within the hydrate fabric during rapid hydrate formation. We provide the first in situ confirmation of the hydrate growth model for the early stages of formation of crystalline hydrates in a methane-rich seafloor environment. Our work demonstrates that natural hydrate deposits, particularly those in the early stages of formation, are not monolithic single structures but instead exhibit significant small-scale heterogeneities due to inclusions of free gas and the surrounding seawater, there inclusions also serve as indicators of the likely hydrate formation mechanism. These data also reinforce the importance of correlating visual and in situ measurements when characterizing a sampling site.

  1. Enthalpy of formation of the cyclohexadienyl radical and the C-H bond enthalpy of 1,4-cyclohexadiene: an experimental and computational re-evaluation.

    Science.gov (United States)

    Gao, Yide; DeYonker, Nathan J; Garrett, E Chauncey; Wilson, Angela K; Cundari, Thomas R; Marshall, Paul

    2009-06-25

    A quantitative understanding of the thermochemistry of cyclohexadienyl radical and 1,4-cyclohexadiene is beneficial for diverse areas of chemistry. Given the interest in these two species, it is surprising that more detailed thermodynamic data concerning the homolytic C-H bond enthalpies of such entities have not been forthcoming. We thus undertook an experimental and computational evaluation of (a) the enthalpy of formation of cyclohexadienyl radical (C(6)H(7)), (b) the homolytic C-H bond enthalpy of 1,4-cyclohexadiene (C(6)H(8)), and (c) the enthalpy of the addition of a hydrogen atom to benzene. Using laser photolysis experiments coupled with highly accurate ab initio quantum mechanical techniques, a newly recommended enthalpy of formation for C(6)H(7) is determined to be 208.0 +/- 3.9 kJ mol(-1), leading to a homolytic bond dissociation enthalpy of 321.7 +/- 2.9 kJ mol(-1), almost 9 kJ mol(-1) higher than previously determined enthalpies that used less certain experimental values for the C(6)H(7) enthalpy of formation.

  2. The relation between inversion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+ solutions

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with a phosphoric acid solution (50%).The obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0.37 cm 3 g -1 . With respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0.92 meq g -l ) compared to basic sites (0.63 meq g-1) which yields a material with almost neutral characteristics (PHpzc: 7.4). At a pH: 4.0 the amount of Pb 2 + absorbed and the immersion enthalpy values for the activated carbon reached a maximum with values of 15.7 mg -1 y 27.6 Jg -1 respectively. It was established that similar behaviour occurs for the two properties, absorption and immersion enthalpy, as a function of pH. In addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and pH of the solution are presented

  3. The relation between immersion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+solutions

    International Nuclear Information System (INIS)

    Girado, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with phosphoric acid solution (50%). the obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0,37 cm 3 g -1 . with respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0,92 meq g -1 ) compared to basic sites (0,63 meq g -1 ) which yields a material with almost neutral characteristics (pH p zc: 7,4). At a pH: 4.0 the amount of pb2+ absorbed and the immersion enthalpy values for the activated carbon reached maxim with values of 15.7 mg -1 y 27,6 Jg -1 respectively. it was established that similar behavior occurs for the two properties, absorption and immersion enthalpy, as a function of pH. in addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and ph of the solution are presented

  4. Gas hydrate accumulation at the Hakon Mosby Mud Volcano

    Science.gov (United States)

    Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.

    1999-01-01

    Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.

  5. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  6. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  7. The use of hydrated lime in acid mine drainage treatment

    Science.gov (United States)

    Othman, Anuar; Sulaiman, Azli; Sulaiman, Shamsul Kamal

    2017-05-01

    Hydrated lime also known as calcium hydroxide with chemical formula Ca(OH)2 was used in this study as neutralization agent in acid mine drainage (AMD) treatment. Hydrated lime that is used to treat pool water samples from tin tailings located in Pengkalan Hulu, Perak was obtained from Simpang Pulai, Perak. The pH of water sample was around 2.6 to 2.8. Ten different variables of hydrated lime weights were used to treat 1 L of water sample. The weights of hydrated lime used were 0.2 g, 0.4 g, 0.6 g, 0.8 g, 1.0 g, 1.2 g, 1.4 g, 1.6 g, 1.8 g and 2.0 g. Time interval used was every 5 minutes up to minutes 30. Jar test method was used in this study. The maximum pH value of 5.93 ± 0.03 most approaches standard A and had complied standard B have been obtained using 2.0 g hydrated lime in 30-minute time interval. The concentration of arsenic, cadmium and chromium had decreased but only cadmium concentration did not comply with Standards A and B.

  8. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    literature data for the enthalpy of oxygenation in Antarctic fish hemoglobins derives from the use of the nonintegrated (linearized) form of the van't Hoff equation over different temperature ranges. The general assumption that a low heat of oxygenation in hemoglobins from polar animals represents......The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...

  9. Protons in hydrated protein powders

    International Nuclear Information System (INIS)

    Careri, G.; Bruni, F.; Consolini, G.

    1995-01-01

    Previous work from this laboratory has shown that hydrated lysozyme powders exhibit a dielectric behaviour, due to proton conductivity, explainable within the frame of percolation theory. Long range proton displacement appears only above the critical hydration for percolation, when the 2-dimensional motion takes place on fluctuating clusters of hydrogen-bonded water molecules adsorbed on the protein surface. The emergence of biological function, enzyme catalysis, was found to coincide with the critical hydration for percolation. More recently, we have evaluated the protonic conductivity of hydrated lysozyme powders, from room down to liquid N 2 temperature. In the high temperature limit a classical isotopic effect can be detected, and the conductivity follows the familiar Arrhenius law for thermally activated hopping. In the low temperature region the conductivity shows a temperature dependence in agreement with prediction by the theory of dissipative quantum tunneling. Below room temperature the static dielectric constant, and the dielectric relaxation time for charge transport showed an increase likely to be identified with the formation of a polaronic-solitonic species as predicted by the theory of proton transport in water chains, a species which displays a larger effective mass and a larger dipole moment that the usual hydrated protonic defects. The purpose of this paper is twofold. In the first section we present a tutorial report of some previous experimental results on proton displacement in slightly hydrated biological systems at room temperature, to show that in these systems the emergence of biological systems at room temperature, to show that in these systems the emergence of biological function coincides with the onset of percolative pathways in the water molecules network adsorbed on the surface of biomolecules. In the second section, we report on preliminary data on the dielectric relaxation of hydrated lysozyme below room temperature, to suggest

  10. Energy resource potential of natural gas hydrates

    Science.gov (United States)

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  11. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  12. Kinetics and enthalpy of crystallization of uric acid dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sádovská, Galina, E-mail: galina.sadovska@upce.cz; Honcová, Pavla; Sádovský, Zdeněk

    2013-08-20

    Highlights: • The kinetic constant and growth order of crystallization of uric acid dihydrate was calculated. • The equation describing first-order crystal growth was derived. • The enthalpy of crystallization of uric acid dihydrate was determined. - Abstract: The kinetics of crystallization of uric acid dihydrate in aqueous solution with a constant ionic strength 0.3 mol dm{sup −3} NaCl and at thermodynamic and physiological temperature (25 and 37 °C) was studied using isoperibolic reaction twin calorimeter. The enthalpy of crystallization Δ{sub cr}H = −47.3 ± 0.9 and −46.2 ± 1.4 kJ mol{sup −1}and kinetic constant k{sub g} = 2.0 × 10{sup −8} and 9.6 × 10{sup −8} m{sup 4} s{sup −1} mol{sup −1} were determined at 25 and 37 °C, respectively.

  13. Parabolic troughs to increase the geothermal wells flow enthalpy

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Engineering Institute, National Autonomous University of Mexico, Building 12, Cuidad Universitaria, Mexico D.F., A.P. 70-472, C.P. 04510 (Mexico)

    2006-10-15

    This work investigates the feasibility of using parabolic trough solar field to increase the enthalpy from geothermal wells' flow in order to increase the steam tons; in addition, it is possible to prevent silica deposition in the geothermal process. The high levels of irradiance in Northwestern Mexico make it possible to integrate a solar-geothermal hybrid system that uses two energy resources to provide steam for the geothermal cycle, like the Cerro Prieto geothermal field. The plant consists of a geothermal well, a parabolic trough solar field in series, flash separator, steam turbine and condenser. Well '408' of Cerro Prieto IV has enthalpy of 1566kJ/kg and its quality must be increased by 10 points, which requires a {delta}h of 194.4kJ/kg. Under these considerations the parabolic troughs area required will be 9250m{sup 2}, with a flow of 92.4tons per hour (25.67kg/s). The solar field orientation is a N-S parabolic trough concentrator. The silica content in the Cerro Prieto geothermal brine causes problems for scaling at the power facility, so scale controls must be considered. (author)

  14. Enthalpy and the mechanics of AdS black holes

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie; Ray, Sourya

    2009-01-01

    We present geometric derivations of the Smarr formula for static AdS black holes and an expanded first law that includes variations in the cosmological constant. These two results are further related by a scaling argument based on Euler's theorem. The key new ingredient in the constructions is a two-form potential for the static Killing field. Surface integrals of the Killing potential determine the coefficient of the variation of Λ in the first law. This coefficient is proportional to a finite, effective volume for the region outside the AdS black hole horizon, which can also be interpreted as minus the volume excluded from a spatial slice by the black hole horizon. This effective volume also contributes to the Smarr formula. Since Λ is naturally thought of as a pressure, the new term in the first law has the form of effective volume times change in pressure that arises in the variation of the enthalpy in classical thermodynamics. This and related arguments suggest that the mass of an AdS black hole should be interpreted as the enthalpy of the spacetime.

  15. Listening to PS II: enthalpy, entropy, and volume changes.

    Science.gov (United States)

    Hou, Harvey J M; Mauzerall, David

    2011-01-01

    Photosystem II, located in the thylakoid membranes of green plants, algae, and cyanobacteria, uses sunlight to split water into protons, electrons, and a dioxygen molecule. The mechanism of its electron transfers and oxygen evolution including the structure of the protein and rates of the S-state cycle has been extensively investigated. Substantial progress has been made; however, the thermodynamics of PS II electron transfer and of the oxygen cycle are poorly understood. Recent progress in thermodynamic measurements in photosynthesis provides novel insights on the enthalpic and entropic contribution to electron transfer in proteins. In this review the thermodynamic parameters including quantum yield, enthalpy, entropy, and volume changes of PS II photochemistry determined by photoacoustics and other laser techniques are summarized and evaluated. Light-driven volume changes via electrostriction are directly related to the photoreaction in PS II and thus can be a useful measurement of PS II activity and function. The enthalpy changes of the reactions observed can be directly measured by photoacoustics. The apparent reaction entropy can also be estimated when the free energy is known. Dissecting the free energy of a photoreaction into enthalpic and entropic components provides critical information about mechanisms of PS II function. Potential limitations and future direction of the study of the thermodynamics of PS II electron transfer and oxygen evolution are presented. Published by Elsevier B.V.

  16. Relaxation of enthalpy fluctuations during sub-T(g) annealing of glassy selenium.

    Science.gov (United States)

    Gulbiten, Ozgur; Mauro, John C; Lucas, Pierre

    2013-06-28

    The relaxation behavior of glass is influenced by the presence of dynamical heterogeneities, which lead to an intrinsically non-monotonic decay of fluctuations in density and enthalpy during isothermal annealing. This is apparently a universal feature of fragile glass forming systems associated with localized spatial variations in relaxation time. Here we present direct experimental observation of the nonmonotonic evolution of enthalpy fluctuations in glassy selenium annealed near room temperature. The nonmonotonic change in the distribution of enthalpy fluctuations measured by heat capacity spectroscopy offers direct evidence for the presence of dynamical heterogeneity in this glass. An enthalpy landscape model of selenium is then used to simulate annealing under identical conditions. The simulation results closely follow the evolution of enthalpy fluctuations observed experimentally. The close match between model and experiment demonstrate that enthalpy and density fluctuations are sources of dynamical heterogeneities in glassy materials.

  17. Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding.

    Science.gov (United States)

    Ward, Joshua M; Gorenstein, Nina M; Tian, Jianhua; Martin, Stephen F; Post, Carol Beth

    2010-08-18

    NMR spectroscopy and molecular dynamics (MD) simulations were used to probe the structure and dynamics of complexes of three phosphotyrosine-derived peptides with the Src SH2 domain in an effort to uncover a structural explanation for enthalpy-entropy compensation observed in the binding thermodynamics. The series of phosphotyrosine peptide derivatives comprises the natural pYEEI Src SH2 ligand, a constrained mimic, in which the phosphotyrosine (pY) residue is preorganized in the bound conformation for the purpose of gaining an entropic advantage to binding, and a flexible analogue of the constrained mimic. The expected gain in binding entropy of the constrained mimic was realized; however, a balancing loss in binding enthalpy was also observed that could not be rationalized from the crystallographic structures. We examined protein dynamics to evaluate whether the observed enthalpic penalty might be the result of effects arising from altered motions in the complex. (15)N-relaxation studies and positional fluctuations from molecular dynamics indicate that the main-chain dynamics of the protein show little variation among the three complexes. Root mean squared (rms) coordinate deviations vary by less than 1.5 A for all non-hydrogen atoms for the crystal structures and in the ensemble average structures calculated from the simulations. In contrast to this striking similarity in the structures and dynamics, there are a number of large chemical shift differences from residues across the binding interface, but particularly from key Src SH2 residues that interact with pY, the "hot spot" residue, which contributes about one-half of the binding free energy. Rank-order correlations between chemical shifts and ligand binding enthalpy for several pY-binding residues, coupled with available mutagenesis and calorimetric data, suggest that subtle structural perturbations (enthalpy, leading to the observed enthalpy-entropy compensation. We find no evidence to support the premise

  18. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  19. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  20. Thermodynamic Relationship between Enthalpy of Mixing and Excess Entropy in Solid Solutions of Binary Alloys

    OpenAIRE

    Hara, Shigeta; Gokcen, Nev A.; Kumar C. Kumar; Morita, Zen-ichiro; Tanaka, Toshihiro

    1996-01-01

    Thermodynamic relationships between enthalpy of mixing and excess entropy, and partial enthalpy of solution and partial excess entropy in solid solutions of binary alloys have been derived based on the free volume theory. Using the above relations, excess entropy and excess Gibbs energy of solid solutions in Ag-Au, Ag-Pd and Au-Pd binary alloys have been calculated from enthalpy of mixing, and compared with the literature values.

  1. Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition

    Science.gov (United States)

    2016-04-14

    InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.345 Using enthalpy as a prognostic variable in atmospheric modelling with variable composition† R...Maryland, USA cNow at NOAA/NCEP, Space Weather Prediction Centre, Boulder, Colorado, USA ABSTRACT: Specific enthalpy emerges from a general form of the...trajectories depend- ing on sources, sinks, and fluxes of individual tracers. Specific enthalpy , h = cpT , (1) where cp is the specific heat capacity at

  2. Vapour pressures and enthalpies of vaporization of a series of the ferrocene derivatives

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Krol, Olesya V.; Varushchenko, Raisa M.; Chelovskaya, Nelly V.

    2007-01-01

    Vapour pressures of the ferrocene, ferrocene-methanol, benzyl-ferrocene, and benzoyl-ferrocene have been determined by the transpiration method. The molar enthalpies of sublimation Δ cr g H m and of vaporization Δ l g H m have been determined from the temperature dependence of the vapour pressure. The molar enthalpies of fusion of these compounds were measured by d.s.c. The measured data sets of vaporization, sublimation, and fusion enthalpies were checked for internal consistency

  3. Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances.

    Science.gov (United States)

    Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2017-12-01

    Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.

  4. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    Science.gov (United States)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  5. Evaluation of superpave mixtures containing hydrated lime.

    Science.gov (United States)

    2013-07-01

    The use of hydrated lime in Hot-Mix Asphalt (HMA) mixtures can reduce permanent deformation, long-term aging, and moisture : susceptibility of mixtures. In addition, hydrated lime increases the stiffness and fatigue resistance of mixtures. This study...

  6. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    Science.gov (United States)

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  7. The reaction enthalpy of hydrogen dissociation calculated with the Small System Method from simulation of molecular fluctuations.

    Science.gov (United States)

    Skorpa, Ragnhild; Simon, Jean-Marc; Bedeaux, Dick; Kjelstrup, Signe

    2014-09-28

    We show how we can find the enthalpy of a chemical reaction under non-ideal conditions using the Small System Method to sample molecular dynamics simulation data for fluctuating variables. This method, created with Hill's thermodynamic analysis, is used to find properties in the thermodynamic limit, such as thermodynamic correction factors, partial enthalpies, volumes, heat capacities and compressibility. The values in the thermodynamic limit at (T,V, μj) are then easily transformed into other ensembles, (T,V,Nj) and (T,P,Nj), where the last ensemble gives the partial molar properties which are of interest to chemists. The dissociation of hydrogen from molecules to atoms was used as a convenient model system. Molecular dynamics simulations were performed with three densities; ρ = 0.0052 g cm(-3) (gas), ρ = 0.0191 g cm(-3) (compressed gas) and ρ = 0.0695 g cm(-3) (liquid), and temperatures in the range; T = 3640-20,800 K. The enthalpy of reaction was observed to follow a quadratic trend as a function of temperature for all densities. The enthalpy of reaction was observed to only have a small pressure dependence. With a reference point close to an ideal state (T = 3640 K and ρ = 0.0052 g cm(-3)), we were able to calculate the thermodynamic equilibrium constant, and thus the deviation from ideal conditions for the lowest density. We found the thermodynamic equilibrium constant to increase with increasing temperature, and to have a negligible pressure dependence. Taking the enthalpy variation into account in the calculation of the thermodynamic equilibrium constant, we found the ratio of activity coefficients to be in the order of 0.7-1.0 for the lowest density, indicating repulsive forces between H and H2. This study shows that the compressed gas- and liquid density values at higher temperatures are far from those calculated under ideal conditions. It is important to have a method that can give access to partial molar properties, independent of the ideality of

  8. Evaluation of hydration indexes in kale leaves

    OpenAIRE

    Calbo, Adonai G.; Ferreira, Marcos D.

    2011-01-01

    Hydration indexes are practical variables for quantifying plant water stress and can be useful for agronomic purposes. Three adapted hydration indexes based on relative water content, volumetric hydration, and leaf turgor pressure were evaluated in kale (Brassica oleracea var. acephala) leaf segments. Relative water content and volumetric hydration were measured in leaf segments after a water infiltration procedure with the aim of filling its large intercellular volumes (@18%v/v). The infiltr...

