WorldWideScience

Sample records for chemical explosives

  1. Chemical profiling of explosives

    NARCIS (Netherlands)

    G.M.H. Brust

    2014-01-01

    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as thi

  2. Chemical Explosion Database

    Science.gov (United States)

    Johansson, Peder; Brachet, Nicolas

    2010-05-01

    A database containing information on chemical explosions, recorded and located by the International Data Center (IDC) of the CTBTO, should be established in the IDC prior to entry into force of the CTBT. Nearly all of the large chemical explosions occur in connection with mining activity. As a first step towards the establishment of this database, a survey of presumed mining areas where sufficiently large explosions are conducted has been done. This is dominated by the large coal mining areas like the Powder River (U.S.), Kuznetsk (Russia), Bowen (Australia) and Ekibastuz (Kazakhstan) basins. There are also several other smaller mining areas, in e.g. Scandinavia, Poland, Kazakhstan and Australia, with large enough explosions for detection. Events in the Reviewed Event Bulletin (REB) of the IDC that are located in or close to these mining areas, and which therefore are candidates for inclusion in the database, have been investigated. Comparison with a database of infrasound events has been done as many mining blasts generate strong infrasound signals and therefore also are included in the infrasound database. Currently there are 66 such REB events in 18 mining areas in the infrasound database. On a yearly basis several hundreds of events in mining areas have been recorded and included in the REB. Establishment of the database of chemical explosions requires confirmation and ground truth information from the States Parties regarding these events. For an explosion reported in the REB, the appropriate authority in whose country the explosion occurred is encouraged, on a voluntary basis, to seek out information on the explosion and communicate this information to the IDC.

  3. Data base of chemical explosions in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Malahova, M.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Martysevich, P.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Mihaylova, N.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Nurmagambetov, A. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Kopnichev, Yu.F. D. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Edomin, V.I. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan)

    1996-12-01

    Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

  4. Seismic and source characteristics of large chemical explosions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  5. Discrimination between earthquakes and chemical explosions using artificial neural networks

    International Nuclear Information System (INIS)

    An Artificial Neural Network (ANN) for discriminating between earthquakes and chemical explosions located at epicentral distances, Δ <5 deg from Gauribidanur Array (GBA) has been developed using the short period digital seismograms recorded at GBA. For training the ANN spectral amplitude ratios between P and Lg phases computed at 13 different frequencies in the frequency range of 2-8 Hz, corresponding to 20 earthquakes and 23 chemical explosions were used along with other parameters like magnitude, epicentral distance and amplitude ratios Rg/P and Rg/Lg. After training and development, the ANN has correctly identified a set of 21 test events, comprising 6 earthquakes and 15 chemical explosions. (author)

  6. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    Science.gov (United States)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  7. Differences in seismic decoupling with chemical and nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L.A.

    1995-01-01

    An extensive series of simulations was performed of underground explosions in salt, using both chemical and nuclear explosives. In both cases, the radius of the initial emplacement cavity was varied from the fully tamped configuration to as large as 80 m/kt{sup 1/3}; when not fully tamped, the cavity was assumed initially to contain air at ambient temperature and pressure. In the nuclear source case, the simulations are shown to be in good agreement with the SALMON/STERLING events conducted by the U.S., and with recently released Russian data on a similar pair of explosions in an Azgir salt dome. Simulation of the U.S. COWBOY series of chemical explosions in a Louisiana salt mine are also shown to be in very good agreement with the experimental data, however the constitutive model for the salt that best explains these data is different from that derived for SALMON; both salt models are amply supported by laboratory and field data. The main result of these simulations is that cavity decoupling with chemical explosives is much less efficient than with nuclear explosives. Although maximum decoupling factors, f{sub max}, near 200 may be attainable with either of the two sources, the cavity size required to achieve this value appears to be > 40 m/kt{sup 1/3}. For cavity radii half as large, f{sub max} is roughly 4 times lower with nuclear explosives, and lower by another factor of 4 with chemical sources. Moreover, if the initial cavity radius is a more modest 10 m/kt{sup 1/3}, f{sub max}< 3 even with a nuclear source.

