WorldWideScience

Sample records for chemical gas sensors

  1. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  2. Complex Metal Oxide Chemical Gas Sensors

    OpenAIRE

    Šutka, A

    2015-01-01

    The demand for alternative gas sensor materials is increasing following the progress in the electronic industry. Complex ternary oxide materials have been emerging rapidly over 10 last years. Among ternary metal oxide compounds, the spinel ferrites are the most attractive materials due to structural and compositional versatility. This report will highlight the recent developments and will show the potential of the spinel ferrites on gas sensor technology. Sensing mechanisms for a range of gas...

  3. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  4. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  5. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  6. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  7. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  8. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  9. Chemical modification of nanocrystalline tin dioxide for selective gas sensors

    International Nuclear Information System (INIS)

    Chemical methods for enhancement of the selectivity of semiconductor metal oxide gas sensors are considered taking SnO2 as an example. Theoretical concepts concerning correlations between the metal oxide chemical composition, crystal structure, surface morphology and the oxide surface reactivity are discussed. Application of such concepts to the design of novel, highly selective sensor materials based on nanocrystalline SnO2 is discussed in detail. Experimental data on the determination of the chemical composition, structure, activity in gas–solid chemical interaction and the sensor properties of such materials are analyzed. The applicability of modern concepts of the chemical activity of the surface in gas–solid reactions to the design of novel metal oxide sensor materials with enhanced selectivity is substantiated. The bibliography includes 133 references

  10. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  11. Dataset from chemical gas sensor array in turbulent wind tunnel.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings. PMID:26217739

  12. MEMS device for mass market gas and chemical sensors

    Science.gov (United States)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air

  13. Data set from chemical sensor array exposed to turbulent gas mixtures

    OpenAIRE

    Jordi Fonollosa; Irene Rodríguez-Luján; Marco Trincavelli; Ramón Huerta

    2015-01-01

    A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas...

  14. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  15. Foil level packaging of a chemical gas sensor

    International Nuclear Information System (INIS)

    A generic method for the packaging of transducers at the foil level is proposed and was demonstrated on chemical gas sensors made on a plastic foil. The processing was based on the lamination of pre-patterned polymeric structures on the fabricated devices and covered by a gas permeable membrane. This polymeric packaging can be either applied on plastic foils or on conventional substrates such as silicon or glass. It can be used when standard packaging techniques might not be applied or when they can represent a significant cost. Using the lamination of a foil, the dry process presented here is compatible with large-scale fabrication techniques, such as roll-to-roll processing, and aims at reducing the global fabrication cost of sensing devices made on a plastic foil. It can further lead to the fabrication of all polymeric devices. This generic processing can be used for a wide range of applications in the field of microsystems, especially for which the foil level is required and where standard techniques at the wafer level are not applicable. The foil level packaging (FLP) was implemented here for the encapsulation of gas sensors on a plastic foil and validated through gas measurements.

  16. Data set from chemical sensor array exposed to turbulent gas mixtures.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas sources that generate two gas plumes. The plumes get naturally mixed along a turbulent flow and reproduce the gas concentration fluctuations observed in natural environments. Hence, the gas sensors can capture the spatio-temporal information contained in the gas plumes. The sensor array was exposed to binary mixtures of ethylene with either methane or carbon monoxide. Volatiles were released at four different rates to induce different concentration levels in the vicinity of the sensor array. Each configuration was repeated 6 times, for a total of 180 measurements. The data is related to "Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry", by Fonollosa et al. [1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+senso+rarray+exposed+to+turbulent+gas+mixtures. PMID:26217747

  17. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  18. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  19. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  20. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Chemical gas sensors and the characterization, monitoring and sensor technology needs of the US Department of Energy

    International Nuclear Information System (INIS)

    The Office of Technology Development within the Dept. of Energy (DOE) has the responsibility of providing new technologies to aid the environmental restoration and waste management (ER/WM) activities of the DOE. There is a perception that application and judicious development of chemical sensor technologies could result in large cost savings and reduced risk to the health and safety of ER/WM personnel. A number of potential gas sensor applications which exist within DOE ER/WM operations are described. The capabilities of several chemical sensor technologies and their potential to meet the needs of ER/WM applications in the present or near term future are discussed

  2. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    Directory of Open Access Journals (Sweden)

    Thara Seesaard

    2015-01-01

    Full Text Available Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose. The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  3. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    Science.gov (United States)

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-01

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265

  4. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  5. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors.

    Science.gov (United States)

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M N

    2014-01-01

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10(-8) RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator. PMID:24618728

  6. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    Directory of Open Access Journals (Sweden)

    Mario La Notte

    2014-03-01

    Full Text Available Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI as sensing device instead of an add drop ring resonator.

  7. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; Hall, G.

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  8. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    International Nuclear Information System (INIS)

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed

  9. Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices

    International Nuclear Information System (INIS)

    The relevance of nanometric indigo layers as integrated ozone filters on chemical gas sensors has been established. Indigo can be considered as a selective filter because it ensures a complete removal of ozone in air while being very weakly reactive with CO and NO2. The nanometric layers have been realized by thermal evaporation and their chemical structures have been consecutively determined by FT-IR and XPS analyses. Studies about their morphology have been realized by means of SEM and AFM. Results underline the homogeneity and the low roughness of the samples. Electrical characterizations have revealed the high electronic resistivity of nanometric indigo layers. Current–voltage characterizations have put in obviousness that the integration of indigo layer has no effect on the electrical characteristics of sensitive element, even for material exhibiting a very low intrinsic electronic conductivity like metallophthalocyanines. The selective and reproducible measurements of NO2 concentrations by an original sensing device which takes advantage of on the one hand, the sensitivity and the partial selectivity of copper phthalocyanine (CuPc) to oxidizing gases and on the other hand, the filtering selectivity of indigo toward O3 have been successfully performed. Optimization of sensing performances as well as the scope of indigo nanolayers will be finally discussed.

  10. Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J., E-mail: brunet@lasmea.univ-bpclermont.fr [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Spinelle, L. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France); Ndiaye, A. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Dubois, M. [Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France); Monier, G.; Varenne, C.; Pauly, A.; Lauron, B. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Guerin, K.; Hamwi, A. [Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France)

    2011-11-30

    The relevance of nanometric indigo layers as integrated ozone filters on chemical gas sensors has been established. Indigo can be considered as a selective filter because it ensures a complete removal of ozone in air while being very weakly reactive with CO and NO{sub 2}. The nanometric layers have been realized by thermal evaporation and their chemical structures have been consecutively determined by FT-IR and XPS analyses. Studies about their morphology have been realized by means of SEM and AFM. Results underline the homogeneity and the low roughness of the samples. Electrical characterizations have revealed the high electronic resistivity of nanometric indigo layers. Current-voltage characterizations have put in obviousness that the integration of indigo layer has no effect on the electrical characteristics of sensitive element, even for material exhibiting a very low intrinsic electronic conductivity like metallophthalocyanines. The selective and reproducible measurements of NO{sub 2} concentrations by an original sensing device which takes advantage of on the one hand, the sensitivity and the partial selectivity of copper phthalocyanine (CuPc) to oxidizing gases and on the other hand, the filtering selectivity of indigo toward O{sub 3} have been successfully performed. Optimization of sensing performances as well as the scope of indigo nanolayers will be finally discussed.

  11. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  12. Smart control of chemical gas sensors for the reduction of their time response

    OpenAIRE

    Domínguez Pumar, Manuel; Kowalski, Lukasz; Calavia, Raul; Llobet, E

    2016-01-01

    The objective of this paper is to show the first results obtained with a gas sensor made of Au-functionalized WO3 nanoneedles working under a closed-loop control designed to reduce its time response. The average temperature applied to the sensor is modulated to keep constant the average surface potential of the sensing nanostructures. This is done by periodically monitoring the resistivity of the sensing layer and generating temperature waveforms that enforce the condition: constant resistivi...

  13. Combining Non Selective Gas Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds

    Directory of Open Access Journals (Sweden)

    Victor Hernandez Bennetts

    2014-09-01

    Full Text Available In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  14. Fiber optic chemical sensors

    Science.gov (United States)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  15. Smart Chemical Sensors: Concepts and Application

    OpenAIRE

    Udina Oliva, Sergi

    2012-01-01

    This PhD thesis introduces basic concepts of smart chemical sensors design, which are afterwards applied to a particular application: the analysis of natural gas. The thesis addresses thus two sets of objective, a first set of objectives related to the conceptual design of a smart chemical sensor using smart sensor standards: - The design of an optimal smart chemical sensor architecture - The novel combination in a working prototype of the highly complementary smart sensor stan...

  16. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    OpenAIRE

    Liu Yang; Qiang Han; Shuya Cao; Feng Huang; Molin Qin; Chenghai Guo; Mingyu Ding

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical an...

  17. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  18. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH3 and H2S sensors for use in Heavy water production industries and NOx sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  19. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2015-06-01

    Full Text Available Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant and 2-CEES (a blister agent simulant were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper.

  20. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper. PMID:26043177

  1. Wearable Optical Chemical Sensors

    Science.gov (United States)

    Lobnik, Aleksandra

    Wearable sensors can be used to provide valuable information about the wearer's health and/or monitor the wearer's surroundings, identify safety concerns and detect threats, during the wearer's daily routine within his or her natural environment. The "sensor on a textile", an integrated sensor capable of analyzing data, would enable early many forms of detection. Moreover, a sensor connected with a smart delivery system could simultaneously provide comfort and monitoring (for safety and/or health), non-invasive measurements, no laboratory sampling, continuous monitoring during the daily activity of the person, and possible multi-parameter analysis and monitoring. However, in order for the technology to be accessible, it must remain innocuous and impose a minimal intrusion on the daily activities of the wearer. Therefore, such wearable technologies should be soft, flexible, and washable in order to meet the expectations of normal clothing. Optical chemical sensors (OCSs) could be used as wearable technology since they can be embedded into textile structures by using conventional dyeing, printing processes and coatings, while fiber-optic chemical sensors (FOCSs) as well as nanofiber sensors (NFSs) can be incorporated by weaving, knitting or laminating. The interest in small, robust and sensitive sensors that can be embedded into textile structures is increasing and the research activity on this topic is an important issue.

  2. Investigation of kinetic processes of gas-solid-ionic-conductor-interfaces with respect to potential application in chemical sensors.

    OpenAIRE

    Tsagarakis, Evangelos D.

    2004-01-01

    The technology of all-solid-state electrochemical sensors requires combination of materials with appropriate electrical properties. Application of solid electrolytes in electrochemical gas sensors is accompanied by utilization of electrodes. The electrode reaction resulting in gas detection is based on the interaction of species from the galvanic cell and the gas phase. The present work investigates the kinetics of the interface gas-solid ionic conductor in electrochemical cells under equilib...

  3. Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor

    International Nuclear Information System (INIS)

    Liquefied petroleum gas (LPG) sensing properties of ZnO thin films consisting of sub-micron rods synthesized by chemical bath deposition (CBD) method are presented in depth. The scanning electron microscopy observation reveals that ZnO sub-micron rods are of hexagonal in phase grown perpendicular to the substrate surface. Due to large surface area, the ZnO thin films of sub-micron rods were sensitive to the explosive LPG, which was studied for different time depositions and for different operating temperatures. The maximum response of 28% at 673 K was recorded under the exposure of 10% of lower explosive level (LEL) of LPG. The ZnO thin films of sub-micron rods exhibited good sensitivity and rapid response-recovery characteristics towards LPG

  4. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  5. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  6. Effects of textural properties on the response of a SnO2-based gas sensor for the detection of chemical warfare agents.

    Science.gov (United States)

    Lee, Soo Chool; Kim, Seong Yeol; Lee, Woo Suk; Jung, Suk Yong; Hwang, Byung Wook; Ragupathy, Dhanusuraman; Lee, Duk Dong; Lee, Sang Yeon; Kim, Jae Chang

    2011-01-01

    The sensing behavior of SnO(2)-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level) of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME), dimethyl methylphosphonate (DMMP), and dichloromethane (DCM) was investigated. Commercial SnO(2) [SnO(2)(C)] and nano-SnO(2) prepared by the precipitation method [SnO(2)(P)] were used to prepare the SnO(2) sensor in this study. In the case of DCM and acetonitrile, the SnO(2)(P) sensor showed higher sensor response as compared with the SnO(2)(C) sensors. In the case of DMMP and DPGME, however, the SnO(2)(C) sensor showed higher responses than those of the SnO(2)(P) sensors. In particular, the response of the SnO(2)(P) sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO(2)-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1-0.5 ppm). PMID:22163991

  7. Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Duk Dong Lee

    2011-07-01

    Full Text Available The sensing behavior of SnO2-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME, dimethyl methylphosphonate (DMMP, and dichloromethane (DCM was investigated. Commercial SnO2 [SnO2(C] and nano-SnO2 prepared by the precipitation method [SnO2(P] were used to prepare the SnO2 sensor in this study. In the case of DCM and acetonitrile, the SnO2(P sensor showed higher sensor response as compared with the SnO2(C sensors. In the case of DMMP and DPGME, however, the SnO2(C sensor showed higher responses than those of the SnO2(P sensors. In particular, the response of the SnO2(P sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO2-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1–0.5 ppm.

  8. Wearable bio and chemical sensors

    OpenAIRE

    Coyle, Shirley; Curto, Vincenzo; Benito-Lopez, Fernando; Florea, Larisa; Diamond, Dermot

    2014-01-01

    Chemical and biochemical sensors have experienced tremendous growth in the past decade due to advances in material chemistry combined with the emergence of digital communication technologies and wireless sensor networks (WSNs) [1]. The emergence of wearable chemical and biochemical sensors is a relatively new concept that poses unique challenges to the field of wearable sensing. This is because chemical sensors have a more complex mode of operation, compared to physical transducers, in that t...

  9. A Combined Gas and Liquid Chemical Sensor Array for Fuel Adulteration Detection

    Science.gov (United States)

    Wiziack, Nadja K. L.; Paterno, Leonardo G.; Fonseca, Fernando J.; Mattoso, Luiz Henrique C.

    2011-09-01

    A multisensor system combining electronic tongue (ET) and nose (EN) was here developed to improve fuel quality control. Several impedance microelectrode sensors, with different geometries and sensoactive materials, were used separately and simultaneously in both liquid and vapor samples. The combined system significantly improved the substance discrimination compared to isolated ET and EN.

  10. Microfabricated Formaldehyde Gas Sensors

    OpenAIRE

    Cheung, Karen C.; Ko, Frank K.; Jonas Flueckiger

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based d...

  11. Optimizing Chemical Sensor Array Sizes

    International Nuclear Information System (INIS)

    Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that ''more is better'' when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets

  12. Imprinted photonic crystal chemical sensors

    NARCIS (Netherlands)

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  13. Errors in Chemical Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Artur Dybko

    2001-06-01

    Full Text Available Various types of errors during the measurements of ion-selective electrodes, ionsensitive field effect transistors, and fibre optic chemical sensors are described. The errors were divided according to their nature and place of origin into chemical, instrumental and non-chemical. The influence of interfering ions, leakage of the membrane components, liquid junction potential as well as sensor wiring, ambient light and temperature is presented.

  14. Synthesis of Liquefied Petroleum Gas (LPG Sensor based on Nanostructure Zinc Oxide using Chemical Bath Deposition (CBD Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2012-07-01

    Full Text Available Porous thin layer of zinc oxide have been made using chemical bath deposition method with the precursor of zinc nitrate tetrahydrate on a substrate of alumina (Al2O3. The morphology of the formed layer has the form of sheet structure and flowerlike structure. ZnO layers showed the lack of oxygen. Conductivity sensors varies with changes in operating temperature, the higher the operating temperature, the higher the conductivity. The best performance shown by the sensors with 100% solvent composition of water (sheet structure at a temperature of 200oC with a sensitivity of 44.83%, 80 seconds response time and 90 seconds recovery time. The sensor is able to detect the presence of LPG and also can measure the concentration of LPG.

  15. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  16. Graphene Chemical Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The sensor uses graphene based devices to sense the surface potential of a graphene channel exposed to an analyte. When analyte molecules adsorb onto the...

  17. Graphene Chemical Sensor for Heliophysics Applications

    Science.gov (United States)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  18. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  19. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  20. Binary MEMS gas sensors

    International Nuclear Information System (INIS)

    A novel sensing mechanism for electrostatic MEMS that employs static bifurcation-based sensing and binary detection is demonstrated. It is implemented as an ethanol vapour sensor that exploits the static pull-in bifurcation. Sensor detection of 5 ppm of ethanol vapour in dry nitrogen, equivalent to a detectable mass of 165 pg, is experimentally demonstrated. Sensor robustness to external disturbances is also demonstrated. A closed-form expression for the sensitivity of statically detected electrostatic MEMS sensors is derived. It is shown that the sensitivity of static bifurcation-based binary electrostatic MEMS sensors represents an upper bound on the sensitivity of static detection for given sensor dimensions and material properties. (paper)

  1. Chemical sensor system

    Science.gov (United States)

    Darrach, Murray R. (Inventor); Chutjian, Ara (Inventor)

    2008-01-01

    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy.

  2. Miniature Chemical Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  3. Carbon Nanotube Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sensing gas molecules is critical to environmental monitoring, control of chemical processes, space missions as well as agricultural and medical applications....

  4. Porous Silicon Structures as Optical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Igor A. Levitsky

    2015-08-01

    Full Text Available We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  5. Integrated opto-chemical sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.

    1992-01-01

    Integrated opto-chemical sensors have promising prospects, for example by having the potential to be realized as very sensitive small monolithic smart multisensor systems with a digital signal output. Here the main accent will be laid on the optical principles underlying chemo-optical waveguiding se

  6. Wearable gas sensors

    OpenAIRE

    Radu, Tanja; Fay, Cormac; Lau, King-Tong; Diamond, Dermot

    2009-01-01

    Wearable sensing applications have attracted much attention in recent years. The aim of the FP6 funded Proetex project is improving safety and efficiency of emergency personnel by developing integrated wearable sensor systems. This paper describes recent developments in the integration of sensing platforms into wearables for the continuous monitoring of environmentally harmful gases surrounding emergency personnel. Low-power miniature CO and CO2 sensors have been successfully integrated in a ...

  7. Nanowire-based gas sensors

    NARCIS (Netherlands)

    Chen, X.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.

    2013-01-01

    Gas sensors fabricated with nanowires as the detecting elements are powerful due to their many improved characteristics such as high surface-to-volume ratios, ultrasensitivity, higher selectivity, low power consumption, and fast response. This paper gives an overview on the recent process of the dev

  8. Graphene as Gas Sensors

    Institute of Scientific and Technical Information of China (English)

    Hamze Mousavi

    2011-01-01

    The triatomic and tetratomic gas molecule adsorption effects on the electrical conductivity of graphene are investigated by the tight-binding model, Green's function method, and coherent potential approximation. We find that the electrical conductivity of graphene sheet is sensitive to the adsorption of these gases.

  9. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes. PMID:25830724

  10. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  11. The significance of feedback control for chemical sensors

    NARCIS (Netherlands)

    Bergveld, P.

    1992-01-01

    The conventional way of applying chemical sensors is in an open-loop configuration. A parameter of the chemical domain, such as a gas or ion concentration, is converted into a parameter of the mechanical or electrical domain, often with non-linear transfer characteristics. The paramagnetic oxygen se

  12. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  13. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  14. Gas sensor with attenuated drift characteristic

    Science.gov (United States)

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  15. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  16. Nano-Hydroxyapatite Thick Film Gas Sensors

    Science.gov (United States)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  17. Nano-Hydroxyapatite Thick Film Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India)

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  18. Tin Oxide Microheater for Chemical Sensors

    Science.gov (United States)

    Gharesi, Mohsen; Ansari, Mohammad

    2016-03-01

    Tin oxide is the main material utilized for the fabrication of chemical sensing pellets which operate at elevated temperatures. The heating is commonly carried out with ruthenium dioxide resistors. Here, a tin oxide-based microheater is developed for microsensor applications. These microheaters are fabricated on 0.5 mm thick alumina substrates using spray pyrolysis technique. The optimum SnO2 heaters have a sheet resistivity in the 40-70 Ω/a range. Ohmic Ag/SnO2 contacts are formed by silver paste printing followed by an appropriate thermal annealing, which provide connections to the external circuitry. Durability tests are carried out on several samples; the long-term performance of the fabricated devices is satisfactory. The method allows the elimination of the expensive ruthenium dioxide from the structure of generic gas sensors.

  19. Chemical sensors for space applications

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  20. A Large Scale Virtual Gas Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  1. Characterization of tin dioxide film for chemical vapors sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hafaiedh, I. [Unite de Recherche de Physique des Semi-conducteurs et Capteurs, IPEST, 2070 La Marsa (Tunisia)], E-mail: imen_haf@yahoo.fr; Helali, S.; Cherif, K.; Abdelghani, A. [Unite de Recherche de Physique des Semi-conducteurs et Capteurs, IPEST, 2070 La Marsa (Tunisia); Tournier, G. [Ecole des Mines de Saint-Etienne, 158 cours Fauriel, 42023 Saint-Etienne (France)

    2008-07-01

    Recently, oxide semiconductor material used as transducer has been the central topic of many studies for gas sensor. In this paper we investigated the characteristic of a thick film of tin dioxide (SnO{sub 2}) film for chemical vapor sensor. It has been prepared by screen-printing technology and deposited on alumina substrate provided with two gold electrodes. The morphology, the molecular composition and the electrical properties of this material have been characterized respectively by Atomic Force Spectroscopy (AFM), Fourier Transformed Infrared Spectroscopy (FTIR) and Impedance Spectroscopy (IS). The electrical properties showed a resistive behaviour of this material less than 300 deg. C which is the operating temperature of the sensor. The developed sensor can identify the nature of the detected gas, oxidizing or reducing.

  2. Characterization of tin dioxide film for chemical vapors sensor

    International Nuclear Information System (INIS)

    Recently, oxide semiconductor material used as transducer has been the central topic of many studies for gas sensor. In this paper we investigated the characteristic of a thick film of tin dioxide (SnO2) film for chemical vapor sensor. It has been prepared by screen-printing technology and deposited on alumina substrate provided with two gold electrodes. The morphology, the molecular composition and the electrical properties of this material have been characterized respectively by Atomic Force Spectroscopy (AFM), Fourier Transformed Infrared Spectroscopy (FTIR) and Impedance Spectroscopy (IS). The electrical properties showed a resistive behaviour of this material less than 300 deg. C which is the operating temperature of the sensor. The developed sensor can identify the nature of the detected gas, oxidizing or reducing

  3. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  4. Enhanced chemical weapon warning via sensor fusion

    Science.gov (United States)

    Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James

    2011-05-01

    Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.

  5. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  6. Coordinated sensor cueing for chemical plume detection

    Science.gov (United States)

    Abraham, Nathan J.; Jensenius, Andrea M.; Watkins, Adam S.; Hawthorne, R. Chad; Stepnitz, Brian J.

    2011-05-01

    This paper describes an organic data fusion and sensor cueing approach for Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. The Joint Warning and Reporting Network (JWARN) uses a hardware component referred to as the JWARN Component Interface Device (JCID). The Edgewood Chemical and Biological Center has developed a small footprint and open architecture solution for the JCID capability called JCID-on-a-Chip (JoaC). The JoaC program aims to reduce the cost and complexity of the JCID by shrinking the necessary functionality down to a small single board computer. This effort focused on development of a fusion and cueing algorithm organic to the JoaC hardware. By embedding this capability in the JoaC, sensors have the ability to receive and process cues from other sensors without the use of a complex and costly centralized infrastructure. Additionally, the JoaC software is hardware agnostic, as evidenced by its drop-in inclusion in two different system-on-a-chip platforms including Windows CE and LINUX environments. In this effort, a partnership between JPM-CA, JHU/APL, and the Edgewood Chemical and Biological Center (ECBC), the authors implemented and demonstrated a new algorithm for cooperative detection and localization of a chemical agent plume. This experiment used a pair of mobile Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD) units which were controlled by fusion and cueing algorithms hosted on a JoaC. The algorithms embedded in the JoaC enabled the two sensor systems to perform cross cueing and cooperatively form a higher fidelity estimate of chemical releases by combining sensor readings. Additionally, each JSLSCAD had the ability to focus its search on smaller regions than those required by a single sensor system by using the cross cue information from the other sensor.

  7. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors. PMID:26679757

  8. Infrared hyperspectral imaging sensor for gas detection

    Science.gov (United States)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  9. Characterization of Polymeric Chemiresistors for Gas Sensor

    Directory of Open Access Journals (Sweden)

    Hendro Juwono

    2012-06-01

    Full Text Available Composite polymer-carbon has resistance change if come into contact with gas. Composite polymer-carbon can be used as a gas sensor. This research will be characterized the sensor composite polymer-carbon that has been made from 6 types of polymer, which are; PEG6000, PEG20M, PEG200, PEG1540, Silicon and Squelene. The 6 sensors will be tested by 9 types of gas, which are; Aceton, Aceton Nitril, Benzene, Etanol, Methanol, Ethyl Aceton, Chloroform, n-Hexan and Toluene. This characterization will be grouped into 4 claster of characteristics, which are; the selectivity (influence type of gas, the sensitivity (influence volume of gas, the influence of temperature and the influence of humidity. Test using method testing sensors that paleced in an isolated chamber which is connected with data acquisition. variations of temperature, humidity, type and volume of gas will be condition in the chamber. Correspondence analysis and regression will be used to process the data. Test results found that each sensor of type of polymers have different sensitivity and selectivity towards a particular type of gas. Resistance sensors increases with rising temperature and humidity environment with a polynomial equation of order-2 and order-3

  10. Airborne Multi-Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has...

  11. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  12. Structural and morphological properties of electroceramics for chemical sensors

    International Nuclear Information System (INIS)

    Ceramic materials possess a unique structure consisting of grains, grain boundaries, surfaces and pores, which makes them suitable for chemical sensors. The control of the chemical composition and microstructure of electrochemicals is fundamental for controlling their properties. Ceramics with a given composition and microstructure can be produced by controlling the different steps of their processing. The chemical processing of ceramics offer many advantages in terms of control and reproducibility, with respect to the conventional ceramics processing. Results are reported about the chemical processing of perovskite-type oxides for gas sensors and about the novel humidity-sensitive electrical properties of sol-gel processed alkali-doped titania films. The structural and morphological characterization of these materials permits the understanding of the sensitive electrical properties of the ceramics (71 refs.)