  9. Characteristics of low-enthalpy geothermal applications in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Andritsos, N. [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 383 34 Volos (Greece); Dalabakis, P. [Land Reclamation Institute, NAGREF, 574 00 Sindos, Thessaloniki (Greece); Karydakis, G. [IGME, Geothermal Energy Section, Sp. Loui 1, 136 77 Acharnes (Greece); Kolios, N. [IGME, Branch of Central Macedonia, Frangon 1, 546 26 Thessaloniki (Greece); Fytikas, M. [Department of Geology, Aristotle University of Thessaloniki, 540 06 Thessaloniki (Greece)

    2011-04-15

    The paper offers a brief overview of the current direct geothermal uses in Greece and discusses their characteristics, with emphasis to the economical and technical problems encountered. Greece holds a prominent place in Europe regarding the existence of promising geothermal resources (both high and low-enthalpy), which can be economically exploited. Currently, no geothermal electricity is produced in Greece. The installed capacity of direct uses at the end of 2009 is estimated at about 155 MW{sub t}, exhibiting an increase of more than 100% compared to the figures reported at the World Geothermal Congress 2005. The main uses, in decreasing share, are geothermal heat pumps, swimming and balneology, greenhouse heating and soil warming. Earth-coupled and groundwater (or seawater) heat pumps have shown a drastic expansion during the past 2-3 years, mainly due to high oil prices two years ago and easing of the license requirements for drilling shallow wells. (author)

  10. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  11. Molecular rigidity and enthalpy-entropy compensation in DNA melting.

    Science.gov (United States)

    Vargas-Lara, Fernando; Starr, Francis W; Douglas, Jack F

    2017-11-15

    Enthalpy-entropy compensation (EEC) is observed in diverse molecular binding processes of importance to living systems and manufacturing applications, but this widely occurring phenomenon is not sufficiently understood from a molecular physics standpoint. To gain insight into this fundamental problem, we focus on the melting of double-stranded DNA (dsDNA) since measurements exhibiting EEC are extensive for nucleic acid complexes and existing coarse-grained models of DNA allow us to explore the influence of changes in molecular parameters on the energetic parameters by using molecular dynamics simulations. Previous experimental and computational studies have indicated a correlation between EEC and changes in molecular rigidity in certain binding-unbinding processes, and, correspondingly, we estimate measures of DNA molecular rigidity under a wide range of conditions, along with resultant changes in the enthalpy and entropy of binding. In particular, we consider variations in dsDNA rigidity that arise from changes of intrinsic molecular rigidity such as varying the associative interaction strength between the DNA bases, the length of the DNA chains, and the bending stiffness of the individual DNA chains. We also consider extrinsic changes of molecular rigidity arising from the addition of polymer additives and geometrical confinement of DNA between parallel plates. All our computations confirm EEC and indicate that this phenomenon is indeed highly correlated with changes in molecular rigidity. However, two distinct patterns relating to how DNA rigidity influences the entropy of association emerge from our analysis. Increasing the intrinsic DNA rigidity increases the entropy of binding, but increases in molecular rigidity from external constraints decreases the entropy of binding. EEC arises in numerous synthetic and biological binding processes and we suggest that changes in molecular rigidity might provide a common origin of this ubiquitous phenomenon in the mutual

  12. 1H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    International Nuclear Information System (INIS)

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-01

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution 1 H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements

  13. Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.

    Science.gov (United States)

    Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M

    2016-11-01

    Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.

  14. Hydrophobic hydration of poly-N-isopropyl acrylamide: a matter of the mean energetic state of water

    Science.gov (United States)

    Bischofberger, I.; Calzolari, D. C. E.; de Los Rios, P.; Jelezarov, I.; Trappe, V.

    2014-03-01

    The enthalpically favoured hydration of hydrophobic entities, termed hydrophobic hydration, impacts the phase behaviour of numerous amphiphiles in water. Here, we show experimental evidence that hydrophobic hydration is strongly determined by the mean energetics of the aqueous medium. We investigate the aggregation and collapse of an amphiphilic polymer, poly-N-isopropyl acrylamide (PNiPAM), in aqueous solutions containing small amounts of alcohol and find that the thermodynamic characteristics defining the phase transitions of PNiPAM evolve relative to the solvent composition at which the excess mixing enthalpy of the water/alcohol mixtures becomes minimal. Such correlation between solvent energetics and solution thermodynamics extends to other mixtures containing neutral organic solutes that are considered as kosmotropes to induce a strengthening of the hydrogen bonded water network. This denotes the energetics of water as a key parameter controlling the phase behaviour of PNiPAM and identifies the excess mixing enthalpy of water/kosmotrope mixtures as a gauge of the kosmotropic effect on hydrophobic assemblies.

  15. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  16. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  17. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  18. Anion Recognition in Water, Including Sulfate, by a Bicyclam Bimetallic Receptor: A Process Governed by the Enthalpy/Entropy Compensatory Relationship.

    Science.gov (United States)

    Boiocchi, Massimo; Bonizzoni, Marco; Ciarrocchi, Carlo; Fabbrizzi, Luigi; Invernici, Michele; Licchelli, Maurizio

    2018-02-11

    The dimetallic system [Cu II 2 (L)] 4+ contains two facing equivalent metallocyclam subunits and incorporates ambidentate anions, mono- (halides) and poly-atomic (sulfate), which bridge the two Cu II centres. Isothermal titration calorimetry (ITC) experiments in water showed that the log K values of the inclusion equilibria for halides and sulfate varied over a restricted interval (3.6±0.2), which indicated lack of selectivity and that similarity of ΔG° values resulted from the unbalanced contribution of the ΔH° and TΔS° terms: the more favourable the one, the less favourable the other. In particular, a linear dependence of ΔH° and TΔS° was observed (a typical enthalpy/entropy compensatory diagram), which assigned a major role to hydration terms: 1) a more hydrated anion resulted in a more endothermic dehydration process; and 2) a larger number of water molecules released to the solution resulted in a more positive TΔS°. Limiting cases refer to the complexation 1) of the poorly hydrated iodide (highly exothermic process, entropically disfavoured), and 2) of the highly hydrated sulfate (moderately endothermic process, entropically very favoured). Anion receptors operating in water belong to two main domains: 1) those exhibiting positive ΔH° and positive TΔS° (+/+ signature), and 2) those displaying the opposite behaviour: (-/- signature). The receptor investigated herein connects the two domains, along the ΔH°/TΔS° straight line, thanks to the hidden role of the versatile metal-anion interaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Why alite stops hydrating below 80% relative humidity

    International Nuclear Information System (INIS)

    Flatt, Robert J.; Scherer, George W.; Bullard, Jeffrey W.

    2011-01-01

    It has been observed that the hydration of cement paste stops when the relative humidity drops below about 80%. A thermodynamic analysis shows that the capillary pressure exerted at that RH shifts the solubility of tricalcium silicate, so that it is in equilibrium with water. This is a reflection of the chemical shrinkage in this system: according to Le Chatelier's principle, since the volume of the products is less than that of the reactants, a negative (capillary) pressure opposes the reaction.

  20. Effect of cure cycle on enthalpy relaxation and post shrinkage in neat epoxy and epoxy composites

    DEFF Research Database (Denmark)

    Jensen, Martin; Jakobsen, Johnny

    2016-01-01

    The effect of cure cycle on enthalpy relaxation and warpage is studied for both neat epoxy and glass/epoxy composites. An approach for determining the enthalpy relaxation in the matrix of composite materials combining modulated differential scanning calorimetry and thermogravimetry is presented...

  1. Effect of Calcium chloride and Cadmium chloride on the enthalpy of ...

    African Journals Online (AJOL)

    This paper presents the effect of two dissolved inorganic salts, CaCl2 and CdCl2 on the enthalpy of mixing of the binary 1,4 dioxane + water system has been investigated at 303.15 K in an isothermal displacement calorimeter with vapour space. A significantly increasing trend in the endothermic excess enthalpy values for ...

  2. Enthalpy Costs of Making and Breaking Bonds: A Game of Generating Molecules with Proper Lewis Structures

    Science.gov (United States)

    Bell, Peter T.; Adkins, Alyssa D.; Gamble, Rex J.; Schultz, Linda D.

    2009-01-01

    "Enthalpy Costs" is a simple card game created to assist students in developing proper Lewis structure drawing skills. Score keeping is accomplished by tracking the enthalpy changes associated with bond-making and bond-breaking processes during formation of molecules represented by proper Lewis structures. Playing the game requires the student to…

  3. Determination of the free enthalpies of formation of borosilicate glasses; Determination des enthalpies libres de formation des verres borosilicates. Application a l'etude de l'alteration des verres de confinement de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Y

    2000-07-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  4. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  5. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  6. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  7. Glacial Cycles Influence Marine Methane Hydrate Formation

    Science.gov (United States)

    Malinverno, A.; Cook, A. E.; Daigle, H.; Oryan, B.

    2018-01-01

    Methane hydrates in fine-grained continental slope sediments often occupy isolated depth intervals surrounded by hydrate-free sediments. As they are not connected to deep gas sources, these hydrate deposits have been interpreted as sourced by in situ microbial methane. We investigate here the hypothesis that these isolated hydrate accumulations form preferentially in sediments deposited during Pleistocene glacial lowstands that contain relatively large amounts of labile particulate organic carbon, leading to enhanced microbial methanogenesis. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent organic carbon deposition controlled by glacioeustatic sea level variations. In the model, hydrate forms in sediments with greater organic carbon content deposited during the penultimate glacial cycle ( 120-240 ka). The model predictions match hydrate-bearing intervals detected in three sites drilled on the northern Gulf of Mexico continental slope, supporting the hypothesis of hydrate formation driven by enhanced organic carbon burial during glacial lowstands.

  8. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda

    2015-06-01

    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  9. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  10. Thermochemical study of 1-acetyl vinyl p-nitrobenzoate: vinyl bond enthalpy in captodative olefins.

    Science.gov (United States)

    Rojas, Aarón; Valdés-Ordoñez, Alejandro; Martínez-Herrera, Melchor; Torres, Luis Alfonso; Campos, Myriam; Hernández-Obregón, Javier; Herrera, Rafael; Tamariz, Joaquín

    2015-05-21

    Captodative olefins are highly reactive and selective substrates in Diels-Alder and 1,3-dipolar cycloadditions. Seeking an explanation of this fact based on molecular energetics, the thermochemical analysis of 1-acetyl vinyl p-nitrobenzoate, a captodative olefin, has been performed using semi-micro-combustion calorimetry, effusion measurements through a quartz crystal microbalance, and differential scanning calorimetry. The molar standard combustion energy and enthalpy as well as the molar standard formation enthalpy are reported along with sublimation and melting enthalpies. From these data, experimental formation enthalpy of the gas-phase is derived and compared with the theoretical value calculated through the density functional theory procedure. The olefinic bond enthalpy is also computed from experimental data, and the relevance of the results is discussed.

  11. Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC

    Science.gov (United States)

    Thompson, Corinna S.; Prabhu, Dinesh; Terrazas-Salinas, Imelda; Mach, Jeffrey J.

    2011-01-01

    The Arc Jet Facilities at NASA Ames Research Center generate test streams with enthalpies ranging from 5 MJ/kg to 25 MJ/kg. The present work describes a rigorous method, based on equilibrium thermodynamics, for calculating the bulk enthalpy of the flow produced in two of these facilities. The motivation for this work is to determine a dimensionally-correct formula for calculating the bulk enthalpy that is at least as accurate as the conventional formulas that are currently used. Unlike previous methods, the new method accounts for the amount of argon that is present in the flow. Comparisons are made with bulk enthalpies computed from an energy balance method. An analysis of primary facility operating parameters and their associated uncertainties is presented in order to further validate the enthalpy calculations reported herein.

  12. Excess molar enthalpies for binary mixtures of different amines with water

    International Nuclear Information System (INIS)

    Zhang, Ruilei; Chen, Jian; Mi, Jianguo

    2015-01-01

    Highlights: • Isothermal excess molar enthalpies for binary mixtures of different amines with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The excess molar enthalpies were discussed with different structures of amines. - Abstract: The isothermal excess molar enthalpies for binary mixtures of different amines with water were measured with a C-80 Setaram calorimeter. The experimental results indicate that the excess molar enthalpy is related to the molecular structure. The experimental excess molar enthalpies were satisfactorily fitted with the Redlich–Kister equation. They were also used to test the suitability of the NRTL model, and the deviations are a little larger than the R–K equation

  13. Facing the challenge of predicting the standard formation enthalpies of n-butyl-phosphate species with ab initio methods

    Science.gov (United States)

    Saab, Mohamad; Réal, Florent; Šulka, Martin; Cantrel, Laurent; Virot, François; Vallet, Valérie

    2017-06-01

    Tributyl-phosphate (TBP), a ligand used in the PUREX liquid-liquid separation process of spent nuclear fuel, can form an explosive mixture in contact with nitric acid that might lead to a violent explosive thermal runaway. In the context of safety of a nuclear reprocessing plant facility, it is crucial to predict the stability of TBP at elevated temperatures. So far, only the enthalpies of formation of TBP are available in the literature with rather large uncertainties, while those of its degradation products, di-(HDBP) and mono-(H2MBP), are unknown. In this goal, we have used state-of-the art quantum chemical methods to compute the formation enthalpies and entropies of TBP and its degradation products di-(HDBP) and mono-(H2MBP) in gas and liquid phases. Comparisons of levels of quantum chemical theory revealed that there are significant effects of correlation on their electronic structures, pushing for the need of not only high level of electronic correlation treatment, namely, local coupled cluster with single and double excitation operators and perturbative treatment of triple excitations, but also extrapolations to the complete basis to produce reliable and accurate thermodynamics data. Solvation enthalpies were computed with the conductor-like screening model for real solvents [COSMO-RS], for which we observe errors not exceeding 22 kJ mol-1. We thus propose with final uncertainty of about 20 kJ mol-1 standard enthalpies of formation of TBP, HDBP, and H2MBP which amounts to -1281.7 ± 24.4, -1229.4 ± 19.6, and -1176.7 ± 14.8 kJ mol-1, respectively, in the gas phase. In the liquid phase, the predicted values are -1367.3 ± 24.4, -1348.7 ± 19.6, and -1323.8± 14.8 kJ mol-1, to which we may add about -22 kJ mol-1 error from the COSMO-RS solvent model. From these data, the complete hydrolysis of TBP is predicted as an exothermic phenomena but showing a slightly endergonic process.

  14. Water anomalous thermodynamics, attraction, repulsion, and hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Cerdeiriña, Claudio A., E-mail: calvarez@uvigo.es [Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004 (Spain); Debenedetti, Pablo G., E-mail: pdebene@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-04-28

    A model composed of van der Waals-like and hydrogen bonding contributions that simulates the low-temperature anomalous thermodynamics of pure water while exhibiting a second, liquid-liquid critical point [P. H. Poole et al., Phys. Rev. Lett. 73, 1632 (1994)] is extended to dilute solutions of nonionic species. Critical lines emanating from such second critical point are calculated. While one infers that the smallness of the water molecule may be a relevant factor for those critical lines to move towards experimentally accessible regions, attention is mainly focused on the picture our model draws for the hydration thermodynamics of purely hydrophobic and amphiphilic non-electrolyte solutes. We first focus on differentiating solvation at constant volume from the corresponding isobaric process. Both processes provide the same viewpoint for the low solubility of hydrophobic solutes: it originates from the combination of weak solute-solvent attractive interactions and the specific excluded-volume effects associated with the small molecular size of water. However, a sharp distinction is found when exploring the temperature dependence of hydration phenomena since, in contrast to the situation for the constant-V process, the properties of pure water play a crucial role at isobaric conditions. Specifically, the solubility minimum as well as enthalpy and entropy convergence phenomena, exclusively ascribed to isobaric solvation, are closely related to water’s density maximum. Furthermore, the behavior of the partial molecular volume and the partial molecular isobaric heat capacity highlights the interplay between water anomalies, attraction, and repulsion. The overall picture presented here is supported by experimental observations, simulations, and previous theoretical results.

  15. Accurate Reaction Enthalpies and Sources of Error in DFT Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions

    Science.gov (United States)

    Wheeler, Steven E.; Moran, Antonio; Pieniazek, Susan N.; Houk, K. N.

    2009-08-01

    Enthalpies for bond-forming reactions that are subject to organocatalysis have been predicted using the high-accuracy CBS-QB3 model chemistry and six DFT functionals. Reaction enthalpies were decomposed into contributions from changes in bonding and other intramolecular effects via the hierarchy of homodesmotic reactions. The order of the reaction exothermicities (aldol Mannich ≈ α-aminoxylation) arises primarily from changes in formal bond types mediated by contributions from secondary intramolecular interactions. In each of these reaction types, methyl substitution at the β- and γ-positions stabilizes the products relative to the unsubstituted case. The performance of six DFT functionals (B3LYP, B3PW91, B1B95, MPW1PW91, PBE1PBE, and M06-2X), MP2, and SCS-MP2 has been assessed for the prediction of these reaction enthalpies. Even though the PBE1PBE and M06-2X functionals perform well for the aldol and Mannich reactions, errors roughly double when these functionals are applied to the α-aminoxylation reactions. B3PW91 and B1B95, which offer modest accuracy for the aldol and Mannich reactions, yield reliable predictions for the two α-aminoxylation reactions. The excellent performance of the M06-2X and PBE1PBE functionals for aldol and Mannich reactions stems from the cancellation of sizable errors arising from inadequate descriptions of the underlying bond transformations and intramolecular interactions. SCS-MP2/cc-pVTZ performs most consistently across these three classes of reactions, although the reaction exothermicities are systematically underestimated by 1-3 kcal mol-1. Conventional MP2, when paired with the cc-pVTZ basis set, performs somewhat better than SCS-MP2 for some of these reactions, particularly the α-aminoxylations. Finally, the merits of benchmarking DFT functionals for the set of simple chemically meaningful transformations underlying all bond-forming reactions are discussed.

  16. Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and alpha-aminoxylation reactions.

    Science.gov (United States)

    Wheeler, Steven E; Moran, Antonio; Pieniazek, Susan N; Houk, K N

    2009-09-24

    Enthalpies for bond-forming reactions that are subject to organocatalysis have been predicted using the high-accuracy CBS-QB3 model chemistry and six DFT functionals. Reaction enthalpies were decomposed into contributions from changes in bonding and other intramolecular effects via the hierarchy of homodesmotic reactions. The order of the reaction exothermicities (aldol Mannich approximately alpha-aminoxylation) arises primarily from changes in formal bond types mediated by contributions from secondary intramolecular interactions. In each of these reaction types, methyl substitution at the beta- and gamma-positions stabilizes the products relative to the unsubstituted case. The performance of six DFT functionals (B3LYP, B3PW91, B1B95, MPW1PW91, PBE1PBE, and M06-2X), MP2, and SCS-MP2 has been assessed for the prediction of these reaction enthalpies. Even though the PBE1PBE and M06-2X functionals perform well for the aldol and Mannich reactions, errors roughly double when these functionals are applied to the alpha-aminoxylation reactions. B3PW91 and B1B95, which offer modest accuracy for the aldol and Mannich reactions, yield reliable predictions for the two alpha-aminoxylation reactions. The excellent performance of the M06-2X and PBE1PBE functionals for aldol and Mannich reactions stems from the cancellation of sizable errors arising from inadequate descriptions of the underlying bond transformations and intramolecular interactions. SCS-MP2/cc-pVTZ performs most consistently across these three classes of reactions, although the reaction exothermicities are systematically underestimated by 1-3 kcal mol(-1). Conventional MP2, when paired with the cc-pVTZ basis set, performs somewhat better than SCS-MP2 for some of these reactions, particularly the alpha-aminoxylations. Finally, the merits of benchmarking DFT functionals for the set of simple chemically meaningful transformations underlying all bond-forming reactions are discussed.