  8. Seismic decoupling with chemical and nuclear explosions in salt

    Science.gov (United States)

    Glenn, L. A.; Goldstein, P.

    1994-06-01

    An extensive series of simulations was perfomed of underground explosions in salt, using both chemical and nuclear explosives. In both cases, the radius of the initial emplacement cavity was varied from the fully tamped configuration to as large as 80 m/kt(sup 1/3); when not fully tamped, the cavity was assumed initially to contain air at ambient temperature and pressure. In the nuclear source case, the simulations are shown to be in good agreement with the Salmon/Sterling events conducted by the United States and with recently released Russian data on a similar pair of explosions in an Azgir salt dome. Simulation of the U.S. Cowboy series of chemical explosions in a Louisiana salt mine are also shown to be in very good agreement with the experimental data; however, the constitutive model for the salt that best explains these data is different from that derived for Salmon; both salt models are amply supported by laboratory and field data. The main result of these simulations is that cvaity decoupling with chemical explosives is much less efficient htna with nuclear explosives. Although maximum decoupling factors, f(sub max), near 200 may be attainable with either of the two sources, the cavity size required to achieve this value appears to be greater than 40 m/kt(sup 1/3). For cavity radii half as large, f(sub max) is roughly 4 times lower with nuclear explosives, and lower by another factor of 4 with chemical sources. Moreover, if the initial cavity radius is a more modest 10 m/kt(sup 1/3), f(sub max) less than 3 event with a nuclear source.

  9. Seismic decoupling with chemical and nuclear explosions in salt

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L.A.; Goldstein, P. [Lawrence Livermore National Lab., CA (United States)

    1994-06-10

    An extensive series of simulations was performed of underground explosions in salt, using both chemical and nuclear explosives. In both cases, the radius of the initial emplacement cavity was varied from the fully tamped configuration to as large as 80 m/kt{sup 1/3}; when not fully tamped, the cavity was assumed initially to contain air at ambient temperature and pressure. In the nuclear source case, the simulations are shown to be in good agreement with the Salmon/Sterling events conducted by the United States and with recently released Russian data on a similar pair of explosions in an Azgir salt dome. Simulation of the US Cowboy series of chemical explosions in a Louisiana salt mine are also shown to be in very good agreement with the experimental data; however, the constitutive model for the salt that best explains these data is different from that derived for Salmon; both salt models are amply supported by laboratory and field data. The main result of these simulations is that cavity decoupling with chemical explosives is much less efficient than with nuclear explosives. Although maximum decoupling factors, f{sub max}, near 200 may be attainable with either of the two sources, the cavity size required to achieve this value appears to be >40 m/kt{sup 1/3}. For cavity radii half as large, f{sub max} is roughly 4 times lower with nuclear explosives, and lower by another factor of 4 with chemical sources. Moreover, if the initial cavity radius is a more modest 10 m/kt{sup 1/3}, f{sub max} < 3 even with a nuclear source. 24 refs., 8 figs.

  10. Explosive Containment Chamber Vulnerability to Chemical Munition Fragment Impact

    Energy Technology Data Exchange (ETDEWEB)

    Benham, R.A.; Fischer, S.H.; Kipp, M.E.; Martinez, R.R.

    1999-02-01

    Scenarios in which the explosive burster charge in a chemical munition accidentally detonates inside demilitarization containment chambers are analyzed. The vulnerability of an inner Auxiliary Pressure Vessel and the primary Explosive Containment Chamber to impact by fragments from the largest explosive charge expected to be placed in these chambers (M426, 8 inch, chemical, 7 lbs Comp B) is evaluated. Numerical (CTH) and empirical (ConWep) codes are used to characterize the munition fragments, and assess the consequences of their impact and penetration on the walls of these vessels. Both pristine and corroded configurations of the munition have been considered, with and without liquid agent fill. When the munition burster charge detonates, munition case fragments impact and perforate the Auxiliary Pressure Vessel wall, resulting in extensive breakup of this inner chamber and the formation of additional fragments. These residual munition case and Auxiliary Pressure Vessel fragments have sufficient mass and velocity to crater the Explosive Containment Chamber inner wall layer, with accompanying localized permanent deformation (bulging) of both the inner and outer chamber walls. The integrity of the Explosive Containment Chamber was retained under all of the APV / munition configurations considered in this study, with no evidence that primary (munition) or secondary (munition and Auxiliary Pressure Vessel) fragments will perforate the inner chamber wall. Limited analyses of munition detonation without the Auxiliary Pressure Vessel present indicate that some munition span fragments could form under those conditions that have sufficient mass and velocity to perforate the inner wall of the Explosive Containment Chamber.