  13. Chemical sensors technology development planning workshop

    International Nuclear Information System (INIS)

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R ampersand D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R ampersand D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts

  14. Chemical sensors technology development planning workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A. [eds.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  15. Selective vapor detection of an integrated chemical sensor array

    Science.gov (United States)

    Jung, Youngmo; Kim, Young Jun; Choi, Jaebin; Lim, Chaehyun; Shin, Beom Ju; Moon, Hi Gyu; Lee, Taikjin; Kim, Jae Hun; Seo, Minah; Kang, Chong Yun; Jun, Seong Chan; Lee, Seok; Kim, Chulki

    2015-07-01

    Graphene is a promising material for vapor sensor applications because of its potential to be functionalized for specific chemical gases. In this work, we present a graphene gas sensor that uses single-stranded DNA (ssDNA) molecules as its sensing agent. We investigate the characteristics of graphene field effect transistors (FETs) coated with different ssDNAs. The sensitivity and recovery rate for a specific gas are modified according to the differences in the DNA molecules' Guanine (G) and Cytosine (C) content. ssDNA-functionalized devices show a higher recovery rate compared to bare graphene devices. Pattern analysis of a 2-by-2 sensor array composed of graphene devices functionalized with different-sequence ssDNA enables identification of NH3, NO2, CO, SO2 using Principle Component Analysis (PCA).

  16. Development of Low-cost Chemical and Micromechanical Sensors Based on Thick-film,Thin-film and Electroplated Films

    Institute of Scientific and Technical Information of China (English)

    Wenmin Qu; Kurt Drescher

    2000-01-01

    Various films could be used as sensing materials or as constructional materials for the fabrication of chemical and micromechanical sensors. To illustrate this potential, three sensors fabricated by very different film deposition technologies are given as examples. The sensors are a humidity sensor in thickfilm technology, a multi-functional gas sensor in thin-film technology and a three-dimensional acceleration sensor chip manufactured by electroplating techniques. Design, fabrication and characterisation of these sensors are described in this paper.

  17. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    OpenAIRE

    Łukasz Guz; Grzegorz Łagód; Katarzyna Jaromin-Gleń; Zbigniew Suchorab; Henryk Sobczuk; Andrzej Bieganowski

    2014-01-01

    A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To ...

  18. A portable gas sensor based on cataluminescence.

    Science.gov (United States)

    Kang, C; Tang, F; Liu, Y; Wu, Y; Wang, X

    2013-01-01

    We describe a portable gas sensor based on cataluminescence. Miniaturization of the gas sensor was achieved by using a miniature photomultiplier tube, a miniature gas pump and a simple light seal. The signal to noise ratio (SNR) was considered as the evaluation criteria for the design and testing of the sensor. The main source of noise was from thermal background. Optimal working temperature and flow rate were determined experimentally from the viewpoint of improvement in SNR. A series of parameters related to analytical performance was estimated. The limitation of detection of the sensor was 7 ppm (SNR = 3) for ethanol and 10 ppm (SNR = 3) for hydrogen sulphide. Zirconia and barium carbonate were respectively selected as nano-sized catalysts for ethanol and hydrogen sulphide. PMID:22736626

  19. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  20. Vibrating capacitor method in the development of semiconductor gas sensors

    International Nuclear Information System (INIS)

    Adsorption usually results in work function shifts on catalytically active surfaces such as semiconductor gas sensors. The purpose of the present article is to summarise the capabilities of the vibrating capacitor from the simplest adsorption-induced work function tests to the scanning, vibrating, capacitor-yielded olfactory pictures and other chemical pictures. After a brief history and review of theoretical bases, the latest results will be discussed in detail. Olfactory pictures from semiconductor surfaces give a new chance to improve the selectivity of gas analysis. Chemical pictures from thin SnO2 layers produced by atomic layer epitaxy reveal the inhomogeneities of the technology. CPD maps taken from Pd nanolayer (activator)-covered surfaces help to find the best layer-depositing parameters for the activation process of the thin semiconductor gas sensor films

  1. First Fifty Years of Chemoresistive Gas Sensors

    Directory of Open Access Journals (Sweden)

    Giovanni Neri

    2015-01-01

    Full Text Available The first fifty years of chemoresistive sensors for gas detection are here reviewed, focusing on the main scientific and technological innovations that have occurred in the field over the course of these years. A look at advances made in fundamental and applied research and leading to the development of actual high performance chemoresistive devices is presented. The approaches devoted to the synthesis of novel semiconducting materials with unprecedented nanostructure and gas-sensing properties have been also presented. Perspectives on new technologies and future applications of chemoresistive gas sensors have also been highlighted.

  2. Chemical Vapour Deposition of Gas Sensitive Metal Oxides

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2016-03-01

    Full Text Available This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD, presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing performance. Thin films typically have poorer gas sensing performance compared to traditional screen printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with the sensor platform provides important process benefits compared to competing synthetic techniques. We conclude that these advantages are likely to drive increased interest in the use of CVD for gas sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter microstructure can help mitigate the potentially reduced performance in thin films, hence the current prospects for use of CVD in this field look excellent.

  3. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  4. Ultra-Low-Power MEMS Selective Gas Sensors

    Science.gov (United States)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  5. Illicit material detector based on gas sensors and neural networks

    Science.gov (United States)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  6. Supersensitive graphene-based gas sensor

    Science.gov (United States)

    Lebedev, A. A.; Lebedev, S. P.; Novikov, S. N.; Davydov, V. Yu.; Smirnov, A. N.; Litvin, D. P.; Makarov, Yu. N.; Levitskii, V. S.

    2016-03-01

    Epitaxial graphene layers are produced with the aid of thermal destruction of the surface of a semi-insulating SiC substrate. Raman spectroscopy and atomic-force microscopy are employed in the study of the film homogeneity. A prototype of the gas sensor based on the films is fabricated. The device is sensitive to the NO2 molecules at a level of 5 ppb (five particles per billion). A possibility of the industrial application of the sensor is discussed.

  7. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition m...

  8. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    Science.gov (United States)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  9. Conductive gas sensors prepared using PLD

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Myslík, V.; Vrňata, M.; Fryček, R.; Fitl, P.; Vysloužil, F.; Kocourek, Tomáš

    Dodrecht: Springer, 2010 - (Reithmaier, J.; Paunovic, P.; Kulisch, W.; Popov, C.; Petkov, P.), s. 390-399. (NATO Science for Peace and Security Series B-Physics and Biophysics). ISBN 978-94-007-0902-7. [NATO-Advanced-Study-Institute Conference on Nanotechnological Basis for Advanced Sensor. Sozopol (BG), 30.05.2010-11.06.2010] Institutional research plan: CEZ:AV0Z10100520 Keywords : PLD * hybrid PLD * MAPLE * gas sensor * thin film sensor Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1007/978-94-007-0903-4_40

  10. Mechanical Drawing of Gas Sensors on Paper

    Science.gov (United States)

    Mirica, Katherine A.; Weis, Jonathan G.; Schnorr, Jan M.; Esser, Birgit

    2012-01-01

    This communication describes a simple solvent-free method for fabricating chemoresistive gas sensors on the surface of paper. The method involves mechanical abrasion of compressed powders of sensing materials on the fibers of cellulose. We illustrate this approach by depositing conductive layers of several forms of carbon (e.g., single-walled carbon nanotubes [SWCNTs], multi-walled carbon nanotubes, and graphite) on the surface of different papers (Figure 1, Figure S1). The resulting sensors based on SWCNTs are capable of detecting NH3 gas at concentrations as low as 0.5 part-per-million. PMID:23037938

  11. Nanotechnology Applications for Chemical and Biological Sensors

    Directory of Open Access Journals (Sweden)

    M. K. Patra

    2008-09-01

    Full Text Available Recent discoveries indicate that when the materials are brought down to sizes in the range 1–100 nm, theseexhibit unique electrical, optical, magnetic, chemical, and mechanical properties. Methods have now beenestablished to obtain the monodisperse nanocrystals of various metallic and semiconducting materials, single-walled and multi-walled nanotubes of carbon and other metallic and non-metallic materials together withorganic nanomaterials such as supra-molecular nanostructures, dendrimers, hybrid composites with tailoredfunctionalities. The high surface-to-volume ratio with an added element of porosity makes these highly potentialcandidates for chemical and biological sensor applications with higher degree of sensitivity and selectivity ascompared to their bulk counterparts. The paper reviews the recent developments and applications of chemicaland biological sensors based on nanomaterials of various structural forms.Defence Science Journal, 2008, 58(5, pp.636-649, DOI:http://dx.doi.org/10.14429/dsj.58.1686

  12. Realization of CMOS compatible micromachined chemical sensors

    OpenAIRE

    Demirci, Tuğba; Demirci, Tugba

    2002-01-01

    The chemical sensors are fabricated using IC manufacturing technologies, providing a smaller size and lower weight, lower power consumption, and lower cost due to the automated and batch production. During the last two decades, largely two-dimensional Integrated Circuit (IC) fabrication technology has been extended into the third dimension by micromachining technologies [1]. Micromachining has been used to produce a growing variety of micromechanical structures, including automotive pressure ...

  13. A remotely interrogatable sensor for chemical monitoring

    Science.gov (United States)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  14. Silicon micromachined sensor for gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen; Hinescu, Lavinia; Hinescu, Mihail; Iosub, Rodica; Nisulescu, Mihai; Firtat, Bogdan; Modreanu, Mircea; Dascalu, Dan; Voicu, Victor; Tarabasanu, Cornel

    2003-08-15

    The paper presents the layout and the technological steps for an interdigitated integrated capacitor used for gases detection. Silicon micromachining technology is applied for manufacturing the sensor substrate. The sensitive layer used is phthalocyanine (Pc) deposed by evaporation technique under high vacuum. The phthalocyanine derivatives are obtained by the same deposition technique. Considering the different sensitivities of phthalocyanines derivatives, we obtained different gas sensors. The copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc) and iron phthalocyanine (FePc) have been investigated for NO{sub x} detection. The measurement of sensors for NO{sub x} and NO{sub 2} detection will be presented as gas concentration versus impedance. The microsensors testing structures deposited with phthalocyanines were investigated by impedance measurements in a vacuum chamber controlled by a gas analyser. The measurements were made at room temperature but a medium temperature is applied (<200 deg. C) after measurement, for cleaning the material in order to reuse the sensor. The sensor is integrated, MOS compatible, cheap, easy to be used and has a low power consumption.

  15. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method

    International Nuclear Information System (INIS)

    Highlights: ► Highly quality ZnO nanorods arrays were grown on SiO2 substrate using chemical solution. ► We use PVA–Zn(OH)2 nanocomposites as seed layer to grow ZnO nanorods. ► ZnO nanorods arrays show good sensitivity at room temperature to H2 gas. - Abstract: High-quality zinc oxide (ZnO) nanorod arrays were grown on a silicon dioxide (SiO2/Si) substrate via a microwave irradiation-assisted chemical solution method. The SiO2/Si substrate was seeded with polyvinyl alcohol–Zn (OH)2 nanocomposites prior to the complete growth of ZnO nanorods through a chemical solution method. X-ray diffraction, field-emission scanning electron microscope, and photoluminescence results indicated the high quality of the produced ZnO nanorods. The hydrogen (H2)-sensing capabilities of the ZnO nanorod arrays were investigated at room temperature (RT), and the sensitivity was 294% in the presence of 1000 ppm of H2. The sensing measurements for H2 gas at various temperatures (25–250 °C) were repeatable for over 100 min. The sensor exhibited a sensitivity of 1100% at 250 °C upon exposure to 1000 ppm of H2. Hysteresis was observed in the sensor at different H2 concentrations at different temperatures. Moreover, the response times ranged from 60 to 25 s over the range of operating temperatures from RT to 250 °C.

  16. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO{sub 2}/Si substrate via a microwave-assisted chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, J.J., E-mail: j1j2h72@yahoo.com [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Mahdi, M.A. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Chin, C.W.; Abu-Hassan, H. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hassan, Z., E-mail: zai@usm.my [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Highly quality ZnO nanorods arrays were grown on SiO{sub 2} substrate using chemical solution. Black-Right-Pointing-Pointer We use PVA-Zn(OH){sub 2} nanocomposites as seed layer to grow ZnO nanorods. Black-Right-Pointing-Pointer ZnO nanorods arrays show good sensitivity at room temperature to H{sub 2} gas. - Abstract: High-quality zinc oxide (ZnO) nanorod arrays were grown on a silicon dioxide (SiO{sub 2}/Si) substrate via a microwave irradiation-assisted chemical solution method. The SiO{sub 2}/Si substrate was seeded with polyvinyl alcohol-Zn (OH){sub 2} nanocomposites prior to the complete growth of ZnO nanorods through a chemical solution method. X-ray diffraction, field-emission scanning electron microscope, and photoluminescence results indicated the high quality of the produced ZnO nanorods. The hydrogen (H{sub 2})-sensing capabilities of the ZnO nanorod arrays were investigated at room temperature (RT), and the sensitivity was 294% in the presence of 1000 ppm of H{sub 2}. The sensing measurements for H{sub 2} gas at various temperatures (25-250 Degree-Sign C) were repeatable for over 100 min. The sensor exhibited a sensitivity of 1100% at 250 Degree-Sign C upon exposure to 1000 ppm of H{sub 2}. Hysteresis was observed in the sensor at different H{sub 2} concentrations at different temperatures. Moreover, the response times ranged from 60 to 25 s over the range of operating temperatures from RT to 250 Degree-Sign C.

  17. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  18. Plasmonic gas and chemical sensing

    Science.gov (United States)

    Tittl, Andreas; Giessen, Harald; Liu, Na

    2014-06-01

    Sensitive and robust detection of gases and chemical reactions constitutes a cornerstone of scientific research and key industrial applications. In an effort to reach progressively smaller reagent concentrations and sensing volumes, optical sensor technology has experienced a paradigm shift from extended thin-film systems towards engineered nanoscale devices. In this size regime, plasmonic particles and nanostructures provide an ideal toolkit for the realization of novel sensing concepts. This is due to their unique ability to simultaneously focus light into subwavelength hotspots of the electromagnetic field and to transmit minute changes of the local environment back into the farfield as a modulation of their optical response. Since the basic building blocks of a plasmonic system are commonly noble metal nanoparticles or nanostructures, plasmonics can easily be integrated with a plethora of chemically or catalytically active materials and compounds to investigate processes ranging from hydrogen absorption in palladium to the detection of trinitrotoluene (TNT). In this review, we will discuss a multitude of plasmonic sensing strategies, spanning the technological scale from simple plasmonic particles embedded in extended thin films to highly engineered complex plasmonic nanostructures. Due to their flexibility and excellent sensing performance, plasmonic structures may open an exciting pathway towards the detection of chemical and catalytic events down to the single molecule level.

  19. Development of High Temperature Gas Sensor Technology

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  20. MAPLE activities and applications in gas sensors

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, B.; Schůrek, J.; Myslík, V.

    2011-01-01

    Roč. 105, č. 3 (2011), 643-649. ISSN 0947-8396 Institutional research plan: CEZ:AV0Z10100522 Keywords : MAPLE * gas sensors * biomedicine * thin film s Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.630, year: 2011

  1. Smart gas sensors for mitigating environments

    International Nuclear Information System (INIS)

    From the viewpoint of industrial and automobile exhaust pollution control sensors capable of detecting and metering the concentration of harmful gasers such as carbon monoxide, hydrogen, hydrocarbons, NO sub x, SO sub x, etc, in the ambient are desired. Solid state gas sensors based on semiconducting metal oxides have been widely used for the detection and metering of a host of reducing gases, albeit with varying degrees of success. In this presentation, development aspects of new solid-state CO and H2 sensors are described. Benevolent effect of second phases and catalyst on the sensing characteristics, and the possible sensing mechanism are discussed. In the case of titania-based CO sensors, test results in a Ford V6 engine under programmed near-stoichiometric combustion conditions are also presented. Some new concepts in the area of reliable metering of humidity (water content) in the ambient are briefly highlighted. (author)

  2. Novel Nanostructured Zinc Oxide Ammonia Gas Sensor

    Science.gov (United States)

    Kumari, Surbhi; Sahare, P. D.; Gupta, Meenakshi; Kapoor, J. C.

    2011-12-01

    In the present study, we report a novel and easy technique to synthesize a ZnO nanostructured porous network using activated carbon (AC) that is used as a sensor material for an interacting gas at room temperature. The formation of the material was confirmed by XRD and HRTEM image. The porous nature of the synthesized ZnO could be used to incorporate a laser dyes into it which makes it more fluorescent material. Broad absorption/excitation band(s) in laser dye (Stilbene) helps to get it excited over a range and broad fluorescent emission that enhances the sensitivity on integration. The changes in the intensities of the absorption/emission spectra of sensitized ZnO on interaction with gas molecules could be used to fabricate a gas sensor working at room temperature.

  3. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  4. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition mean square error is no more than 0.085.

  5. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  6. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  7. Gas mixing apparatus for automated gas sensor characterization

    International Nuclear Information System (INIS)

    We developed a computer-controlled gas mixing system that provides automated test procedures for the characterization of gas sensors. The focus is the generation of trace gases (e.g. VOCs like benzene or naphthalene) using permeation furnaces and pre-dilution of test gases. With these methods, the sensor reaction can be analyzed at very low gas concentrations in the ppb range (parts per billion) and even lower. The pre-dilution setup enables to cover a high concentration range (1:62 500) within one test procedure. Up to six test gases, humidity, oxygen content, total flow and their variation over time can be controlled via a LabVIEW-based user-interface. (paper)

  8. Graphene nanomesh as highly sensitive chemiresistor gas sensor.

    Science.gov (United States)

    Paul, Rajat Kanti; Badhulika, Sushmee; Saucedo, Nuvia M; Mulchandani, Ashok

    2012-10-01

    Graphene is a one atom thick carbon allotrope with all surface atoms that has attracted significant attention as a promising material as the conduction channel of a field-effect transistor and chemical field-effect transistor sensors. However, the zero bandgap of semimetal graphene still limits its application for these devices. In this work, ethanol-chemical vapor deposition (CVD) of a grown p-type semiconducting large-area monolayer graphene film was patterned into a nanomesh by the combination of nanosphere lithography and reactive ion etching and evaluated as a field-effect transistor and chemiresistor gas sensors. The resulting neck-width of the synthesized nanomesh was about ∼20 nm and was comprised of the gap between polystyrene (PS) spheres that was formed during the reactive ion etching (RIE) process. The neck-width and the periodicities of the graphene nanomesh (GNM) could be easily controlled depending on the duration/power of the RIE and the size of the PS nanospheres. The fabricated GNM transistor device exhibited promising electronic properties featuring a high drive current and an I(ON)/I(OFF) ratio of about 6, significantly higher than its film counterpart. Similarly, when applied as a chemiresistor gas sensor at room temperature, the graphene nanomesh sensor showed excellent sensitivity toward NO(2) and NH(3), significantly higher than their film counterparts. The ethanol-based graphene nanomesh sensors exhibited sensitivities of about 4.32%/ppm in NO(2) and 0.71%/ppm in NH(3) with limits of detection of 15 and 160 ppb, respectively. Our demonstrated studies on controlling the neck width of the nanomesh would lead to further improvement of graphene-based transistors and sensors. PMID:22931286

  9. Graphene nanomesh as highly sensitive chemiresistor gas sensor

    Science.gov (United States)

    Paul, Rajat Kanti; Badhulika, Sushmee; Saucedo, Nuvia M.; Mulchandani, Ashok

    2016-01-01

    Graphene is a one atom thick carbon allotrope with all surface atoms that has attracted significant attention as a promising material as the conduction channel of a field-effect transistor and chemical field-effect transistor sensors. However, the zero bandgap of semimetal graphene still limits its application for these devices. In this work, ethanol-chemical vapor deposition (CVD) grown p-type semiconducting large-area monolayer graphene film was patterned into nanomesh by the combination of nanosphere lithography and reactive ion etching and evaluated as field-effect transistor and chemiresistor gas sensors. The resulting neck-width of the synthesized nanomesh was about ~20 nm comprised of the gap between polystyrene spheres that was formed during the reactive ion etching process. The neck-width and the periodicities of the graphene nanomesh could be easily controlled depending the duration/power of RIE and the size of PS nanospheres. The fabricated GNM transistor device exhibited promising electronic properties featuring high drive current and ION/IOFF ratio of about 6, significantly higher than its film counterpart. Similarly, when applied as chemiresistor gas sensor at room temperature, the graphene nanomesh sensor showed excellent sensitivity towards NO2 and NH3, significantly higher than their film counterparts. The ethanol-based graphene nanomesh sensors exhibited sensitivities of about 4.32%/ppm in NO2 and 0.71%/ppm in NH3 with limit of detections of 15 ppb and 160 ppb, respectively. Our demonstrated studies on controlling the neck width of the nanomesh would lead to further improvement of graphene-based transistors and sensors. PMID:22931286

  10. Electro-chemical sensors, sensor arrays and circuits

    Science.gov (United States)

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  11. A new waveguide PBG chemical sensor

    Science.gov (United States)

    Lee, Wen-Ching; Lai, Chih-Chou; Tsao, Shyh-Lin

    2005-08-01

    In this paper, a novel detection method of sample in liquid is proposed1. The new idea uses improved Low Pass Filter (LPF) Photonic Band Gap (PBG) cell structure which is layout on Printed Circuit Board (PCB) board2-3. The disclosed method in this paper demonstrates the method can be applied to measure the concentration of chemical material with advantages of low cost. The observable frequency response experimental results are presented. We also measure all the scattering parameters for the novel waveguide PBG chemical sensor. The disclosed method in this paper demonstrates the possibility for applying photonic band gap structure in designing a frequency division multi-sensor device. A novel coplanar waveguide (CPW) Frequency Division Multiplexer (FDM) applying Photonic Band Gap (PBG) cell combination is designed for L, S, and C-band bandpass outputs on a FR4 substrate. The observable frequency responses of experimental results are presented. The three-band CPW-PBG FDM can be used effectively as a microwave filter component in monolithic microwave integrated circuits (MMIC) for size reduction and rejection of unwanted frequency.

  12. Sol-Gel Thin Films for Plasmonic Gas Sensors

    OpenAIRE

    Enrico Della Gaspera; Alessandro Martucci

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors.

  13. Development of GaN-based micro chemical sensor nodes

    Science.gov (United States)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  14. Gas Main Sensor and Communications Network System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  15. New fabrication of zinc oxide nanostructure thin film gas sensors

    Science.gov (United States)

    Hendi, A. A.; Alorainy, R. H.

    2014-02-01

    The copper doped zinc oxide thin films have been prepared by sol-gel spin coating method. The structural and morphology properties of the Cu doped films were characterized by X-ray diffraction and atomic force microscope. XRD studies confirm the chemical structure of the ZnO films. The optical spectra method were used to determined optical constants and dispersion energy parameters of Cu doped Zno thin films. The optical band gap of undoped ZnO was found to be 3.16 eV. The Eg values of the films were changed with Cu doping. The refractive index dispersion of Cu doped ZnO films obeys the single oscillator model. The dispersion energy and oscillator energy values of the ZnO films were changed with Cu doping. The Cu doped ZnO nanofiber-based NH3 gas sensors were fabricated. The sensor response of the sensors was from 464.98 to 484.61 when the concentration of NH3 is changed 6600-13,300 ppm. The obtained results indicate that the response of the ZnO film based ammonia gas sensors can be controlled by copper content.

  16. Electrocatalytic cermet gas detector/sensor

    Science.gov (United States)

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  17. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  18. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  19. Carbon Nanotubes as Active Components for Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wei-De Zhang

    2009-01-01

    Full Text Available The unique structure of carbon nanotubes endows them with fantastic physical and chemical characteristics. Carbon nanotubes have been widely studied due to their potential applications in many fields including conductive and high-strength composites, energy storage and energy conversion devices, sensors, field emission displays and radiation sources, hydrogen storage media, and nanometer-sized semiconductor devices, probes, and quantum wires. Some of these applications have been realized in products, while others show great potentials. The development of carbon nanotubes-based sensors has attracted intensive interest in the last several years because of their excellent sensing properties such as high selectivity and prompt response. Carbon nanotube-based gas sensors are summarized in this paper. Sensors based on single-walled, multiwalled, and well-aligned carbon nanotubes arrays are introduced. Modification of carbon nanotubes with functional groups, metals, oxides, polymers, or doping carbon nanotubes with other elements to enhance the response and selectivity of the sensors is also discussed.

  20. Development of polypyrrole coated copper nanowires for gas sensor application

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2015-09-01

    Full Text Available Both polypyrrole (PPy and polypyrrole coated copper thin films were synthesized successfully via two-step methods. PPy nanorods films were first grown chemically, and then PPy thin films were fabricated on glass substrates using dip-coating technique. The resulting films were examined via various characterization methods such as X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR and Thermal Gravimetric Analysis (TGA. Gas sensor devices were fabricated and the gas sensitivity for (PPy coated copper was measured as a function of temperature for both O2 and CO2 gases. The maximum sensitivity for O2 gas was around 160% and the maximum sensitivity for CO2 was 300%.

  1. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  2. Chemical sensors based on the modification of a resonator cavity

    Science.gov (United States)

    Hennig, Oliver; Mendes, Sergio B.; Fallahi, Mahmoud; Peyghambarian, Nasser

    1999-02-01

    In this paper, we present a chemical sensor based on the modification of an optical resonator: the optical path length of the resonant cavity is changed by the chemical in question, thus shifting its resonant frequency.

  3. Chemical Micro Preconcentrators Development for Micro Gas Chromatography Systems

    OpenAIRE

    Alfeeli, Bassam

    2010-01-01

    Microelectromechanical systems (MEMS) technology allows the realization of mechanical parts, sensors, actuators and electronics on silicon substrate. An attractive utilization of MEMS is to develop micro instruments for chemical analysis. An example is gas chromatography (GC) which is widely used in food, environmental, pharmaceutical, petroleum/refining, forensic/security, and flavors and fragrances industries. A MEMS-based micro GC (µGC) provides capabilities for quantitative analysis of c...