  17. Model for gas hydrates applied to CCS systems part III. Results and implementation in TREND 2.0

    Czech Academy of Sciences Publication Activity Database

    Jäger, A.; Vinš, Václav; Span, R.; Hrubý, Jan

    2016-01-01

    Roč. 429, December (2016), s. 55-66 ISSN 0378-3812 R&D Projects: GA MŠk LG13056; GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : CCS * gas hydrate * enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 http://ac.els-cdn.com/S0378381216304010/1-s2.0-S0378381216304010-main.pdf?_tid=80a68084-7436-11e6-87c5-00000aacb362&acdnat=1473168991_07d2c8c0551e59d0997fee5d98ccc2d0

  18. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...... and management....

  19. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  20. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  1. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Frank; Bohrmann, Gerhard; Trehu, Anne; Storms, Michael; Schroeder, Derryl

    2002-09-30

    physical and sedimentological properties. Among the most interesting preliminary results are: (1) the discovery that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally consistent results; (2) evidence for the importance of sediment properties for controlling the migration of fluids in the accretionary complex; (3) geochemical indications that the gas hydrate system at Hydrate Ridge contains significant concentrations of higher order hydrocarbons and that fractionation and mixing signals will provide important constraints on gas hydrate dynamics; and (4) the discovery of very high chlorinity values that extend for at least 10 mbsf near the summit, indicating that hydrate formation here must be very rapid.

  2. Influence of a synergist on the dissociation of gas hydrates formed in the presence of the kinetic inhibitor polyvinyl caprolactam

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen, A.C. [StatoilHydro, Stavanger (Norway); Svartaas, T.M. [Stavanger Univ., Stavanger (Norway). Dept. of Petroleum Engineering

    2008-07-01

    Conventional chemical methods used to prevent natural gas hydrate plugs in oil and gas production lines are costly and can lead to pipeline corrosion. Polymer-based kinetic inhibitors are now being used to prevent hydrate nucleation and growth, and recent research has shown that the addition of small amounts of glycol ethers substantially improve the performance of the polymers. In this study, gas hydrates were formed from solutions containing Poly Vinyl Caprolactam (PVCap), or INHIBEX, a liquid mixture containing 50 wt per cent PVCAP 2k and 50 wt per cent butyl glycol. Laboratory experiments were conducted using a stirred cell. Hydrate formation was induced by magnetic stirring. Hydrates were then dissociated by increasing the cell temperature. Doses of 1500 ppm and 3000 ppm of the INHIBEX concentration were tested in the cell. Dissociation temperatures were then compared for hydrates formed in the presence of PVCap and INHIBEX. The influence of the INHIBEX concentration on dissociation temperature was also investigated. Results of the study showed that hydrates containing INHIBEX dissociated at lower temperatures than hydrate systems using PVCap. INHIBEX mixtures formed using 3000 ppm of INHIBEX had higher dissociation temperatures than mixtures with INHIBEX at 1500 ppm. It was concluded that the hydrophobicity of the alkoxy group within the glycol ethers caused the molecules to associate with the dissolved polymers. The presence of butyl glycol decreased the hydrate dissociation temperature observed for PVCap systems. 4 refs., 2 tabs., 6 figs.

  3. Enthalpies of combustion of two bis(N,N-diethylthioureas)

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Luis M.N.B.F.; Schroeder, Bernd; Beyer, Lothar; Dietze, Frank

    2007-01-01

    The standard (p o =0.1MPa) molar energies of combustion in oxygen, at T=298.15K, of two crystalline bis(N,N-diethylthioureas) R(CONHCSNEt 2 ) 2 : pyridine-2,6-dicarbonyl-bis(N,N-diethylthiourea), R=pyridyl , abbreviated as (bis-py-DETU), and adipoyl-dicarbonyl-bis(N,N-diethylthiourea), R=(CH 2 ) 4 , abbreviated as (bis-ad-DETU), were measured by rotating bomb calorimetry so, the standard molar enthalpies of formation of both compounds, in their crystalline phase, were derived. Compound-Δ c U m o (cr)-Δ f H m o (cr)kJ.mol -1 kJ.mol -1 Pyridine-2,6-dicarbonyl-bis(N,N -diethylthiourea) [bis-py-DETU]11027.1+/-5.2425.2+/-5.6Adipoyl-dicarbonyl-bis (N,N-diethylthiourea) [bis-ad-DETU]11124.6+/-5.7644.4+/-6.1Furthermore, the energetics of the title compounds were studied by means of density functional theory calculations at the B3LYP/ 6-311G(dp) level of theory.

  4. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  5. Enthalpy-entropy compensation effect on adsorption of light hydrocarbons on monolithic stationary phases.

    Science.gov (United States)

    Korolev, Alexander A; Shiryaeva, Valeria E; Popova, Tamara P; Kurganov, Alexander A

    2011-08-01

    Enthalpy and entropy of adsorption of light hydrocarbons C1-C4 have been measured for three monoliths of different polarity and for five different carrier gases: helium, hydrogen, nitrogen, carbon dioxide and dinitrogen oxide. Using carrier gas helium the highest values of enthalpy and entropy were observed for monolith based on ethylenedimethacrylate and the lowest values were observed for monolith based on silica, while monolith based on divinylbenzene demonstrated intermediate values. Entropy-enthalpy correlations were observed with carrier gas helium for all thee monoliths and possess similar slope indicating similar adsorption mechanism on all monoliths studied. Comparing different carrier gases entropy-enthalpy correlations within a homological series of solutes were observed for light carrier gases (He, H2 and N2) and were not observed for heavy carrier gases (CO2 and N2O). Instead, entropy-enthalpy correlations for heavy carrier gases were observed with pressure as variable and the higher the carrier gas pressure the lower the values of enthalpy and entropy observed. The observed changes in entropy-enthalpy correlations were explained by competitive adsorption of heavy carrier gas on monoliths. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.

  7. New experimental heat capacity and enthalpy of formation of lithium cobalt oxide

    International Nuclear Information System (INIS)

    Gotcu-Freis, Petronela; Cupid, Damian M.; Rohde, Magnus; Seifert, Hans J.

    2015-01-01

    Highlights: • LiCoO 2 heat capacity was measured in the temperature range (160 to 953) K using DSC. • Continuous/discontinuous methods were applied on different types of calorimeters. • Enthalpy increment of LiCoO 2 was determined using drop calorimetry at T = 974 K. • Enthalpies of formation were evaluated from oxide melt drop solution calorimetry. - Abstract: The heat capacity of LiCoO 2 (O3-phase), constituent material in cathodes for lithium-ion batteries, was measured using two differential scanning calorimeters over the temperature range from (160 to 953) K (continuous method). As an alternative, the discontinuous method was employed over the temperature range from (493 to 693) K using a third calorimeter. Based on the results obtained, the enthalpy increment of LiCoO 2 was derived from T = 298.15 K up to 974.15 K. Very good agreement was obtained between the derived enthalpy increment and our independent measurements of enthalpy increment using transposed temperature drop calorimetry at 974.15 K. In addition, values of the enthalpy of formation of LiCoO 2 from the constituent oxides and elements were assessed based on measurements of enthalpy of dissolution using high temperature oxide melt drop solution calorimetry. The high temperature values obtained by these measurements are key input data in safety analysis and optimisation of the battery management systems which accounts for possible thermal runaway events

  8. Extension of the segment-based Wilson and NRTL models for correlation of excess molar enthalpies of polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    The polymer Wilson model and the polymer NRTL model have been extended for the representation of the excess enthalpy of multicomponent polymer solutions. Applicability of obtained equations in the correlation of the excess enthalpies of polymer solutions has been examined. It is found that the both models are suitable models in representing the published excess enthalpy data for the tested polymer solutions

  9. Accounting for apparent deviations between calorimetric and van't Hoff enthalpies.

    Science.gov (United States)

    Kantonen, Samuel A; Henriksen, Niel M; Gilson, Michael K

    2018-03-01

    In theory, binding enthalpies directly obtained from calorimetry (such as ITC) and the temperature dependence of the binding free energy (van't Hoff method) should agree. However, previous studies have often found them to be discrepant. Experimental binding enthalpies (both calorimetric and van't Hoff) are obtained for two host-guest pairs using ITC, and the discrepancy between the two enthalpies is examined. Modeling of artificial ITC data is also used to examine how different sources of error propagate to both types of binding enthalpies. For the host-guest pairs examined here, good agreement, to within about 0.4kcal/mol, is obtained between the two enthalpies. Additionally, using artificial data, we find that different sources of error propagate to either enthalpy uniquely, with concentration error and heat error propagating primarily to calorimetric and van't Hoff enthalpies, respectively. With modern calorimeters, good agreement between van't Hoff and calorimetric enthalpies should be achievable, barring issues due to non-ideality or unanticipated measurement pathologies. Indeed, disagreement between the two can serve as a flag for error-prone datasets. A review of the underlying theory supports the expectation that these two quantities should be in agreement. We address and arguably resolve long-standing questions regarding the relationship between calorimetric and van't Hoff enthalpies. In addition, we show that comparison of these two quantities can be used as an internal consistency check of a calorimetry study. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions.

    Science.gov (United States)

    Torres-Knoop, Ariana; Poursaeidesfahani, Ali; Vlugt, Thijs J H; Dubbeldam, David

    2017-07-11

    Many important industrial separation processes based on adsorption operate close to saturation. In this regime, the underlying adsorption processes are mostly driven by entropic forces. At equilibrium, the entropy of adsorption is closely related to the enthalpy of adsorption. Thus, studying the behavior of the enthalpy of adsorption as a function of loading is fundamental to understanding separation processes. Unfortunately, close to saturation, the enthalpy of adsorption is hard to measure experimentally and hard to compute in simulations. In simulations, the enthalpy of adsorption is usually obtained from energy/particle fluctuations in the grand-canonical ensemble, but this methodology is hampered by vanishing insertions/deletions at high loading. To investigate the fundamental behavior of the enthalpy and entropy of adsorption at high loading, we develop a simplistic model of adsorption in a channel and show that at saturation the enthalpy of adsorption diverges to large positive values due to repulsive intermolecular interactions. However, there are many systems that can avoid repulsive intermolecular interactions and hence do not show this drastic increase in enthalpy of adsorption close to saturation. We find that the conventional grand-canonical Monte Carlo method is incapable of determining the enthalpy of adsorption from energy/particle fluctuations at high loading. Here, we show that by using the continuous fractional component Monte Carlo, the enthalpy of adsorption close to saturation conditions can be reliably obtained from the energy/particle fluctuations in the grand-canonical ensemble. The best method to study properties at saturation is the NVT energy (local-) slope methodology.

  11. High-energy components of 'designer gasoline and designer diesel fuel' I. Heat capacities, enthalpy increments, vapor pressures, critical properties, and derived thermodynamic functions for bicyclopentyl between the T=(10 and 600) K

    International Nuclear Information System (INIS)

    Chirico, R.D.; Steele, W.V.

    2004-01-01

    Measurements leading to the calculation of the standard thermodynamic properties for gaseous bicyclopentyl (Chemicals Abstracts registry number [1636-39-1]) are reported. Experimental methods include adiabatic heat-capacity calorimetry, comparative ebulliometry, and differential-scanning calorimetry (d.s.c.). The critical temperature was determined by d.s.c. and the critical pressure and critical density were estimated. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation are reported at selected temperatures between T=(298.15 and 600) K. Formation properties were calculated with a literature value for the enthalpy of combustion in the liquid phase. All results are compared with available literature values

  12. New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Ronny Giese

    2011-01-01

    Full Text Available The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4

  13. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  14. Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals

    International Nuclear Information System (INIS)

    Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; Battaile, Corbett C.; Weinberger, Christopher R.

    2015-01-01

    We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior

  15. Enthalpies of solution of ampicillin, amoxycillin and their binary mixtures at 310.15 K.

    Science.gov (United States)

    Jain, D V; Kashid, N; Kapoor, S; Chadha, R

    2000-05-15

    Enthalpies of solutions of ampicillin, amoxycillin and their binary mixtures have been determined at pH 2, 5, and 7 using C-80 calorimeter. The systems showed endothermic behaviour; molar enthalpies of solutions of ampicillin were determined to be 13.32, 15.89 and 23.21 kJ mol(-1) and amoxycillin were 16.32, 18.45 and 26. 25 kJ mol(-1) at pH 2, 5, and 7, respectively. The excess molar enthalpies of solution have also been calculated to find any interaction between these two drugs.

  16. Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.

    Science.gov (United States)

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra

    2006-03-16

    The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.

  17. Utilization of casting ladle lining enthalpy for heating gas savings in the course of ladle preheating

    OpenAIRE

    Jančar, D.; Klarova, M.; Tvardek, P.; Vlček, J.; Hašek, P.; Ovčačik, F.

    2014-01-01

    During the long-term staying of steel in ladle within the period from the tap until the end of continuous casting takes place a great amount of heat accumulates in lining. For its utilization is necessary to optimize heat operation of ladle lining. The demanded enthalpy of ladle before tap and the real enthalpy of ladle as things stand are needed for heating gas savings during the preheating. The enthalpy changes of ladle lining are in the course of their cycling in steelworks solved by the m...

  18. The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment

    Science.gov (United States)

    Marzzacco, Charles J.

    1999-11-01

    A calorimetry experiment involving the catalytic decomposition of aqueous hydrogen peroxide is presented. The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq). Styrofoam cup calorimeters and thermometers with a range from 20 to 50 oC are also required. Ideally, the thermometers should be precise to 0.01 oC. The temperature of the H2O2 solution is monitored before and after the Fe(NO3)3 catalyst is added. The addition of the catalyst results in a color change and the evolution of heat and bubbles of oxygen. At the conclusion of the reaction, the color of the reaction mixture returns to that of the original Fe(NO3)3 solution. The heat change for the reaction is determined from the temperature change, the specific heat of the solution, and the calorimeter constant. The experimental enthalpy change for the reaction is in excellent agreement with the literature value.

  19. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  20. Natural gas hydrate occurrence and issues

    Science.gov (United States)

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  1. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  2. Isothermal titration calorimetry for drug design: Precision of the enthalpy and binding constant measurements and comparison of the instruments.

    Science.gov (United States)

    Linkuvienė, Vaida; Krainer, Georg; Chen, Wen-Yih; Matulis, Daumantas

    2016-12-15

    Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein - small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments - PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (K d  = 0.3 nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Calculation of Vibrational Spectra of p-Ethylbenzenesulfonic Acid Hydrates

    Science.gov (United States)

    Zelenkovskii, V. M.; Bezyazychnaya, T. V.; Soldatov, V. S.

    2013-09-01

    Quantum-chemical calculations of vibrational spectra of the sulfonated ion-exchanger model p-ethylbenzenesulfonic acid hydrated by 1-10 water molecules and its dimer were calculated by the non-empirical SCF MO LCAO method with the 6-31G(d) basis set. The calculated results were compared with experimental IR and Raman spectra of sulfonated ion exchangers. The infl uence of hydration on the vibrational frequencies of functional groups in the ion exchangers was analyzed. It was shown that the sulfonic acid was completely dissociated if three and more water molecules per functional group were present. Bands near 1130 cm-1 were due to S-O-H bending vibrations in the absence of water molecules and C-S-O-H3O combination vibrations with 3-6 water molecules per sulfonic acid.

  4. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  5. Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates.

    Science.gov (United States)

    Martos-Villa, Ruben; Francisco-Márquez, Misaela; Mata, M Pilar; Sainz-Díaz, C Ignacio

    2013-07-01

    Methane hydrates are highly present in sea-floors and in other planets and their moons. Hence, these compounds are of great interest for environment, global climate change, energy resources, and Cosmochemistry. The knowledge of stability and physical-chemical properties of methane hydrate crystal structure is important for evaluating some new green becoming technologies such as, strategies to produce natural gas from marine methane hydrates and simultaneously store CO2 as hydrates. However, some aspects related with their stability, spectroscopic and other chemical-physical properties of both hydrates are not well understood yet. The structure and stability of crystal structure of methane and CO2 hydrates have been investigated by means of calculations with empirical interatomic potentials and quantum-mechanical methods based on Hartree-Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have been also performed exploring different configurations reproducing the experimental crystallographic properties. Spectroscopic properties have also been studied. Frequency shifts of the main vibration modes were observed upon the formation of these hydrates, confirming that vibration stretching peaks of C-H at 2915cm(-1) and 2905cm(-1) are due to methane in small and large cages, respectively. Similar effect is observed in the CO2 clathrates. The guest-host binding energy in these clathrates calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the interactions between gas guest and the host water cage, proving an exothermic nature of methane and CO2 hydrates formation process. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  7. Microscopic Characterization of Brevundimonas diminuta in the Hydrated State.

    Science.gov (United States)

    Harp, Gary; Cho, Seok-Jun; Lester, Elisabeth; Rose, David; Sabanyagam, Chandran; Ross, Scott F

    2015-01-01

    Brevundimonas diminuta is the organism most commonly used for challenge testing of sterilizing-grade filter membranes. ASTM F838-05 and PDA Technical Report 26 rely on B. diminuta ATCC #19146 for standard challenge tests used to designate sterilizing-grade filter performance. Despite the importance and widespread use of B. diminuta in filter testing and validation, information about this microorganism in its native hydrated state is limited. In this work, we measure, for the first time, the mechanical property of modulus for B. diminuta cultured in saline lactose broth (as described in ASTM F838-05) via wet atomic force microscopy. For comparison, we also imaged B. diminuta by the traditional method of electron microscopy after capture on a filter and chemical fixation. The modulus of hydrated B. diminuta cells was ∼193 mPa. To put this result into context, a simple model for pore penetration that correlates the role of the Young's modulus of hydrated cells to the penetration of sterilizing-grade filters is proposed. The model confirms the industry experience that pore size is an essential parameter in preventing the penetration of B. diminuta into sterilizing-grade filters. The small microorganism Brevundimonas diminuta is used to characterize the performance of sterilizing-grade filter membranes used in the manufacturing of sterile drug products. Little is known about the size, shape, or elasticity of living bacterial cells, as it is easier to characterize bacteria after chemical fixation in a dry state. In this work, we use atomic force microscopy to determine the size, shape, and deformability of this important microorganism while it is alive and fully hydrated. Additionally, we compare the physical and mechanical properties of B. diminuta measured in wet and dry states. This information can be used to advance our understanding of how filter membranes remove these organisms from fluid streams. © PDA, Inc. 2015.