  11. Dense Seismic Recordings of Two Surface-Detonated Chemical Explosions

    Science.gov (United States)

    Koper, K. D.; Hale, J. M.; Burlacu, R.; Goddard, K. J.; Trow, A.; Linville, L. M.; Stein, J. R.; Drobeck, D.; Leidig, M.

    2015-12-01

    In the summer of 2015 two controlled chemical explosions were carried out near Dugway, Utah. The 2 June 2015 explosion consisted of 30,000 lbs of ammonium nitrate fuel oil (ANFO) and the 22 July 2015 explosion consisted of 60,000 lbs of ANFO. The explosion centroids were 1-2 m above the Earth's surface and both created significant craters in the soft desert alluvium. To better understand the seismic source associated with surface explosions, we deployed an array of wireless, three-component, short-period (5 Hz corner frequency) seismometers for several days around each shot. For the first explosion, 46 receivers were deployed in a "lollipop" geometry that had a sparse ring at a radius of 1 km, and a dense stem with 100 m spacing for distances of 0.5-4.5 km. For the second explosion, 48 receivers were deployed similarly, but with a dense ring spaced in azimuthal increments of 10 degrees at a distance of 1 km, and a sparse stem (~500 m spacing) that extended to a distance of nearly 6 km. A rich variety of phases were recorded including direct P waves, refracted and reflected P waves, nearly monochromatic air-coupled Rayleigh waves, normally dispersed fundamental mode Rayleigh waves (Rg), primary airblast arrivals, some secondary airblast arrivals, and possibly tertiary airblast arrivals. There is also evidence of converted S waves on the radial components and possibly direct S energy on the radial and transverse components, although the transverse energy does not always possess a simple, coherent move-out with distance, implying that it might have a scattering origin. To aid in the phase identification, especially of the apparent SH and Love energy, we are currently performing tau-p, f-k, and particle motion analysis.

  12. Nuclear techniques for finding chemical explosives in airport luggage

    Science.gov (United States)

    Grodzins, Lee

    1991-05-01

    Chemical explosives are composed of concentrated densities of nitrogen and oxygen. High values of the nitrogen alert the presence of a bomb; high values of both nitrogen and oxygen densities certify the bomb's presence uniquely. More than a dozen nuclear-based techniques have been proposed for rapidly scanning airport luggage to find hidden explosives by measuring these elemental distributions. In almost every scheme, the technological challenge is the accelerator, which must be small, well-shielded, cost-effective, and be operable in busy airports by nominally-trained personnel, with minimum unscheduled downtime for repairs or service. This paper will summarize, within the limits imposed by security, four of the imaging schemes.

  13. Active sampling technique to enhance chemical signature of buried explosives

    Science.gov (United States)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  14. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  15. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  16. Hand-Held Devices Detect Explosives and Chemical Agents

    Science.gov (United States)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  17. EMP from a chemical explosion originating in a tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    1994-03-01

    Electromagnetic pulses generated by a chemical explosion deep in a tunnel have been detected by sensors placed on both sides of the portal. These detectors consisted of antennas, current transformers, B-dots, and D-dots. The main objective was to collect data for nonproliferation studies complementary to and in cooperation with seismic methods. The electric field strength at the portal was computed from the data to be on the order of 50 millivolts per meter, with a Fourier transform indicating that most of the energy occurs below about 3 MHz. Several of the sensors displayed periodic sharp spikes probably not related to the device. Surface guided waves were detected along power and ground cables plus the railroad track. Time dependent surface current and charge were measured on the portal door, which serves as a secondary source for external radiation.