  4. Laser deposition of sulfonated phthalocyanines for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fitl, Premysl, E-mail: fitlp@vscht.cz [Department of Physics and Measurements, Institute of Chemical Technology Prague, Technicka 5, Prague 6 CZ-166 28 (Czech Republic); Department of Analysis of Functional Materials, Institute of Physics AS CR v.v.i, Na Slovance 1999/2, Prague 8 CZ-182 21 (Czech Republic); Vrnata, Martin; Kopecky, Dusan; Vlcek, Jan; Skodova, Jitka [Department of Physics and Measurements, Institute of Chemical Technology Prague, Technicka 5, Prague 6 CZ-166 28 (Czech Republic); Bulir, Jiri; Novotny, Michal; Pokorny, Petr [Department of Analysis of Functional Materials, Institute of Physics AS CR v.v.i, Na Slovance 1999/2, Prague 8 CZ-182 21 (Czech Republic)

    2014-05-01

    Thin layers of nickel and copper tetrasulfonated phthalocyanines (NiPcTS and CuPcTS) were prepared by Matrix Assisted Pulsed Laser Evaporation method. The depositions were carried out with KrF excimer laser (energy density of laser radiation E{sub L} = 0.1–0.5 J cm{sup −2}) from dimethylsulfoxide matrix. For both materials the ablation threshold E{sub L-th} was determined. The following properties of deposited layers were characterized: (a) chemical composition (FTIR spectra); (b) morphology (SEM and AFM portraits); and (c) impedance of gas sensors based on NiPcTS and CuPcTS layers in the presence of two analytes – hydrogen and ozone. The prepared sensors exhibit response to 1000 ppm of hydrogen and 100 ppb of ozone even at laboratory temperature.

  5. Laser deposition of sulfonated phthalocyanines for gas sensors

    Science.gov (United States)

    Fitl, Premysl; Vrnata, Martin; Kopecky, Dusan; Vlcek, Jan; Skodova, Jitka; Bulir, Jiri; Novotny, Michal; Pokorny, Petr

    2014-05-01

    Thin layers of nickel and copper tetrasulfonated phthalocyanines (NiPcTS and CuPcTS) were prepared by Matrix Assisted Pulsed Laser Evaporation method. The depositions were carried out with KrF excimer laser (energy density of laser radiation EL = 0.1-0.5 J cm-2) from dimethylsulfoxide matrix. For both materials the ablation threshold EL-th was determined. The following properties of deposited layers were characterized: (a) chemical composition (FTIR spectra); (b) morphology (SEM and AFM portraits); and (c) impedance of gas sensors based on NiPcTS and CuPcTS layers in the presence of two analytes - hydrogen and ozone. The prepared sensors exhibit response to 1000 ppm of hydrogen and 100 ppb of ozone even at laboratory temperature.

  6. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  7. Gas Sensors Based on Ceramic p-n Heterocontacts

    Energy Technology Data Exchange (ETDEWEB)

    Seymen Murat Aygun

    2004-12-19

    characteristics with very high forward currents. Ga doped heterocontacts showed the highest sensitivity observed during current-time measurements as well, even though the sensor response was rather slow. Finally, a possible synergistic effect of doping both p and n-sides was studied by utilizing current-time measurements for 1.5 mol% Ni-CuO/1.5 mol% Ga-ZnO heterocontact. A sensitivity value of {approx}5.1 was obtained with the fastest response among all the samples. The time needed to reach 90% coverage was lowered by a factor of 4 when compared to the pure heterocontact and the time needed to reach 70% coverage was just over one minute. Heterocontact gas sensors are promising candidates for high temperature sensor applications. Today, Si-based microelectromechanical system (MEMS) technology has shown great promise for developing novel devices such as pressure sensors, chemical sensors, and temperature sensors through complex designs. However, the harsh thermal, vibrational, and corrosive environments common to many aerospace applications impose severe limitations on their use. Sensors based on ceramic p-n heterocontacts are promising alternatives because of their inherent corrosion resistance and environmental stability. The other advantages include their inherent tuning ability to differentiate between different reducing gases and a possible cost efficient production of a wireless sensor. Being a capacitive type sensor, its output can be transformed into a passive wireless device by creating a tuned LC circuit. In this way, the sensor output (the capacitance) can be accessed remotely by measuring the resonant frequency. The relatively simple structure of heterocontacts makes it suitable for thick film fabrication techniques to make sensor packages.

  8. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  9. Analyzing Responses of Chemical Sensor Arrays

    Science.gov (United States)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  10. Plasmonics Based Harsh Environment Compatible Chemical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Michael Carpenter

    2012-01-15

    Au-YSZ, Au-TiO{sub 2} and Au-CeO{sub 2} nanocomposite films have been investigated as a potential sensing element for high-temperature plasmonic sensing of H{sub 2}, CO, and NO{sub 2} in an oxygen containing environment. The Au-YSZ and Au-TiO{sub 2} films were deposited using PVD methods, while the CeO{sub 2} thin film was deposited by molecular beam epitaxy (MBE) and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. Each of the films were characterized by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H{sub 2}, CO, and NO{sub 2} were performed at a temperature of 500°C in oxygen backgrounds of 5.0, 10, and ~21% O{sub 2}. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the respective metal oxides. This process affects the LSPR peak position either by charge exchange with the Au nanoparticles or by changes in the dielectric constant surrounding the particles. Hyperspectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used on the Au-CeO{sub 2} results and showed separation between analytes as well as trends in gas concentration. Results indicate that each of the films are is selective towards O{sub 2}, H{sub 2}, CO, and NO{sub 2} in separate exposures. However, when the films were analyzed in a sensor array based experiment, ie simultaneous exposures to the target gases, PCA analysis of the combined response showed an even greater selective character towards the target gases. Combined

  11. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, M.; Kuncová, Gabriela; Trögl, J.

    2015-01-01

    Roč. 15, č. 10 (2015), s. 25208-25259. ISSN 1424-8220 Institutional support: RVO:67985858 Keywords : fiber-optic sensor * chemical sensor s * enzymatic sensor Subject RIV: CC - Organic Chemistry Impact factor: 2.245, year: 2014

  12. Design Ammonia Gas Detection System by Using Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Dr. Bushra. R. Mhdi

    2013-07-01

    Full Text Available Design study and construction of Ammonia gas detection using a fiber as a sensor to based on evanescent wave sensing technique was investigated. Multi-mode fiber type (PCS with core diameter (600μm and (50cm length used where plastic clad was removed by chemical etching for effective sensing area which coated with sol-gel film to enhance its absorption characteristics to evanescent wave around the optical spectrum emitted from halogen lamp measurements through different temperature rang (25-60oc with and without air using as a carrier to ammonia molecules are investigated. Finally sensing efficiency are monitored to ammonia gas it affected to different temperature and environmental condition are studied and our result are compatible to scientific publishes

  13. Chemically modified graphene films for high-performance optical NO2 sensors.

    Science.gov (United States)

    Xing, Fei; Zhang, Shan; Yang, Yong; Jiang, Wenshuai; Liu, Zhibo; Zhu, Siwei; Yuan, Xiaocong

    2016-08-01

    Various graphene-based gas sensors that operate based on the electrical properties of graphene have been developed for accurate detection of gas components. However, electronic graphene-based gas sensors are unsafe under explosive atmospheres and sensitive to electromagnetic interference. Here, a novel optical graphene-based gas sensor for NO2 detection is established based on surface chemical modification of high-temperature-reduced graphene oxide (h-rGO) films with sulfo groups. Sulfo group-modified h-rGO (S-h-rGO) films with a thickness of several nanometers exhibit excellent performance in NO2 detection at room temperature and atmospheric pressure based on the polarization absorption effect of graphene. Initial slope analysis of the S-h-rGO sensor indicates that it has a limit of detection of 0.28 ppm and a response time of 300 s for NO2 gas sensing. Furthermore, the S-h-rGO sensor also possesses the advantages of good linearity, reversibility, selectivity, non-contact operation, low cost and safety. This novel optical gas sensor has the potential to serve as a general platform for the selective detection of a variety of gases with high performance. PMID:27265308

  14. Fluorescent sensors for the detection of chemical warfare agents.

    Science.gov (United States)

    Burnworth, Mark; Rowan, Stuart J; Weder, Christoph

    2007-01-01

    Along with biological and nuclear threats, chemical warfare agents are some of the most feared weapons of mass destruction. Compared to nuclear weapons they are relatively easy to access and deploy, which makes them in some aspects a greater threat to national and global security. A particularly hazardous class of chemical warfare agents are the nerve agents. Their rapid and severe effects on human health originate in their ability to block the function of acetylcholinesterase, an enzyme that is vital to the central nervous system. This article outlines recent activities regarding the development of molecular sensors that can visualize the presence of nerve agents (and related pesticides) through changes of their fluorescence properties. Three different sensing principles are discussed: enzyme-based sensors, chemically reactive sensors, and supramolecular sensors. Typical examples are presented for each class and different fluorescent sensors for the detection of chemical warfare agents are summarized and compared. PMID:17705326

  15. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  16. A Novel Multiple Component Gas Infrared Ray Sensor

    Institute of Scientific and Technical Information of China (English)

    张永怀; 周金林; 林继鹏; 刘君华

    2003-01-01

    In this paper, The principle, structure and practical application of a novel multiple component gas infrared ray sensor are discussed. The optical gas sensor, which has infrared radiation impulses input and electric single output, is composed of narrow band light filter, optical taper and pyroelectric detector array. An infrared gas analyzer with multiple component gas tested synchronously consists of the sensor, single middle infrared source, single gas cell and computer data acquire system. As compared with sensor in other infrared gas analyzer, it has many merits such as novel structure, strong anti-oscillate performance and low cost. Different gas in different measurement area can be analyzed quantitatively by replacing optical filter module easily.

  17. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Indium doping was used to enhance the selectivity of SnO2 gas sensor. Both indium-doped and undoped SnO2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  18. MAPLE activities and applications in gas sensors

    Science.gov (United States)

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, Barbara; Schůrek, Jakub; Myslík, Vladimír

    2011-11-01

    During the last decade, many groups have grown thin films of various organic materials by the cryogenic Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique with a wide range of applications. This contribution is focused on the summary of our results with deposition and characterization of thin films of fibrinogen, pullulan derivates, azo-polyurethane, cryoglobulin, polyvinyl alcohol, and bovine serum albumin dissolved in physiological serum, dimethyl sulfoxide, sanguine plasma, phosphate buffer solution, H2O, ethylene glycol, and tert-butanol. MAPLE films were characterized using FTIR, AFM, Raman scattering, and SEM. For deposition, a special hardware was developed including a unique liquid nitrogen cooled target holder. Overview of MAPLE thin film applications is given. We studied SnAcAc, InAcAc, SnO2, porphyrins, and polypyrrole MAPLE fabricated films as small resistive gas sensors. Sensors were tested with ozone, nitrogen dioxide, hydrogen, and water vapor gases. In the last years, our focus was on the study of fibrinogen-based scaffolds for application in tissue engineering, wound healing, and also as a part of layers for medical devices.

  19. Nanotechnologv Enabled Biological and Chemical Sensors

    Science.gov (United States)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  20. Isolating Gas Sensor From Pressure And Temperature Effects

    Science.gov (United States)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  1. A reusable smart interface for gas sensor resistance measurement

    OpenAIRE

    Merino Panadés, José Luis; Bota Ferragut, Sebastián Antonio; Casanova Mohr, Raimon; Diéguez Barrientos, Àngel; Cané i Ballart, Carles; Samitier i Martí, Josep

    2004-01-01

    The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different ...

  2. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  3. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  4. Graphene Electronic Device Based Biosensors and Chemical Sensors

    OpenAIRE

    Jiang, Shan

    2014-01-01

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first...

  5. Piezoresistive Chemical Sensors Based on Functionalized Hydrogels

    Directory of Open Access Journals (Sweden)

    Margarita Guenther

    2014-06-01

    Full Text Available Thin films of analyte-specific hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. The interference by fructose, human serum albumin, pH, and ionic concentration on glucose sensing was studied. With the help of a database containing the calibration curves of the hydrogel-based sensors at different values of pH and ionic strength, the corrected values of pH and glucose concentration were determined using a novel calibration algorithm.

  6. Electro-thermal modeling of a microbridge gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Hughes, R.C.; Moreno, D.J. [Sandia National Labs., Albuquerque, NM (United States); Huber, R.J. [Utah Univ., Salt Lake City, UT (United States). Dept. of Electrical Engineering

    1997-08-01

    Fully CMOS-compatible, surface-micromachined polysilicon microbridges have been designed, fabricated, and tested for use in catalytic, calorimetric gas sensing. To improve sensor behavior, extensive electro-thermal modeling efforts were undertaken using SPICE. The validity of the SPICE model was verified comparing its simulated behavior with experiment. Temperature distribution of an electrically heated microbridges was measured using an infrared microscope. Comparisons among the measured distribution, the SPICE simulation, and distributions obtained by analytical methods show that heating at the ends of a microbridges has important implications for device response. Additional comparisons between measured and simulated current-voltage characteristics, as well as transient response, further support the accuracy of the model. A major benefit of electro- thermal modeling with SPICE is the ability to simultaneously simulate the behavior of a device and its control/sensing electronics. Results for the combination of a unique constant-resistance control circuit and microbridges gas sensor are given. Models of in situ techniques for monitoring catalyst deposition are shown to be in agreement with experiment. Finally, simulated chemical response of the detector is compared with the data, and methods of improving response through modifications in bridge geometry are predicted.

  7. A novel three-electrode solid electrolyte hydrogen gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Min; Yang, Chunling; Zhang, Yan [Harbin Insitute of Technology, Harbin (China). School of Computer Science and Technology; Jia, Zheng [Harbin Insitute of Technology, Harbin (China). School of Chemical Engineering and Technology

    2013-07-01

    A three-electrode solid electrolyte hydrogen gas sensor is explored in this paper. The sensor utilized phosphotungstic acid as the electrolyte material and adopted platinum, nickel and tungsten as the three-electrode materials respectively. In real applications, platinum was used as the measuring electrode, nickel was used as the adjusting electrode and tungsten was used as the reference electrode. In order to compare the performance of the new sensor with that of the traditional two-electrode sensor, the hydrogen concentrations were adjusted so as to detect the output of the two-electrode sensor and the three-electrode sensor. The dynamic range between the measuring electrode and the reference electrode is about 0.65V and the highest detectable limit is 12% for the three-electrode solid hydrogen gas sensor. While the dynamic range is about 0.25V and and the highest detectable limit is 1% for the two-electrode solid electrolyte gas sensor. The results demonstrate that the three-electrode solid hydrogen gas sensor has a higher resolution and detectable limit than the two-electrode sensor. abstract environment.

  8. Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique

    OpenAIRE

    Anju Yadav; Ajay Agarwal; Agarwal, Pankaj B.; Parveen Saini

    2015-01-01

    Dodecyl benzene sulfonic acid (DBSA) doped polyaniline (PANI-DBSA) has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu) substrate. The sensor exploi...

  9. Speciality chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.J.; Knifton, J.F. (Shell Development Company, Houston, TX (USA))

    1992-04-01

    Texaco has undertaken research to investigate the use of carbon monoxide and hydrogen as building blocks for the manufacture of amidocarbonylation products. The amidocarbonylation reaction offers a convenient method to construct two functionalities - amido and carboxylate - simultaneously. Texaco has extended this chemistry to make a variety of speciality chemicals by tailoring cobalt catalysts. Products which have been made including: surface active agents such as the C{sub 14} - C{sub 16} alkyl amidoacids; surfactants; intermediates for sweeteners like aspartame; food additives like glutamic acid; and chelating agents such as polyamidoacids. 20 refs., 10 figs., 1 tab.

  10. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  11. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  12. On-line chemical sensors for applications in fast reactors

    International Nuclear Information System (INIS)

    Hydrogen sensors are essential components of fast reactor sodium circuits. These sensors are needed in fast reactors for the immediate detection of any steam leak into sodium during reactor operation which can lead to failure of steam generator. Depending on the operating power of the reactor, sodium-water reaction results in either an increase in dissolved hydrogen level in sodium or an increase in hydrogen content of argon cover gas used above sodium coolant. Hence, on-line monitoring of hydrogen continuously in sodium and cover circuits helps in detection of any steam leak. In the event of accidental leak of high temperature sodium, it reacts with oxygen and moisture in air leading to sodium fires. These fires produce sodium aerosol containing oxides of sodium (Na2O and Na2O2) and NaOH. For early detection of sodium fires, sensor systems based on sodium ionization detector, pH measurement and modulation of conductivity of graphite films are known in the literature. This presentation deals with the development of on-line sensors for these two applications. A diffusion based sensor using a thin walled nickel coil at 773 K and a sensitive thermal conductivity detector (TCD) has been developed for monitoring hydrogen levels in argon cover gas. This sensor has a lower detection limit of 30 ppm of hydrogen in argon. To extend the detection limit of the sensor, a surface conductivity based sensor has been developed which makes use of a thin film of semi-conducting tin oxide. Integration of this sensor with the TCD, can extend the lower detection limit to 2 ppm of hydrogen in cover gas. Electrochemical sensor based on sodium-beta-alumina has been designed, fabricated and its performance in laboratory and industrial environment was evaluated. This paper presents the logical development of these sensors highlighting their merits and limitations

  13. Analisis Karbon Monoksida (CO) Dalam Emisi Gas Buang Kendaraan Bermotor Dengan Sensor Gas Semikonduktor

    OpenAIRE

    Margaretha, Suratmi

    2010-01-01

    Quantitative analysis has been done carbon monoxide (CO) gas in exhaust gas emissions of motor vehicles. This research was conducted to measure the gas concentration CO from exhaust gas CO kijang cars that have different year but similar CC. The method used to detect CO gas from vehicle emission is TGS 2201 semiconductor sensor obtained from Figaro product. This sensor is used to detect CO gas emission from the vehicle with gasoline or diesel. As a comparison, IR sensor is used to measure C...

  14. Soft Sensors - Modern Chemical Engineering Tool

    Directory of Open Access Journals (Sweden)

    N. Bolf

    2011-04-01

    Full Text Available Control systems and optimization procedures require regular and reliable measurements at the appropriate frequency. At the same time, legal regulations dictate strict product quality specifications and refinery emissions. As a result, a greater number of process variables need to be measured and new expensive process analyzers need to be installed to achieve efficient process control. This involves synergy between plant experts, system analysts and process operators. One of the common problems in industrial plants is the inability of the real time and continuous measurement of key process variables.Absence of key value measurement in a timely manner aggravates control, but it does not mean that it is always an impossible step. As an alternative, the use of soft sensors as a substitute for process analyzers and laboratory testing is suggested. With the soft sensors, the objective is to develop an inferential model to estimate infrequently measured variables and laboratory assays using the frequently measured variables. By development of soft sensors based on measurement of continuous variables (such as flow, temperature, pressure it is possible to estimate the difficult- -to-measure variables as well as product quality and emissions usually carried by laboratory assays.Software sensors, as part of virtual instrumentation, are focused on assessing the system state variables and quality products by applying the model, thus replacing the physical measurement and laboratory analysis. Multiple linear/nonlinear regression methods and artificial intelligence methods (such as neural network, fuzzy logic and genetic algorithms are usually applied in the design of soft sensor models for identification of nonlinear processes.Review of published research and industrial application in the field of soft sensors is given with the methods of soft sensor development and nonlinear dynamic model identification. Based on soft sensors, it is possible to estimate

  15. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  16. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    Directory of Open Access Journals (Sweden)

    A. S. M. A. Haseeb

    2012-05-01

    Full Text Available Recently one dimensional (1-D nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

  17. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  18. Utilization of biosensors and chemical sensors for space applications

    Science.gov (United States)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  19. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.

    Science.gov (United States)

    Ma, Xingfa; Zhu, Tao; Xu, Huizhong; Li, Guang; Zheng, Junbao; Liu, Aiyun; Zhang, Jianqin; Du, Huatai

    2008-02-01

    A chemical prototype sensor was constructed based on nanofiber-structured TiO2 and highly sensitive quartz resonators. The gas-sensing behavior of this new sensor to selected simulant warfare agents was investigated at room temperature. Results showed rapid response and good reversibility of this sensor when used with high-purity nitrogen. This provides a simple approach to preparation of materials needed as chemical sensors for selected organic volatiles or warfare agents. PMID:18094961

  20. Design and Modeling of Micromechanical GaAs based Hot Plate for Gas Sensors

    CERN Document Server

    Jakovenko, J; Lalinskytfh, T; Drzik, M; Vanko, G

    2008-01-01

    For modern Gas sensors, high sensitivity and low power are expected. This paper discusses design, simulation and fabrication of new Micromachined Thermal Converters (MTCs) based on GaAs developed for Gas sensors. Metal oxide gas sensors generally work in high temperature mode that is required for chemical reactions to be performed between molecules of the specified gas and the surface of sensing material. There is a low power consumption required to obtain the operation temperatures in the range of 200 to 500 oC. High thermal isolation of these devices solves consumption problem and can be made by designing of free standing micromechanical hot plates. Mechanical stability and a fast thermal response are especially significant parameters that can not be neglected. These characteristics can be achieved with new concept of GaAs thermal converter.

  1. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    OpenAIRE

    Marie Pospíšilová; Gabriela Kuncová; Josef Trögl

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measuremen...

  2. Single-walled Carbon Nanotube Gas Sensor Used in Partial Discharge Detection of GIS

    Institute of Scientific and Technical Information of China (English)

    WEI Ning; DING Wei-dong; ZHU Yi dong; SU Chun-qiang; Suehiro Junya

    2011-01-01

    This paper describes a realizable fabrication method to manufacture chemical gas sensors by using single- walled carbon nanotubes (SWCNTs). The sensors were tested for the monitoring of SF6 decomposition gas produced by partial discharge (PD) in GIS tank. The results showed a superior sensitivity, favorable reliability and good repro dueibitity. For further clarifying the relativity between sensor response and partial discharge activity, the discharge in GIS tank was monitored simultaneously through conventional pulse current method and a SWCNTs gas sensor, and the measurement results were put together for comparative analysis in this paper. The sensor response showed a great dependence on partial discharge characteristics. The sensor response increased nearly linearly with limits when the energy of discharge was persistently accumulated. Partial discharge power had a great influence on the response rate and the time delay. With the increase of partial discharge power, the response rate augmented almost in proportion while the time delay gradually becomes shorter with limits. The results were quite favorable to assess the partial discharge intensity and duration to some extent. Compared with pulse current method, the sensor was predominant to detect partial discharge exposed to constantly high levels of noise. It was capable of detecting partial discharge which was too weak to be detected with pulse current method. However, the sensor response didn't show much dependency on the apparent discharge of partial discharge.

  3. Study on Temperature Modulation Techniques for Micro Gas Sensors

    Institute of Scientific and Technical Information of China (English)

    Guangfen Wei; Zhenan Tang; Hongquan Zhang; Yanbing Xue; Jun Yu

    2006-01-01

    The sensitivity and selectivity of gas sensors are related with not only sensing material, but also their operating temperatures. Applying this property, temperature modulation technique has been proposed to improve the selectivity of gas sensors. With a newly developed alumina based micro gas sensor, the sensitivity to CO and CH4 at different operating temperatures was investigated. By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes, the dynamic responses of the sensor were measured and processed. Results show that the modulating waveshape plays an important role in the improvement of selectivity, while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.

  4. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  5. Fabrication of diamond based quartz crystal microbalance gas sensor

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, P.; Davydova, Marina; Kroutil, J.; Husák, M.; Kromka, Alexander

    Vol. 605. Zurich : Trans Tech Publications, 2014 - (Hristoforou, E.; Vlachos, D.), s. 589-592 ISBN 9783038350514. ISSN 1013-9826. [International Conference on Materials and Applications for Sensors and Transducers /3./ (IC-MAST 2013). Praha (CZ), 13.09.2013-17.09.2013] R&D Projects: GA ČR(CZ) GAP108/11/0794 Institutional support: RVO:68378271 Keywords : diamond thin film * low temperature deposition * quartz crystal microbalance * gas sensor Subject RIV: JB - Sensors, Measurment, Regulation

  6. Measuring air pressure with a polymeric gas sensor

    Directory of Open Access Journals (Sweden)

    Juliana R. Cordeiro

    2010-01-01

    Full Text Available In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene (PHBPE film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.

  7. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  8. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.489, year: 2014

  9. An electrochemical sensor for determining elemental iodine in gas media

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Shaimerdinov, B.U.; Kotelkin, I.M. [Institute of New Chemical Problems, Moscow (Russian Federation)] [and others

    1993-12-01

    The possibility of using solid-electrolyte Ag, AgI/AgI/Au cells as sensors for determining the concentration of elemental iodine in gas media is investigated. It is established that the sensor parameters are independent of oxygen content and radiation dose at different relative humidities.

  10. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    OpenAIRE

    Ling Cui; Erica P. Murray

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sen...

  11. A Review of Carbon Nanotubes-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2009-01-01

    Full Text Available Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.

  12. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  13. Fiber optic chemical sensors on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Ricco, A.J. [Sandia National Labs., Albuquerque, NM (United States); Grunthaner, F.J.; Lane, A.L. [Jet Propulsion Lab., Pasadena, CA (United States)

    1993-12-31

    A fiber optic chemical sensing instrument is described that will measure the reactivity of the martian soil and atmosphere. The self- contained instrument monitors reflectivity changes in reactive thin films caused by chemical reactions with the martian soil or atmosphere. Data from over 200 separate thin-film-coated optical fibers are recorded simultaneously. This fiber optic sensing technology has many advantages for planetary exploration and monitoring applications on manned spacecraft, in addition to many practical terrestrial uses.

  14. Disposable chemical sensors and biosensors made on cellulose paper

    International Nuclear Information System (INIS)

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications. (topical review)

  15. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  16. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  17. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  18. Surface modification of solid state gas sensors

    CERN Document Server

    Morris, L

    2000-01-01

    mechanism of the room temperature CO response of SnO sub 2 decorated with small Pt particles was refined. In this case Pt was applied by common impregnation techniques. The conductivity was shown to be controlled by the surface state of the Pt. The CO response at room temperature was found to be specific to the presence of Pt(ll) species. The mechanism was assigned to CO chemisorption onto Pt(ll), resulting in charge transfer, measured as conductivity increase. The samples were characterized by XPS, TPD, SEM, mass spectrometry and electrical measurements. Comparison of the results presented for Pt decorated BaSn sub 0 sub . sub 9 sub 7 Sb sub 0 sub . sub 0 sub 3 O sub 3 and BaFeO sub 3 demonstrated the phenomenon to be general providing that Pt particles act as surface traps, controlling the conductivity. The phenomenon of electrical conductivity being controlled by the chemical state of a surface grafted reactive centre, resulting in a room temperature gas response, is demonstrated. The reactive centres can ...

  19. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    Directory of Open Access Journals (Sweden)

    Ling Cui

    2015-09-01

    Full Text Available The influence of electrode configuration on the impedancemetric response of nitric oxide (NO gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ/Au]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.

  20. B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    Science.gov (United States)

    Shahbazi Kootenaei, Amirhossein; Ansari, Goodarz

    2016-08-01

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B36 borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B36 borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors.