  8. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  9. Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105)

    International Nuclear Information System (INIS)

    Henderson, R.A.

    1990-01-01

    The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute 260 Lr and 35-second 262 Ha. The crystal ionic radius of Lr 3+ was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am 3+ through Es 3+ , obtained by x-ray diffraction methods, and to Md 3+ and Fm 3+ which were determined in the same manner as Lr 3+ . The hydration enthalpy of -3622 kJ/mol was calculated from the crystal ionic radius using an empirical form of the Born equation. Comparisons to the spacings between the ionic radii of the heaviest members of the lanthanide series show that the 2Z spacing between Lr 3+ and Md 3+ is anomalously small, as the ionic radius of Lr 3+ of 0.0886 nm is significantly smaller than had been expected. The chemical properties of Ha were determined relative to the lighter homologs in group 5, Nb and Ta. Group 4 and group 5 tracer activities, as well as Ha, were absorbed onto glass surfaces as a first step toward the determination of the chemical properties of Ha. Ha was found to adsorb on surfaces, a chemical property unique to the group 5 elements, and as such demonstrates that Ha has the chemical properties of a group 5 element. A solvent extraction procedure was adapted for use as a micro-scale chemical procedure to examine whether or not Ha displays eka-Ta-like chemical under conditions where Ta will be extracted into the organic phase and Nb will not. Under the conditions of this experiment Ha did not extract, and does not show eka-Ta-like chemical properties

  10. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  11. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  12. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  13. Short Pulsed Laser Methods for Velocimetry and Thermometry in High Enthalpy Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A suite of laser-based diagnostics is proposed to measure velocity and temperature simultaneously using unseeded techniques in high enthalpy flows relevant to...

  14. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  15. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  16. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  17. Thermodynamic Relationship between Enthalpy of Mixing and Excess Entropy in Liquid Binary Alloys

    OpenAIRE

    Tanaka, Toshihiro; Morita, Zen-Ichiro; Gokcen, Nev A.; Iida, Takamichi

    1993-01-01

    A solution model for liquid binary alloys has been derived, based on the free volume theory considering excess volumes of the alloys. Excess entropy and excess Gibbs energy can be evaluated from the present model using values of enthalpy of mixing and excess volume. In addition, the relationship between enthalpy of mixing and excess entropy in liquid binary alloys has been interpreted based on the present model.

  18. Formation enthalpy of NiBe and Ni5Be21

    International Nuclear Information System (INIS)

    Ivanov, M.I.; Karpova, T.F.; Dalago, N.Yu.

    1981-01-01

    The method of dissolution calorimetry is used to determine standard enthalpies of NiBe and Ni 5 Be 21 formation, which are 84.8+-2.2 and (-669+-37)kJ/mol. The enthalpy values of NiBe and Ni 5 Be 21 at 331 K are shown to coincide (within the limits of errors of these values) with the values at the standard temperature of 298.15 K [ru

  19. Water Mediated Ligand Functional Group Cooperativity: The Contribution of a Methyl Group to Binding Affinity is Enhanced by a COO− Group Through Changes in the Structure and Thermo dynamics of the Hydration Waters of Ligand-Thermolysin Complexes

    OpenAIRE

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-01-01

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2′ pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable...

  20. Kinetics of enthalpy relaxation of milk protein concentrate powder upon ageing and its effect on solubility.

    Science.gov (United States)

    Haque, Enamul; Whittaker, Andrew K; Gidley, Michael J; Deeth, Hilton C; Fibrianto, Kiki; Bhandari, Bhesh R

    2012-10-01

    Kinetics of enthalpy relaxation of milk protein concentrate (MPC) powder upon short-term (up to 67 h) storage at 25 °C and aw 0.85, and long-term (up to 48 days) storage at 25 °C and a range of aw values (0-0.85) were studied by differential scanning calorimetry (DSC). The short-term study showed a rapid recovery of enthalpy for the first 48 h, followed by a slower steady increase with time. The non-exponential β parameter was calculated using the Kohlrausch-Williams-Watts function and found to be 0.39. Long-term storage showed that enthalpy relaxation depends on both storage period and water activity. The enthalpy value was much less for lower moisture content (mc) (aw ≤ 0.23, mc ≤ 5.5%) than for higher mc (aw ≥ 0.45, mc ≥ 8%) samples for a particular storage period. The results suggest that the presence of more water molecules, in close proximity to the protein surface facilitates kinetic unfreezing and subsequent motion of molecular segments of protein molecules towards thermodynamic equilibrium. Although de-ageing of stored samples did not reverse storage-induced solubility losses, the timescale of enthalpy relaxation was similar to that of solubility loss. It is suggested that enthalpy relaxation within stored samples allows structural rearrangements that are responsible for subsequent solubility decreases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...

  2. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  3. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  4. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  5. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    Abstract. Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage's geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and ...

  6. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  7. 78 FR 26337 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-05-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  8. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  9. 76 FR 59667 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2011-09-27

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane...-5600. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory...

  10. 78 FR 37536 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  11. 77 FR 40032 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...

  12. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  13. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  15. Measurement of the enthalpy of formation of an iron pico-hydride and of its main properties

    Science.gov (United States)

    Dufour, Jacques; Dufour, Xavier; Dioury, Fabienne; Vinko, Jenny D.

    2017-10-01

    Chemical reactions result from the outside shell electrons of the reacting species being shared in various types of combinations. Typical distances involved are tenths of nm, resulting in binding energies typically in the order of hundreds of kJ/mole (eV/atom). The synthesis of a novel “atomic system” formed from Iron and di-Hydrogen has been achieved. The measured enthalpy of formation is some 40 MJ/moleFe and the distance between the hydrogen proton and the iron nucleus is some 8 pm, hence the proposed name: Iron Pico-Hydride. This compound is a permanent electric dipole of atomic size. Pico-Hydrides could, thus, play a significant role in HT superconductivity and in super-capacitors. The synthesis is compatible with the standard model.

  16. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  17. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  18. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    Science.gov (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  19. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  20. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  2. Packing interactions in hydrated and anhydrous forms of the antibiotic Ciprofloxacin: a solid-state NMR, X-ray diffraction, and computer simulation study.

    Science.gov (United States)

    Mafra, Luís; Santos, Sérgio M; Siegel, Renée; Alves, Inês; Paz, Filipe A Almeida; Dudenko, Dmytro; Spiess, Hans W

    2012-01-11

    We present an experimental NMR, X-ray diffraction (XRD), and computational study of the supramolecular assemblies of two crystalline forms of Ciprofloxacin: one anhydrate and one hydrate forming water wormholes. The resonance assignment of up to 51 and 54 distinct (13)C and (1)H resonances for the hydrate is reported. The effect of crystal packing, identified by XRD, on the (1)H and (13)C chemical shifts including weak interionic H-bonds, is quantified; (1)H chemical shift changes up to ∼-3.5 ppm for CH···π contacts and ∼+2 ppm (CH···O((-))); ∼+4.7 ppm (((+))NH···O((-))) for H-bonds. Water intake induces chemical shift changes up to 2 and 5 ppm for (1)H and (13)C nuclei, respectively. Such chemical shifts are found to be sensitive detectors of hydration/dehydration in highly insoluble hydrates. © 2011 American Chemical Society

  3. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    Science.gov (United States)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    as non-equilibrium processes under local constraint of mass and heat fluxes. In this work, we have extended RCB by adding another route for dissociation or reformation of CH4-hydrate towards CH4 into the aqueous phase and water. CH4-hydrate formation and dissociation is resolved by looking at supersaturation and undersaturation with respect to thermodynamics variables. Hydrate instability due to undersaturation of CH4 in the contacting water phase is also considered. A complete non-equilibrium thermodynamic package, developed in-house, was combined with RCB to account for competing phase transitions by considering the minimization of Gibb's free energy. The energy differences were calculated from variations in chemical potentials of hydrate and hydrate formers. Mass transport, heat transport and non-equilibrium thermodynamic effects were implemented through classical nucleation theory to model the kinetic rate of hydrate phase transitions. To illustrate our implementations we ran simulations covering time-spans in the order of hundred years. CH4 production was modelled using the depressurization method, where we employed the Messoyakha field data. We discuss our implementations, as well as results obtained from simulations utilizing our modifications.

  4. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  5. Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow.

    Science.gov (United States)

    Lee, Sang Seok; Park, Juwoon; Seo, Yutaek; Kim, Shin-Hyun

    2017-05-24

    The hydrate formation in subsea pipelines can cause oil and gas well blowout. To avoid disasters, various chemical inhibitors have been developed to prevent or delay the hydrate formation and growth. Nevertheless, direct injection of the inhibitors results in environmental contamination and cross-suppression of inhibition performance in the presence of other inhibitors against corrosion and/or formation of scale, paraffin, and asphaltene. Here, we suggest a new class of microcarriers that encapsulate hydrate inhibitors at high concentration and release them on demand without active external triggering. The key to the success in microcarrier design lies in the temperature dependence of polymer brittleness. The microcarriers are microfluidically created to have an inhibitor-laden water core and polymer shell by employing water-in-oil-in-water (W/O/W) double-emulsion drops as a template. As the polymeric shell becomes more brittle at a lower temperature, there is an optimum range of shell thickness that renders the shell unstable at temperature responsible for hydrate formation under a constant shear flow. We precisely control the shell thickness relative to the radius by microfluidics and figure out the optimum range. The microcarriers with the optimum shell thickness are selectively ruptured by shear flow only at hydrate formation temperature and release the hydrate inhibitors. We prove that the released inhibitors effectively retard the hydrate formation without reduction of their performance. The microcarriers that do not experience the hydration formation temperature retain the inhibitors, which can be easily separated from ruptured ones for recycling by exploiting the density difference. Therefore, the use of microcarriers potentially minimizes the environmental damages.

  6. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  7. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  8. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  9. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  10. Exploring and Monitoring of Methane Hydrate Deposits

    Science.gov (United States)

    Sudac, D.; Obhođaš, J.; Nađ, K.; Valković, V.

    2018-01-01

    Relatively recently, in the last 20 years, it was discovered that methane hydrate (MH) deposits are globally distributed in the permafrost and oceans. Before 1965 when first deposits were discovered in nature, it was believed that MH can occur only in laboratory conditions or in vast parts of the Universe. Presently it is presumed that this solid crystalline compounds in which CH4 molecules occupies the water ice lattices (nominal chemical formula of MH is C4H62O23) can serve as an energy source favorably to the all of the world remaining conventional hydrocarbon sources. The worldwide estimates of MH deposits range from 2x1014 m3 to 3.053x1018 cubic meters. This uncertainty partly results from our limitations in geological understanding of the MH deposits, which is due to the relatively bad quality of data obtained by presently available seismic and electromagnetic techniques. Moreover, MH deposits can become vulnerable to climate changes, which were already occurring in geological past whit tremendous consequences for the global life on Earth. Thus, further development of advanced techniques is needed to enhance our abilities to better characterize, quantify and monitor the MH deposits. In the work presented 14 MeV neutrons and associated alpha particle imaging (API) where used to quantify the amount of MH in the sample. Samples were prepared from sea sediment, quartz sand and MH simulant. MH simulant with chemical formula C4H46O23 was made from sucrose (25 % by mass) and water. MH quantity was measured by measuring the carbon content in the sample [1-8].

  11. Utilization of Magnesium Hydroxide Produced by Magnesia Hydration as Fire Retardant for Nylon 6-6,6

    OpenAIRE

    Rocha, Sônia D.F.; Ciminelli, Virgínia S.T.

    2001-01-01

    The present work investigates the use of magnesium hydroxide, produced by magnesia hydration, as a fire retardant in polymers. The hydration was carried out in an autoclave, at temperature of 130°C for 1 hour, and the product was further submitted to cominution in a jet mill. The solids were characterized with regard to their chemical composition, particle size distribution, surface area and morphology. The performance evaluation of the hydroxide as a flame retardant for a copolymer of nylon ...

  12. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  13. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  14. Electrical properties of methane hydrate + sediment mixtures

    Science.gov (United States)

    Du Frane, Wyatt L.; Stern, Laura A.; Weitemeyer, Karen A.; Constable, Steven; Roberts, Jeffery J.

    2011-01-01

    As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field to specific gas hydrate concentration and distribution patterns. Here we discuss first-ever electrical conductivity (σ) measurements on unmixed CH4 hydrate (Du Frane et al., 2011): 6 x 10-5 S/m at 5 °C, which is ~5 orders of magnitude lower than seawater. This difference allows electromagnetic (EM) techniques to distinguish highly resistive gas hydrate deposits from conductive water saturated sediments in EM field surveys. More recently, we performed measurements on CH4 hydrate mixed with sediment and we also discuss those initial findings here. Our results on samples free of liquid water are important for predicting conductivity of sediments with pores highly saturated with gas hydrate, and are an essential starting point for comprehensive mixing models.

  15. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  16. Enthalpy of cooperative hydrogen bonding in complexes of tertiary amines with aliphatic alcohols: Calorimetric study

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Solomonov, Boris N.

    2011-01-01

    Research highlights: → Solution enthalpies of aliphatic alcohols in tertiary amines and vice versa were measured. → The enthalpies of specific interaction of amines in aliphatic alcohols are lower than the enthalpies of hydrogen bonding in 1:1 complexes amine-alcohol determined in base media. → Hydrogen bond cooperativity factors in multi-particle complexes of alcohols with aromatic amines are approximately equal for all alcohols. → Hydrogen bond cooperativity factors in multi-particle complexes of alcohols with trialkylamines decrease with increasing of alkyl radical length in alcohol and amine molecules. - Abstract: The work is devoted to the investigation of thermodynamics of specific interaction of the tertiary aliphatic and aromatic amines with associated solvents as which aliphatic alcohols were taken. Solution enthalpies of aliphatic alcohols in amines (tri-n-propylamine, 2-methylpyridine, 3-methylpyridine, N-methylimidazole) as well as amines in alcohols were measured at infinite dilution. The enthalpies of specific interaction (H-bonding) in systems studied were determined based on experimental data. The enthalpies of specific interaction of amines in aliphatic alcohols significantly lower than the enthalpies of hydrogen bonding in complexes amine-alcohol of 1:1 composition determined in base media due to the reorganization of aliphatic alcohols as solvents. The determination of solvent reorganization contribution makes possible to define the hydrogen bonding enthalpies of amines with clusters of alcohols. Obtained enthalpies of hydrogen bonding in multi-particle complexes are sensitive to the influence of cooperative effect. It was shown, that hydrogen bond cooperativity factors in multi-particle complexes of alcohols with amines are approximately equal for all alcohols when pyridines and N-methylimidazole as solutes are used. At the same time, H-bonding cooperativity factors in complexes of trialkylamines with associative species of alcohols

  17. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled us...

  18. An Experimental and Theoretical Study of CO2 Hydrate Formation Systems

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos

    Appendix E) using as promoters tetra-n-butyl ammonium salts of bromide, fluoride and cyclopentane in collaboration with MINESParisTech in France. These chemicals are well known for their reduction capabilities of hydrate formation pressure. The results are in good accordance with the literature. Moreover...

  19. Aspects of Hydrate Management - Deposition Phenomena

    OpenAIRE

    Langen, Heidi

    2016-01-01

    The purpose of this thesis has been to investigate the factors with the largest influence on the adhesion strength of a hydrate deposit on a solid surface. This has been done through a literature study on the subject, and a thorough experimental project in a laboratory. The experiments involved forming hydrate deposits on a pipe of steel, before removing the deposits and finding the pressure required to do so. The hydrate was formed by a solution of tetrahydrofuran and water in a tank where t...

  20. Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the method of Langmuir

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Aaron, E-mail: arojas@cinvestav.mx [Departamento de Quimica del Centro de Investigacion y de Estudios Avanzados del IPN, Av. Instituto Politecnico Nacional 2508, C.P. 07360, Mexico D.F. (Mexico); Vieyra-Eusebio, Maria Teresa [Departamento de Quimica del Centro de Investigacion y de Estudios Avanzados del IPN, Av. Instituto Politecnico Nacional 2508, C.P. 07360, Mexico D.F. (Mexico)

    2011-11-15

    Highlights: > Calorimetric enthalpies of sublimation of ferrocene and nickelocene are supplied. > Sublimation enthalpies of both metallocenes were also obtained by indirect Langmuir's method. > Calorimetric and indirect enthalpies of sublimation are comparable in accuracy and dispersion. > Sublimation enthalpies are congruent with both compounds being monoclinic and isostructural. - Abstract: A quick and accurate methodology that is based on Langmuir's equation and that is developed by utilising a DSC7 device is proposed for the measurement of the enthalpies of sublimation of substances characterised by vapour pressures of approximately 1.0 Pa at room temperature. The procedure was applied to ferrocene and nickelocene; the accuracy and uncertainty associated with the experimental results show that the reliability of the developed indirect method is comparable to the direct calorimetric measurements also performed in this work. Furthermore, the melting data and crystal-phase heat capacities for both metallocenes were calorimetrically measured, whereas the gas-phase heat capacity for each metallic bis(cyclopentadienyl) was theoretically estimated by DFT calculations.

  1. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions.

    Science.gov (United States)

    Bansal, Shyam Sunder; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2010-11-01

    The purpose of the current study was to evaluate the enthalpy relaxation behavior of valdecoxib (VLB) and etoricoxib (ETB) and their binary dispersions to derive relaxation constants and to understand their molecular mobilities. Solid dispersions of VLB and ETB were prepared with 1%, 2%, 5%, 10%, 15%, and 20% (w/w) concentrations of polyvinylpyrrolidone (PVP) in situ using differential scanning calorimetry (DSC). Enthalpy relaxation studies were carried out with isothermal storage periods of 1, 2, 4, 6, 16, and 24 hours at 40°C and 0% relative humidity (RH). PVP increased the glass transition temperature (T(g)) and decreased the enthalpy relaxation. Significant differences between two drugs were observed with respect to their relaxation behavior which may be due to differences in intermolecular interactions as predicted by Couchman-Karasz equation and molecular mobility. Kohlrausch-Williams-Watts equation was found to be inadequate in describing complex molecular relaxations in binary dispersions. The enthalpy relaxation behavior of VLB and ETB was found to be significantly different. PVP stabilized VLB significantly; however, its effect on ETB was negligible. The extent of enthalpy relaxation was found to correlate with hydrogen bonding tendency of the drug molecules. The outcome can help in rational designing of amorphous systems with optimal performance.