  1. Silicon nanowire field-effect chemical sensor

    NARCIS (Netherlands)

    Chen, Songyue

    2011-01-01

    This thesis describes the work that has been done on the project “Design and optimization of silicon nanowire for chemical sensing”, including Si-NW fabrication, electrical/electrochemical modeling, the application as ISFET, and the build-up of Si- NW/LOC system for automatic sample delivery. A nove

  2. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-02-03

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2000-06-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  11. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. 2D-MoO3 nanosheets for superior gas sensors

    Science.gov (United States)

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)

    2016-04-01

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a

  17. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    Directory of Open Access Journals (Sweden)

    Fang-Qian Xu

    2015-12-01

    Full Text Available A new wireless and passive surface acoustic wave (SAW-based chemical sensor for organophosphorous compound (OC detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

  18. Development of gas sensors using ZnO nanostructures

    Indian Academy of Sciences (India)

    S K Gupta; Aditee Joshi; Manmeet Kaur

    2010-01-01

    Different ZnO nanostructures such as nanowires, nanobelts and tetrapods have been grown and used for preparation of thick film (with random grain boundaries) as well as isolated nanowire/nanobelt gas sensors. Sensitivity of different type of sensors has been studied to H2S and NO gases. The results show that the response of ZnO sensors to H2S arises from grain boundary only whereas both grain boundaries and intragrain resistances contribute towards response to NO. In addition, oxygen vacancies in the lattice were also seen to help in improvement of sensor response. Room temperature operating H2S and NO sensors based on ZnO nanowires have been demonstrated. Further, sensors based on isolated nanobelts were found to be highly selective in their response to NO.

  19. IN-LINE CHEMICAL SENSOR DEPLOYMENT IN A TRITIUM PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Tovo, L.; Wright, J.; Torres, R.; Peters, B.

    2013-10-02

    The Savannah River Tritium Plant (TP) relies on well understood but aging sensor technology for process gas analysis. Though new sensor technologies have been brought to various readiness levels, the TP has been reluctant to install technologies that have not been tested in tritium service. This gap between sensor technology development and incorporating new technologies into practical applications demonstrates fundamental challenges that exist when transitioning from status quo to state-of-the-art in an extreme environment such as a tritium plant. These challenges stem from three root obstacles: 1) The need for a comprehensive assessment of process sensing needs and requirements; 2) The lack of a pick-list of process-compatible sensor technologies; and 3) The need to test technologies in a tritium-contaminated process environment without risking production. At Savannah River, these issues are being addressed in a two phase project. In the first phase, TP sensing requirements were determined by a team of process experts. Meanwhile, Savannah River National Laboratory sensor experts identified candidate technologies and related them to the TP processing requirements. The resulting roadmap links the candidate technologies to actual plant needs. To provide accurate assessments of how a candidate sensor technology would perform in a contaminated process environment, an instrument demonstration station was established within a TP glove box. This station was fabricated to TP process requirements and designed to handle high activity samples. The combination of roadmap and demonstration station provides the following assets: Creates a partnership between the process engineers and researchers for sensor selection, maturation, and insertion, Selects the right sensors for process conditions Provides a means for safely inserting new sensor technology into the process without risking production, and Provides a means to evaluate off normal occurrences where and when they occur

  20. Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.

    Science.gov (United States)

    Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan

    2016-08-01

    We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials. PMID:27388231

  1. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  2. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  3. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm2O3 nanoparticles are act as sensor materials. • Sm2O3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm2O3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm2O3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm2O3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  4. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  5. Metal nano-film resistivity chemical sensor.

    Science.gov (United States)

    Podešva, Pavel; Foret, František

    2016-02-01

    In this work, we present a study on reusable thin metal film resistivity-based sensor for direct measurement of binding of thiol containing molecules in liquid samples. While in bulk conductors the DC current is not influenced by the surface events to a measureable degree in a thin metal layer the electrons close to the surface conduct a significant part of electricity and are influenced by the surface interactions. In this study, the thickness of the gold layer was kept below 100 nm resulting in easily measureable resistivity changes of the metal element upon a surface SH-groups binding. No further surface modifications were necessary. Thin film gold layers deposited on a glass substrate by vacuum sputtering were photolithographically structured into four sensing elements arranged in a Wheatstone bridge to compensate for resistance fluctuations due to the temperature changes. Concentrations as low 100 pM provided measureable signals. The surface after the measurement could be electrolytically regenerated for next measurements. PMID:26040502

  6. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, D.N.

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a sodium-se

  7. Sensors for online determination of CNG gas quality; Sensorer foer onlinebestaemnning av fordonsgaskvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Stenlaaaas, Ola; Roedjegaard, Henrik

    2012-07-01

    Swedish automotive gas has until now been a very uniform, high quality automotive fuel. Elsewhere in Europe the quality of automotive gas varies significantly. Gas from different sources with different flammability require engine settings adjusted to the chosen gas' unique composition. The prospects for a vehicle-mounted sensor based on infrared technology for gas quality measurement has been studied and solutions are presented with questions that must be answered in a possible future work. The proposed vehicle mounted sensor is based on two channels, one of which measures the partial pressure of methane and the other measures the partial pressure of heavier hydrocarbons in 'equivalents of butane'. Ethane produces a signal of about 0.6 equivalents of butane and propane about 0.8 equivalents. The sensor can be accommodated in a cube with 5 cm side and should be equipped with nipple connections to the existing system. The sensor is expected to work throughout their entire lifetime without manual calibration, through continuous automatic calibration, so-called ABC (Automatic Baseline Compensation). The sensor will have to meet tough quality and environmental standards in which primarily contact ring, vibration and prevention of leakage are identified as extra difficult. Working temperatures and the electrical conditions of power supply and communication interface is considered less challenging. In one million volumes, the cost per sensor could be 200 to 300 SEK.

  8. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2014-09-01

    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  9. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    Directory of Open Access Journals (Sweden)

    Łukasz Guz

    2014-12-01

    Full Text Available A gas sensor array consisting of eight metal oxide semiconductor (MOS type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR. A comparison of the gas sensor array (electronic nose response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose—gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I chemical oxygen demand (COD (r = 0.988; (II total suspended solids (TSS (r = 0.938; (III turbidity (r = 0.940; (IV pH (r = 0.554; (V nitrogen compounds: N-NO3 (r = 0.958, N-NO2 (r = 0.869 and N-NH3 (r = 0.978; (VI and volatile organic compounds (VOC (r = 0.987. Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  10. Development of bioeffect sensor for environmental chemicals

    International Nuclear Information System (INIS)

    1 type alveolar epithelial cell is known that it has higher sensitivity of air pollution such as exhaust diesel gas, nitrogen dioxide and ozone than 2 type one. In this experiment of T2.fib.Mg and T2-Fgel culture, decay and regeneration of the basement membrane by active oxygen of bleomycin was reproduced as same as that in organism. This result showed these cultures established large confidence as tissue equivalent. T2.fib.MG did not need coculture with fibroblast and it was easy to texture. Moreover, when damage of epithelial cell was evaluated by the state of union between cells, it was carried out by measurement of resistance between the upper surface of T2 cell and the basement membrane. The effect of fibroblast did not need to be considered. From these above results, T2.fib.MG culture is suitable for alveolar epithelial equivalent used as the bio-effect censor. (S.Y.)

  11. Odour Detection Methods: Olfactometry and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sara Lovascio

    2011-05-01

    Full Text Available The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc. and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality; this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses are then described, focusing on their better performances for environmental analysis. Odour emission monitoring

  12. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  13. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  14. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from May 2004 to October 2004 including testing of catalytic materials, sensor design and fabrication, and software development.

  15. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  16. Enhanced Sensing Characteristics in MEMS-based Formaldehyde Gas Sensor

    CERN Document Server

    Wang, Yu-Hsiang; Lee, Chia-Yen; Ma, R -H; Chou, Po-Cheng

    2008-01-01

    This study has successfully demonstrated a novel self-heating formaldehyde gas sensor based on a thin film of NiO sensing layer. A new fabrication process has been developed in which the Pt micro heater and electrodes are deposited directly on the substrate and the NiO thin film is deposited above on the micro heater to serve as sensing layer. Pt electrodes are formed below the sensing layer to measure the electrical conductivity changes caused by formaldehyde oxidation at the oxide surface. Furthermore, the upper sensing layer and NiO/Al2O3 co-sputtering significantly increases the sensitivity of the gas sensor, improves its detection limit capability. The microfabricated formaldehyde gas sensor presented in this study is suitable not only for industrial process monitoring, but also for the detection of formaldehyde concentrations in buildings in order to safeguard human health.

  17. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  18. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  19. Planar Laser-Based QEPAS Trace Gas Sensor

    Science.gov (United States)

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K.

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  20. High Performance Indium-Doped ZnO Gas Sensor

    OpenAIRE

    Junjie Qi; Hong Zhang; Shengnan Lu; Xin Li; Minxuan Xu; Yue Zhang

    2015-01-01

    Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s) and recovery time (23 s) to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16) of Co-doped ZnO nanofibers to acetone. ...

  1. Nanostructured Materials for Room-Temperature Gas Sensors.

    Science.gov (United States)

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-01

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed. PMID:26662346

  2. A fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  3. A MEMS Based Hybrid Preconcentrator/Chemiresistor Chemical Sensor

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; PATEL,SANJAY V.; MANGINELL,RONALD P.

    2000-06-12

    A hybrid of a microfabricated planar preconcentrator and a four element chemiresistor array chip has been fabricated and the performance as a chemical sensor system has been demonstrated. The close proximity of the chemiresistor sensor to the preconcentrator absorbent layer allows for fast transfer of the preconcentrated molecules during the heating and resorption step. The hybrid can be used in a conventional flow sampling system for detection of low concentrations of analyte molecules or in a pumpless/valveless mode with a grooved lid to confine the desorption plume from the preconcentrator during heating.

  4. Novel gas sensors based on carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J [Laboratorio de Sensores IFA-CSIC, Serrano 144, 28006 Madrid (Spain); Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E [Instituto de CarboquImica CSIC, Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Urriolabeitia, E P; Navarro, R [Departamento de Quimica Inorganica, ICMA (Universidad de Zaragoza-CSIC), 50009 Zaragoza (Spain)], E-mail: sayago@ifa.cetef.csic.es, E-mail: edgar@icb.csic.es

    2008-08-15

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO{sub 2} and H{sub 2}, respectively. The studied sensors provided good response to NO{sub 2} and H{sub 2} as well as excellent selectivities to interfering gases.

  5. Deodorant Characteristics of Breath Odor Occurred from Favorite Foods Using Metal Oxide Gas Sensors

    Science.gov (United States)

    Seto, Shuichi; Oyabu, Takashi; Cai, Kuiqian; Katsube, Teruaki

    Three types of metal oxide gas sensors were adopted to detect the degree of breath odor. Various sorts of information are included in the odor. Each sensor has different sensitivities to gaseous chemical substances and the sensitivities also differ according to human behaviors, for example taking a meal, teeth-brushing and drinking something. There is also a possibility that the sensor can detect degrees of daily fatigue. Sensor sensitivities were low for the expiration of the elderly when the subject drank green tea. In this study, it is thought that the odor system can be incorporated into a healing robot. The robot can communicate with the elderly using several words and also connect to Internet. As for the results, the robot can identify basic human behaviors and recognize the living conditions of the resident. Moreover, it can also execute a kind of information retrieval through the Internet. Therefore, it has healing capability for the aged, and can also receive and transmit information.

  6. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  7. Monitoring remediation of trichloroethylene using a chemical fiber optic sensor: Field studies

    International Nuclear Information System (INIS)

    Field tests of a remote fiber optic chemical sensor have recently been completed. The sensor has measured trace quantities of organohalides in the vadose zone and groundwater. Due to its toxicological importance and accessibility, a specific contaminant monitored was trichloroethylene (TCE). Two elements considered in these field measurements included temperature and carbon dioxide (CO2) fluctuations. The effects of these properties on the sensor have been modeled in the lab. These results were used in the final determination of TCE concentration. Department of Energy (DOE) sites where remediation work is in progress provided opportunities for testing the sensor. One test was conducted in the vadose zone over sampling wells at the Savannah River Plant DOE integrated test site. Measurements were made before and several months after remediation procedures were in progress. A series of wells was selected with discretely screened depth intervals. Data were collected over a range of depths. A second set of experiments took place at Lawrence Livermore Site 300, in collaboration with a private company (Purus). Purus is remediating groundwater contaminated with halogenated volatile organic compounds. The sensor was set up to continuously monitor the processed gas stream. Supporting data were provided in this case with side by side gas chromatograph measurements

  8. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Michael [SUNY Polytechnic Inst., Albany, NY (United States); Oh, Sang-Hyun [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  9. Development of chemical sensors for Fast Breeder Reactor Technology

    International Nuclear Information System (INIS)

    Fast breeder reactors use liquid sodium as heat transfer medium and generate high pressure steam at the steam generator to run the turbine. This high pressure steam is separated from sodium coolant by ferritic steel tubes of 4 to 5 mm wall thickness. Development of any material defect in these heat exchanger tubes during their service would result in the ingress of high pressure steam into the sodium circuit leading to sodium-water reactions. A high temperature electrochemical hydrogen sensor based on CaBr2-CaHBr solid electrolyte and capable of measuring ppb levels of dissolved hydrogen in sodium has been developed at the laboratory. A very sensitive system, using thermal conductivity detector and semiconducting oxide based sensor has also been developed for continuous monitoring of hydrogen levels in argon cover gas. An electrochemical carbon sensor using a molten carbonate electrolyte and an oxygen sensor based on yttria doped thoria oxide electrolyte are also under advanced stage of development for measuring carbon and oxygen levels in sodium. Materials chemistry issues involved in developing these sensors and their operational experience in sodium system are highlighted in this presentation

  10. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    OpenAIRE

    A.S.M.A. Haseeb; M. M. Arafat; Akbar, Sheikh A.; B. Dinan

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, ...

  11. Highly selective gas sensor arrays based on thermally reduced graphene oxide

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-05-01

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  12. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  13. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    OpenAIRE

    Ralf Moos; Kerstin Wiesner; Diana Biskupski; Andrea Geupel; Maximilian Fleischer

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electroche...

  14. Label-Free Optical Ring Resonator Bio/Chemical Sensors

    Science.gov (United States)

    Zhu, Hongying; Suter, Jonathan D.; Fan, Xudong

    Optical micro-ring resonator sensors are an emerging category of label-free optical sensors for bio/chemical sensing that have recently been under intensive investigation. Researchers of this technology have been motivated by a tremendous breadth of different applications, including medical diagnosis, environmental monitoring, homeland security, and food quality control, which require sensitive analytical tools. Ring resonator sensors use total internal reflection to support circulating optical resonances called whispering gallery modes (WGMs). The WGMs have an evanescent field of several hundred nanometers into the surrounding medium, and can therefore detect the refractive index change induced when the analyte binds to the resonator surface. Despite the small physical size of a resonator, the circulating nature of the WGM creates extremely long effective lengths, greatly increasing light-matter interaction and improving its sensing performance. Moreover, only small sample volume is needed for detection because the sensors can be fabricated in sizes well below 100 μm. The small footprint allows integration of those ring resonator sensors onto lab-on-a-chip types of devices for multiplexed detection.

  15. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chia-Ling; Yang, Chih-Feng; Dokmeci, Mehmet R [Department of Electrical and Computer Engineering, NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Agarwal, Vinay; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155 (United States); Kim, Taehoon; Busnaina, Ahmed [Department of Mechanical and Industrial Engineering, NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Chen, Michelle, E-mail: chen.ch@neu.edu, E-mail: yang.chi@neu.edu, E-mail: vinay.agarwal84@gmail.com, E-mail: thkim@coe.neu.edu, E-mail: sameer@ece.tufts.edu, E-mail: busnaina@coe.neu.edu, E-mail: michelle.chen@simmons.edu, E-mail: mehmetd@ece.neu.edu [Physics Department, Simmons College, 300 The Fenway, Boston, MA 02115 (United States)

    2010-03-05

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to {approx} 300% and {approx} 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  16. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    International Nuclear Information System (INIS)

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ∼ 300% and ∼ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  17. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    Science.gov (United States)

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R.

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ~ 300% and ~ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  18. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2012-04-01

    Full Text Available Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors.

  19. Development of nanostructured protective "sight glasses" for IR gas sensors

    DEFF Research Database (Denmark)

    Bergmann, René; Davis, Zachary James; Schmidt, Michael Stenbæk;

    2011-01-01

    In this work protective "sight glasses" for infrared gas sensors showing a sub-wavelength nanostructure with random patterns have been fabricated by reactive ion etching (RIE) in an easy and comparable cheap single step mask-less process. By an organic coating, the intrinsic water repellent...

  20. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant Douglas (Inventor)

    2014-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  1. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M; Rossi, R; Alvisi, M [ENEA, Department of Physical Technologies and New Materials, PO Box 51 Br-4, I-72100 Brindisi (Italy); Serra, E, E-mail: michele.penza@enea.it [ENEA, Department of Physical Technologies and New Materials, Via Anguillarese 301, I-00060 Rome (Italy)

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 deg. C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO{sub 2}, CH{sub 4}, H{sub 2}, NH{sub 3}, CO and NO{sub 2} has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO{sub 2} presence in the multicomponent mixture LFG. The NO{sub 2} gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO{sub 2} concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO{sub 2} gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 deg. C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 {mu}m and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal

  3. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    Science.gov (United States)

    Penza, M.; Rossi, R.; Alvisi, M.; Serra, E.

    2010-03-01

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 °C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 °C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 µm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by

  4. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications

    International Nuclear Information System (INIS)

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 deg. C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 deg. C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 μm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity

  5. MIS gas sensors based on porous silicon with Pd and WO3/Pd electrodes

    International Nuclear Information System (INIS)

    Pd and WO3/Pd gate metal-oxide-semiconductor (MIS) gas sensitive structures based on porous silicon layers are studied by the high frequency C(V) method. The chemical compositions of composite WO3/Pd electrodes are characterized by secondary-ion mass spectrometry (SIMS). The atomic force microscopy (AFM) was used for morphologic studies of WO3/Pd films. As shown in the experiments, WO3/Pd structures are more sensitive and selective to the adsorption of hydrogen sulphide compared to Pd gate. The analyses of kinetic characteristics allow us to determine the response and characteristic times for these structures. The response time of MIS-structures with thin composite WO3/Pd electrodes (the thickness of Pd is about 50 nm with WO3 clusters on its surface) is slower compared to the structures with Pd electrodes. Slower sensor responses of WO3-based gas sensors may be associated with different mechanism of gas sensitivity of given structures. The enhanced sensitivity and selectivity to H2S action of WO3/Pd MIS-structures can also be explained by the chemical reaction that occurs at the catalytic active surface of gate electrodes. The possible mechanisms of enhanced sensitivity and selectivity to H2S adsorption of MIS gas sensors with WO3/Pd composite gate electrodes compared to pure Pd have been analyzed.

  6. Graphene nanomesh as highly sensitive chemiresistor gas sensor

    OpenAIRE

    Paul, Rajat Kanti; Badhulika, Sushmee; Saucedo, Nuvia M.; Mulchandani, Ashok

    2012-01-01

    Graphene is a one atom thick carbon allotrope with all surface atoms that has attracted significant attention as a promising material as the conduction channel of a field-effect transistor and chemical field-effect transistor sensors. However, the zero bandgap of semimetal graphene still limits its application for these devices. In this work, ethanol-chemical vapor deposition (CVD) grown p-type semiconducting large-area monolayer graphene film was patterned into nanomesh by the combination of...

  7. Compressive hyperspectral sensor for LWIR gas detection

    Science.gov (United States)

    Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard

    2012-06-01

    Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.

  8. Pd/CeO2/SiC Chemical Sensors

    Science.gov (United States)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky

  9. Methods for gas detection using stationary hyperspectral imaging sensors

    Energy Technology Data Exchange (ETDEWEB)

    Conger, James L. (San Ramon, CA); Henderson, John R. (Castro Valley, CA)

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  10. A smart microelectromechanical sensor and switch triggered by gas

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-07-01

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  11. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam

    2016-07-05

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  12. In Situ Sensors for the Chemical Industry- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tate, J D; Knittel, Trevor

    2006-06-30

    minimized their applicability in the chemical industry. In order to take advantage of the promise of this technology a number of technology advances were required, within price limits for market acceptance. This project significantly advanced the state of TDL technology for application in chemical industry applications. With these advances a commercially available product now exists that has already achieved market success and is installed in critical applications. The ability to make fast, sensitive and accurate measurements inside the chemical processes is now delivering improved process control, energy efficiency and emissions control within the U.S. Chemical Industry. Despite the success we enjoyed for the laser-based sensors, there were significant technical barriers for the solid-state sensors. With exception of a generic close-coupled extractive housing and electronics interface, there were significant issues with all of the solid-state sensor devices we sought to develop and test. Ultimately, these issues were roadblocks that prevented further development and testing. The fundamental limitations of available sensor materials that we identified, formulated and tested were overwhelming. This situation forced our team to cancel these portions of the project and focus our resources on laser-based sensor techniques. The barriers of material compatibility, sensitivity, speed of response, chemical interferences, etc. are surmountable in the field of solid-state sensors. Inability to address any single one of these attributes will prevent wide-implementation into this market. This situation is plainly evident by the lack of such devices in the online analyzer market (for petrochemicals).

  13. A Portable Gas Sensor System for Environmental Monitoring and Malodours Control: Data Assessment of an Experimental Campaign

    Science.gov (United States)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; Amodio, Martino; De Gennaro, Gianluigi

    2011-09-01

    A portable sensor-system based on solid-state gas sensors has been designed and implemented as proof-of-concept for environmental air-monitoring applications, malodours olfactometric control and landfill gas monitoring. Commercial gas sensors and nanotechnology sensors are arranged in a configuration of array for multisensing and multiparameter devices. Wireless sensors at low-cost are integrated to implement a portable and mobile node, that can be used as early-detection system in a distributed sensor network. Real-time and continuous monitoring of hazardous air-contaminants (NO2, CO, PAH, BTEX, etc.) has been performed in field measurements by comparison of chemical analyzers from environmental protection governmental agency (ARPA-Puglia). In addition, experimental campaigns of the integrated portable sensor-system have been realized for assessment of malodours emitted from an urban waste site. The results demonstrate that the sensor-system has a potential capacity for real-time measurements of air-pollutants, malodours from waste site, and control of landfill gas.

  14. Morphology-inspired low-temperature liquefied petroleum gas sensors of indium oxide

    International Nuclear Information System (INIS)

    Low-temperature wet chemical method has been applied to produce indium oxide (In2O3) nanostructures viz. cracked-cubes and the maize-corns which were then employed for their structure, morphology and surface-related measurements and finally envisaged in detection of liquefied petroleum gas (LPG) at different temperatures and concentrations. At 1000 ppm LPG, cracked-cube-based In2O3 sensor demonstrated lower operating temperature (135 °C) and gas sensitivity (44.35%) than the maize-corn-type (155 °C, 36.51%). Except moderate difference in sensitivity there was negligible difference in response and recovery periods

  15. Chemometrics review for chemical sensor development, task 7 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy`s (DOE`s) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult.

  16. Chemometrics review for chemical sensor development, task 7 report

    International Nuclear Information System (INIS)

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy's (DOE's) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult

  17. Nanostructured mesoporous tungsten oxide for gas sensor applications

    Science.gov (United States)

    Rossinyol, Emma; Arbiol, Jordi; Marsal, Andreu; Peiro, Francesca; Cornet, Albert; Morante, Joan Ramon; Solovyov, Leonid A.; Tian, Bozhi; Tu, Bo; Zhao, Dongyuan

    2005-06-01

    Due to their simple implementation, low cost and good reliability for real-time control systems, semiconductor gas sensors offer good advantages with respect to other gas sensor devices. As gas adsorption is a surface effect, one of the most important parameter to tailor the sensitivity of the sensor material is to increase the surface area. For these propose, mesoporous oxides have been synthesized. Nanostructured mesoporous materials present a large and controllable pore size and high surface are. For the preparation of ordered nanostructure arrays, a hard template method has been used. This method presents some advantages when compared with a soft template method, especially in its specific topological stability, veracity, predictability and controllability. Moreover, with this hard template method we can obtain crystalline mesoporous oxides, with small particle size and high surface area. We have used SBA-15 (two-dimensional hexagonal structure) and KIT-6 (three-dimensional cubic structure) as a template for the synthesis of different crystalline mesoporous WO3 with a particle size about 8-10 nm and high surface area. Low angle XRD spectra show a high order mesoporous structure, without rests of silica template. TEM confirms that the silica host has been completely removed; therefore, the nanowires constitute a self-supported superlattice. HRTEM studies have been focused on the detailed structural characterization of these materials. Electrical characterization of the sensor response in front of NO2 has been performed. Some catalytic additives have been also introduced, in order to increase the sensitivity of the material.

  18. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    Science.gov (United States)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  19. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  20. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  1. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  2. Novel diode laser-based sensors for gas sensing applications

    Science.gov (United States)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  3. Characterization of zeolite-trench-embedded microcantilevers with CMOS strain gauge for integrated gas sensor applications

    Science.gov (United States)

    Inoue, Shu; Denoual, Matthieu; Awala, Hussein; Grand, Julien; Mintova, Sveltana; Tixier-Mita, Agnès; Mita, Yoshio

    2016-04-01

    Custom-synthesized zeolite is coated and fixed into microcantilevers with microtrenches of 1 to 5 µm width. Zeolite is a porous material that absorbs chemical substances; thus, it is expected to work as a sensitive chemical-sensing head. The total mass increases with gas absorption, and the cantilever resonance frequency decreases accordingly. In this paper, a thick zeolite cantilever sensor array system for high sensitivity and selectivity is proposed. The system is composed of an array of microcantilevers with silicon deep trenches. The cantilevers are integrated with CMOS-made polysilicon strain gauges for frequency response electrical measurement. The post-process fabrication of such an integrated array out of a foundry-made CMOS chip is successful. On the cantilevers, three types of custom zeolite (FAU-X, LTL, and MFI) are integrated by dip and heating methods. The preliminary measurement has shown a clear shift of resonance frequency by the chemical absorbance of ethanol gas.

  4. Antimony Doped Tin Oxide Thin Films: Co Gas Sensor

    Directory of Open Access Journals (Sweden)

    P.S. Joshi

    2011-01-01

    Full Text Available Tin dioxide (SnO2 serves as an important base material in a variety of resistive type gas sensors. The widespread applicability of this semicoducting oxide is related both to its range of conductance variability and to the fact that it responds to both oxidising and reducing gases. The antimony doped tin-oxide films were prepared by spray pyrolysis method. The as-deposited films are blackish in colour. Addition of antimony impurity showed little increase in the thickness. The X-ray diffraction pattern shows characteristic tin oxide peaks with tetragonal structure. As the doping concentration of antimony was increased, new peak corresponding to Sb was observed. The intensity of this peak found to be increased when the Sb concentration was increased from 0.01 % to the 1 % which indicates the antimony was incorporated into the tin oxide. For gas sensing studies ohmic contacts were preferred to ensure the changes in resistance of sensor is due to only adsorption of gas molecule. The graph of I-V shows a straight line in nature which indicates the ohmic contact. The sensitivity of the sensor for CO gas was tested. The sensitivity of antimony doped tin oxide found to be increased with increasing Sb concentration. The maximum sensitivity was observed for Sb = 1 % at a working temperature of 250 °C.

  5. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  6. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  7. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication

    Directory of Open Access Journals (Sweden)

    Zhu Yanwu

    2011-01-01

    Full Text Available Abstract Carbon nanowalls (CNWs, two-dimensional "graphitic" platelets that are typically oriented vertically on a substrate, can exhibit similar properties as graphene. Growth of CNWs reported to date was exclusively carried out at a low pressure. Here, we report on the synthesis of CNWs at atmosphere pressure using "direct current plasma-enhanced chemical vapor deposition" by taking advantage of the high electric field generated in a pin-plate dc glow discharge. CNWs were grown on silicon, stainless steel, and copper substrates without deliberate introduction of catalysts. The as-grown CNW material was mainly mono- and few-layer graphene having patches of O-containing functional groups. However, Raman and X-ray photoelectron spectroscopies confirmed that most of the oxygen groups could be removed by thermal annealing. A gas-sensing device based on such CNWs was fabricated on metal electrodes through direct growth. The sensor responded to relatively low concentrations of NO2 (g and NH3 (g, thus suggesting high-quality CNWs that are useful for room temperature gas sensors. PACS: Graphene (81.05.ue, Chemical vapor deposition (81.15.Gh, Gas sensors (07.07.Df, Atmospheric pressure (92.60.hv

  8. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  9. Extremely sensitive CWA analyzer based on a novel optical pressure sensor in photoacoustic gas analysis

    Science.gov (United States)

    Kauppinen, Jyrki K.; Koskinen, Vesa; Uotila, Juho; Kauppinen, Ismo K.

    2004-12-01

    Major improvement into the sensitivity of broadband Fourier transform infrared (FTIR) spectrometers, used in gas analysis, can be achieved by a photoacoustic detection system, which bases on a recently introduced optical pressure sensor. The sensor is a cantilever-type microphone with interferometric measurement of its free end displacement. By using a preliminary prototype of the photoacoustic gas detector, equipped with the proposed sensor and a black body radiation source, a detection limit in the sub-ppb range was obtained for e.g. methane gas. The limit, obtained in non-resonant operation mode, is very close to the best photoacoustic results achieved with powerfull laser sources and by exploiting the cell resonances. It is also orders of magnitude better than any measurement with a black body radiation source. Furthermore, the ultimate sensitivity leads on to very small detection limits also for several chemical warfare agents (CWA) e.g. sarin, tabun and mustard. The small size of the sensor and its great thermal stability enables the construction of an extremely sensitive portable CWA analyzer in the near future.

  10. Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique

    Directory of Open Access Journals (Sweden)

    Anju Yadav

    2015-01-01

    Full Text Available Dodecyl benzene sulfonic acid (DBSA doped polyaniline (PANI-DBSA has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.

  11. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 105 h (∼23 yr) at ∼150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  12. Gas sensors based on silicon devices with a porous layer

    Science.gov (United States)

    Barillaro, G.; Diligenti, A.; Nannini, A.; Strambini, L. M.

    2005-06-01

    In this work two silicon devices, that is a FET and a p crystalline silicon resistor having porous silicon as adsorbing layer are presented as gas sensors. Owing to they are easily integrable with silicon electronics, these devices could represent an improvement of the functionality of silicon for sensor applications. Unlike other porous silicon-based sensors, in this case the sensing variable is a current flowing in the crystalline silicon, so that the porous silicon film has only the function of adsorbing layer and its properties, electrical or optical, are not directly involved in the measurement. The fabrication processes and an electrical characterization in presence of isopropanol vapors are presented and discussed for both devices.

  13. Miniature Chemical Sensor combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ring-down spectroscopy (EW-CRDS). The feasibility and sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the selectivity and domain of application of EW-CRDS. Selectivity is enhanced by using molecular recognition (MR) chemistry and polarized ''fingerprint'' near-IR spectroscopy, while the domain of application is expanded by combining EW-CRDS with the unique optical properties of nanoparticles and by extending the technique to liquids

  14. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  15. Sensor and Actuator Needs for More Intelligent Gas Turbine Engines

    Science.gov (United States)

    Garg, Sanjay; Schadow, Klaus; Horn, Wolfgang; Pfoertner, Hugo; Stiharu, Ion

    2010-01-01

    This paper provides an overview of the controls and diagnostics technologies, that are seen as critical for more intelligent gas turbine engines (GTE), with an emphasis on the sensor and actuator technologies that need to be developed for the controls and diagnostics implementation. The objective of the paper is to help the "Customers" of advanced technologies, defense acquisition and aerospace research agencies, understand the state-of-the-art of intelligent GTE technologies, and help the "Researchers" and "Technology Developers" for GTE sensors and actuators identify what technologies need to be developed to enable the "Intelligent GTE" concepts and focus their research efforts on closing the technology gap. To keep the effort manageable, the focus of the paper is on "On-Board Intelligence" to enable safe and efficient operation of the engine over its life time, with an emphasis on gas path performance

  16. Linearizing the Characteristics of Gas Sensors using Neural Network

    Directory of Open Access Journals (Sweden)

    Gowri shankari B

    2015-03-01

    Full Text Available The paper describes implementing arbitrary connected neural network with more powerful network architecture to be embedded in inexpensive microcontroller. Our objective is to extend linear region of operation of nonlinear sensors. In order to implement more powerful neural network architectures on microcontrollers, the special Neuron by Neuron computing routine was developed in assembly language to allow fastest and shortest code. Embedded neural network requires hyperbolic tangent with great precision was used as a neuron activation function. Implementing neural network in microcontroller makes superior to other systems in faster response, smaller errors, and smoother surfaces. But its efficient implementation on microcontroller with simplified arithmetic was another challenge. This process was then demonstrated on gas sensor problem as they were mainly used accurately in measuring gas leakage in industry.

  17. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  18. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  19. Gas sensors based on nano-particulate oxide films

    International Nuclear Information System (INIS)

    Full text: Tungsten oxide with a small particle size and narrow size distribution, as confirmed by XRD and TEM studies, has been synthesized using a microwave plasma process. Stable dispersions with a small aggregate size were obtained by in-situ or ultrasonic dispersion techniques. Continuous, thin nanoparticulate films were deposited on glass substrates with interdigital Au electrodes. A gas testing chamber with integrated heating and four-point resistance measurement setup was designed for measuring the electric resistance of the sensor as a function of temperature and gas composition. Initial tests show a fast and reproducible response to different levels of O2 in N2. (author)

  20. Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors

    OpenAIRE

    Thorsten Graunke; Katrin Schmitt; Jürgen Wöllenstein

    2016-01-01

    We present the characterization of organic polyolefin and thermoplastic membranes for the enhancement of the selectivity of metal oxide (MOX) gas sensors. The experimental study is done based on theoretical considerations of the membrane characteristics. Through a broad screening of dense symmetric homo- and copolymers with different functional groups, the intrinsic properties such as the mobility or the transport of gases through the matrix were examined in detail. A subset of application-re...

  1. Laser deposition of sulfonated phthalocyanines for gas sensors

    Czech Academy of Sciences Publication Activity Database

    Fitl, Přemysl; Vrňata, M.; Kopecký, D.; Vlček, J.; Škodová, J.; Bulíř, Jiří; Novotný, Michal; Pokorný, Petr

    2014-01-01

    Roč. 302, MAY (2014), s. 37-41. ISSN 0169-4332. [European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications /5./. Strasbourg, 27.05.2013-31.05.2013] R&D Projects: GA ČR(CZ) GAP108/11/1298 Institutional support: RVO:68378271 Keywords : Matrix Assisted Pulsed Laser Evaporation * substituted phthalocyanines * gas sensors * impedance measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  2. Cell adhesion and guidance by micropost-array chemical sensors

    Science.gov (United States)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  3. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  4. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2008-12-01

    Full Text Available Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a lowcost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts.

  5. Effects of Temperature on Polymer/Carbon Chemical Sensors

    Science.gov (United States)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  6. Development of chemical sensors by using beta emitters

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H. J; Yu, S. K.; Yoon, M. O.; Park, K. S.; Rhim, G. J. [Kyung Hee University, Seoul (Korea)

    2000-04-01

    The objective of this project is development of core techniques for fabrication of biosensor. This includes a method for immobilization of biologically active molecules, a method for labelling target molecules with beta emitter, and a detection method based on beta counting. A radioimmuno-sensor for detection of DNA antibody, self-assembled monolayers of {omega}-carboxylated thiol molecules such as thioctic acid and 12-mercaptododecanoic acid were used in combination with chemical coupling methods. EDC (1 - ethyl - 3 [3 - (dimethylamino)propyl] carbodiimide) and NHS (N - hydroxy - succinimide) were used as coupling reagents to induce amide bond formation between the COOH group on the sensor surface and the -NH{sub 2} group on the antibody. Various experimental conditions such as COOH concentration, immobilization pH, reaction times etc, have been examined to establish optimum conditions for efficient immobilization of the antibody. Efficient labeling of the target antigen, DNA, with a beta emitter, {sup 35}S, was achieved by using the polymerase chain reaction (PCR) method. Detection of sensing signal from antigens that are selectively bound to the surface of the DNA radioimmuno-sensor has been accomplished by use of the beta counting method. According to the present results, efficient immobilization of the antibody is possible at very low antibody concentration below or equal to 0.1 mg/mL with detection limit reaching as low as 10{sup -11} M bp DNA concentration. 25 refs., 14 figs. (Author)

  7. Data set from gas sensor array under flow modulation☆

    Science.gov (United States)

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-01-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  8. Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application

    International Nuclear Information System (INIS)

    Highlights: ► Silver sulfide thin films were deposited by aerosol assisted chemical vapor deposition from a single source precursor [Ag(S2CN (C2H5)2)3]2 (1). ► The precursor (1), prepared in high yield by simple reported chemical procedure, was characterized and undergoes facile decomposition at 400 °C. ► The deposited thin films were characterized by SEM, EDX and XRD which suggests the formation of impurity-free mesoporous Ag2S, with well defined particles evenly distributed in the range of 0.3–0.5 μm. ► The optical bandgap energy of the thin film was estimated, and it is about 1.33 eV. ► The thin films were investigated for the gas sensor applications. - Abstract: Crack free Ag2S thin films were deposited on glass substrates by aerosol assisted chemical vapor deposition (AACVD) using [Ag(S2CN (C2H5)2)3]2 (1) as a precursor. Thin films were deposited from solution of methanol at 400 °C and characterized by X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. SEM image of thin film showed well-defined and porous surface morphology with an average particle size of 0.3–0.5 μm. Optical band gaps energy of 1.33 eV was estimated for Ag2S thin film, by extrapolating the linear part of the Tauc plot recorded at room temperature. The gas sensing characteristics of the novel gas sensors based on Ag2S were investigated for the detection carbon monoxide. The effect of operating temperature and change in gas concentration on the performance of carbon monoxide were investigated. The sensing mechanism of sensor was discussed.

  9. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  10. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    Science.gov (United States)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  11. Chemical behaviour of zinc in cover gas environments

    International Nuclear Information System (INIS)

    The possibility that enhancement of 65-Zn in the cover gas regions of reactor plant may increase levels of radioactivity and provide potential embrittlement situations has lead to a limited metallurgical and chemical investigation into how this element behaves in cover gas environments. This paper reports the chemical findings from those investigations and compare results obtained with those anticipated from thermodynamic predictions

  12. Direct monitoring of organic vapours with amperometric enzyme gas sensors.

    Science.gov (United States)

    Hämmerle, Martin; Hilgert, Karin; Achmann, Sabine; Moos, Ralf

    2010-02-15

    In this study, amperometric enzyme gas sensors for direct monitoring of organic vapours (formaldehyde, ethanol and phenol) are presented using exemplarily different sensing strategies: NADH detection, H(2)O(2) detection and direct substrate recycling, respectively. The presented sensor configurations allow the selective, continuous, online monitoring of organic vapours without prior accumulation or sampling of the analyte. The gaseous samples are provided as headspace above aqueous solutions. The concentration in the gas phase was calculated from the concentration in solution at room temperature according to the respective Henry constants given in the literature. The enzymes employed are NAD-dependent formaldehyde dehydrogenase [EC 1.2.1.46] from Pseudomonas putida, alcohol oxidase [EC 1.1.3.13] from Pichia pastoris, and tyrosinase [EC 1.14.18.1] from mushroom. The gas diffusion working electrodes used in the sensors are based on a porous, hydrophobic PTFE membrane (exposed geometric electrode area: 1.77 cm(2)) covered with a porous layer of gold, platinum or graphite/Teflon. Detection limit, sensitivity, and measuring range are 34 microM (6.5 ppb), 117 nA/mM, and 0.46-66.4 mM for formaldehyde, 9.9 microM (55 ppb), 3.43 microA/mM, and 0.1-30 mM for ethanol, and 0.89 microM (0.36 ppb), 2.4 microA/mM, and 0.01-1 mM for phenol, respectively. Further sensor characteristics such as response time and stability are also determined: t(90%) (formaldehyde: 4.5 min; ethanol: 69 s; phenol: 27 min), stability at permanent exposure (formaldehyde: 63%, 15 h @ 2.62 mM; ethanol: 86%, 18 @ 1 mM; phenol: 86%, 16.5 h @ 0.1 M). PMID:19926472

  13. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way. PMID:22512213

  14. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    Directory of Open Access Journals (Sweden)

    Yuriy Vashpanov

    2011-11-01

    Full Text Available This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  15. Chemical looping reforming of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Mendiara, T.; Jensen, Anker; Glarborg, P.

    2010-02-15

    The main objective of this work is to investigate the carbon deposition during reforming of hydrocarbons in a Chemical Looping Reformer (CLR). This knowledge is needed to asses the viability of the CLR technology in reforming tar from biomass gasification preserving lighter hydrocarbons and minimizing the carbon formation during the process. Two different setups were used to test the reactivity of the different samples in the conditions of interest for the tar reforming process: 1) Fixed bed flow reactor (FR), and 2) Thermogravimetric analyzer (TGA). In the experiments, the gas atmosphere was switched from reducing to oxidizing atmosphere in every cycle. During the oxidizing cycle, the carrier was regenerated using a mixture of oxygen and nitrogen. Four different oxygen carriers based on nickel (Ni40 and Ni60), manganese (Mn) and ilmenite (Fe) were tested. In the tests, toluene was used to simulate the tars. The Fe and the Mn carrier reacted to a small extent with methane at the highest temperature studied, 800 degrees C. The Ni-carriers did not react at 600 degrees C at first, but they showed some reactivity after having been activated at the higher temperature. Carbon formation occurred with the Ni-carriers, more so with the Ni60 than the Ni40. Ni40, Mn and Fe were activated at the higher temperature. However, Fe showed only low capacity. Ni60 showed no capability of tar reforming. Ni40 showed a high tendency to carbon formation at 800 degrees C, but the formation could be lowered by changing some parameters. Mn formed almost no carbon. Ni40 and Mn were chosen for further studies. Carbon deposition occurred for both Ni40 and Mn, but the amount deposited for Ni40 was about 10 times bigger. Ni40 reacted with the methane and toluene only at 800 degrees C. The conversion over Mn was not as big as for toluene alone. Carbon was formed from carbon monoxide on the Ni40 carrier and on the Mn, but to a much less extent on the latter one. The presence of hydrogen decreased

  16. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    S Roy; S Basu

    2002-11-01

    Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor applications. Good quality ZnO films were deposited on glass and quartz substrates by a novel CVD technique using zinc acetate as the starting solution. X-ray diffraction confirmed the crystallinity of the zinc oxide film and SEM study revealed uniform deposition of fine grains. Undoped ZnO films were used for detection of dimethylamine (DMA) and H2 at different temperatures by recording the change in resistivity of the film in presence of the test gases. The response was faster and the sensitivity was higher compared to the earlier reported ZnO based sensors developed in our laboratory. The main objective of this work was to study the selectivity of the ZnO film for a particular gas in presence of the others. The operating temperature was found to play a key role in the selectivity of such sensors.

  17. High Performance Indium-Doped ZnO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Junjie Qi

    2015-01-01

    Full Text Available Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s and recovery time (23 s to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16 of Co-doped ZnO nanofibers to acetone. These results indicate that doping elements can improve gas sensitivity, which is associated with oxygen space and valence ions. In-doped ZnO nanobelts exhibit higher sensitivity to acetone than that to ethanol. These results indicate that doped ZnO nanobelts can successfully distinguish acetone and ethanol, which can be put into various practical applications.

  18. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård;

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...

  19. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård;

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...

  20. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  1. Solid-state titania-based gas sensor for liquefied petroleum gas detection at room temperature

    Indian Academy of Sciences (India)

    B C Yadav; Anuradha Yadav; Tripti Shukla; Satyendra Singh

    2011-12-01

    This paper reports the liquefied petroleum gas (LPG) sensing of titanium dioxide (Qualigens, India). Scanning electron micrographs and X-ray diffraction studies of samples were done. SEM shows that the material is porous and has grapes-like morphology before exposure to the LPG. XRD patterns reveal the crystalline nature of the material. The crystallites sizes of the TiO2 were found in the range of 30–75 nm. Variations in resistance with exposure of LPG to the sensing element were observed. The average sensitivity for different volume percentages of gas was estimated. The maximum value of average sensitivity was 1.7 for higher vol.% of LPG. Percentage sensor response (%SR) as a function of time was calculated and its maximum value was 45%. Response time of the sensor was 70 s. The sensor was quite sensitive to LPG and results were found reproducible.

  2. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari

    2014-05-01

    Full Text Available Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs, holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current–voltage (I–V characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.

  3. Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Lado Filipovic

    2015-03-01

    Full Text Available The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2, zinc oxide (ZnO, indium oxide (In2O3 and indium-tin-oxide (ITO, are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed.

  4. Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors.

    Science.gov (United States)

    Filipovic, Lado; Selberherr, Siegfried

    2015-01-01

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed. PMID:25815445

  5. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    Science.gov (United States)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    2016-04-01

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  6. Gas sensor characterization at low concentrations of natural oils

    Science.gov (United States)

    Sambemana, H.; Siadat, M.; Lumbreras, M.

    2009-05-01

    Inhalation of essential oils can be used in aromatherapy due to their activating or relaxing effects. The study of these effects requires behavioral measurements on living subjects, by varying the nature and also the quantity of the volatile substances to be present in the atmosphere. So, to permit the evaluation of therapeutic effects of a variety of natural oils, we propose to develop an automatic diffusion/detection system capable to create an ambient air with low stabilized concentration of chosen oil. In this work, we discuss the performance of an array of eight gas sensors to discriminate low and constant concentrations of a chosen natural oil.

  7. Ultrathin Gas Permeable Oxide Membranes for Chemical Sensing: Nanoporous Ta2O5 Test Study

    Directory of Open Access Journals (Sweden)

    Alexander Imbault

    2015-09-01

    Full Text Available Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta2O5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitive analytical systems operating at high temperatures and in harsh environments.

  8. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    OpenAIRE

    Kohei Higuchi; Yonggang Jiang; Kazusuke Maenaka; Hidekuni Takao; Xiuchun Hao

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is...

  9. The investigation of colloidal based conducting polymer films for chemical sensor applications

    International Nuclear Information System (INIS)

    ) produced via chemical means, were used to further investigate the potential of polypyrroles to act as a means of determining the chiral nature of gaseous analytes. Volatile chiral amines of low molecular weight were used as probes for the system. Chemical means of altering the polymer backbone were evaluated, primarily via the use of removable blocking groups at the N-position of pyrrole to produce 3-substituted monomers. A novel material based upon the chemical and chemical mediated polymerisation of the monomer tetra(pyrrol-1-yl)silane was produced. When fabricated as a gas sensor its response towards volatile amines was investigated. It displayed a 35 % increase in resistance on exposure to 0.1 % ammonia vapour (cf. 20 % for polypyrrole and 13 % for poly-N-methylpyrrole) and a 37 % resistance increase on exposure to 0.1 % trimethylamine vapour (cf. 32 % for polypyrrole and 3 % for poly-N-methylpyrrole). (author)

  10. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    Science.gov (United States)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  11. Green synthesis of tungsten trioxide monohydrate nanosheets as gas sensor

    International Nuclear Information System (INIS)

    Research highlights: → Tungsten trioxide hydrate nanosheets were synthesized using a simple sonochemical method. → The formation of nanosheets is closely related to their intrinsic crystalline structure. → The nanosheets exhibited favourable room-temperature gas-sensing performances. - Abstract: In this paper, orthorhombic tungsten trioxide monohydrate nanosheets in high yields were successfully generated using a very simple sonochemical method with tungsten hexachloride as the precursor and distilled water as the solvent. The tungsten trioxide monohydrate nanosheets exhibited thickness of about tens of nanometers and edge length of up to several hundreds of nanometers. The sheet-like morphology has been well explained based on the acoustic cavitation effect as well as the crystalline structure of orthorhombic tungsten trioxide monohydrate. The tungsten trioxide monohydrate nanosheets sensor exhibited ideal room-temperature gas-sensing performances, and were found to be sensitive to various flammable organic vapors and harmful gases. The corresponding sensing mechanisms were also discussed.

  12. Gas-leak localization using distributed ultrasonic sensors

    Science.gov (United States)

    Huseynov, Javid; Baliga, Shankar; Dillencourt, Michael; Bic, Lubomir; Bagherzadeh, Nader

    2009-03-01

    We propose an ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas leak. Statistical tools such as the maximum likelihood (ML) and the least squares (LS) estimators are used for approximating the source location when closed-form solutions fail in the presence of ambient background nuisance and inherent electronic noise. The proposed localization algorithms were implemented and tested using a Java-based simulation platform connected to four or more distributed MEMS microphones observing a broadband nitrogen leak from an orifice. The performance of centralized and decentralized algorithms under ED and TDOA schemes is analyzed and compared in terms of communication overhead and accuracy in presence of additive white Gaussian noise (AWGN).

  13. Gas sensing performance of nano zinc oxide sensors

    Science.gov (United States)

    Sharma, Shiva; Chauhan, Pratima

    2016-04-01

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH3) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 sec respectively.

  14. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    Science.gov (United States)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  15. Gas Sensors Based on Coated and Doped Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Meyyappan, Meyya

    2008-01-01

    Efforts are underway to develop inexpensive, low-power electronic sensors, based on single-walled carbon nanotubes (SWCNTs), for measuring part-per-million and part-per-billion of selected gases (small molecules) at room temperature. Chemically unmodified SWCNTs are mostly unresponsive to typical gases that one might wish to detect. However, the electrical resistances of SWCNTs can be made to vary with concentrations of gases of interest by coating or doping the SWCNTs with suitable materials. Accordingly, the basic idea of the present development efforts is to incorporate thus-treated SWCNTs into electronic devices that measure their electrical resistances.

  16. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    OpenAIRE

    Lary, David J.; Bryan Roscoe; William A. Harrison; Lei Tao; Miller, David J.; Zondlo, Mark A.; Kang Sun; David Schaefer; Amir Khan

    2012-01-01

    We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV) platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m) within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, wate...

  17. A magnonic gas sensor based on magnetic nanoparticles

    Science.gov (United States)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  18. Mathematical Modeling and Interpretation of PbPc Gas Sensor Array

    OpenAIRE

    Nidal F. Shilbayeh; MAHMOUD Z. ISKANDARANI

    2006-01-01

    The voltage/current characteristics and the effect of NO2 gas on the electrical conductivity of a PbPc gas sensor array is investigated. The gas sensor is manufactured using vacuum deposition of gold electrodes on sapphire substrate with the lead-phathalocyanine vacuum sublimed on the top of the gold electrodes. Two versions of the PbPc gas sensor array are investigated. The tested types differ in the gap sizes between the deposited gold electrodes. The sensors are tested at different tempera...

  19. Analysis of nanowire transistor based nitrogen dioxide gas sensor – A simulation study

    Directory of Open Access Journals (Sweden)

    Gaurav Saxena

    2015-06-01

    Full Text Available Sensors sensitivity, selectivity and stability has always been a prime design concern for gas sensors designers. Modeling and simulation of gas sensors aids the designers in improving their performance. In this paper, different routes for the modeling and simulation of a semiconducting gas sensor is presented. Subsequently, by employing one of the route, the response of Zinc Oxide nanowire transistor towards nitrogen dioxide ambient is simulated. In addition to the sensing mechanism, simulation study of gas species desorption by applying a recovery voltage is also presented.