  2. Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the method of Langmuir

    International Nuclear Information System (INIS)

    Rojas, Aaron; Vieyra-Eusebio, Maria Teresa

    2011-01-01

    Highlights: → Calorimetric enthalpies of sublimation of ferrocene and nickelocene are supplied. → Sublimation enthalpies of both metallocenes were also obtained by indirect Langmuir's method. → Calorimetric and indirect enthalpies of sublimation are comparable in accuracy and dispersion. → Sublimation enthalpies are congruent with both compounds being monoclinic and isostructural. - Abstract: A quick and accurate methodology that is based on Langmuir's equation and that is developed by utilising a DSC7 device is proposed for the measurement of the enthalpies of sublimation of substances characterised by vapour pressures of approximately 1.0 Pa at room temperature. The procedure was applied to ferrocene and nickelocene; the accuracy and uncertainty associated with the experimental results show that the reliability of the developed indirect method is comparable to the direct calorimetric measurements also performed in this work. Furthermore, the melting data and crystal-phase heat capacities for both metallocenes were calorimetrically measured, whereas the gas-phase heat capacity for each metallic bis(cyclopentadienyl) was theoretically estimated by DFT calculations.

  3. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Diana C. [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia); Martinez, Fleming [Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota D.C. (Colombia); Vargas, Edgar F., E-mail: edvargas@uniandes.edu.co [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. Black-Right-Pointing-Pointer Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute-solvent interactions.

  4. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    International Nuclear Information System (INIS)

    Riveros, Diana C.; Martínez, Fleming; Vargas, Edgar F.

    2012-01-01

    Highlights: ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. ► Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute–solvent interactions.

  5. Methane hydrate morphology of natural hydrate-bearing sediment from Nankai trough, Japan

    Science.gov (United States)

    Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Nagao, J.

    2016-12-01

    As a part of MH21, the Research Consortium for Methane Hydrate Resources in Japan, who initiated Japan's Methane Hydrate R&D Program (managed by the Ministry of Economy, Trade, and Industry (METI)), we developed newly pressured hydrate sediment analyzing apparatus (Pressured Non-destructive Analysis Tools, here after PNATs) including an X-ray computed-tomography (CT) system, gamma-ray density measurement system, an instrumented pressure testing chamber (IPTC). The Japanese IPTC was developed with strong cooperation from Georgia Tech and the U.S. Geological Survey. In this study, we investigated the hydrate morphology in natural gas hydrate-bearing (GH) sediment recovered from eastern Nankai trough area under hydro-pressurized condition using PNATs. In addition to P-wave measurement via the IPTC, we assessed hydrate saturation Sh in sediment sample by using our newly ATR-IR probe for the IPTC. Our analysis reveals that the pressurized sample shows load-bearing GH sediment.

  6. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties.

    Science.gov (United States)

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-03-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).

  7. Hydrate formation in heterogeneous sediments: To what extent does hydrate distribution record the local environmental history?

    Science.gov (United States)

    Rempel, A. W.; VanderBeek, B. P.

    2017-12-01

    The distribution of methane hydrate in marine sediments reflects the interplay between supply by methanogenesis and far-field transport, and the environmental conditions that set the local methane solubility, which is modulated by the physical properties of the host sediments. We explore the extent to which detailed observations of hydrate distribution and models of hydrate growth, especially in the vicinity of dipping sand layers, can be used to infer the environmental conditions that prevailed during emplacement. Anomalously high hydrate saturations found in association with relatively more coarse-grained strata have been attributed to both enhanced fluid focusing through more permeable sediment layers and to perturbations in phase equilibrium related to pore-space geometry. In order to achieve more accurate predictions of hydrate occurrence, we incorporate treatments for the influence of pore architecture on growth dynamics that have been validated using analog ice-water and water-vapor systems. We demonstrate how pore-size effects on methane solubility and permeability-driven variations in fluid flux can be parameterized into a 1D model for hydrate growth along dipping, coarse-grained layers embedded in a finer-grained sediment package. We show how the vertical distribution of hydrate varies in response to changes in grain size and rates of fluid advection, sedimentation, and in situ methane production. Our modeling shows that sharp gradients in methane solubility, which occur along stratigraphic boundaries, promote the diffusive growth of localized regions of high hydrate saturation while enhanced fluid advection favors more distributed growth throughout high permeability layers. Sedimentation tends to suppress the growth of diffusive hydrate saturation anomalies and can lead to steady-state hydrate saturation profiles. In situ methane production increases hydrate concentrations at shallow depths relative to models where methane is supplied advectively from a

  8. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    OpenAIRE

    Cesare Altavilla; Maria Soledad Prats Moya; Pablo Caballero Pérez

    2017-01-01

    Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration know...

  9. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  10. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    Science.gov (United States)

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  11. Geomechanical property of gas hydrate sediment in the Nankai trough

    Energy Technology Data Exchange (ETDEWEB)

    Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Matsuoka, T.; Ikeda, H. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering; Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Technology Research Center

    2008-07-01

    Well logging data and core samples from the Nankai trough area were used to investigate the geomechanical properties and geological history of gas hydrate-bearing sediments. The Coulomb-Mohr failure criterion was used to calculate the mechanical strength of the hydrate sediments. The dynamic Young's modulus was calculated using theoretical and experimental data. The study showed that sediments below the gas hydrate later are mechanically weaker than sediments within the gas hydrate layer. The mechanical strength of the core samples was then measured both before and after dissociation. The study showed that saturated gas hydrates are 4 times stronger than gas hydrate-dissociated cores. It was concluded that hydrate-bearing sediments are mechanically stronger than non-hydrate-bearing sediments. Results of the study will be used to develop methods of predicting risk factors for sea floor deformations and well-bore collapse during gas hydrate extraction processes in hydrate reservoirs. 6 refs., 5 figs.

  12. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  13. Computational Investigation of Enthalpy-Entropy Compensation in Complexation of Glycoconjugated Bile Salts with β-Cyclodextrin and Analogs

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Schonbeck, Christian; Holm, Rene

    2014-01-01

    in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities....... of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change...

  14. Enthalpies of Formation of Transition Metal Diborides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Catherine Colinet

    2015-11-01

    Full Text Available The enthalpies of formation of transition metals diborides in various structures have been obtained from density functional theory (DFT calculations in order to determine the ground state at T = 0 K and p = 0. The evolution of the enthalpies of formation along the 3D, 4D, and 5D series has been correlated to the considered crystal structures. In the whole, the calculated values of the enthalpies of formation of the diborides in their ground state are in good agreement with the experimental ones when available. The calculated values of the lattice parameters at T = 0 K of the ground state agree well with the experimental values. The total and partial electronic densities of states have been computed. Special features of the transition metal electronic partial density of states have been evidenced and correlated to the local environment of the atoms.

  15. Comparison of the enthalpy recovery and free volume of polyvinylpyrrolidone during anomalous glassy to rubbery transition.

    Science.gov (United States)

    Zelkó, Romána; Süvegh, Károly

    2004-03-01

    Previous studies confirmed that along with the structural changes of the amorphous binder, that of the polyvinylpyrrolidone, the tensile strength and consequently, the dissolution behaviour of its tablets changed significantly during the storage period. Structural formation during the glassy to rubbery transition of polyvinylpyrrolidone was followed by the changes in the free volume and enthalpy recovery values of the polymer. The results suggest that the apparent structure formation of water and polymer under glassy to rubbery transition is interrelated in a dynamic and complex manner which can be tracked by the combination of enthalpy recovery studies and positron lifetime measurements. Positron lifetime measurements more sensitively react to the structural rearrangements than enthalpy recovery, thus it can be recommended as a sensitive tool for stability tests during the formulation phase of drug development.

  16. Estimation of Solvation Entropy and Enthalpy via Analysis of Water Oxygen-Hydrogen Correlations.

    Science.gov (United States)

    Velez-Vega, Camilo; McKay, Daniel J J; Kurtzman, Tom; Aravamuthan, Vibhas; Pearlstein, Robert A; Duca, José S

    2015-11-10

    A statistical-mechanical framework for estimation of solvation entropies and enthalpies is proposed, which is based on the analysis of water as a mixture of correlated water oxygens and water hydrogens. Entropic contributions of increasing order are cast in terms of a Mutual Information Expansion that is evaluated to pairwise interactions. In turn, the enthalpy is computed directly from a distance-based hydrogen bonding energy algorithm. The resulting expressions are employed for grid-based analyses of Molecular Dynamics simulations. In this first assessment of the methodology, we obtained global estimates of the excess entropy and enthalpy of water that are in good agreement with experiment and examined the method's ability to enable detailed elucidation of solvation thermodynamic structures, which can provide valuable knowledge toward molecular design.

  17. Enthalpy-Based Screening of Focused Combinatorial Libraries for the Identification of Potent and Selective Ligands.

    Science.gov (United States)

    Baggio, Carlo; Udompholkul, Parima; Barile, Elisa; Pellecchia, Maurizio

    2017-12-15

    In modern drug discovery, the ability of biophysical methods, including nuclear magnetic resonance spectroscopy or surface plasmon resonance, to detect and characterize ligand-protein interactions accurately and unambiguously makes these approaches preferred versus conventional biochemical high-throughput screening of large collections of compounds. Nonetheless, ligand screening strategies that address simultaneously potency and selectivity have not yet been fully developed. In this work, we propose a novel method for screening large collections of combinatorial libraries using enthalpy measurements as a primary screening technique. We demonstrate that selecting binders that are driven by enthalpy (ΔH) results in agents that are not only potent but also more selective for a given target. This general and novel approach, we termed ΔH screening of fPOS (enthalpy screening of focused positional scanning library), combines the principles of focused combinatorial chemistry with rapid calorimetry measurements to efficiently identify potent and selective inhibitors.

  18. Do Enthalpy and Entropy Distinguish First in Class From Best in Class?

    Science.gov (United States)

    Freire, Ernesto

    2008-01-01

    A drug molecule should bind to its target with high affinity and selectivity. Since the binding affinity is a combined function of the binding enthalpy and the binding entropy, extremely high affinity requires that both terms contribute favorably to binding. The binding enthalpy, however, is notoriously more difficult to optimize than the binding entropy, a fact that has resulted in thermodynamically-unbalanced molecules that do not achieve optimal potency. In fact, with current technologies, the enthalpic optimization of drug candidates may take years and only appear in second-generation products. Within that context, it is not surprising that structure/activity relationships (SAR) that explicitly incorporate the interplay between enthalpy and entropy and accelerate the optimization process are being developed and gaining popularity. PMID:18703160

  19. Utilization of casting ladle lining enthalpy for heating gas savings in the course of ladle preheating

    Directory of Open Access Journals (Sweden)

    D. Jančar

    2014-04-01

    Full Text Available During the long-term staying of steel in ladle within the period from the tap until the end of continuous casting takes place a great amount of heat accumulates in lining. For its utilization is necessary to optimize heat operation of ladle lining. The demanded enthalpy of ladle before tap and the real enthalpy of ladle as things stand are needed for heating gas savings during the preheating. The enthalpy changes of ladle lining are in the course of their cycling in steelworks solved by the model of lining thermal state. For that purpose were conducted the operation measurements to find out the ladle lining thermal field within the whole technological flow.

  20. The enthalpies of formation of neutral and charged components of saturated vapor over europium dichloride

    International Nuclear Information System (INIS)

    Pogrebnoj, A.M.; Kudin, L.S.

    2003-01-01

    Composition of saturated vapor over europium dichloride was studied by the method of high-temperature mass spectrometry in the temperature range of 1154 - 1267 K. For neutral components of the vapor, represented by monomer and dimer molecules, partial pressures were determined. Enthalpies of sublimation of europium dichloride Δ s H 0 (298 K) as monomers (338 ± 9) and dimers (407 ± 20 kJ/mol) were calculated. Equilibrium constants of ion-molecular and ion-ionic reactions were measured, their enthalpies being ascertained. Enthalpies of formation of molecules and ions Δ f H 0 (298 K) were calculated: -486 ± 11 (EuCl 2 ), -1242 ± 22 (Eu 2 Cl 4 ), 1 ± 12 (Eu 2 Cl 2 + ), -347 ± 20 (Eu 2 Cl 3 + ), -1111 ± 42 (Eu 3 Cl 5 + ), -975 ± 20 (EuCl 3 - ), -1309 ± 17(EuCl 4 - ), -1734 ± 20 (Eu 2 Cl 5 - ) kJ/mol [ru

  1. Standard enthalpy of formation of Sm6UO12 acid dissolution calorimetry

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Jogeswararao, G.; Ananthasivan, K.

    2016-01-01

    The standard molar enthalpies of formation of Δ f (298 K) of Sm 6 UO 12 have been determined by using an indigenously developed isoperibol acid solution calorimeter. The water equivalent of this calorimeter was determined by electrical calibration. The accuracy of measurement were determined by using standard materials KCl and tris(hydroxyl methyl) amino-methane (TRIS) and was found to be within ±2%. The enthalpies of solution at 298 K of Sm 2 O 3 , UO 3 and Sm 6 UO 12 were measured by using this calorimeter. From these experimental results the enthalpies of formation of Sm 6 UO 12 at 298 K were computed by using Hess's law of summation. (author)

  2. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  3. Proton NMR relaxation of hydrated insulin powder

    International Nuclear Information System (INIS)

    Sanches, R.; Donoso, J.P.; Mascarenhas, S.; Panepucci, H.C.

    1985-01-01

    Water proton nuclear magnetic relaxation measurements were obtained for hydrated insulin powder as a function of the water content. For samples containing enough water to complete the hydration shell, the data for the spin-lattice and spin-spin relaxation times are consistent with a model in which water molecules exist in two phases, one exhibiting restricted motion and identified with water of hydration and another identified as free water with motions similar to ordinary water. For samples containing only water of hydration, a model for the spin-spin relaxation time is discussed, in which the water molecules relaxation is described in terms for four relaxation times. Estimates are obtained for these relaxation times, in good agreement with the experimental data. (Author) [pt

  4. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  5. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  6. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  7. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  8. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  9. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  10. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage.

    Science.gov (United States)

    Hamaed, Ahmad; Hoang, Tuan K A; Moula, Golam; Aroca, Ricardo; Trudeau, Michel L; Antonelli, David M

    2011-10-05

    Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  13. The assessment of different production methods for hydrate bearing sediments - results from small and large scale experiments

    Science.gov (United States)

    Schicks, Judith; Heeschen, Katja; Spangenberg, Erik; Luzi-Helbing, Manja; Beeskow-Strauch, Bettina; Priegnitz, Mike; Giese, Ronny; Abendroth, Sven; Thaler, Jan

    2017-04-01

    Natural gas hydrates occur at all active and passive continental margins, in permafrost regions, and deep lakes. Since they are supposed to contain enormous amounts of methane, gas hydrates are discussed as an energy resource. For the production of gas from hydrate bearing sediments, three different production methods were tested during the last decade: depressurization, thermal and chemical stimulation as well as combinations of these methods. In the framework of the SUGAR project we developed a Large Scale Reservoir Simulator (LARS) with a total volume of 425L to test these three methods in a pilot plant scale. For this purpose we formed hydrate from methane saturated brine in sediments under conditions close to natural gas hydrate deposits. The obtained hydrate saturations varied between 40-90%. Hydrate saturation and distribution were determined using electrical resistivity tomography (ERT). The volumes of the produced gas and water were determined and the gas phase was analyzed via gas chromatography. Multi-step depressurization, thermal stimulation applying in-situ combustion as well as chemical stimulation via the injection of CO2 and a CO2-N2-mixture were tested. Depressurization and thermal stimulation appear to be less complicated compared to the chemical stimulation. For the understanding of the macroscopically observed processes on a molecular level, we also performed experiments on a smaller scale using microscopic observation, Raman spectroscopy and X-ray diffraction. The results of these experiments are of particular importance for the understanding of the processes occurring during the CO2-CH4 swapping. Under the chosen experimental conditions the observations indicate a (partial) decomposition and reformation of the hydrate structure rather than a diffusion-controlled exchange of the molecules.

  14. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs--a microcalorimetric study.

    Science.gov (United States)

    Postollec, Florence; Norde, Willem; van der Mei, Henny C; Busscher, Henk J

    2003-10-01

    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal reaction calorimetry can be employed to determine the enthalpy of coaggregation between two oral bacterial pairs. For most biological processes, the enthalpy tends to reach a minimum value, reflecting the most stable state, which is directly related to the heat content of the system. The calorimeter consists of four measuring units where reaction ampoules are filled with 1.5 ml of an Actinomyces naeslundii 147 suspension, while reference ampoules are filled with buffer only. After equilibration at 25 degrees C, 80 microl of a streptococcal suspension was titrated into the reaction ampoules. To study possible saturation of the binding sites on the actinomyces surface, three consecutive injections with streptococcal suspensions were done. Following each injection, a 20-microl aliquot was taken from the ampoule kept outside the calorimeter and the number of free (S(f)) and bound (S(b)) streptococci was determined microscopically. Experiments were carried out with a coaggregating streptococcal strain (Streptococcus oralis J22) and a non-coaggregating strain (Streptococcus sanguis PK1889), serving as a control. The coaggregation enthalpy was exothermic, that is, heat was released in the reaction ampoule upon coaggregation and the heat released by the coaggregating pair minus the heat released by the non-coaggregating pair yielded a coaggregation enthalpy of -0.015 x 10(-6) mJ/bound streptococcus for the first injection. Upon consecutive injections, the coaggregation enthalpy decreased to -0.0004 x 10(-6) mJ/bound streptococcus. Comparison with enthalpy changes reported for lectin-carbohydrate binding suggests that a huge number of binding sites are involved in the formation of

  15. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Science.gov (United States)

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  16. Moderate pressure has no distinct impact on hydrophobic hydration of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yegorov, Alexander Y.; Potekhin, Sergey A., E-mail: spot@vega.protres.ru

    2015-06-20

    Highlights: • Δc{sub p} is the heat capacity increment of any protein under denaturation. • We studied the effect of pressure on Δc{sub p} using a high pressure calorimeter. • Pressure has no impact on Δc{sub p} up to 178 MPa. • There is no noticeable pressure effect on hydration of unfolded proteins. - Abstract: The effect of high pressure on the change in the heat capacity (Δc{sub p}) of ribonuclease A and lysozyme upon denaturation has been studied using scanning microcalorimetry techniques. It has been shown that the pressure has no impact on Δc{sub p} up to 178 MPa, although appreciably varies the denaturation enthalpy. This result confirms the thermodynamic similarity of the denaturation process and the hydration degree of polypeptide chain in the denatured state at ambient and elevated pressure. Our findings are in conflict with some hypotheses concerning the high pressure effect on the structure stability of proteins.

  17. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  18. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  19. Computational Recreation of Carbon Dioxide Hydrates at Habitable Planetary Conditions

    Science.gov (United States)

    Recio, J. M.; Izquierdo-Ruiz, F.; Prieto-Ballesteros, O.

    2017-12-01

    Gas clathrate hydrates are proposed as constituents of the icy moons of the giant planets in the Solar System [1]. Carbon dioxide has been detected on the surface of the moons of Jupiter, supposedly originated by internal degasification. In Ganymede, an aqueous ocean is proposed to exist under a thick ice crust in coexistence with several forms of ice, with pressure reaching up to 1.3 GPa [2]. Due to the limited available data on these systems under these conditions, we propose a combination of computational and experimental studies to describe microscopically and macroscopically the structural and chemical behavior of CO2@H2O polymorphs. This will allow us to understand how their presence affects the geophysical structure and activity and their impact on the habitability of the icy moon. A transition from the sI cubic structure to a high pressure phase at around 0.7 GPa has been found for CO2@H2O. In spite of different attempts to characterize the new structure, a definite answer has not been provided yet. A MH-III Filled Ice Structure type was proposed after neutron diffraction experiments in contrast with an alternative structure similar to the hexagonal C0 type for H2 hydrates [3]. It has an estimated hydration level ratio up to 2H2O:1CO2 and 6 water molecules per unit cell. In the figure below, our optimized unit cell based on this hexagonal C0 structure is displayed. Ab initio calculations using the XDM approximation to include van der Waals effects are performed in our search for the pressure evolution of the equilibrium geometries of the C0-CO2@H2O phase and those of a close related structure to this one called Ih-C0, with 8 water molecules per unit cell. We obtain occupation energies at different hydration ratios, densities, equations of state parameters, and stability energies with respect to decomposition. Raman and IR frequencies are also computed in the 0-2 GPa range. High pressure experiments are also being done in a newly designed chamber able to

  20. Hydrate Shell Growth Measured Using NMR.

    Science.gov (United States)

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  1. Raman spectroscopic measurements on fluoromethane clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering, Div. of Applied Physics; Ohmura, R. [Keio Univ., Kohoku-ku, Yokohama (Japan). Dept. of Mechanical Engineering; Hori, A. [Kitami Inst. of Technology, Kitami (Japan). Course of Civil Engineering

    2008-07-01

    The occupation of guest molecules in clathrate-structure cages is of interest to researchers, since this property is involved in the estimation of guest molecule density, the stability of clathrate hydrates, and other features. However, such occupation is known to be non-stoichiometric. It remains difficult to accurately estimate the total amount of natural gases in the hydrates located in the deep ocean or in permafrost. This paper discussed the systematic observations of fluoromethane clathrate hydrates using Raman spectroscopy in conjunction with previously obtained Raman spectra for methane (CH{sub 4}) hydrate. Four types of fluoromethane were utilized as standard guest molecules to investigate cage occupation in the hydrates, as all of them were included in the same crystal structure and shared similar functional groups. The types of fluoromethane that were used included fluoromethane (CH{sub 3}F), difluoromethane (CH{sub 2}F{sub 2}), trifluoromethane (CHF{sub 3}), and tetrafluoromethane (CF{sub 4}). The paper discussed the experimental methods including the temperature and pressure conditions of fluorocarbon hydrate formation. It was concluded that the summary of the Raman peak positions of fluoromethane molecules indicate that the influence of deuterized host molecules on the intramolecular vibration frequencies is less than that suggested by experimental error. The obtained data were confirmed to agree with the empirical model for the Raman peak positions on guest molecules, when the relative position of the guest molecule in a host cage structure is considered. 28 refs., 1 tab., 7 figs.

  2. Electrical properties of polycrystalline methane hydrate

    Science.gov (United States)

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  3. Electrical conductivity of lab-formed methane hydrate + sand mixtures; technical developments and new results

    Science.gov (United States)

    Stern, L.; Du Frane, W. L.; Weitemeyer, K. A.; Constable, S.; Roberts, J. J.

    2012-12-01

    frequency associated with the highest phase angle (typically 100 kHz) could be used to effectively isolate the electrical response of the sample from system contributions, enabling determination of σ. Surprisingly, the addition of sand, a nominal insulator, served to increase the overall σ of mixtures with sand fractions up through ~50 vol. % (i.e. those samples with well-connected methane hydrate), while Ea significantly decreased relative to single-phase methane hydrate. The reduced Ea suggests that a separate conduction mechanism operates when sand is present. One possible explanation is that ionic impurities from sand surfaces chemically diffuse into the hydrate grains, increasing their concentration of mobile charge-carrying defects. The fact that the addition of glass beads did not produce the same results supports this hypothesis. Geometrical mixing laws alone may therefore not sufficiently describe complicated mixing relationships between gas hydrate and sediment. Further tests are needed to resolve the competing effects, particularly if results are to be applied to systems that are not dominated by the presence of seawater. Work was performed under the auspices of U.S. DOE contracts DE-NT0005668 and DE-AC52-07NA27344, and DOE/USGS Interagency Agreement DE-NT0006147.

  4. Hydration during intense exercise training.

    Science.gov (United States)

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  5. Nonlinearity and isotope effect in temporal evolution of mesoscopic structure during hydration of cement

    International Nuclear Information System (INIS)

    Mazumder, S.

    2011-01-01

    Investigations of cement is still in its infancy despite the fact that cement is ubiquitous material which is indispensable in the construction industry, in nuclear energy programs for immobilization of non heat-generating low-level radioactive waste, and in the petroleum industry to line oil wells by pumping cement slurry to isolate productive zones and with global production exceeding that of any other material of technological importance. The total world consumption of cement in 2008 was about 2.5 billion metric tons almost double of that of steel. Manufacturing of cement contributes about 4% of global and 5-7% of the total man-made CO 2 emissions. The understanding of the mechanism of its hydration and evolution of cement-water mixtures into a material of high compressive strength is paramount to improve its life time and other macroscopic properties such as compressive strength, permeability, elastic modulus etc. The mechanism of hydration of cement and evolution of cement-water mixtures into gels of high compressive strength is poorly understood, despite extensive research over the past century. Recent investigations, based on neutron scattering measurements, aims at unraveling this enigma and outlines, for the first time, the evolution of the mesoscopic structure of the cement paste which exhibits temporal oscillations, strongly dependent on the scale of observation and on the medium of hydration (light or heavy water). While the formation of hydration products is synchronous for hydration with H 2 O, the process is non-synchronous for hydration with D 2 O. The reason why morphological patterns of domains at different times look dissimilar, as seen before, for different hydration media emerges as a natural consequence of this finding. Mesoscopic structure of cement paste exhibits isotope effect. The structures arise from well- characterised chemical reactions as water diffuses through the porous material to bring about the water-surface interactions within

  6. EFFECT OF DELAYING ADDITION TIME OF SMF SUPERPLASTICIZER ON HYDRATION CHARACTERISTICS OF BLENDED CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    H. EL-DIDAMONY

    2012-09-01

    Full Text Available This paper aims to study the effect of delaying addition time of sulphonate melamine formaldehyde superplasticizer (SMF on the rheology and hydration characteristic of blended cement pastes up to 90 days. The optimum dosage of superplasticizer was chosen as 1.0 mass %, this dosage gives the higher compressive strength and bulk density as well as lower total porosity. The optimum delaying time of superplasticizer was 7.5 min which gives the highest fluidity, bulk density, compressive strength and chemically combined water contents of cement pastes, whereas, the delaying addition time of 15.0 min shows the lower values of bulk density, compressive strength and combined water contents. This is attributed to the reduction of hydration rate of cement, due to the formation of a polymer film around the cement particles and/or hydrated products. The superplasticizing effect improved with a delayed sulphonate melamine formaldehyde superplasticizer addition time.

  7. Utilization of Sunlight into Methane Hydrate Production: Feasibility Study Based on Energy Balance Estimation

    Science.gov (United States)

    Shimada, J.; Shimada, M.; Tsunashima, K.; Aoyama, C.

    2017-12-01

    Methane hydrate is gaining remarkable attention as future natural gas resource. Collection procedures such as heating, depressurization, and chemical intrusion are being tested, but because of its high cost, they are still under development and not yet implemented. Cost reduction of the procedures cannot be expected as long as fossil fuel is used as power and heat source to extract methane gas from methane hydrate. In this regard, natural energy such as sunlight, wind, tidal, and wave powers should be implemented as energy resources as alternatives of fossil fuels. Using natural energy instead of fossil fuel will also help to prevent global warming. However, only a few proposals have been made regarding extraction methods to use clean natural energy effectively. In this study, authors will present a new extraction method using optical fibers to expose direct sunlight onto methane hydrate, and verify from various standpoints such as energy balance during extraction process and dependency of the environment.

  8. Hydration Characteristics of Tetracalcium Alumino-Ferrite Phase in the presence Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    M. M. Radwan

    2011-12-01

    Full Text Available Tetracalcium alumino-ferrite phase (C4AF prepared from pure starting materials was employed for composing various mixes prepared of C4AF phase, CaSO4·2H2O, Ca(OH2 and CaCO3. The effect of replacing calcium sulphate (gypsum by calcium carbonate as a set retarder on the hydration behaviour of ferrite phase was studied. The mixes were hydrated for various periods and the hydration products were investigated using the appropriate techniques. The kinetics of hydration was studied by measuring the chemically-combined water as well as the combined lime contents. The mineralogical constitution was studied by using XRD, and DTA. The microstructure of some represented hydrated samples was investigated by scanning electron microscopy. Some interesting conclusions have been drawn. It was found that calcium carbonate reacts with tetracalcium alumino-ferrite phase (C4AF in the presence of hydrolime [Ca(OH2] to form carboferrite compounds which may coat the aluminate grains as ettringite does and this may probably regulate the setting time.

  9. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    International Nuclear Information System (INIS)

    Englezos, P.; Ripmeester, J.; Dallimore, S.R.; Collett, T.S.; Mehta, A.; Paull, C.K.; Sloan, E.D.Jr.; Uchida, T.

    2008-01-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  10. Proceedings of the 6. international conference on gas hydrates : ICGH 2008

    Energy Technology Data Exchange (ETDEWEB)

    Englezos, P. (ed.) [British Columbia Univ., Vancouver, BC (Canada); Ripmeester, J. (ed.) [National Research Council of Canada, Ottawa, ON (Canada); Dallimore, S.R. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering; Austvik, T. [Statoil, Trondheim (Norway); Collett, T.S. [United States Geological Survey, Denver, CO (United States); Mehta, A. [Shell E and P Asia Pacific, Sarawak (Malaysia); Paull, C.K. [Monterey Bay Aquarium Research Inst., CA (United States); Sloan, E.D.Jr. [Colorado School of Mines, Golden, CO (United States); Uchida, T. [Hokkaido Univ., Sapporo (Japan)] (comps.)

    2008-07-01

    This international conference provided a forum to highlight gas hydrate research that is underway at academic institutions as well as government and industrial laboratories around the world. The gas or clathrate hydrate research community includes chemical, petroleum and mechanical engineers, geologists, geophysicists, marine biologists, chemists and physicists. The conference was attended by more than 500 delegates who presented their professional knowledge in all areas of the gas hydrates field, emphasizing new aspects. The topics of discussion included resource delineation, reservoir simulation modeling and production technology. Environmental considerations involving natural gas hydrates and global climate change were also highlighted along with carbon dioxide disposal in aquifers and deep oceans. Issues facing oil and gas operations were also discussed, with reference to flow assurance in pipelines, safety issues, permafrost and marine geohazards. Novel technologies involving hydrogen storage, carbon dioxide capture and sequestration were also highlighted along with basic science and engineering aspects of gas hydrate systems. All 417 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  11. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  12. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally change. ?? 2004 Published by Elsevier B.V.

  13. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  14. The Calculation of Standard Enthalpies of Formation of Alkanes: Illustrating Molecular Mechanics and Spreadsheet Programs

    Science.gov (United States)

    Hawk, Eric Leigh

    1999-02-01

    How group increment methods may be used to predict standard enthalpies of formation of alkanes is outlined as an undergraduate computational chemistry experiment. The experiment requires input and output data sets. Although users may create their own data sets, both sets are provided. The input data set contains experimentally determined gas-phase standard enthalpies of formation and calculated steric energies for 10 alkanes. The steric energy for an alkane is calculated via a Molecular Mechanics approach employing Allinger's MM3 force field. Linear regression analysis on data contained in the input data set generates the coefficients that are used with the output data set to calculate standard enthalpies of formation for 15 alkanes. The average absolute error for the calculated standard enthalpies of formation is 1.22 kcal/mol. The experiment is highly suited to those interested in incorporating more computational chemistry in their curricula. In this regard, it is ideally suited for a physical chemistry laboratory, but it may be used in an organic chemistry course as well.

  15. The relation between relaxed enthalpy and volume during physical aging of amorphous polymers and selenium

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Rychwalski, R. W.; Emri, I.; Sáha, P.; Kubát, J.

    2006-01-01

    Roč. 42, č. 10 (2006), s. 2824-2837 ISSN 0014-3057 R&D Projects: GA AV ČR IAA2060401 Institutional research plan: CEZ:AV0Z20600510 Keywords : Enthalpy relaxation * Polymer aging Subject RIV: BJ - Thermodynamics Impact factor: 2.113, year: 2006

  16. Heat capacty, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction.

    Science.gov (United States)

    Robinson, G.R.; Haas, J.L.

    1983-01-01

    Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.

  17. Investigation of enthalpy and specific heat of the gallium-indium-tin eutectic alloy

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Migaj, L.L.; Fordeeva, L.K.; Perlova, N.L.

    1978-01-01

    Enthalpy and specific heat of the fusible (melting point is 10.6 deg C) eutectic alloy (67% Ga - 20.5% In - 12.5% Sn according to mass) are determined by the mixing method. The determination was carried out in vacuum at the residual pressure of >= 1x10 -5 torr in the temperature range from 59.3 to 437.0 deg C. It is established that temperature dependence of alloy enthalpy is described by the equation: Hsub(t) - Hsub(0degC)=1.014+0.0879t-0.0000129 t 2 , where (Hsub(t) - Hsub(0degC)) is enthalpy, cal/g; t-temperature, deg C. Mean-square dispersion is +-0.6%. Temperature dependence of alloy specific heat in the temperature range under study was determined by differentiation of the equation obtained for enthalpy: Csub(p)=0.0879-0.000026t, where Csub(p)-specific heat, cal/gx deg. It is supposed that temperature increase makes it possible to decrease slightly specific heat

  18. Melting point gram-atomic volumes and enthalpies of atomization for liquid elements

    International Nuclear Information System (INIS)

    Lamoreaux, R.H.

    1976-01-01

    Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities

  19. Enthalpy of mixing of liquid Cu-Fe-Hf alloys at 1873 K

    Energy Technology Data Exchange (ETDEWEB)

    Agraval, Pavel; Turchanin, Mikhail [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Dreval, Liya [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Materials Science International Services GmbH (MSI), Stuttgart (Germany)

    2016-12-15

    In the ternary Cu-Fe-Hf system, the mixing enthalpies of liquid alloys were investigated at 1873 K using a high-temperature isoperibolic calorimeter. The experiments were performed along the sections x{sub Cu}/x{sub Fe} = 3/1, 1/1 at x{sub Hf} = 0-0.47 and along the section x{sub Cu}/x{sub Fe} = 1/3 at x{sub Hf} = 0-0.13. The limiting partial enthalpies of mixing of undercooled liquid hafnium in liquid Cu-Fe alloys, Δ{sub mix} anti H{sub Hf}{sup ∞}, are (-122 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 3/1), (-106 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/1), and (-105 ± 2) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/3). In the investigated composition range, the integral mixing enthalpies are sign-changing. For the integral mixing enthalpy, an analytical expression was obtained by the least squares fit of the experimental results using the Redlich-Kister-Muggianu polynomial.

  20. Enthalpy relaxations in polymer blends and block copolymers : Influence of domain size

    NARCIS (Netherlands)

    Brinke, G. ten; Grooten, R.

    1989-01-01

    It is now well known that enthalpy relaxation measurements can be used to establish polymer-polymer blend phase behavior when the glass transition temperatures of the two polymers are virtually coincident. In the most simple cases, the aging kinetics of an immiscible blend will be representative of

  1. The thermal characterization of multi-component systems by enthalpy relaxation

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Oudhuis, Lizette; Ellis, Thomas S.

    1994-01-01

    The phenomenon of enthalpy relaxation of amorphous glassy polymers has been developed into an analytical tool which can be applied to elucidate phase behavior and morphologically related phenomena of multi-component systems. We have both reviewed the experimental details concerning its application,

  2. Behavior of the Enthalpy of Adsorption in Nanoporous Materials close to Saturation Conditions

    NARCIS (Netherlands)

    Torres-Knoop, Ariana; Poursaeidesfahani, A.; Vlugt, T.J.H.; Dubbeldam, D.

    2017-01-01

    Many important industrial separation processes based on adsorption operate close to saturation. In this regime, the underlying adsorption processes are mostly driven by entropic forces. At equilibrium, the entropy of adsorption is closely related to the enthalpy of adsorption. Thus, studying the

  3. Problem-Based Learning in Teaching Chemistry: Enthalpy Changes in Systems

    Science.gov (United States)

    Ayyildiz, Yildizay; Tarhan, Leman

    2018-01-01

    Background: Problem-based learning (PBL) as a teaching strategy has recently become quite widespread in especially chemistry classes. Research has found that students, from elementary through college, have many alternative conceptions regarding "enthalpy changes in systems." Although there are several studies focused on identifying…

  4. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K

    Science.gov (United States)

    Lambert, Frank L.; Leff, Harvey S.