  20. Hybrid tin oxide-SWNT nanostructures based gas sensor

    International Nuclear Information System (INIS)

    A facile electrochemical functionalization method was utilized to decorate single-walled carbon nanotubes (SWNTs) with tin oxide and their gas sensing performance toward various analytes (NH3, NO2, H2, H2S, acetone, and water vapor) was evaluated at room temperature. Tin oxy-hydroxide was site-specifically precipitated on the surface of SWNTs because of an increase in local pH during electrochemical reduction of nitrate to nitrite ions. By adjusting the amount of charge passed during deposition, the amount of tin oxide deposited on SWNTs was controlled, which altered the electronic and gas sensing properties of the nanostructures. The resulting hybrid nanostructures showed excellent sensitivities upon exposure to trace amounts of both oxidizing gases (limit of detection (LOD) of 25 ppbV for NO2) and reducing gases (LOD of 10 ppmV for H2) at room temperature. The enhanced sensing performance was due to the charge transfer between the surface active tin oxide nanoparticles and SWNTs, with the direction of charge transfer depending on the analyte gas. This approach can be applied to fabricate other hybrid metal oxide-SWNTs nanostructures to create highly sensitive gas sensor arrays

  1. A monolithically-integrated μGC chemical sensor system.

    Science.gov (United States)

    Manginell, Ronald P; Bauer, Joseph M; Moorman, Matthew W; Sanchez, Lawrence J; Anderson, John M; Whiting, Joshua J; Porter, Daniel A; Copic, Davor; Achyuthan, Komandoor E

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. PMID:22163970

  2. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  3. Gas Membrane Sensor Technique for Long Term Gas Measurements in Deep Boreholes

    Science.gov (United States)

    Zimmer, M.; Erzinger, J.; Kujawa, Chr.; Co2-Sink Group

    2009-04-01

    The direct determination of the gas composition in subsurface brines in deep boreholes is necessary for the characterization of existing fluids and the monitoring of changes of reservoir gases during industrial use. The conventional methods used for this purpose were mostly expensive and sophisticated techniques and typically involve the collection of discrete samples that are transported to a laboratory for analyses. Alternatively, the presented new gas membrane sensor technique allows for a permanent collection of gas in the subsurface and the continuous conduction of the gathered gas through a special borehole cable with subsequent real time analyses at the surface. The system is easy to handle, avoids complex mechanical components and therefore reduces costs. The main component of the gas sensor is a tube-shaped membrane, together with a piezoresistive pressure and temperature transmitter and two stainless steel capillaries embedded in a borehole cable for the gas transport to the surface. A filler material prevents the membrane from collapsing inwardly under pressures exceeding 200 bars. The practicability of our method was tested by comprehensive laboratory experiments at different pressures, temperatures and salt concentrations and by comparing the results with literature data on gas permeation coefficients and activation energies gained by the conventional "time-lag" method. By taking into account the permeability coefficient for carbon dioxide in the used polydimethylsiloxan membrane, the Henry-law coefficient and the salting out effect the quantification of dissolved carbon dioxide in deep borehole brines is possible. The described method was successful applied at the scientific carbon dioxide storage test site in Ketzin, Germany. Changes in the reservoir gas composition were monitored and the breakthrough of injected carbon dioxide and krypton gas tracer into the observation well were recorded.

  4. Selected area chemical vapor deposition of thin films for conductometric microelectronic chemical sensors

    Science.gov (United States)

    Majoo, Sanjeev

    Recent advances in microelectronics and silicon processing have been exploited to fabricate miniaturized chemical sensors. Although the capability of chemical sensing technology has grown steadily, it has been outpaced by the increasing demands for more reliable, inexpensive, and selective sensors. The diversity of applications requires the deployment of different sensing materials that have rich interfacial chemistry. However, several promising sensor materials are often incompatible with silicon micromachining and their deposition requires complicated masking steps. The new approach described here is to first micromachine a generic, instrumented, conductometric, microelectronic sensor platform that is fully functional except for the front-end sensing element. This generic platform contains a thin dielectric membrane, an integrated boron-doped silicon heater, and conductance electrodes. The membrane has low thermal mass and excellent thermal isolation. A proprietary selected-area chemical vapor deposition (SACVD) process in a cold-wall reactor at low pressures was then used to achieve maskless, self-lithographic deposition of thin films. The temperature-programmable integrated microheater initiates localized thermal decomposition/reaction of suitable CVD precursors confined to a small heated area (500 mum in diameter), and this creates the active sensing element. Platinum and titania (TiOsb2) films were deposited from pyrolysis of organometallic precursors, tetrakistrifluorophosphine platinum Pt(PFsb3)sb4 and titanium tetraisopropoxide Ti(OCH(CHsb3)sb2rbrack sb4, respectively. Deposition of gold metal films from chlorotriethylphosphine gold (Csb2Hsb5)sb3PAuCl precursor was also attempted but without success. The conductance electrodes permit in situ monitoring of film growth. The as-deposited films were characterized in situ by conductance measurements and optical microscopy and ex situ by electron microscopy and spectroscopy methods. Devices equipped with

  5. Evaluation of a low cost wireless chemical sensor network for environmental monitoring

    OpenAIRE

    Hayes, Jer; Beirne, Stephen; Lau, King-Tong; Diamond, Dermot

    2008-01-01

    We present work on the development and testing of a low-cost wireless chemical sensor network (WCSN) for monitoring irritant/toxic gases in the environment. The WCSN used in this work takes advantage of recent advances in low power wireless communication platforms and uses colorimetric sensors to detect the presence of certain target gases. This sensor network adopts a star configuration and performs one way RF communications from individual sensor nodes to the base-st...

  6. Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network

    Science.gov (United States)

    Lv, Pin; Tang, Zhenan; Wei, Guangfen; Yu, Jun; Huang, Zhengxing

    2007-09-01

    Low-concentration formaldehyde (HCHO) together with ethanol/toluene/acetone/α-pinene (as an interference gas of HCHO) is detected with a micro gas sensor array, composed of eight tin oxide (SnO2) thin film gas sensors with Au, Cu, Pt or Pd metal catalysts. The characteristics of the multi-dimensional signals from the eight sensors are evaluated. A multilayer neural network with an error backpropagation (BP) learning algorithm, plus the principal component analysis (PCA) technique, is implemented to recognize these indoor volatile organic compounds (VOC). The results show that the micro gas sensor array, plus the multilayer neural network, is very effective in recognizing 0.06 ppm HCHO in single gas component and in binary gas mixtures, toluene/ethanol/α-pinene with small relative error.

  7. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film

    Science.gov (United States)

    Haija, Mohammad Abu; Ayesh, Ahmad I.; Ahmed, Sadiqa; Katsiotis, Marios S.

    2016-04-01

    Hydrogen gas sensors based on CuFe2O4 nanoparticle thin films are presented in this work. Each gas sensor was prepared by depositing CuFe2O4 thin film on a glass substrate by dc sputtering inside a high vacuum chamber. Argon inert gas was used to sputter the material from a composite sputtering target. Interdigitated metal electrodes were deposited on top of the thin films by thermal evaporation and shadow masking. The produced sensors were tested against hydrogen, hydrogen sulfide, and ethylene gases where they were found to be selective for hydrogen. The sensitivity of the produced sensors was maximum for hydrogen gas at 50 °C. In addition, the produced sensors exhibit linear response signal for hydrogen gas with concentrations up to 5%. Those sensors have potential to be used for industrial applications because of their low power requirement, functionality at low temperatures, and low production cost.

  8. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    Science.gov (United States)

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics. PMID:26321290

  9. Detection of chlorinated methanes by tin oxide gas sensors.

    Science.gov (United States)

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry. PMID:11534610

  10. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.

    Science.gov (United States)

    Sekhar, Praveen K; Brosha, Eric L; Mukundan, Rangachary; Linker, Kevin L; Brusseau, Charles; Garzon, Fernando H

    2011-06-15

    In this article, selective and sensitive detection of trace amounts of pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) is demonstrated. The screening system is based on a sampling/concentrator front end and electrochemical potentiometric gas sensors as the detector. Preferential hydrocarbon and nitrogen oxide(s) mixed potential sensors based on lanthanum strontium chromite and Pt electrodes with yttria stabilized zirconia (YSZ) solid electrolyte were used to capture the signature of the explosives. Quantitative measurements based on hydrocarbon and nitrogen oxide sensor responses indicated that the detector sensitivity scaled proportionally with the mass of the explosives (1-3 μg). Moreover, the results showed that PETN, TNT, and RDX samples could be discriminated from each other by calculating the ratio of nitrogen oxides to hydrocarbon integrated area under the peak. Further, the use of front-end technology to collect and concentrate the high explosive (HE) vapors make intrinsically low vapor pressure of the HE less of an obstacle for detection while ensuring higher sensitivity levels. In addition, the ability to use multiple sensors each tuned to basic chemical structures (e.g., nitro, amino, peroxide, and hydrocarbon groups) in HE materials will permit the construction of low-cost detector systems for screening a wide spectrum of explosives with lower false positives than present-day technologies. PMID:21435779

  11. Advances and trends in ionophore-based chemical sensors

    Science.gov (United States)

    Mikhelson, K. N.; Peshkova, M. A.

    2015-06-01

    The recent advances in the theory and practice of potentiometric, conductometric and optical sensors based on ionophores are critically reviewed. The role of the heterogeneity of the sensor/sample systems is emphasized, and it is shown that due to this heterogeneity such sensors respond to the analyte activities rather than to concentrations. The basics of the origin of the response of all three kinds of ionophore-based sensors are briefly described. The use of novel sensor materials, new preparation and application techniques of the sensors as well as advances in theoretical treatment of the sensor response are analyzed using literature sources published mainly from 2012 to 2014. The basic achievements made in the past are also addressed when necessary for better understanding of the trends in the field of ionophore-based sensors. The bibliography includes 295 references.

  12. Gas phase chemical properties of transactinides

    International Nuclear Information System (INIS)

    Early gas thermochromatography experiments performed in Dubna by Zvara et al. have given evidence for a behavior of element 104 and 105 halides as expected on the basis of their position in the periodic table of elements. Recent theoretical predictions have renewed the interest in such studies and caused a need for new experiments with better statistics and higher resolution in the retention data. Using the OLGA technique (on-line gas chemistry apparatus), the volatility of element 104 and 105 bromides and chlorides were recently studied at Berkeley. In addition, for the same systems the Dubna group performed additional experiments with the thermochromatography technique. The results are summarized and confronted with recent theoretical predictions. An outlook to possible future gas chemistry experiments with element 106 is made

  13. A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings

    International Nuclear Information System (INIS)

    A fiber sensor based on a polyaniline (PANI) film that is coated on the surface of an etched superstructure fiber grating to detect volatile solvent vapors is experimentally demonstrated. This sensing mechanism is based on the interaction of the testing gas with the polyaniline coating film, which changes the film index, resulting in a shift in the Bragg wavelength. The sensitivity of this sensor to ammonia (NH3) gas is about 0.073 pm ppm−1, which depends on the optical characteristics of the fiber grating, the diameter of the fiber cladding and the constituents of the sensing film. Methanol concentrations can also be measured using this sensing scheme. The sensitivity of this sensor must be improved to provide a simple, reliable, repeatable and non-destructive method for sensing various chemical gases. (technical design note)

  14. Rebirth of Liquid Crystals for Sensoric Applications: Environmental and Gas Sensors

    Directory of Open Access Journals (Sweden)

    P. V. Shibaev

    2015-01-01

    Full Text Available Films and droplets of liquid crystals may soon become an essential part of sensitive environmental sensors and detectors of volatile organic compounds (VOCs in the air. In this paper a short overview of recent progress in the area of sensors based on liquid crystals is presented, along with the studies of low molar mass liquid crystals as gas sensors. The detection of VOCs in the air may rely on each of the following effects sequentially observed one after the other: (i slight changes in orientation and order parameter of liquid crystal, (ii formation of bubbles on the top of the liquid crystalline droplet, and (iii complete isotropisation of the liquid crystal. These three stages can be easily monitored by a photo camera and/or optical microscopy. Detection limits corresponding to the first stage are typically lower by a factor of at least 3–6 than detection limits corresponding to isotropisation. The qualitative model taking into account the reorientation of liquid crystals is presented to account for the observed changes.

  15. Hybrid Integrated Label-Free Chemical and Biological Sensors

    Directory of Open Access Journals (Sweden)

    Simin Mehrabani

    2014-03-01

    Full Text Available Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits. This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  16. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    International Nuclear Information System (INIS)

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  17. Laboratory Connections: Gas Monitoring Transducers: Relative Humidity Sensors.

    Science.gov (United States)

    Powers, Michael H.; Hull, Stacey E.

    1988-01-01

    Explains the operation of five relative humidity sensors: psychrometer, hair hygrometer, resistance hygrometer, capacitance hygrometer, and resistance-capacitance hygrometer. Outlines the theory behind the electronic sensors and gives computer interfacing information. Lists sensor responses for calibration. (MVL)

  18. Chemically Responsive Nanoporous Pigments: Colorimetric Sensor Arrays and the Identification of Aliphatic Amines

    OpenAIRE

    Bang, Jin Ho; Lim, Sung H.; Park, Erwin; Suslick, Kenneth S.

    2008-01-01

    A general method has been developed for the preparation of microspheres of nanoporous pigments, their formulation into chemically responsive pigment inks, and the printing of these inks as calorimetric sensor arrays. Using an ultrasonic-spray aerosol–gel synthesis from chemically responsive dyes and common silica precursors, 16 different nanoporous pigment microspheres have been prepared and characterized. New calorimetric sensor arrays have been created by printing inks of these chemically r...

  19. Development of Natural Gas Chemical Engineering in China

    Institute of Scientific and Technical Information of China (English)

    Yuan Qingmin

    1996-01-01

    @@ The equivalent ratio of natural gas to oil has reached 0.73:1 worldwide by 1994. The Chinese output of natural gas and oil ranks the 22nd and 5th respectively in the world's oil and gas production. The quantity equivalent ratio of gas to oil in China is only 0.11:1, which can not meet the needs of future economic development. Since the beginning of the 1990s, the discovery and expansion of natural gas reserves in Sichuan, Shaanxi, Xinjiang and Hainan Provinces and offshore area have brought about a solid foundation for the rapid development of the country's natural gas industry. It is sure that a new era of the development of China's natural gas chemical engineering is coming.

  20. Nanohybrid TiO2/carbon black sensor for NO2 gas

    Institute of Scientific and Technical Information of China (English)

    Wei-Jen Liou; Hong-Ming Lin

    2007-01-01

    A nanohybrid sensor of nanosized TiO2-coated carbon black particles, prepared by sol-gel technology for the detection of NO2 gas, has been developed. The response of the electric resistance of the hybrid sensor to NO2 concentration is investigated, showing that the sensitivity of the hybrid sensor is raised as certain ratio of the TiO2 content in the sensor. Easy and cheap to fabricate, the hybrid TiO2/carbon black promises to be a practical sensor for detecting NO2 gas.

  1. Digital Architecture for a Trace Gas Sensor Platform

    Science.gov (United States)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows

  2. Electrostatic spray deposited zinc oxide films for gas sensor applications

    International Nuclear Information System (INIS)

    In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 oC while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S)

  3. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  4. Chemoresistive Gas Sensors for the Detection of Colorectal Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Cesare Malagù

    2014-10-01

    Full Text Available Numerous medical studies show that tumor growth is accompanied by protein changes that may lead to the peroxidation of the cell membrane with consequent emission of volatile organic compounds (VOCs by breath or intestinal gases that should be seen as biomarkers for colorectal cancer (CRC. The analysis of VOCs represents a non-invasive and potentially inexpensive preliminary screening technique. An array of chemoresistive gas sensors based on screen-printed metal oxide semiconducting films has been selected to discriminate gases of oncological interest, e.g., 1-iodononane and benzene, widely assumed to be biomarkers of colorectal cancer, from those of interference in the gut, such as methane and nitric oxide.

  5. Air Monitoring System in Elders' Apartment with QCM Type Gas Sensors

    Science.gov (United States)

    Kikuchi, Masashi; Ito, Tsukasa; Shiratori, Seimei

    The gas monitoring system for elders' apartment using QCM sensors was newly developed. The QCM sensors for sulfide gas and ammonia gas were used for this system. The system for bodily wastes was fabricated and applied to nursing care system in elders' apartment. This system is composed by the sensor unit, communication unit and data server. Care person can see whether the linen should be changed or not without seeing over each room. The QCM sensors have some problems such as the interference of humidity and temperature, therefore these influences were dissolved using humidity sensor and temperature sensor as feedback source. The sensors were placed in several points of elders' apartment for 2 weeks. This system can be used in elders' apartment successfully.

  6. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    Science.gov (United States)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  7. Detection of hydrogen peroxide vapor by use of manganese(IV) oxide as catalyst for calorimetric gas sensors

    OpenAIRE

    Oberländer, Jan; Kirchner, Patrick; Boyen, Hans-Gerd; Schöning, Michael J.

    2014-01-01

    In this work, the catalyst manganese(IV) oxide (MnO2), of calorimetric gas sensors (to monitor the sterilization agent vaporized hydrogen peroxide) has been investigated in more detail. Chemical analyses by means of X-ray-induced photoelectron spectroscopy have been performed to unravel the surface chemistry prior and after exposure to hydrogen peroxide vapor at elevated temperature, as applied in the sterilization processes of beverage cartons. The surface characterization reveals a change i...

  8. A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.

    2012-04-01

    A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.

  9. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    OpenAIRE

    Panida Lorwongtragool; Enrico Sowade; Natthapol Watthanawisuth; Baumann, Reinhard R.; Teerakiat Kerdcharoen

    2014-01-01

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is ...

  10. Field-effect transistor chemical sensors of single nanoribbon of copper phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Copper phthalocyanine (CuPc) nanoribbon field-effect transistors were implemented as chemical sensors. They showed fast response and high reversibility in the detection of the tetrahydrofuran atmosphere at room temperature. The drain current of the field-effect transistor sensor decreased from 6.7 to 0.2 nA when the transistor was measured under the tetrahydrofuran atmosphere. The sensor was self-refreshable in a few minutes. These results demonstrate that the organic single crystalline nanoribbon transistors could effectively act as chemical sensors.

  11. High sensitivity gas sensor based on IR spectroscopy technology and application

    Science.gov (United States)

    Li, Hengyi

    2016-06-01

    Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was ≤0.01cm-1 (equivalent to 0.06 nm), and the sensor sensitivity was at the level of 194 ppb with the application of H2CO measurement.

  12. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    OpenAIRE

    Jun-Tao Gu; Yong-De Zhang; Jin-Gang Jiang

    2014-01-01

    The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS) technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxi...

  13. Metal oxide semiconductor gas sensor self-test using Fourier-based impedance spectroscopy

    OpenAIRE

    Schüler, M.; T. Sauerwald; Schütze, A

    2014-01-01

    For the self-test of semiconductor gas sensors, we combine two multi-signal processes: temperature-cycled operation (TCO) and electrical impedance spectroscopy (EIS). This combination allows one to discriminate between irreversible changes of the sensor, i.e., changes caused by poisoning, as well as changes in the gas atmosphere. To integrate EIS and TCO, impedance spectra should be acquired in a very short time period, in which the sensor can be considered time invariant, i...

  14. Improving the sensitivity of the ZnO gas sensor to dimethyl sulfide

    Science.gov (United States)

    Suchorska-Woźniak, P.; Nawrot, W.; Rac, O.; Fiedot, M.; Teterycz, H.

    2016-01-01

    This study was focused on how to improve the gas sensing properties of resistive gas sensors based on zinc oxide to dimethyl sulfide (DMS). The aim of this research was to investigate possible ways of improvement detection of dimethyl sulfide, such as volume doping with synthesized gold nanoparticles or applying sepiolite passive filter. The addition of noble metal into the gas sensing layer is a widely known method of increasing gas sensor response. Sepiolite is a clay mineral with highly porous structure consisting of nanotubes few micrometers long and water absorption abilities. In this work thick-film resistive gas sensors based on zinc oxide were made (pure ZnO, modified by gold nanoparticles, with the addition of filter) and tested for low concentration (2 ppm) of dimethyl sulfide. The sensitivities to DMS of developed sensors were compared. Attention was paid to the analysis of the impact of high humidity (90% RH) on the sensor time response.

  15. Receptors useful for gas phase chemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  16. Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays

    Science.gov (United States)

    Aguilar, Alvaro Díaz; Forzani, Erica S.; Li, Xiulan; Tao, Nongjian; Nagahara, Larry A.; Amlani, Islamshah; Tsui, Raymond

    2005-11-01

    We demonstrate a heavy metal-ion sensor for drinking water analysis using a conducting polymer nanojunction array. Each nanojunction is formed by bridging a pair of nanoelectrodes separated with a small gap (sensor is based on the change in the nanojunction conductance as a result of polymer conformational changes induced by the metal-ion chelating peptide. The nanojunction sensor allows real-time detection of Cu2+ and Ni2+ at ppt range.

  17. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S.; Mitsuishi, Y.; Inagaki, M. [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S.; Mizusawa, K. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  18. Optical chemical sensors for atmospheric pollutants based on nano porous materials: application to the formaldehyde and the other carbonyl compounds

    International Nuclear Information System (INIS)

    Formaldehyde, a well-identified indoor pollutant, was recently classified as carcinogenic. New regulations for the air quality are expected and therefore there is a need for low-cost sensors, sensitive and selective with a fast response time for the detection of formaldehyde at ppb level. In the present work, we had developed a chemical sensor based on nano-porous matrices doped with Fluoral-P and optical methods of detection. The nano-porous matrices, elaborated via the Sol-Gel process, display nano-pores whose cavity is tailored for the trapping of the targeted pollutant. They provide a first selectivity with the discrimination of the pollutants by their size. A second selectivity is obtained with a molecular probe, Fluoral-P, which reacts specifically with formaldehyde leading to the 3,5- di-acetyl-1,4-dihydro-lutidine (DDL). The kinetics of formation of DDL was studied as function of many parameters such as the concentration of Fluoral-P in the matrix, the pollutant content in gas mixture, the flow rate, the relative humidity of the gas mixtures and interference with other carbonylated compounds. The present chemical sensor can detect, via absorbance measurements, 2 ppb of formaldehyde within 30 min over a O to 60% relative humidity range. Moreover, to detect the total carbonylated compounds, we also explored the potentiality of a chemical sensor using, as a probe molecule, the 2'4-dinitro-phenyl-hydrazine which forms with these compounds the corresponding hydrazones derivatives. A patent was deposited for these two sensors. We have also developed a semi-miniaturized prototype for demonstration, using a flow cell, a miniaturized spectrophotometer, a light source and a lap-top. (author)

  19. Net-like structured materials for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, I E; Moshnikov, V A; Karpova, S S; Maraeva, E V, E-mail: iegrachova@mail.ru, E-mail: jenvmar@mail.ru [Saint-Petersburg State Electrotechnical University ' LETI' , 5 Prof. Popova str., 197367, Saint-Petersburg (Russian Federation)

    2011-04-01

    Silicon dioxide-based fractal aggregates as an example of self-assembly in sol-gel processes were prepared. Main evolution stages of tin dioxide-silicon dioxide fractal systems were demonstrated by atomic force microscopy (AFM): diffusion-limited aggregation, cluster-cluster aggregation, formation of percolation net and 3D-net nanostructures. The formation possibilities of porous nanomaterials based on different metal oxides, including those based on tin dioxide, iron oxide and zinc oxide, were shown. New chemical etching method to obtain microreactors was developed. Specific surface area of nanostructures was investigated by thermal desorption of nitrogen and gas sensitive properties of tin dioxide nanocomposites were also studied.

  20. Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring

    Science.gov (United States)

    Luo, Shufang; Liu, Yongcheng; Sucheta, Artur; Evans, Mishell K.; Van Tassell, Roger

    2002-09-01

    A long-period grating (LPG) fiber optic sensor has been developed for monitoring the relative humidity levels and toxic chemicals, especially the chemical warfare agents. The principle of operation of this sensor is based on monitoring the refractive index changes exhibited by the reactive coating applied to the surface of the LPG region in response to analytes. Specific interaction of the analyte with the thin film polymer coating produces as the output a wavelength shift that can be correlated with the concentration of the analyte. Thin polymer coating for relative humidity sensor is made of carboxymethylcellulose (CMC) covalently bound to the surface of the fiber. Coating for chemical warfare agent detection employs metal nanoclusters imbedded in polyethylenimine (PEI) for specific reaction. The relative humidity level can be determined from 0% to 95% and the level of toxic chemicals can be determined is at least on the scale of 1 ppm. This small-size and low-cost LPG fiber optic sensor exhibited high sensitivity, rapid response, repeatability and durability. The goal of developing relative humidity sensor is to produce a fiber optic sensor-based health monitoring system for building, while the chemical sensor has found its application in point detection network for chemical warfare agent monitoring.

  1. Performance of a CVD grown graphene-based planar device for a hydrogen gas sensor

    International Nuclear Information System (INIS)

    A multilayer graphene (MLG) film was grown on thermally oxidized silicon (SiO2/Si) substrate by atmospheric pressure chemical vapor deposition (APCVD). The formation of the MLG and the presence of the oxide on the graphene surface were confirmed by Raman spectroscopy and electron dispersive spectroscopy (EDS), respectively. An energy gap of 0.234 eV was determined by the optical transmission method. The surface morphology of the graphene film was studied by field emission scanning electron microscopy (FESEM) and by atomic force microscopy (AFM). A planar device with lateral Pd metal contacts was used for the hydrogen sensor studies. The sensor performance in the temperature range (110 °C–150 °C) revealed a relatively fast response (∼12 s) and recovery (∼24 s) for hydrogen sensing. The reproducibility, the selectivity, and the stability of the device were also studied. The sensor was found to be selective for hydrogen relative to methane in the temperature range studied. The gas sensing mechanism has been suggested on the basis of the interaction of palladium with hydrogen, the change in the interface barrier, and the adsorption–desorption processes related to the change in the hydrogen partial pressure and temperature. The AFM study indicates the reorientation of the graphene surface after the sensing operation, most probably due to hydrogen passivation. (paper)

  2. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  3. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  4. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    OpenAIRE

    Natalia Abramova; Andrey Bratov

    2015-01-01

    Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  5. Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes

    DEFF Research Database (Denmark)

    Mowbray, Duncan; García Lastra, Juan Maria; Thygesen, Kristian Sommer;

    2010-01-01

    We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function...... methodologies, respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes may work as effective multifunctional sensors for both CO and NH3....

  6. Conserved Charge Susceptibilities in a Chemically Frozen Hadronic Gas

    CERN Document Server

    Ang'ong'a, Jackson

    2015-01-01

    In a hadronic gas with three conserved charges (electric charge, baryon number, and strangeness) we employ the hadron resonance gas model to compute both diagonal and off-diagonal susceptibilities. We model the effect of chemical freeze-out in two ways: one in which all particle numbers are conserved below the chemical freeze-out temperature and one which takes into account resonance decays. We then briefly discuss possible implications these results may have on two active areas of research, hydrodynamic fluctuations and the search for the QCD critical point.

  7. Chemical Warfare Agents Analyzer Based on Low Cost, Room Temperature, and Infrared Microbolometer Smart Sensors

    Directory of Open Access Journals (Sweden)

    Carlo Corsi

    2012-01-01

    Full Text Available Advanced IR emitters and sensors are under development for high detection probability, low false alarm rate, and identification capability of toxic gases. One of the most reliable techniques to identify the gas species is absorption spectroscopy, especially in the medium infrared spectral range, where most of existing toxic compounds exhibit their strongest rotovibrational absorption bands. Following the results obtained from simulations and analysis of expected absorption spectra, a compact nondispersive infrared multispectral system has been designed and developed for security applications. It utilizes a few square millimeters thermal source, a novel design multipass cell, and a smart architecture microbolometric sensor array coupled to a linear variable spectral filter to perform toxic gases detection and identification. This is done by means of differential absorption spectroscopic measurements in the spectral range of the midinfrared. Experimental tests for sensitivity and selectivity have been done with various chemical agents (CAs gases and a multiplicity of vapour organic compounds (VOCs. Detection capability down to ppm has been demonstrated.