    2009-01-01

    As a substance is heated at constant pressure from near 0 K to 298 K, each incremental enthalpy increase, dH, alters entropy by dH/T, bringing it from approximately zero to its standard molar entropy S degrees. Using heat capacity data for 32 solids and CODATA results for another 45, we found a roughly linear relationship between S degrees and…

  6. Hydrogen Bonding Interactions and Enthalpy Relaxation in Sugar/Protein Glasses.

    Science.gov (United States)

    Sydykov, Bulat; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2017-03-01

    In this study, hydrogen bonding interactions and enthalpy relaxation phenomena of sugar and sugar/protein glasses have been studied using Fourier transform infrared spectroscopy and differential scanning calorimetry. The sugar OH band in Fourier transform infrared spectra was used to derive the glass transition temperature, T g , and the wavenumber-temperature coefficient (WTC) of the OH band. A study on mixtures of sucrose and albumin revealed that the glass transition temperature and strength of hydrogen bonds increased with increasing percentages of albumin. WTC g and T g derived from sucrose/albumin glasses showed a negative linear correlation. The Lu-Weiss equation was used to fit T g data of sucrose/albumin mixtures. An inflection point was observed at a 1:1 mass ratio, which coincided with an inflection of the OH-stretching band denoting a change in hydrogen bonding interactions. Enthalpy relaxation, which is seen as an endothermic event superimposed on the glass transition in differential scanning calorimetry thermograms, increases with increasing storage temperature. Activation energies of enthalpy relaxation of sucrose and sucrose/albumin glasses were determined to be 332 and 236 kJ mol -1 , respectively. Addition of albumin to sucrose increases the T g , average strength of hydrogen bonding, heterogeneity, and the enthalpy relaxation time, making the glass more stable during storage at room temperature. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes

    Science.gov (United States)

    Talbot, Christopher; Yap, Lydia

    2013-01-01

    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  8. Enthalpy of mixing of liquid Ag–Bi–Cu alloys at 1073 K

    International Nuclear Information System (INIS)

    Fima, Przemysław; Flandorfer, Hans

    2014-01-01

    Highlights: • Partial and integral mixing enthalpies of liquid Ag–Bi–Cu alloys were determined. • Integral mixing enthalpies are small and endothermic, similar to limiting binaries. • The ternary data were fitted on the basis of Redlich–Kister–Muggianu model. - Abstract: The Ag–Bi–Cu system is among those ternary systems which have not been fully studied yet, in particular the thermodynamic description of the liquid phase is missing. Partial and integral enthalpies of mixing of liquid ternary Ag–Bi–Cu alloys were determined over a broad composition range along six sections: x(Ag)/x(Bi) = 0.25, 1, 4; x(Ag)/x(Cu) = 1.5; x(Bi)/x(Cu) = 1.86, 4. Measurements were carried out at 1073 K using two Calvet type microcalorimeters and drop calorimetric technique. It was found that integral enthalpies of mixing are small and endothermic, similarly to limiting binary alloys. The ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. There are no significant additional ternary interactions

  9. The Evaluation of Empirical Resonance Energies as Reaction Enthalpies with Particular Reference to Benzene.

    Science.gov (United States)

    George, Philip; And Others

    1984-01-01

    Discusses the nature of experimental resonance energy, explaining how its magnitude depends upon choice of reference molecules from which bond energies are derived. Also explains how it can be evaluated more simply, without recourse to bond energies, as enthalpy change for a reaction predetermined by choice of reference molecules. (JN)

  10. Fractured Anhydrite as a Geothermal Source in a Low Enthalpy Context (Southern Permian Basin, Netherlands)

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Herber, Marinus

    2015-01-01

    Increased heat flow associated with the presence of salt domes could be beneficial for geothermal energy applications in a low enthalpy nvironment. Anhydrite layers within such salt domes could be a potential geothermal target. These layers are known to undergo brittle deformation, which in turn can

  11. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    Science.gov (United States)

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  12. Relationship between Standard Enthalpies/Entropies of Formation and Topological Structural Characteristics for Saturated Hydrocarbons

    Science.gov (United States)

    Dolomatov, M. Yu.; Aubekerov, T. M.

    2018-03-01

    QSPR models are proposed that satisfactorily describe the relationships between standard enthalpies/ entropies of formation and topological indices in the form of Wiener and Randić indices and the sum of the squares of the eigenvalues from the adjacency matrix of a molecular graph. The models can be recommended for use in scientific and engineering calculations of thermodynamic functions.

  13. Enthalpy measurement of lithium meta-titanate by drop calorimetry and its derived heat capacity

    International Nuclear Information System (INIS)

    Ishioka, Rika; Mukai, Keisuke; Terai, Takayuki; Suzuki, Akihiro

    2013-01-01

    Highlights: • Li 2 TiO 3 was synthesized by a neutralizing method. • Enthalpy of Li 2 TiO 3 was measured by a drop calorimeter. • Heat capacity of Li 2 TiO 3 was derived as a function of temperature. -- Abstract: Enthalpy of Li 2 TiO 3 , which was synthesized by a neutralizing method and its Li/Ti ratio was determined to be Li/Ti ratio (mol/mol) = 1.97, was measured by a drop calorimeter, and its heat capacity was derived as a function of temperature. XRD (X-ray diffraction) analysis of the sample before and after the enthalpy measurement indicated no phase change during the measurement and a single phase of Li 2 TiO 3 was observed. The enthalpy data were expressed as H(T) − H(323.17) (J/g) = 2.2 × 10 −5 ·T 2 + 1.4·T + 2.7 × 10 4 /T − 5.6 × 10 2 (373–1273 K), where T is temperature in K. The heat capacity was calculated as C p (J/g K) = 2.2 × 2 × 10 −5 ·T + 1.4–2.7 × 10 4 /T 2 by differentiating the equation by temperature. These equations have accuracy of 3%

  14. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  15. Ecological and climatic consequences of phase instability of gas hydrates on the ocean bed

    Science.gov (United States)

    Balanyuk, I.; Dmitrievsky, A.; Akivis, T.; Chaikina, O.

    2009-04-01

    energy and gas that leads to explosion. Methane is the main natural source for power engineering specialists. It is transported by pipelines, and gas hydrate is dangerous in this case too. It can block the gas pipeline system forming the so-called "trombus" of "thermal ice". After that the pipes have to be opened. The mess of this strange ice discovered melts immediately releasing methane and water vapor. The trombus formation can be prevented by the temperature increase or the pressure decrease. Both methods are very uncomfortable under the conditions the pipelines work. The better method is thorough drying up of the gas because gas hydrate obviously cannot be formed without water. Gas hydrates attract attention not only as a fuel and chemical stuff but in relation to a serious anxiety of strong ecological and climatic problems that can occur as a result of methane release to the atmosphere due to both gas hydrate deposits development and minor changes in thermodynamic conditions in the vicinity of a threshold of gas hydrate phase stability. One of the most probable causes is the global warming of the Earth due to the hothouse effect because the specific absorption of the Earth heat radiation by methane (radiation effectivity) is 21 times higher than its absorption by carbonic gas. Analysis of the air trapped by polar ice show that contemporary increase of methane concentration in the atmosphere is unexampled for the last 160 thousands of years. The sources of this increase are not clear. Observer and latent methane bursts during natural gas hydrates decomposition can be considered as a probable source. Amount of methane hided in natural gas hydrates is 3000 times higher its amount in the atmosphere. Release of this hothouse potential would have terrible consequences for the humanity. The warming can cause further gas hydrates decomposition and released methane will cause the following warming. Thus, self-accelerating process can start. The most vulnerable for the

  16. Application of the numerical density-enthalpy method to the multi-phase flow through a porous medium

    NARCIS (Netherlands)

    Ibrahim, D.; Vermolen, F.J.; Vuik, C.

    2010-01-01

    In this paper we apply a new method to solve multi-phase fluid flow problem for 1D1D and 2D2D fluid systems. This method is developed at TNO and presented in [1] for spatially homogeneous systems. We call this method the numerical density-enthalpy method (or ??-hh method) because density-enthalpy

  17. Standard formation enthalpies of Nasub(2+x)Vsub(6)Osub(16-y) bronze of kappa type

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Slobodin, B.V.; Surat, L.L.; Fotiev, A.A.

    1980-01-01

    Standard formation enthalpies of sodium oxide vanadium bronze of kappa Nasub(2+x)Vsub(6)Osub(16-y) type of different composition have been determined by the method of solution calorimetry. It has been ascertained that within the limits of homogeneity a standard formation enthalpy decreases insignificantly with the increase of bronze oxygen defectiveness and is a linear function of sodium content

  18. Numerical modeling of coupled thermal chemical reactive transport: simulation of a heat storage system

    Science.gov (United States)

    Shao, H.; Watanabe, N.; Singh, A. K.; Nagel, T.; Linder, M.; Woerner, A.; Kolditz, O.

    2012-12-01

    As a carbon-free energy supply technology, the operation time and final energy output of thermal solar power plants can be greatly extended if efficient thermal storage systems are applied. One of the proposed design of such system is to utilize reversible thermochemical reactions and its embedded reaction enthalpy, e.g. the Ca(OH)2/CaO hydration circle, in a fixed-bed gas-solid reactor (Schaube et al. 2011) The modeling of such a storage system involves multiple strongly-coupled physical and chemical processes. Seepage velocity is calculated by the nonlinear Forchheimer law. Gas phase density and viscosity are temperature, pressure and composition dependent. Also, heat transfer between gas and solid phases is largely influenced by the exothermal heat produced by the hydration of calcium oxide. Numerical solution of four governing PDEs include the mass balance, reactive transport, heat balance equations for gas and solid phases, which are implemented into the open source scientific software OpenGeoSys in a monolithic way. Based on it, a 2D numerical model, considering the boundary heat loss of the system, was set up to simulate the energy-storage and release circle. The high performance computing techniques were employed in two stages. First, the dynamic behavior of the heat storage system is simulated on a parallel platform. Second, a large number of processors are employed to perform sensitivity analysis, whereas the reaction rates and efficiency factor of heat transfer are parameterized so that the measured and simulated temperature profile fit with each other. The model showed that heat transfer coefficient between solid and gas phase, grain size of the filling material will influence the final performance greatly. By varying these factors, the calibrated model will be further applied to optimize the design of such energy storage system.

  19. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    {alpha}-C{sub 2}SH is also produced. Compression tests are done to correlate macroscopic behavior and physico chemical properties of the products. With super-plasticizers, samples porosity is lower and the 28-day aged samples recover the Young modulus they had at the early stage of hydration. (author)

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  1. Determination of the protonation enthalpy of humic acid by calorimetric titration technique

    International Nuclear Information System (INIS)

    Kimuro, Shingo; Kirishima, Akira; Sato, Nobuaki

    2015-01-01

    Graphical abstract: The thermodynamic quantities of protonation of humic acid were determined by the combination of potentiometric titration and calorimetric titration. It was observed that the protonation enthalpy and Gibbs free energy had been affected by pH of solution. As a result, the thermodynamics of the protonation reaction of humic acid is influenced by the polyelectrolyte effect and the heterogeneity. - Highlights: • We applied calorimetric titration technique to the protonation of humic acid. • The thermodynamic quantities of protonation of humic acid were determined. • The protonation enthalpy of humic acid is affected by the heterogeneity. • Gibbs free energy of the protonation is affected by the polyelectrolyte effect. - Abstract: In this study, the calorimetric titration technique was used to determine the protonation enthalpy of two reference humic acids and polyacrylic acid. First, we obtained the apparent protonation constant of two kinds of humic acid purchased from IHSS (International Humic Substances Society) and polyacrylic acid by potentiometric titration. Second, we obtained the protonation enthalpy of them by calorimetric titration. The protonation enthalpy of humic acid was affected by pH and the ionic strength of bulk solution. From the comparison of ΔH between humic acid and polyacrylic acid, it was concluded that the pH dependence of ΔH is attributed to the heterogeneity of humic acid. And ΔH of phenolic hydroxyl group in humic acid is strongly influenced by the electric double layer of humic acid’s surface. This is considered to be a reason of the ionic strength dependence of ΔH. On the other hand, Gibbs free energy of the protonation of humic acid is affected by the electrostatic attraction with the progress of dissociation of functional groups such as carboxyl group and phenolic hydroxyl group. Consequently, the thermodynamics of the protonation of humic acid is affected by the polyelectrolyte effect and the

  2. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  3. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  4. Irrigation port hydration in phacoemulsification surgery.

    Science.gov (United States)

    Suzuki, Hisaharu; Masuda, Yoichiro; Hamajima, Yuki; Takahashi, Hiroshi

    2018-01-01

    In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome. We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port. The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP) technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group) and 30 eyes underwent surgeries without the HYUIP technique (control). The three points evaluated during each surgery included 1) the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2) the need for conventional hydration, and 3) watertight completion at the end stage of surgery. The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups. The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse.

  5. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  6. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  7. Modified solution calorimetry approach for determination of vaporization and sublimation enthalpies of branched-chain aliphatic and alkyl aromatic compounds at T = 298.15 K

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2015-01-01

    Highlights: • Solution enthalpies of 18 branching-chain alkyl aromatic and aliphatic compounds in cyclohexane were measured. • Group contributions to the enthalpy of solvation due to branching and substitution in carbon chain were evaluated. • Modified solution calorimetry based approach for determination of vaporization/sublimation enthalpies was proposed. • This approach provides vaporization/sublimation enthalpies directly at T = 298.15 K. • Vaporization/sublimation enthalpies of 35 branched-chain alkyl aromatic and aliphatic compounds were determined. - Abstract: The enthalpies of solution, solvation and vaporization/sublimation are interrelated values combined in the simplest thermodynamic circle. Hence, experimental determination of vaporization/sublimation enthalpy can be substituted by experimentally simpler determination of solution enthalpy when solvation enthalpy is known. Previously it was found that solvation enthalpies of a wide range of unbranched aliphatic and aromatic solutes in saturated hydrocarbons are in good linear correlation with their molar refraction values. This allows to estimate the vaporization/sublimation enthalpy of any unbranched organic compound from its solution enthalpy in saturated hydrocarbon and molar refraction. In the present work this approach was modified for determination of vaporization/sublimation enthalpy of branched-chain alkyl aromatic and aliphatic compounds. Group contributions to the enthalpy of solvation due to the branching of carbon chain were evaluated. Enthalpies of solution at infinite dilution of 18 branched-chain aliphatic and alkyl aromatic compounds were measured at T = 298.15 K. Vaporization/sublimation enthalpies for 35 branched aliphatic and alkyl aromatic compounds were determined by using modified solution calorimetry approach. These values are in good agreement with available literature data on vaporization/sublimation enthalpies obtained by conventional methods.

  8. An Investigation into the Mechanisms of DNA Strand Breakage by Direct Ionization of Variably Hydrated Plasmid DNA

    OpenAIRE

    Purkayastha, Shubhadeep; Milligan, Jamie R.; Bernhard, William A.

    2006-01-01

    The mechanisms by which ionizing radiation directly causes strand breaks in DNA were investigated by comparing the chemical yield of DNA-trapped free radicals to the chemical yield of DNA single strand break (ssb) and double strand break (dsb), as a function of hydration (Γ). Solid-state films of plasmid pUC18, hydrated to 2.5 < Γ < 22.5 mol, were X-irradiated at 4 K, warmed to room temperature, and dissolved in water. Free radical yields were determined by EPR at 4 K. With use of the same sa...

  9. Standard enthalpies of formation of 2-aminobenzothiazoles in the crystalline phase by rotating-bomb combustion calorimetry

    International Nuclear Information System (INIS)

    Camarillo, E. Adriana; Mentado, Juan; Flores, Henoc; Hernández-Pérez, Julio M.

    2014-01-01

    Highlights: • Rotating bomb calorimeter was used for combustion experiments. • Benzothiazole derivatives were studied by combustion experiments. • The standard molar enthalpies of combustion in solid phase were determined. • The enthalpies of formation in the solid phase were derived. • Experimental and predicted values were used to determine gaseous formation enthalpies. - Abstract: The standard molar enthalpies of combustion of 2-aminobenzothiazole (2AB), 2-amino-4-methyl-benzothiazole (2A4MB), and 2-amino-6-methyl-benzothiazole (2A6MB) were determined in the crystalline phase at T = 298.15 K using a rotating-bomb combustion calorimeter. The molar energies of combustion of these compounds were found to be: (−4273.6 ± 0.9), (−4896.9 ± 1.1), and (−4906.9 ± 1.2) kJ · mol −1 , respectively. From these values, the corresponding standard molar enthalpies of formation in the solid phase were obtained as: (59.55 ± 1.28), (2.71 ± 1.50), and (13.53 ± 1.53) kJ · mol −1 , respectively. The enthalpies of formation in the gas phase were determined using the experimental enthalpies of formation in the solid phase and predicted values of the enthalpies of sublimation. Additionally, the enthalpies of formation in the gas phase were calculated by means of the Gausian-4 theory, using several gas-phase working reactions, and were compared with those found using the predicted enthalpies of sublimation

  10. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  11. Method for production of hydrocarbons from hydrates

    Science.gov (United States)

    McGuire, Patrick L.

    1984-01-01

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  12. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  14. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  15. The Iron Blast Furnace: A Study in Chemical Thermodynamics.

    Science.gov (United States)

    Treptow, Richard S.; Jean, Luckner

    1998-01-01

    Discusses the furnace from a chemical thermodynamics perspective. Examines the enthalpy, entropy, and free energy change for each reaction of importance. These properties are interpreted on the molecular level then used to deduce the conditions necessary for each reaction to occur in its intended direction. Chemical kinetics is also discussed.…

  16. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  17. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  18. HypCal, a general-purpose computer program for the determination of standard reaction enthalpy and binding constant values by means of calorimetry.

    Science.gov (United States)

    Arena, Giuseppe; Gans, Peter; Sgarlata, Carmelo

    2016-09-01

    The program HypCal has been developed to provide a means for the simultaneous determination, from data obtained by isothermal titration calorimetry, of both standard enthalpy of reaction and binding constant values. The chemical system is defined in terms of species of given stoichiometry rather than in terms of binding models (e.g., independent or cooperative). The program does not impose any limits on the complexity of the chemical systems that can be treated, including competing ligand systems. Many titration curves may be treated simultaneously. HypCal can also be used as a simulation program when designing experiments. The use of the program is illustrated with data obtained with nicotinic acid (niacin, pyridine-3 carboxylic acid). Preliminary experiments were used to establish the rather different titration conditions for the two sets of titration curves that are needed to determine the parameters for protonation of the carboxylate and amine groups.

  19. Structure-activity relationships in carbohydrates revealed by their hydration.

    Science.gov (United States)

    Maugeri, Laura; Busch, Sebastian; McLain, Sylvia E; Pardo, Luis Carlos; Bruni, Fabio; Ricci, Maria Antonietta

    2017-06-01

    One of the more intriguing aspects of carbohydrate chemistry is that despite having very similar molecular structures, sugars have very different properties. For instance, there is a sensible difference in sweet taste between glucose and trehalose, even though trehalose is a disaccharide that comprised two glucose units, suggesting a different ability of these two carbohydrates to bind to sweet receptors. Here we have looked at the hydration of specific sites and at the three-dimensional configuration of water molecules around three carbohydrates (glucose, cellobiose, and trehalose), combining neutron diffraction data with computer modelling. Results indicate that identical chemical groups can have radically different hydration patterns depending on their location on a given molecule. These differences can be linked with the specific activity of glucose, cellobiose, and trehalose as a sweet substance, as building block of cellulose fiber, and as a bioprotective agent, respectively. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  1. Morphology of methane hydrate host sediments

    Science.gov (United States)

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  2. Arctic Gas hydrate, Environment and Climate

    Science.gov (United States)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  3. Hydrate Technology For Transporting Natural Gas

    OpenAIRE

    Dawe, R. A.

    2003-01-01

    Natural gas hydrate (NGH) is a viable alternative to LNG (Liquefied Natural Gas) or pipelines for the transportation of natural gas from source to demand. It involves three stages: production, transportation and re-gasification. The production of the hydrate occurs at pressures >50 bar at temperatures ~10oC in the presence of water and natural gas (particularly methane, ethane, propane). Transportation is by insulated bulk carrier at around –5 oC and atmospheric pressure or 0 oC at 10 bar, an...

  4. Dehydration of plutonium or neptunium trichloride hydrate

    Science.gov (United States)

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  5. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  6. Thermal Conductivity of Methane-Hydrate

    OpenAIRE

    Krivchikov, A. I.; Gorodilov, B. Ya.; Korolyuk, O. A.; Manzhelii, V. G.; Conrad, H.; Press, W.