  8. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  9. Solid State Gas Sensor Research in Germany – a Status Report

    Directory of Open Access Journals (Sweden)

    Udo Weimar

    2009-06-01

    Full Text Available This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor.

  10. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  11. Integrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  12. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  13. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  14. Fiber optic chemical sensor constructed with different types of optical fiber

    Science.gov (United States)

    Hao, Tianyou; Xing, Xuekun; Liu, Chung-Chiun

    1992-03-01

    Optical fiber sensors have gained much attention in recent years. Optical fiber based chemical sensors often use a reaction chamber within which a chemical reaction involving the sensing species occurs. A color change may result from this chemical reaction and, with light passing through the reaction chamber, the light intensity can be modulated by this color change. Consequently, this change in light intensity can be used to quantify the sensing species present. In most of these chemical sensors, either one or two optical fibers will be used. If a single fiber is used, the signal derived from the chemical reaction is relatively weak. On the other hand, if either one or two optical fibers are used, a mirror-finished surface is usually required for the reflection of light to the detector. In this research, optical fiber sensors are constructed using two different types of fibers. One is a quartz fiber and the other is a plastic fiber. The plastic fiber is more flexible and can be bent or connected with a slant surface at the top of the fiber at 45 degree(s). Two types of sensors were constructed--a temperature sensor employing a thermochromic solution and a pH sensor using a pH sensitive dye. By using the two types of fiber, a mirror-finished surface is no longer necessary. The weak signal due to the use of a single fiber is also minimized.

  15. An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hajeri, S; Wylie, S R; Stuart, R A; Al-Shamma' a, A I [Liverpool John Moores University, General Engineering Research Institute, RF and Microwave Group, Byrom Street, Liverpool, L3 3AF (United Kingdom)

    2007-07-15

    The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

  16. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    OpenAIRE

    Mohamad Hajj-Hassan; Timothy Gonzalez; Ebrahim Ghafar-Zadeh; Hagop Djeghelian; Vamsy Chodavarapu; Daniel Therriault; Mark Andrews

    2008-01-01

    We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides...

  17. Ultra-Low-Power MEMS Selective Gas Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — KWJ offers this proposal for a very low power but very practical "nano-watt" MEMS sensor platform for NASA requirements. The proposed nano-sensor platform is ultra...

  18. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  19. Detection of low concentration formaldehyde gas by photonic crystal sensor fabricated by nanoimprint process in polymer material

    Science.gov (United States)

    Boersma, A.; van Ee, Renz J.; Stevens, Ralph S. A.; Saalmink, Milan; Charlton, Martin D. B.; Pollard, Michael E.; Chen, Ruiqi; Kontturi, Ville; Karioja, Pentti; Alajoki, Teemu

    2014-05-01

    This paper describes experimental measurement results for photonic crystal sensor devices which have been functionalized for gas sensing applications. The sensor consists of a two dimensional photonic crystal etched into a slab waveguide having a refractive index of 1.7-1.9. Test devices were fabricated from SiON material on silicon / silicon dioxide platform, and also in polymer materials on silicon platform. The inorganic photonic crystals were made using direct write electron-beam lithography and reactive ion etching. The polymeric devices were made by nano-imprint lithography using the SiON structure as the imprint master. The high refractive index polymer was composed of a TiO2 - UV resin nanocomposite having a nanoparticle fraction between 50 and 60 wt%. This resulted in a tunable refractive index between 1.7 and 1.85. Devices were functionalized for gas sensing applications by coating the surface with a chemical receptor. This responsive layer reacts with the target gas and changes its refractive index. This change causes the angle of out-coupling to change slightly. In this paper we report successful detection of formaldehyde in air at sub ppm levels, and discuss details of chemical functionalization of the PC sensor.

  20. SnO2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2015-01-01

    Full Text Available A significant amount of pollutants is produced from factories and motor vehicles in the form of gas. Their negative impact on the environment is well known; therefore detection with effective gas sensors is important as part of pollution prevention efforts. Gas sensors use a metal oxide semiconductor, specifically SnO2 nanostructures. This semiconductor is interesting and worthy of further investigation because of its many uses, for example, as lithium battery electrode, energy storage, catalyst, and transistor, and has potential as a gas sensor. In addition, there has to be a discussion of the use of SnO2 as a pollutant gas sensor especially for waste products such as CO, CO2, SO2, and NOx. In this paper, the development of the fabrication of SnO2 nanostructures synthesis will be described as it relates to the performances as pollutant gas sensors. In addition, the functionalization of SnO2 as a gas sensor is extensively discussed with respect to the theory of gas adsorption, the surface features of SnO2, the band gap theory, and electron transfer.

  1. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    International Nuclear Information System (INIS)

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb−1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements. (paper)

  2. A novel compact design of calibration equipment for gas and thermal sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feng, P. X.; Zhang, H. X.; Peng, X. Y.; Sajjad, M.; Chu, J. [Institute for Functional Nanomaterials and Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, 00936-8377 (Puerto Rico)

    2011-04-15

    A novel design of calibration equipment has been developed for static and dynamic calibrations of gas and thermal sensors. This system is cheap, compact, and easily adjustable, which is also combined with a plasma surface modification source for tailoring the surface of sensors to ensure the sensitivity and selectivity. The main advantage of this equipment is that the operating temperature, bias voltage, types of plasma source (for surface modification), types of feeding gases, and gas flow rate (for calibrations), etc., can be independently controlled. This novel system provides a highly reliable, reproducible, and economical method of calibrations for various gas and thermal sensors.

  3. UV Illumination Room-Temperature ZnO Nanoparticle Ethanol Gas Sensors

    OpenAIRE

    Chang, Sheng-Po; Chen, Kuan-Yu

    2012-01-01

    Zinc oxide (ZnO) nanoparticle gas sensor was formed by spin coating. We annealed the film at 400, 600, and 800°C for 1 hour in air to make gas sensor. The responses of gas sensor to ethanol with UV light illumination were investigated. It could be observed that the ZnO nanoparticle film annealing at 800°C has the highest sensitivity. It can be attributed to the defects of ZnO nanoparticle film annealing at 800°C much more than other annealing temperatures. The study shows that the ZnO nanopar...

  4. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall;

    2000-01-01

    Particles in the gas from a two-stage (separate pyrolysis and gasification) down-draft biomass gasifier were collected and characterized. Their concentration, geometries and chemical compositions were investigated. Special attention was given to features suspected to harm internal combustion (IC...

  5. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    Institute of Scientific and Technical Information of China (English)

    XU Lei; WANG Rui; LIU Yong; DONG Liang

    2011-01-01

    @@ ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction(XRD)and scanning electron microscopy(SEM).Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail.Compared with the sensors based on traditional ceramic tubes with Au electrodes(traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes(plane sensors)exhibit much higher sensing properties.The sensitivity for the plane sensors is about 30 to 100ppm ethanol at 300℃, while the value is only 13 for the traditional sensors.The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively.Lower minimum-detection-limit is also found for the plane sensors.These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors.The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity.%ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD)and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to l00ppm ethanol at 300℃, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained

  6. Optical fiber long-period grating with solgel coating for gas sensor

    Science.gov (United States)

    Gu, Zhengtian; Xu, Yanping; Gao, Kan

    2006-08-01

    The novel long-period fiber grating (LPFG) film sensor is composed of the long-period grating coated with solgel-derived sensitive films. The characteristics of the transmissivity of the LPFG film sensor are studied. By analyzing the relation among the sensitivity Sn, the thin film optical parameters, and the fiber grating parameters, the optimal design parameters of the LPFG film sensor are obtained. Data simulation shows that the resolution of the refractive index of this LPFG film sensor is predicted to be 10-8. Experimentally, a LPFG film sensor for detection of C2H5OH was fabricated, and a preliminary gas-sensing test was performed.

  7. Reduced graphene oxide for room-temperature gas sensors

    International Nuclear Information System (INIS)

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 0C) or one-step heating (200 0C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  8. A Novel Gas Sensor Transducer Based on Phthalocyanine Heterojunction Devices

    Directory of Open Access Journals (Sweden)

    Marcel Bouvet

    2007-11-01

    Full Text Available Experimental data concerning the changes in the current-voltage (I-V perfor-mances of a molecular material-based heterojunction consisting of hexadecafluorinatednickel phthalocyanine (Ni(F16Pc and nickel phthalocyanine (NiPc,(Au|Ni(F16Pc|NiPc|Al are introduced as an unprecedented principle of transduction for gassensing performances. The respective n- and p-type doped-insulator behaviors of therespective materials are supported, owing to the observed changes in surface potential(using the Kelvin probe method after submission to electron donor (ammonia and electronacceptor gases (ozone. On the other hand, the bilayer device exhibits strong variations inthe built-in potential of the junction and in its rectification ratio. Moreover, large increasesoccur in forward and reverse currents in presence of ammonia vapors. These make possiblea multimodal principle of detection controlled by a combined effect between theheterojunction and the NiPc|Al contact. Indeed, this metal/organic junction plays a criticalrole regarding the steady asymmetry of the I-V profiles during the device’s doping evenusing high ammonia concentrations. This approach offers a more sophisticated alternative tothe classically studied, but at times rather operation-limited, resistive gas sensors.

  9. Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods

    Science.gov (United States)

    Moon, Chung Hee; Myung, Nosang V.; Haberer, Elaine D.

    2014-12-01

    Gold-palladium (Au-Pd) nanopeapod-based H2 chemiresistors were fabricated using a gold binding M13 viral template. Peptides displayed along the length of this biological template served as affinity binding sites to direct gold nanoparticle assembly under ambient conditions in an aqueous environment. In addition, the geometry of this filamentous biomolecule readily facilitated the formation of the highly anisotropic nanopeapod structure. Pd electroless deposition controlled peapod diameter, as well as electrical resistance. Sensor performance was determined by overall peapod morphology. Thicker nanopeapods (i.e., ˜15 nm Pd layer) with fully encapsulated Au nanoparticle seeds showed strong evidence of oxygen inclusion during or after Pd deposition, and a modest response (i.e., 0.04%-2.6%) at 2000 ppmv H2 after device conditioning through extended H2 exposure. Thinner nanopeapods (i.e., ˜5 nm Pd layer) with discontinuous Au nanoparticle coverage showed superior performance with a response of 117% at 2000 ppmv H2 in air, a 70% response time (t70%) within 1 min, and a low detection limit of 25 ppmv. The bio-directed formation of these unique thin-shelled, Au-Pd peapod nanostructures and the development of a highly sensitive H2 detector advance both the fields of nanoassembly and gas sensing.

  10. TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors

    Directory of Open Access Journals (Sweden)

    Marco Trincavelli

    2013-06-01

    Full Text Available Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time.

  11. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  12. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  13. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  14. Functionalized carbon nanotubes: Facile development of gas sensor platform

    Science.gov (United States)

    Rushi, Arti D.; Gaikwad, S.; Deshmukh, M.; Patil, H.; Bodkhe, G.; Shirsat, Mahendra D.

    2016-05-01

    In the present investigation, research efforts were directed towards the facile fabrication of sensor devices for the detection of gaseous analytes. Single Wall Carbon nanotubes, the highest prominent representative of functional nanomaterials, were employed for the sensor development. High surface to volume ratio of CNTs facilitate to improve overall sensor performance. To achieve enhanced sensing characteristics, CNTs were functionalized with tetraphenyl porphyrin. Fabricated sensor devices were subjected to the structural, electrical as well as sensing characteristics. Observed results infer that the fabricated sensor shows excellent sensing characteristics towards propanone below their PEL level.

  15. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real‐time human respiration process analysis method using a high‐time‐sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC‐MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas‐mask‐ type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high‐speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  16. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.

    Science.gov (United States)

    Gao, Xiang; Acar, Levent

    2016-01-01

    This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented. PMID:27384568

  17. Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits

    Science.gov (United States)

    Moore, Tommy S.; Mullaugh, Katherine M.; Holyoke, Rebecca R.; Madison, Andrew S.; Yücel, Mustafa; Luther, George W.

    2009-01-01

    A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O2, nutrients (N and P), micronutrients (metals), pCO2, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.

  18. CATSI EDM: a new sensor for the real-time passive stand-off detection and identification of chemicals

    Science.gov (United States)

    Thériault, Jean-Marc; Lacasse, Paul; Lavoie, Hugo; Bouffard, François; Montembeault, Yan; Farley, Vincent; Belhumeur, Louis; Lagueux, Philippe

    2010-04-01

    DRDC Valcartier recently completed the development of the CATSI EDM (Compact Atmospheric Sounding Interferometer Engineering Development Model) for the Canadian Forces (CF). It is a militarized sensor designed to meet the needs of the CF in the development of area surveillance capabilities for the detection and identification of chemical Warfare Agents (CWA) and toxic industrial chemicals (TIC). CATSI EDM is a passive infrared double-beam Fourier spectrometer system designed for real-time stand-off detection and identification of chemical vapours at distances up to 5 km. It is based on the successful passive differential detection technology. This technique known as optical subtraction, results in a target gas spectrum which is almost free of background, thus making possible detection of weak infrared emission in strong background emission. This paper summarizes the system requirements, achievements, hardware and software characteristics and test results.

  19. The Concept and Security Analysis of Wireless Sensor Network for Gas Lift in Oilwells

    Directory of Open Access Journals (Sweden)

    Bielecki Bartlomiej

    2014-06-01

    Full Text Available Pipelines, wellbores and ground installations are permanently controlled by sensors spread across the crucial points in the whole area. One of the most popular techniques to support proper oil drive in a wellbore is a Gas Lift. In this paper we present the concept of using wireless sensor network (WSN in the oil and gas industry installations. Assuming that Gas Lift Valves (GLVs in a wellbore annulus are sensor controlled, the proper amount of injected gas should be provided. In a ground installation, the optimized amount of loaded gas is a key factor in the effcient oil production. This paper considers the basic foundations and security requirements of WSN dedicated to Gas Lift Installations. Possible attack scenarios and their influence on the production results are shown as well.

  20. Vinegar Classification Based on Feature Extraction and Selection From Tin Oxide Gas Sensor Array Data

    Directory of Open Access Journals (Sweden)

    Huang Xingyi

    2003-03-01

    Full Text Available Tin oxide gas sensor array based devices were often cited in publications dealing with food products. However, during the process of using a tin oxide gas sensor array to analysis and identify different gas, the most important and difficult was how to get useful parameters from the sensors and how to optimize the parameters. Which can make the sensor array can identify the gas rapidly and accuracy, and there was not a comfortable method. For this reason we developed a device which satisfied the gas sensor array act with the gas from vinegar. The parameters of the sensor act with gas were picked up after getting the whole acting process data. In order to assure whether the feature parameter was optimum or not, in this paper a new method called “distinguish index”(DI has been proposed. Thus we can assure the feature parameter was useful in the later pattern recognition process. Principal component analysis (PCA and artificial neural network (ANN were used to combine the optimum feature parameters. Good separation among the gases with different vinegar is obtained using principal component analysis. The recognition probability of the ANN is 98 %. The new method can also be applied to other pattern recognition problems.

  1. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor.

    Science.gov (United States)

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  2. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    Directory of Open Access Journals (Sweden)

    Suhwan Kim

    2012-02-01

    Full Text Available We have implemented a tin-oxide-decorated carbon nanotube (CNT network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 µm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures.

  3. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari

    2014-03-01

    Full Text Available Carbon Nanotubes (CNTs are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I–V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.

  4. Pengaruh Variasi Temperatur Operasi dan Konsentrasi Gas Terhadap Sensitifitas Sensor Gas LPG dari Material WO3 Hasil Proses Sol-Gel dan Post Hydrothermal

    OpenAIRE

    Dwi Jingga Dharma Kusuma; Diah Susanti

    2013-01-01

    Gas LPG (Liquifed Petroleum Gas) adalah gas alam yang diaplikasikan dalam dunia industri dan kehidupan sehari-hari dan merupakan gas yang ramah lingkungan namun beracun bagi kesehatan. LPG merupakan gas yang mudah terbakar dan beresiko menimbulkan ledakan. Penelitian ini bertujuan untuk membuat sensor gas LPG dari material WO3. Proses sintesa material WO3dilakukan dengan metode sol-gel menggunakan prekursor WCl6, etanol, dan NH4OH. Pelet sensor dibuat dari serbuk WO3 hasil proses post hydrot...

  5. Determination of gas composition in a biogas plant using a Raman-based sensor system

    Science.gov (United States)

    Eichmann, S. C.; Kiefer, J.; Benz, J.; Kempf, T.; Leipertz, A.; Seeger, T.

    2014-07-01

    We propose a gas sensor, based on spontaneous Raman scattering, for the compositional analysis of typical biogas mixtures and present a description of the sensor, as well as of the calibration procedure, which allows the quantification of condensable gases. Moreover, we carry out a comprehensive characterization of the system, in order to determine the measurement uncertainty, as well as influences of temperature and pressure fluctuation. Finally, the sensor is applied at different locations inside a plant in which biogas is produced from renewable raw materials. The composition is monitored after fermenting, after purification and after the final conditioning, where natural gas is added. The Raman sensor is able to detect all the relevant gas components, i.e. CH4, CO2, N2 and H2O, and report their individual concentrations over time. The results were compared to reference data from a conventional gas analyzer and good agreement was obtained.

  6. New Hybridization Approach of Titanium Organometallic: PANi Thin Films as Room Temperature Gas Sensors

    International Nuclear Information System (INIS)

    The aim of this research was to investigate the ability of organometallic titanium-PANi hybrid materials as gas sensor at room temperature. To form the hybrid materials, commercially available poly aniline (PANi) powder were directly added into organometallic titanium sols which was synthesized using the sol gel method. The composite films were prepared via spin coating technique followed by electrode deposition for sensors fabrication. Five different organometallic titanium: PANi ratios namely 1 wt % to 5 wt % of PANi were prepared for this experiment. For gas sensing test, all samples were exposed to ethanol vapour. The sensing mode is based on the variation in the electrical conductivity due to the interaction between the gas molecules and the film. It was observed that the composite sensors required appropriate ratio to exhibit optimum sensing properties. This finding proved that the hybridization process is successful and offered much cheaper and easier method for fabrication of room temperature gas sensor. (author)

  7. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    Science.gov (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  8. Acoustic sensor for in-pile fuel rod fission gas release measurement

    International Nuclear Information System (INIS)

    We have developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in materials testing reactors. In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: - fuel temperature with a centre-line thermocouple type C, - internal pressure with a specific counter-pressure sensor, - fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced online from this measurement. The principle of this acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in materials testing reactors conditions. For this purpose some technical points have been studied in details: - fixing of the piezoelectric sample in a reliable way with a suitable signal transmission, - size of the gas cavity to avoid any perturbation of the acoustic waves, - miniaturization of the sensor because of narrow in-pile experimental devices

  9. Novel fluorescence-based integrated sensor for chemical and biological agent detection

    Science.gov (United States)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.; Fagan, Steve; Krouse, Justin; Hutchinson, Kira D.

    2004-12-01

    There is a renewed interest in the development of chemical and biological agent sensors due to the increased threat of weapons deployment by terrorist organizations and rogue states. Optically based sensors address the needs of military and homeland security forces in that they are reliable, rapidly deployed, and can provide continuous monitoring with little to no operator involvement. Nomadics has developed optically based chemical weapons sensors that utilize reactive fluorescent chromophores initially developed by Professor Tim Swager at MIT. The chromophores provide unprecedented sensitivity and selectivity toward toxic industrial chemicals and certain chemical weapon agents. The selectivity is based upon the reactivity of the G-class nerve agents (phosphorylation of acetylcholinesterase enzyme) that makes them toxic. Because the sensor recognizes the reactivity of strong electrophiles and not molecular weight, chemical affinity or ionizability, our system detects a specific class of reactive agents and will be able to detect newly developed or modified agents that are not currently known. We have recently extended this work to pursue a combined chemical/biological agent sensor system incorporating technologies based upon novel deep ultraviolet (UV) light emitting diodes (LEDs) developed out of the DARPA Semiconductor UV Optical Sources (SUVOS) program.

  10. Pengaruh Variasi Temperatur Sintesa, Temperatur Operasi dan Konsentrasi gas CO terhadap sensitivitas Sensor Gas Co dari Material ZnO

    Directory of Open Access Journals (Sweden)

    Endah Lutfiana

    2014-03-01

    Full Text Available Karbon monoksida ( CO merupakan gas yang tidak berwarna dan tidak berbau yang dihasilkan dari proses pembakaran yang tidak sempurna. Gas ini sangat beracun bagi tubuh manusia karena sifat biologinya yang mampu berikatan dengan hemoglobin yang mana bertugas membawa oksigen dalam darah, sehingga kadar oksigen dapat menurun drastis dan menyebabkan keracunan bahkan kematian. Sehingga dibutuhkan suatu alat pendeteksi atau sensor untuk mendeteksi adanya gas tersebut.Oksida metal seringkali digunakan untuk material sensor. ZnO merupakan suatu material semikonduktor yang telah digunakan untuk aplikasi sensor. Dalam penelitian ini pembuatan sensor ZnO dilakukan dengan mengoksidasi serbuk Zn pada variasi temperatur 800, 850, 900 oC selama 40 menit. Selanjutnya dibuat pelet sensor dengan mengkompaksi serbuk ZnO hasil Oksidasi dengan tekanan 200 Bar. Pelet kemudian disinter dengan temperatur 500oC. Setelah itu dilakukan pengujian SEM, XRD, dan uji Sensitivitas dengan variasi temperatur operasi 30, 50, 100 oC dan variasi konsentrasi 10 ppm, 50 ppm, 100 ppm, 250 ppm, 500 ppm. Dari hasil pengujian didapatkan nilai sensitivitas tertinggi pada temperatur sintesa 800oC dengan konsentrasi gas CO 500 ppm pada temperatur operasi sensor 100oC yaitu sebesar 0,52.

  11. Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas Detection

    Science.gov (United States)

    Andio, Mark A.

    Methane and carbon monoxide are two hazardous gases which require continuous monitoring by gas sensors in underground coal mines for explosion prevention and toxicity, respectively. This work explored implementing miniaturized gas sensors in this area to simultaneously detect both gases for benefits of increased portability and reduced power consumption of the chemiresistive gas sensor device. The focus of this research was to understand how the particle size, morphology, and microstructure of the metaloxide film affected the gas sensor performance to the two gases of interest on miniaturized gas sensor devices in the form of microhotplate platforms. This was done through three main research studies. The first was conducted by growing SnO2 nanowires from SnO 2 particles using an Au-catalyst. Growth conditions including temperature, time, and oxygen partial pressure were explored to determine the formation aspects of the SnO2 nanowires. Gas sensor studies were completed that provided evidence that the SnO2 nanowires increased detection to a fixed concentration of carbon monoxide compared to SnO2 particles without nano-structure formation. A second research study was performed to compare the gas sensor performance of SnO2 nanoparticles, hierarchical particles, and micron-size particles. The nanoparticles were developed into an ink and deposited via ink-jet printing on the microhotplate substrates to control the microstructure of the metal-oxide film. By preventing agglomeration of the nanoparticle film, the SnO2 nanoparticles displayed similar gas sensor performance to methane and carbon monoxide as the hierarchical particles. Both nano-structures had much higher gas sensor response than the micron-size particles which confirms the surface area of the metal-oxide film is critical for reaction of the analyte gas at the surface. The last research study presented in the dissertation describes an oxide nanoparticle array developed for detecting methane and carbon

  12. A Hydrazine Leak Sensor Based on Chemically Reactive Thermistors

    Science.gov (United States)

    Davis, Dennis D.; Mast, Dion J.; Baker, David L.

    1999-01-01

    Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.

  13. Development of new sensors for detection of organic chemicals

    DEFF Research Database (Denmark)

    Bache, Michael

    koncentrationer af kemikalier. En cantilever baseret overflade stress sensor er undersøgt som en mulig metode til påvisning af 2,6-dichlorbenzamid (BAM) pesticidrester i vand. Cantilever overflade stress princip blev undersøgt ved hjælp af piezo resistiv system fra Cantion/Nanonord A/S, og en optisk laser...

  14. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO(1−x)Pdx, 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO(1−x)Pdx)  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO(1−x)Pdx, altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H2 and 4% H2 in N2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO(1−x)Pdx on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO(1−x)Pdx to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  15. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D.

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO(1-x)Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO(1-x)Pd x ) are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO(1-x)Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H2 and 4% H2 in N2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO(1-x)Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO(1-x)Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas.

  16. Wireless Sensor Network in Niger Delta Oil and Gas Field Monitoring: The Security Challenges and Countermeasures

    OpenAIRE

    Fidelis C. Obodoeze; Hyacinth C. Inyiama; V.E. Idigo

    2012-01-01

    The IEEE 802.15.4 specification has enabled low-power, low-cost and smart wireless sensor networks(WSNs) capable of robust and reliable multi-hop communications. By January 2005, an International Oiland Gas Company (IOC), Shell Petroleum Development Company (SPDC), became the firstmultinational Oil and Gas Company operating in the Nigeria Niger Delta region to switch from wired towireless sensor technology eliminating the need for cables thereby allowing data collection in remote,swampy areas...

  17. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection

    OpenAIRE

    Xiaoli Zhao; Bin Cai; Qingxin Tang; Yanhong Tong; Yichun Liu

    2014-01-01

    Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorab...

  18. Ionic liquids as green solvents and electrolytes for robust chemical sensor development.

    Science.gov (United States)

    Rehman, Abdul; Zeng, Xiangqun

    2012-10-16

    Ionic liquids (ILs) exhibit complex behavior. Their simultaneous dual nature as solvents and electrolytes supports the existence of structurally tunable cations and anions, which could provide the basis of a novel sensing technology. However, the elucidation of the physiochemical properties of ILs and their connections with the interaction and redox mechanisms of the target analytes requires concerted data acquired from techniques including spectroscopic investigations, thermodynamic and solvation models, and molecular simulations. Our laboratory is using these techniques for the rational design and selection of ILs and their composites that could serve as the recognition elements in various sensing platforms. ILs show equal utility in both piezoelectric and electrochemical formats through functionalized ionics that provide orthogonal chemo- and regioselectivity. In this Account, we summarize recent developments in and applications of task-specific ILs and their surface immobilization on solid supports. Such materials can serve as a replacement for conventional recognition elements and electrolytic media in piezoelectric and electrochemical sensing approaches, and we place a special focus on our contributions to these fields. ILs take advantage of both the physical and chemical forces of interaction and can incorporate various gas analytes. Exploiting these features, we have designed piezoelectric sensors and sensor arrays for high-temperature applications. Vibrational spectroscopy of these ILs reveals that hydrogen bonding and dipole-dipole interactions are typically responsible for the observed sensing profiles, but the polarization and cavity formation effect as an analyte approaches the recognition matrix can also cause selective discrimination. IL piezoelectric sensors can have low sensitivity and reproducibility. To address these issues, we designed IL/conducting polymer host systems that tune existing molecular templates with highly selective structure

  19. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  20. Influence of fabricating process on gas sensing properties of ZnO nanofiber-based sensors

    International Nuclear Information System (INIS)

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300℃, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3 s for the plane sensors and are 3 and 6 s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (authors)

  1. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    Science.gov (United States)

    Xu, Lei; Wang, Rui; Liu, Yong; Dong, Liang

    2011-04-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity.