    2004-01-01

    The thermal conductivity of the methane hydrate CH4 (5.75 H2O) was measured in the interval 2-140 K using the steady-state technique. The thermal conductivity corresponding to a homogeneous substance was calculated from the measured effective thermal conductivity obtained in the experiment. The temperature dependence of the thermal conductivity is typical for the thermal conductivity of amorphous solids. It is shown that after separation of the hydrate into ice and methane, at 240 K, the ther...

  7. A nonlinear dynamical 2D coupled mathematical model for phase transitions in methane gas hydrates within permafrost under climate change

    Science.gov (United States)

    Duxbury, N. S.; Romanovsky, V. E.; Romanovskii, N. N.; Garagulya, L. S.; Brouchkov, A. V.; Komarov, I. A.; Roman, L. T.; Tipenko, G. S.; Buldovich, S. N.; Maximova, L. N.

    2012-12-01

    We have developed coupled permafrost - carbon physical and numerical models, where carbon is in the form of methane clathrate hydrate ( CH4*6H2O ) in a porous subsurface environment. The driving force for the subsurface temperature field dynamics is climate variations on the Earth's surface. This is an upper boundary condition for the nonlinear evolutionary system of partial differential equations (PDEs) describing subsurface heat transfer (parabolic PDEs) in a generalized Stefan formulation. The developed numerical model is a valuable computational tool to quantitatively study nonlinear dynamical thermal processes with phase transitions in terrestrial and Martian subsurfaces. Our model is multifrontal and therefore allows one to perform computations for a problem with any number of emerging/vanishing phase transition interfaces (both in methane gas hydrate deposits and in permafrost), since the model treats these fronts implicitly in an enthalpy formulation and in corresponding finite-difference scheme. This model takes into account the pressure (and therefore the depth) dependence of the phase transition temperature for methane clathrate hydrate. We have performed model computations using the thermophysical characteristics (heat capacity, density/porosity, thermal conductivity) for the Siberian subsurface. It can be used as a terrestrial analog for the Martian subsurface (e.g., Duxbury et al., 2001). Also, thermophysical coefficients from laboratory experiments for methane clathrate hydrate were used in our model. In addition, our model takes into account the dependence of subsurface thermophysical characteristics on temperature and spatial coordinates. The results of our computations and their interpretation will be presented. References. N. S. Duxbury, I. A. Zotikov, K. H. Nealson, V. E. Romanovsky, F. D. Carsey (2001). A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars, Journal of Geophysical Research

  8. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates.

    Science.gov (United States)

    Seo, Yutaek; Kang, Seong-Pil; Jang, Wonho

    2009-09-03

    Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.

  9. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  10. Hydration behaviors of calcium silicate-based biomaterials

    Directory of Open Access Journals (Sweden)

    Yuan-Ling Lee

    2017-06-01

    Conclusion: Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level.

  11. Polymer hydration and stiffness at biointerfaces and related cellular processes.

    Science.gov (United States)

    Kerch, Garry

    2018-01-01

    The direct and indirect (by changing mechanical properties) effects of hydration at interfaces on cellular processes and tissue diseases are reviewed. The essential effect of substrate stiffness on cellular processes was demonstrated in the last decade. The combined effect of surface stiffness and hydration at interfaces has garnered much less attention, though hydration and dehydration play important roles in biological processes. This review focuses on the studies that demonstrate how hydration affects biological processes at interfaces. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. Various types of implant and blood contacting device coatings with varied surface stiffness and hydration have been reported. Effect of hydration on polymer modulus of elasticity and viscoelasticity was discussed taking into account cells adhesion, migration, proliferation, differentiation on surfaces with various degree of hydration. Future directions of research were considered, including the use of nanotechnology to regulate the hydration degree. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Methane hydrates in marine sediments - Untapped source of energy

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    will be required to turn this potential resource into gas reserves while developing technologies to conduct safe petroleum operation in hydrate areas, and defining the role of methane hydrates in global climate....

  13. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.

    Science.gov (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis

    2013-05-01

    calcium silicate was higher for Biodentine™ than for TCS-20-Z owing to its optimized particle size distribution, the presence of CaCO₃ and the use of CaCl₂. Tricalcium calcium silicate in MTA hydrated even more slowly than TCS-20-Z as evident from the size of reaction rim representative of calcium silicate hydrate (C-S-H) around tricalcium silicate grains and the calorimetry measurements. On the other hand, calcium oxide contained in MTA Angelus™ hydrated very fast inducing an intense exothermic reaction. Calcium hydroxide was produced as a by-product of reaction in all hydrated cements but in greater quantities in MTA due to the hydration of calcium oxide. This lead to less dense microstructure than the one observed for both Biodentine™ and TCS-20-Z. All the materials were bioactive and allowed the deposition of hydroxyapatite on the cement surface in the presence of simulated body fluid and the radiopacity was greater than 3mm aluminum thickness. All the cement pastes tested were composed mainly of tricalcium silicate and a radiopacifier. The laboratory manufactured cement contained no other additives. Biodentine™ included calcium carbonate which together with the additives in the mixing liquid resulted in a material with enhanced chemical properties relative to TCS-20-Z prototype cement. On the other hand MTA Angelus™ displayed the presence of calcium, aluminum and silicon oxides in the un-hydrated powder. These phases are normally associated with the raw materials indicating that the clinker of MTA Angelus™ is incompletely sintered leading to a potential important variability in its mineralogy depending on the sintering conditions. As a consequence, the amount of tricalcium silicate is less than in the two other cements leading to a slower reaction rate and more porous microstructure. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Enthalpies of formation of selected Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Chen, Song; Nash, Philip

    2013-11-15

    Highlights: •Enthalpies of formation of selected Co{sub 2}YZ were measured by drop calorimeters. •Enthalpy decreases as the Z element approaches the top right corner of the periodic table. •For the Y element, enthalpy increases on increasing the number of d electrons. •Result of L2{sub 1} structured compounds agrees with first principles data. •Lattice parameters and related phase relationships were consistent with literature data. -- Abstract: Standard enthalpies of formation at 298 K of selected ternary Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) were measured by high temperature direct synthesis calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the L2{sub 1} compounds are: Co{sub 2}FeGa (−25.8 ± 2.6); Co{sub 2}FeSi (−38.4 ± 2.2); Co{sub 2}FeGe (−11.6 ± 2.1); Co{sub 2}MnGa (−30.1 ± 2.3); Co{sub 2}MnSi (−42.4 ± 1.2); Co{sub 2}MnGe (−31.6 ± 3.0); Co{sub 2}MnSn (−15.6 ± 2.8); Co{sub 2}TiAl (−55.0 ± 3.7); Co{sub 2}TiGa (−54.2 ± 2.6); Co{sub 2}TiSi (−61.4 ± 1.7); Co{sub 2}TiGe (−59.3 ± 3.8); Co{sub 2}TiSn (−38.4 ± 2.0); Co{sub 2}VGa (−28.4 ± 1.1) and for the B2 compounds: Co{sub 2}FeAl (−22.5 ± 2.5), Co{sub 2}MnAl (−27.6 ± 2.7). Values are compared with those from first principles calculation when available and the extended semi-empirical model of Miedema. Trends in enthalpy of formation with element atomic number are discussed. Lattice parameters of the compounds with L2{sub 1} structure are determined by X-ray diffraction analysis.

  15. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  16. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  17. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    2017-06-01

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution) went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  18. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    International Nuclear Information System (INIS)

    Coleman, Nichola J.; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: ► This is the first study of Portland cement-based biomaterials by 27 Al and 29 Si NMR. ► 20 wt.% ZrO 2 radiopacifier accelerates the early cement hydration reactions. ► Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO 2 . ► Initial and final setting times are reduced by 25 and 22 min, respectively. ► ZrO 2 provides nucleation sites for the precipitation of early hydration products.

  19. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Nichola J., E-mail: nj_coleman@yahoo.co.uk [School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB (United Kingdom); Li, Qiu [School of Civil Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 {mu}m was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: Black-Right-Pointing-Pointer This is the first study of Portland cement-based biomaterials by {sup 27}Al and {sup 29}Si NMR. Black-Right-Pointing-Pointer 20 wt.% ZrO{sub 2} radiopacifier accelerates the early cement hydration reactions. Black-Right-Pointing-Pointer Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO{sub 2}. Black-Right-Pointing-Pointer Initial and final setting times are reduced by 25 and 22 min, respectively. Black-Right-Pointing-Pointer ZrO{sub 2} provides nucleation sites for the precipitation of early hydration products.

  20. Prediction of failure enthalpy and reliability of irradiated fuel rod under reactivity-initiated accidents by means of statistical approach

    International Nuclear Information System (INIS)

    Nam, Cheol; Choi, Byeong Kwon; Jeong, Yong Hwan; Jung, Youn Ho

    2001-01-01

    During the last decade, the failure behavior of high-burnup fuel rods under RIA has been an extensive concern since observations of fuel rod failures at low enthalpy. Of great importance is placed on failure prediction of fuel rod in the point of licensing criteria and safety in extending burnup achievement. To address the issue, a statistics-based methodology is introduced to predict failure probability of irradiated fuel rods. Based on RIA simulation results in literature, a failure enthalpy correlation for irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. From the failure enthalpy correlation, a single damage parameter, equivalent enthalpy, is defined to reflect the effects of the three primary factors as well as peak fuel enthalpy. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Using these equations, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width and cladding materials used

  1. CO2 Exchange in a Methane Hydrate Reservoir: Ignik Sikumi #1 Alaska Field Trial Operations and Summary Results

    Science.gov (United States)

    Hester, K. C.; Farrell, H.; Howard, J. J.; Martin, K.; Raterman, K.; Schoderbek, D.; Smith, B.; Silpngarmlert, S.

    2012-12-01

    In the winter of 2012, a CO2 exchange field trial was performed at Prudhoe Bay, Alaska. The goal was to demonstrate the feasibility of CO2 hydrate exchange technology, developed in the laboratory, on a natural methane hydrate-bearing reservoir. This included verifying the chemical exchange of CO2 with methane in addition to maintaining injectivity. Drilled in 2011, the Ignik Sikumi #1 well was perforated in February 2012. The pilot was designed as a 'huff and puff' style test where a single well is used first for injection then followed with production. The target for the test was a 10 m sand zone estimated to contain 70-80% hydrate saturation. For 13 days, over 5600 m3 of a CO2 mixture (77mol% N2, 23 mol% CO2) were injected in the hydrate-bearing interval. Injectivity was maintained over this period. Following injection, flow back commenced over a 30 day period. The production started by maintaining a bottom hole pressure above the dissociation pressure above methane hydrate. At later times, the bottom hole pressure was lowered causing both pore space fluids to be produced along with dissociation of non-exchanged original methane hydrate. In total, over 23,700 m3 of methane was produced over the production period.

  2. Dissolution enthalpies of L-proline and its interactions with methanol, 2-propanol, ethylene glycol, and glycerin in aqueous solution at 298.15 K

    Science.gov (United States)

    Korolev, V. P.; Antonova, O. A.; Smirnova, N. L.

    2010-12-01

    The dissolution enthalpies of L-proline in mixtures of water with methanol, 2-propanol, ethylene glycol, and glycerin were measured calorimetrically at 298.15 K. The enthalpy coefficients of the interaction of proline with alcohols in aqueous solutions were determined. The enthalpy coefficients of the pair interaction of proline and glycine with alcohols were shown to be directly proportional.

  3. Proteomic indicators of oxidation and hydration state in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dick

    2016-07-01

    Full Text Available New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ( ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

  4. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  5. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  6. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  7. A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Manja Luzi-Helbing

    2013-06-01

    Full Text Available Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulation. This study focusses on the thermal stimulation using a counter-current heat-exchange reactor for the in situ combustion of CH4. The principle of in situ combustion as a method for thermal stimulation of hydrate bearing sediments has been introduced and discussed earlier [1,2]. In this study we present the first results of several tests performed in a pilot plant scale using a counter-current heat-exchange reactor. The heat of the flameless, catalytic oxidation of CH4 was used for the decomposition of hydrates in sand within a LArge Reservoir Simulator (LARS. Different catalysts were tested, varying from diverse elements of the platinum group to a universal metal catalyst. The results show differences regarding the conversion rate of CH4 to CO2. The promising results of the latest reactor test, for which LARS was filled with sand and ca. 80% of the pore space was saturated with CH4 hydrate, are also presented in this study. The data analysis showed that about 15% of the CH4 gas released from hydrates would have to be used for the successful dissociation of all hydrates in the sediment using thermal stimulation via in situ combustion.

  8. Experimental characterization of meteoric material exposed to a high enthalpy flow in the Plasmatron

    Science.gov (United States)

    Zavalan, Luiza; Bariselli, Federico; Barros Dias, Bruno; Helber, Bernd; Magin, Thierry

    2017-04-01

    Meteoroids, disintegrated during their entry in the atmosphere, contribute massively to the input of cosmic metals to Earth. Yet, this phenomenon is not well understood. Experimental studies on meteor material degradation in high enthalpy facilities are scarce and often do not provide quantitative data which are necessary for the validation of the simulation tools. In this work, we tried to duplicate typical meteor flight conditions in a ground testing facility to analyze the thermo-chemical degradation mechanisms by reproducing the stagnation point region conditions. The VKI Plasmatron is one of the most powerful induction-coupled plasma wind-tunnels in the world. It represents an important tool for the characterization of ceramic and ablative materials employed in the fabrication of Thermal Protection Systems (TPS) of spacecraft. The testing methodology and measurement techniques used for TPS characterization were adapted for the investigation of evaporation and melting in samples of basalt (meteorite surrogate) and ordinary chondrite. The materials were exposed to stagnation point heat fluxes of 1 MW/m2 and 3 MW/m2. During the test, numerous local pockets were formed at the surface of the samples by the emergence of gas bubbles. Images recorded through a digital 14bit CCD camera system clearly revealed the frothing of the surface for both tested materials. This process appeared to be more heterogeneous for the basaltic samples than for the ordinary chondritic material. Surface temperature measurements obtained via a two-color pyrometer showed a maximum surface temperature in the range between 2160 and 2490 Kelvins. Some of the basaltic samples fractured during the tests. This is probably due to the strong thermal gradients experienced by the material in these harsh conditions. Therefore, the surface temperature measurements suffered sudden drops in correspondence with the fracturing time. Emission spectra of air and ablated species were collected with resolution

  9. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac......At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...... oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...

  10. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications. PMID:29473043

  11. The enthalpy of solid scandium in the temperature range 406 - 1812 K

    International Nuclear Information System (INIS)

    Lyapunov, K.M.; Baginskij, A.V.; Stankus, S.V.

    2001-01-01

    Enthalpy of pure scandium was measured on massive calorimeter in the range from 406 to 1812 K by mixing method. The enthalpy of face centered close cubic lattice - body centered cubic lattice transformation is equal to ΔH t 4068 J/mol. Obtained value within the limits of error is compatible with the results given earlier (4009 J/mol). The dependence of the middle specific heat of scandium C p (T) on the temperature was shown in correlation with the results of other works. The results of the conducted experiments reinforce the conclusion made earlier about an absence (or a little) in the decomposition of an anharmonic component of the oscillation specific heat of scandium C p a (T) members proportional to the first or the second degrees of temperature [ru

  12. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  13. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations

    Directory of Open Access Journals (Sweden)

    Federico Fogolari

    2018-02-01

    Full Text Available Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  14. Enthalpy-entropy compensation and the isokinetic temperature in enzyme catalysis.

    Science.gov (United States)

    Cornish-Bowden, Athel

    2017-12-01

    Enthalpy-entropy compensation supposes that differences in activation enthalpy ΔH++ for different reactions (or, typically in biochemistry, the same reaction catalysed by enzymes obtained from different species) may be compensated for by differences in activation entropy ΔS++. At the isokinetic temperature the compensation is exact, so that all samples have the same activity. These ideas have been controversial for several decades, but examples are still frequently reported as evidence of a real phenomenon, nearly all of the reports ignoring or discounting the possibility of a statistical artefact. Even for measurements in pure chemistry artefacts occur often, and they are almost inescapable in enzyme kinetics and other fields that involve biological macromolecules, on account of limited stability and the fact that kinetic equations are normally valid only over a restricted range of temperature. Here I review the current status and correct an error in a recent book chapter.

  15. The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs

    DEFF Research Database (Denmark)

    Crooijmans, R. A.; Willems, C. J L; Nick, Hamid

    2016-01-01

    A three-dimensional model is used to study the influence of facies heterogeneity on energy production under different operational conditions of low-enthalpy geothermal doublet systems. Process-based facies modelling is utilised for the Nieuwerkerk sedimentary formation in the West Netherlands Basin...... and the energy recovery rate for different discharge rates and the production temperature (Tmin) above which the doublet is working. With respect to the results, we propose a design model to estimate the life time and energy recovery rate of the geothermal doublet. The life time is estimated as a function of N...... errors in predicting the life time of low-enthalpy geothermal systems for N/G values below 70%....

  16. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  17. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  18. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  19. Enthalpy of solution of biuret in various aqueous electrolyte solutions and in an urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hisashi; Murakami, Sachio (Osaka City Univ. (Japan))

    1989-06-30

    Enthalpies of biuret which is simplest amido acid and does not have hydrophobic group, in various aqueous solutions and in urea solution were measured at 298.15K to clarify the influence of salt on polymer conformal changes of organism or structure and functions of membrane. The isoperibol calorimeter where the quartz thermometer was used as the thermal sensor, was used in the measurement. The performance of this calorimeter was tested by comparing measurements with values in references. From the analysis of enthalpies of biuret solutions, following results of solute-solute-solvent interactions could be obtained: the rate where biuret destroys water structure is smaller in salt solutions than in aqueous solutions and the tendency depends on the ion size; ion-water interaction weakens owing to the ion-biuret interaction in salt solution of biuret; and water molecules are made free. 25 refs., 4 figs., 5 tabs.

  20. Evaluation of enthalpy of interfacial reactions from temperature dependency of interfacial equilibrium

    International Nuclear Information System (INIS)

    Kallay, Nikola; Cop, Ana

    2005-01-01

    Temperature dependency of equilibrium at metal oxide-aqueous electrolyte solution interface was analyzed by numerical simulation. Derivations of inner surface potential with respect to temperature were performed at constant values of several different parameters. When surface charge density in inner plane was kept constant the reasonable results were obtained, i.e. the electrostatic contribution to enthalpy of protonation of amphotheric surface sites was found to be positive in the pH region below the point of zero potential and negative above this point. All other examined possibilities produced opposite results. Derivation of empirical interfacial equilibrium constant at constant surface potential indicated that electrostatic effect on protonation entropy is negligible and that electrostatic contributions to reaction Gibbs energy and enthalpy are equal and directly related to the surface potential in the inner plane