  2. Room temperature pulsed laser deposited ZnO thin films as photoluminiscence gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rueda, D.; Vadillo, J.M. [Department of Analytical Chemistry, Faculty of Science, University of Malaga, UMA Campus Teatinos, s/n, 29071 Malaga (Spain); Laserna, J.J., E-mail: laserna@uma.es [Department of Analytical Chemistry, Faculty of Science, University of Malaga, UMA Campus Teatinos, s/n, 29071 Malaga (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Elaboration of functional ZnO thin films by PLD at room temperature is possible. Black-Right-Pointing-Pointer Fluorescence quenching of ZnO thin films may be used for NO{sub 2} sensors. Black-Right-Pointing-Pointer Addition of oxygen during deposition is required to get films of better quality. Black-Right-Pointing-Pointer Films exhibited linear behaviour in the range between 26 and 100 ppm. - Abstract: Zinc oxide thin films with optical sensing capabilities for NO{sub 2} have been elaborated by pulsed laser deposition (PLD) onto glass substrates at room temperature with Nd:YAG laser (1064 nm). Morphology, chemical composition and optical characteristics of the films were evaluated as a function of laser fluence, gas pressure and target-to-substrate distance. Films exhibit excellent morphological and optical (transmittance and photoluminescence) properties. The films have been evaluated as fluorescence sensors for NO{sub 2} in the concentration range between 26 and 200 ppm.

  3. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    OpenAIRE

    PingAn Hu; Jia Zhang; Le Li; Zhenlong Wang; William O’Neill; Pedro Estrela

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structu...

  4. Nanoporous framework materials interfaced with mechanical sensors for highly-sensitive chemical sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Hwan; Skinner, Jack L.; Houk, Ronald J. T.; Fischer, Roland A.; Robinson, Alex Lockwood; Allendorf, Mark D.; Yusenko, Kirill; Meilikhov, Mikhail; Hesketh, Peter J.; Venkatasubramanian, Anandram; Thornberg, Steven Michael

    2010-04-01

    We will describe how novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) can be interfaced with common mechanical sensors, such as surface acoustic wave (SAW), microcantilever array, and quartz crystal microbalance (QCM) devices, and subsequently be used to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Chemical detection using micro-electro-mechanical-systems (MEMS) devices (i.e. SAWs, microcantilevers) requires the use of recognition layers to impart selectivity. Unlike traditional organic polymers, which are dense, the nanoporosity and ultrahigh surface areas of NFM allow for greater analyte uptake and enhance transport into and out of the sensing layer. This enhancement over traditional coatings leads to improved response times and greater sensitivity, while their ordered structure allows chemical tuning to impart selectivity. We describe here experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and volatile organic compound (VOCs), and their integration with the surfaces of MEMS devices. Molecular simulation shows that a high degree of chemical selectivity is feasible. For example, a suite of MOFs can select for strongly interacting organics (explosives, CWMD) vs. lighter volatile organics at trace concentrations. At higher gas pressures, the CWMD are deselected in favor of the volatile organics. We will also demonstrate the integration of various NFM on the surface of microcantiliver arrays, QCM crystals, and SAW devices, and describe new synthetic methods developed to improve the quality of NFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response

  5. On electrochemical sensor for determining elemental iodine in gas media

    International Nuclear Information System (INIS)

    The possibility to use solid electrolyte cells of Ag, AgI/AgI/Au as sensors for determining concentration of element iodine in gaseous media was studied. Independent character of sensor parameters on oxygen content and radiation burden at different humidity was ascertained

  6. Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications:A Review

    Institute of Scientific and Technical Information of China (English)

    Rajesh Kumar; O. Al-Dossary; Girish Kumar; Ahmad Umar

    2015-01-01

    Abstract Because of the interesting and multifunctional properties, recently, ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors. Thus, ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. The presented review article is focusing on the recent developments of NO2 gas sensors based on ZnO nanomaterials. The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms. Basic gas sensing characteristics such as gas response, response time, recovery time, selectivity, detection limit, stability and recyclability, etc are also discussed in this article. Further, the utilization of various ZnO nanomaterials such as nanorods, nanowires, nano-micro flowers, quantum dots, thin films and nanosheets, etc for the fabrication of NO2 gas sensors are also presented. Moreover, various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review. Finally, the review article is concluded and future directions are presented.

  7. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.

    Science.gov (United States)

    Wang, Fei; Gu, Hongwei; Swager, Timothy M

    2008-04-23

    We report a chemiresistor that has been fabricated via simple spin-casting technique from stable CNT dispersion in hexafluoroisopropanol functionalized polythiophene. The sensor has shown high sensitivity and selectivity for a nerve reagent stimulant DMMP. A series of sensing studies, including field effect investigation, electrode passivation, and fluorescent measurement, indicate a combinative mechanism of charge transfer, introduction of scattering sites, and a configurational change of the polymer. PMID:18373343

  8. Chemical treatments and usage in offshore oil and gas production systems

    International Nuclear Information System (INIS)

    This paper reviews the uses of production treating chemicals, gas processing chemicals, and stimulation and workover chemicals in U.S. offshore oil and gas production operations. The purpose, solubility properties, primary generic chemical types, treatment methods, and typical use concentrations of each chemical group are discussed. Acute aquatic toxicity data and solubility information are presented

  9. Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor

    International Nuclear Information System (INIS)

    A rice-straw-like silicon nanowire (SiNW) array was developed for hydrogen gas sensing applications. The straight-aligned SiNW array sensor was first fabricated by the metal-assisted electroless etching (MAEE) technique. Rice-straw-like SiNW arrays were formed using a repeated MAEE technique. Hydrogen sensing characteristics were measured for gas concentrations from 20 to 1000 ppm at room temperature. The rice-straw-like SiNW-array-based hydrogen gas sensor performed with low noise and a high response (232.5%) for 1000 ppm hydrogen gas. It was found that the rice-straw-like SiNW-array hydrogen gas sensor had a much better response (approximately 2.5 times) than the straight-aligned SiNW-array sensor. The rice-straw-like SiNW-array structure effectively increased the surface area and the concentration of silicon oxide, which provided additional binding sites for gas molecules. Thus, the rice-straw-like SiNW-array-based hydrogen gas sensor possessed good sensing properties and has the potential for mass production of sensing devices. (paper)

  10. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    International Nuclear Information System (INIS)

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed

  11. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  12. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-07-01

    Full Text Available This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  13. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Directory of Open Access Journals (Sweden)

    Panida Lorwongtragool

    2014-10-01

    Full Text Available A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  14. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  15. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Science.gov (United States)

    Gao, Xiang; Acar, Levent

    2016-01-01

    This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented. PMID:27384568

  16. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    OpenAIRE

    Suhwan Kim; Minhee Yun; Young June Park; Seong-Hyeon Hong; Hyunjoong Lee; Sanghoon Lee; Dai-Hong Kim; David Perello

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolut...

  17. Low temperature operated NiO-SnO2 heterostructured SO2 gas sensor

    Science.gov (United States)

    Tyagi, Punit; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Sulfur dioxide (SO2) is among the most toxic gas released by the industries which is extremely dangerous for human health. In the present communication, an attempt has been made for the detection of SO2 gas (500 ppm) with the help of SnO2 thin film based gas sensor. A low sensing response of 1.3 is obtained for sputtered SnO2 thin films based sensors at a high operating temperature of 220 °C. To improve the sensing response, different heterostructured sensors are developed by incorporating other metal oxide thin films (PdO, MgO, NiO, V2O5) over SnO2 thin film surface. Sensing response studies of different sensors towards SO2 gas (500 ppm) are presented in the present report. Among all the prepared sensors NiO-SnO2 hetero-structure sensor is showing highest sensing response (˜8) at a comparatively lower operating temperature (140 °C). Possible sensing mechanism for NiO-SnO2 heterostructured sensor has also been discussed in the present report.

  18. Development of a Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements

    Science.gov (United States)

    Makel, D. B.; Carranza, S.

    2015-04-01

    Progress on the development of a compact chemical microsensor array for profiling the chemical composition of the Venus atmosphere and providing gas composition measurements as part of the long lived lander is described.

  19. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature

    Science.gov (United States)

    Wu, Bin; Lin, Zhangqing; Sheng, Minqi; Hou, Songyan; Xu, Jifang

    2016-01-01

    Three-dimensional ZnO/CdSe heterostructure (ZnO/CdSe HS) was fabricated with large scale and its gas-sensing application with low operating temperature was explored. Combining cost-effective chemical vapor deposition with solution growth methods, ZnO nanorods were grown on the surface of CdSe nanoribbons. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were employed to confirm the formation of ZnO/CdSe HS. The ZnO/CdSe HSs were fabricated as gas sensors in the detection of ethanol at the optimum operating temperature of 160 °C. Compared with ZnO-based gas sensors, the optimum operating temperature of the ZnO/CdSe HS-based sensor was approximately 100 °C lower, while the sensitivity was 20-fold higher in the dark and 3-fold higher under visible light illumination condition. The enhancement of sensing properties was attributed to the advanced heterostructure and visible light activated CdSe.

  20. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

    International Nuclear Information System (INIS)

    An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were ∼2.8 and 1.5 %, respectively.

  1. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zampetti, E., E-mail: emiliano.zampetti@artov.imm.cnr.it; Macagnano, A.; Bearzotti, A. [Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR IMM) (Italy)

    2013-04-15

    An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were {approx}2.8 and 1.5 %, respectively.

  2. Next generation autonomous chemical sensors for environmental monitoring

    OpenAIRE

    Cogan, Deirdre; Cleary, John; Phelan, Thomas; Diamond, Dermot

    2012-01-01

    Microfluidic technology has great potential as a solution to the increasing demand for environmental monitoring, by producing autonomous chemical sensing platforms at a price level that creates a significant impact on the existing market. The development of sensing platforms for ammonium, nitrate and nitrite in water and wastewater using colorimetric techniques are being investigated. Our approach is to combine microfluidic technology with colorimetric chemical assays; low cost LED/photodiode...

  3. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    OpenAIRE

    Na Yao; Zhuan Liu; Ying Chen; Yikai Zhou; Bin Xie

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay requ...

  4. WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD) Determination under Visible Light

    OpenAIRE

    Xuejin Li; Jing Bai; Qiang Liu; Jianyong Li; Baoxue Zhou

    2014-01-01

    A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and t...

  5. Construction of a Chemical Sensor/Instrumentation Package Using Fiber Optic and Miniaturization Technology

    Science.gov (United States)

    Newton, R. L.

    1999-01-01

    The objective of this research was to construct a chemical sensor/instrumentation package that was smaller in weight and volume than conventional instrumentation. This reduction in weight and volume is needed to assist in further reducing the cost of launching payloads into space. To accomplish this, fiber optic sensors, miniaturized spectrometers, and wireless modems were employed. The system was evaluated using iodine as a calibration analyte.

  6. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection

    OpenAIRE

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-01-01

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These pol...

  7. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  8. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    Science.gov (United States)

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system. PMID:27490518

  9. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  10. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  11. Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    CERN Document Server

    Neumann, P L; Dobrik, G; Kertész, K; Horváth, E; Lukács, I E; Biró, L P; Horváth, Z E

    2014-01-01

    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.

  12. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors

    Science.gov (United States)

    Cho, Seunghee H.; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-07-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  13. Non-selective chemical sensors in analytical chemistry: from ''electronic nose'' to ''electronic tongue''

    International Nuclear Information System (INIS)

    Development, recent historical background and analytical applications of promising sensor instruments based on sensor arrays with data processing by pattern recognition methods have been described. Attention is paid to the ''electronic tongue'' based on an array of original non-specific (non-selective) potentiometric chemical sensors. Application results for integral qualitative analysis of beverages and for quantitative analysis of biological liquids and solutions, containing heavy metals are reported. Discriminating abilities and precision obtained allow to consider ''electronic tongue'' as a perspective analytical tool. (orig.)

  14. Temperature-Insensitive Chemical Sensor with Twin Bragg Gratings in an Optical Fibre

    Institute of Scientific and Technical Information of China (English)

    SANG Xin-Zhu; YU Chong-Xiu; YAN Bin-Bin; MA Jian-Xin; MENG Zhao-Fang; Mayteevarunyoo T.; LU Nai-Guang

    2006-01-01

    To reduce temperature sensitivity of the fibre Bragg grating (FBG) chemical sensor, a simple method is proposed by measuring the peak wavelength difference between an etched FBG and an un-etched one in an optical fibre.Thermal characteristics and chemical sensitivity of the sensor are experimentally investigated. The experimental results indicate that the etched FBG and the rest one have almost the same thermal response, and concentration changes of the surrounding chemical solutions can be detected by measuring the peak wavelength difference between them. The sensor has been used to measure the concentrations of propylene glycol solutions and sugar solutions, and it could detect 0.7% and 0.45% concentration changes for them with an optical spectrum analyser in resolution of 10pm.

  15. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Science.gov (United States)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  16. Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.W.J.; Yang, S.M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Materials Chemistry Research Group; Chabanis, G.; Williams, D.E. [University Coll., London (United Kingdom). Dept. of Chemistry

    2001-10-02

    Periodic macroporous forms of nc-SnO{sub 2} have been synthesized by two methods, giving opals and inverse opals that can be used as structurally well-defined gas sensors, as demonstrated for CO gas, as well as for toluene and ethanol vapors. The inverse opals, in particular, seem to approximate ''ideal'' behavior. (orig.)

  17. Inductive sensors for blade tip-timing in gas turbines

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2015-12-01

    Full Text Available The paper reviews features and applications of the upgraded inductive sensor for BTT, which is able to operate in contact with exhaust gases of temperature even as high as 1200 K. The new design includes metal-ceramic housing ensuring proper heat transfer, magnetic circuit containing set of permanent magnets with various magnetic field values and Curie temperatures, completely redesigned windings and current/voltage converter used instead of an electromotive force amplifier. Its principle of operation is based on electro-dynamical interaction and therefore it may be referred as a passive eddy-current sensor. The sensor technique has been demonstrated on four stages of a surplus military turbofan including the high pressure turbine as part of the engine health monitoring system. We present signal samples and review methods used for online processing of time-of-arrival signals when only a limited number of sensors is available.

  18. Gas phase photoluminescence sensor response of functionalized porous silicon

    Czech Academy of Sciences Publication Activity Database

    Dian, J.; Vrkoslav, Vladimír; Jelínek, I.

    Strasbourg : European Science Foundation, 2007. s. 24. [E-MRS 2007 Spring Meeting. 28.05.2007-01.06.2007, Strasbourg] Institutional research plan: CEZ:AV0Z40550506 Keywords : porous silicon * sensor * functionalization Subject RIV: CC - Organic Chemistry

  19. Molecular-Resonance Fiber Optic Gas Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aspen systems proposes to develop an innovative and smart sensors to continuously monitor ambient air compositions by utilizing a resonating tunable micro-cavity...

  20. Gas response properties of metal oxide nanoparticle based sensors on MEMS microhotplate platforms

    OpenAIRE

    Haapalainen, T. (Tomi)

    2015-01-01

    This thesis concentrated on the analysis of the gas response properties of several metal oxide based gas sensors. A thin layer of chosen metal oxide was deposited on SGX Sensortech S.A. sensor platforms using pulsed laser deposition (PLD). Metal oxides used in the studies included tungsten trioxide (WO3), tin oxide zinc oxide (SnO2-ZnO) and vanadium pentoxide (V2O5). The films were deposited at room temperature and various oxygen partial pressures, and were then post-annealed at 400 °C. Gas r...

  1. Multiplexed Sensor for Synthesis Gas Compsition and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Steven Buckley; Reza Gharavi; Marco Leon

    2007-10-01

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

  2. Multi-walled Carbon Nanotube Film Sensor for Ethanol Gas Detection

    Directory of Open Access Journals (Sweden)

    Dongzhi Zhang

    2013-10-01

    Full Text Available Multi-wall carbon nanotubes (MWNTs film-based sensor on the substrate of printed circuit board (PCB with interdigital electrodes (IDE were fabricated using layer-by-layer self-assembly, and the electrical properties of MWNTs film sensor were investigated through establishing models involved with number of self-assembled layers and IDE finger gap, and also its ethanol gas-sensing properties with varying gas concentration are characterized at room temperature.Through comparing with the thermal evaporation method, the experiment results shown that the layer-by-layer self-assembled MWNTs film sensor have a faster response and more sensitive resistance change when exposed to ethanol gas, indicated a prospective application for ethanol gas detection with high performance and low-cost.

  3. New IR-UV gas sensor to energy and transport sector

    OpenAIRE

    Fateev, Alexander; Clausen, Sønnik

    2010-01-01

    In situ simultaneous measurements of gas temperature and gas composition are of great interest in combustion research and give useful information about conditions, chemical reactions and gas mixing in many industrial processes. An optically based technique is beneficial because it is non-intrusive, accurate, fast and can be performed in situ for various extremely hard conditions. In humid and hot gas flows UV technique is more sensitive than FTIR one for fast gas concentration measurements of...

  4. Detection of Landmine Signature using SAW-based Polymer-coated Chemical Sensor

    Directory of Open Access Journals (Sweden)

    O. K. Kannan

    2004-07-01

    Full Text Available The explosive charge within a landmine is the source for a mixture of chemical vapours that form a distinctive chemical signature indicative of a landmine. The concentrations of these compounds in the air over landmines is extremely low (parts-per-trillion or lower, well below the minimum detection limits of most field-portable chemical sensors. This paper describes a portable  surface acoustic wave-based polymer-coated sensor for the detection of hidden explosives. The sensitivity and selectivity of polymer-based sensors depend on several factors including the chemo-selective coating used, the physical properties of the vapour(s of interest, the selected transducers, and the operating conditions. The polymer-based sensor was calibrated in the  laboratory using the explosive vapour generator. The preliminary results indicated that the carbowax 1000 could be a very good chemical interface to sense low levels of chemical signature of explosive material. Response for 50 ppb of TNT vapours was observed to be 400 Hz for an exposure of 2 min.

  5. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    K K Makhija; Arabinda Ray; R M Patel; U B Trivedi; H N Kapse

    2005-02-01

    A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.

  6. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  7. Analysis of Simulated Output Characteristics of Gas Sensor Based on Graphene Nanoribbon

    Directory of Open Access Journals (Sweden)

    A. Mahmoudi

    2016-01-01

    Full Text Available This work presents simulated output characteristics of gas sensor transistors based on graphene nanoribbon (GNRFET. The device studied in this work is a new generation of gas sensing devices, which are easy to use, ultracompact, ultrasensitive, and highly selective. We will explain how the exposure to the gas changes the conductivity of graphene nanoribbon. The equations of the GNRFET gas sensor model include the Poisson equation in the weak nonlocality approximation with proposed sensing parameters. As we have developed this model as a platform for a gas detection sensor, we will analyze the current-voltage characteristics after exposure of the GNRFET nanosensor device to NH3 gas. A sensitivity of nearly 2.7% was indicated in our sensor device after exposure of 1 ppm of NH3. The given results make GNRFET the right candidate for use in gas sensing/measuring appliances. Thus, we will investigate the effect of the channel length on the ON- and OFF-current.

  8. The gas-ice chemical interplay during cloud evolution

    CERN Document Server

    Hocuk, S

    2014-01-01

    During the evolution of diffuse clouds to molecular clouds, gas-phase molecules freeze out on surfaces of small dust particles to form ices. On dust surfaces, water is the main constituent of the icy mantle in which a complex chemistry is taking place. We aim to study the formation pathways and the composition of the ices throughout the evolution of diffuse clouds. For this purpose, we use time-dependent rate equations to calculate the molecular abundances in both gas phase and on solid surfaces (onto dust grains). We fully consider the gas-dust interplay by including the details of freeze-out, chemical and thermal desorption, as well as the most important photo-processes on grain surfaces. The difference in binding energies of chemical species on bare and icy surfaces is also incorporated into our equations. Using the numerical code FLASH, we perform a hydrodynamical simulation of a gravitationally bound diffuse cloud and follow its contraction. We find that while the dust grains are still bare, water format...

  9. Diode laser absorption sensors for gas-dynamic and combustion flows

    Science.gov (United States)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  10. Performances of the Chemical Gas Turbine System and Comparison with Other Gas Turbine Based Cycles

    Directory of Open Access Journals (Sweden)

    Norio Arai

    2000-12-01

    Full Text Available

    This paper describes a novel combined cycle based on a “Chemical Gas Turbine” system. The system consists of fuel-rich and fuel-lean combustors with their gas turbines, recuperators, and a steam bottoming cycle. Important features of this system are the gas turbine with C/C composites blades and the fuel-rich combustion techniques. These techniques result in no cooling of turbine blades and much higher turbine inlet temperature, therefore, much higher thermal efficiency. This paper analyzes the energy, exergy, and heat exchanger sizes of the proposed system. Furthermore, optimizations from pressure ratio aspects are discussed. All results are compared with a simple gas turbine system and a conventional combined cycle. The following results were obtained: the chemical gas turbine system achieves a thermal efficiency of 64%, and low exergy loss in the combustion processes. In addition, characteristics of the system are similar to the simple gas turbine system.

    •  This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000

  11. Estimating IC engine exhaust gas lambda and oxygen from the response of a universal exhaust gas oxygen sensor

    International Nuclear Information System (INIS)

    Universal exhaust gas oxygen sensors (UEGOs) are in widespread use in internal combustion engines where they are used to measure lambda (the non-dimensional air–fuel ratio) and oxygen concentration (XO2). The sensors are used on production engines and for research and development. In a previous paper, a model of the UEGO sensor was presented, based on a solution of the Stefan–Maxwell equations for an axisymmetric geometry, and it was shown that for a known gas composition, predictions of the sensor response agreed well with experiment. In the present paper, the more ‘practical’ problem is addressed: how well can such a model predict λ and XO2 based on the sensor response? For IC engine applications, a chemistry model is required in order to predict λ, and such a model is also desirable for an accurate prediction of XO2. A fast (matrix exponential) method of solving the Stefan–Maxwell equations is also introduced, which offers the possibility of a near real-time computation of λ and XO2, with application, for example, to bench instruments. Extensive results are presented showing how the interpretation of the UEGO response may be compromised by uncertainties. These uncertainties may relate not only to the sensor itself, such as temperature, pressure and mean pore diameter, but also the chemistry model. (paper)

  12. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    OpenAIRE

    Z. Q. Zheng; Yao, J D; Wang, B.; G. W. Yang

    2015-01-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. He...

  13. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    Science.gov (United States)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  14. A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Zohir Dibi

    2009-11-01

    Full Text Available Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…. We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor’s response characteristics and eliminate its dependency on the environmental parameters. The corrector’s responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration. The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering. The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor’s responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  15. A Standard Mobile Phone as a Chemical Sensor

    OpenAIRE

    Iqbal, Zafar

    2011-01-01

    This thesis describes work to investigate the potential of using an ordinary mobile phone to perform chemical sensing by colorimetric analysis of reflected light. The wide availability and familiarity of mobile phones make them excellent devices for aiding consumers in making on site tests in their everyday lives. A major part of the work has been the development of the necessary software to be able to use a standard mobile phone to study diffuse reflection with the screen as illumination sou...

  16. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Radeva, Ekaterina I.; Esmeryan, Karekin D.; Ivan D. Avramov

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  17. Online Decorrelation of Humidity and Temperature in Chemical Sensors for Continuous Monitoring

    CERN Document Server

    Huerta, Ramon; Fonollosa, Jordi; Rulkov, Nikolai F; Rodriguez-Lujan, Irene

    2016-01-01

    A method for online decorrelation of chemical sensor readings from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight different metal-oxide sensors, temperature and humidity sensors with a wireless communication link to PC. This wireless electronic nose was used to monitor air for two years in the residence of one of the authors and collected data continuously during 510 full days with a sampling rate of 2 samples per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors readings, we used a standard energy band model for an n-type metal-oxide sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor...

  18. Improved sensor selectivity for chemical vapors using organic thin-film transistors

    OpenAIRE

    Royer, James Edward

    2012-01-01

    Organic thin-film transistors (OTFTs) offer unique methods for chemical vapor detection due to multiple device parameters which are influenced by reactive gases. The simplest conventional readout for OTFT sensors is the drain current; however, the drain current is dependent on changes in fundamental device characteristics such as mobility and/or threshold voltage. The chemical properties of the analyte determine whether the mobility or threshold voltage response is dominant for the OTFT. The ...

  19. Acoustic Sensor for In-Pile Fuel Rod Fission Gas Release Measurement

    International Nuclear Information System (INIS)

    Innovative in-pile instrumentation is crucial for advanced experimental programs in research reactors. In this field, we developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in Material Testing Reactors (MTR). In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: -fuel temperature with a centreline thermocouple type C -internal pressure with a specific counter-pressure sensor, -fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector, which has been developed and is patent pending by CEA, SCK.CEN (Belgian Nuclear Research Center) and IES (French research laboratory of Montpellier II University and French National Research Center), is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced on-line from this measurement. The principle of this non destructive and on-line acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in MTR conditions

  20. Design, fabrication and characterization of thick-film gas sensors

    OpenAIRE

    Tsolov, Peter

    2004-01-01

    DE LA TESIS DOCTORALTítulo: Diseño, fabricación y caracterización de sensores de capa gruesaDoctorando: Peter Tsolov IvanovDirector: Xavier Correig BlancharLos sensores de gases de estado sólido han demostrado ser muy prometedores parasupervisar la emisión de los agentes contaminadores en el aire, porque son una opciónde bajo coste para la construcción de analizadores de gases. Algunos problemas serelacionados con este tipo de dispositivos, especialmente su baja selectividad y el altoconsumo ...