  18. Identification of improvised explosives residues using physical-chemical analytical methods under real conditions after an explosion

    Science.gov (United States)

    Kotrlý, Marek; Mareš, Bohumil; Turková, Ivana; Beroun, Ivo

    2016-05-01

    Within the analysis of cases relating to the use of explosives for crimes, we have experienced a shift from using industrial explosives towards substances made in amateur and illegal way. Availability of industrial explosives is increasingly limited to a narrow sphere of subjects with a relevant permission. Thus, on the part of perpetrators, terrorists, ever greater attention is paid to illegal production of explosives that are easily made from readily available raw materials. Another alarming fact is the availability of information found on the internet. Procedures of preparation are often very simple and do not require even a deeper professional knowledge. Explosive characteristics are not actually accessible for many of these substances (detonation velocity, sensitivity, working capacity, brisance, physical and chemical stability, etc.). Therefore, a project is being implemented, which on grounds of assessment of individual information available in literature and on the internet, aiming at choosing individual areas of potentially abusable substances (e.g. mixtures of nitric acid (98%) with organic substances, mixtures nitromethane and tetranitromethane with organic substances, mixtures of chlorates and perchlorates of alkali metals with organic substances, chemically individual compounds of organic base type of perchloric acid, azides, fulminates, acetylides, picrates, styphnates of heavy metals, etc.). It is directed towards preparation of these explosives also in non-stoichiometric mixtures, conducting test explosives, determination of explosive characteristics (if they are unknown) and analysis of both primary phases and post-blast residues through available analytical techniques, such as gas and liquid chromatography with mass detection, FTIR, micro-Raman spectrometry, electron microscopy with microanalysis and Raman microspectrometry directly in SEM chamber for analysis at the level of individual microparticles. The received characteristics will be used to

  19. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  20. Chemical sensing system for classification of mine-like objects by explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, W.B.; Rodacy, P.J.; Jones, E.E.; Gomez, B.J.; Woodfin, R.L.

    1998-04-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. The authors focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). The authors describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. They present the results of field and laboratory tests on buried landmines which demonstrate their ability to detect the explosive signatures associated with these objects.

  1. Test results of chemical reactivity test (CRT) analysis of structural materials and explosives

    Energy Technology Data Exchange (ETDEWEB)

    Back, P.S.; Barnhart, B.V.; Walters, R.R.; Haws, L.D.; Collins, L.W.

    1980-03-21

    The chemical reactivity test, CRT, is a procedure used to screen the compatibility of component structure materials with explosives. This report contains the results of CRT materials evaluations conducted at Mound Facility. Data about materials combinations are catalogued both under the name of the explosive and the nonexplosive.

  2. The diagnostic of the chemical reaction zone at the detonation of condensed explosives

    CERN Document Server

    Satonkina, Nataliya P

    2016-01-01

    The highly-sensitive method is proposed for the real-time diagnostics of the von Neumann peak at detonation of brisant high explosives. The absence of the direct link between the pressure and the course of chemical reactions was shown. For TNT (trinitrotoluene), the influence of the structure of charge on the kinetics of chemical peak was demonstrated.

  3. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system

    DEFF Research Database (Denmark)

    Brøns, Morten; Sturis, Jeppe

    2001-01-01

    A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong...

  4. Laser-based standoff detection of surface-bound explosive chemicals

    Science.gov (United States)

    Huestis, David L.; Smith, Gregory P.; Oser, Harald

    2010-04-01

    Avoiding or minimizing potential damage from improvised explosive devices (IEDs) such as suicide, roadside, or vehicle bombs requires that the explosive device be detected and neutralized outside its effective blast radius. Only a few seconds may be available to both identify the device as hazardous and implement a response. As discussed in a study by the National Research Council, current technology is still far from capable of meeting these objectives. Conventional nitrocarbon explosive chemicals have very low vapor pressures, and any vapors are easily dispersed in air. Many pointdetection approaches rely on collecting trace solid residues from dust particles or surfaces. Practical approaches for standoff detection are yet to be developed. For the past 5 years, SRI International has been working toward development of a novel scheme for standoff detection of explosive chemicals that uses infrared (IR) laser evaporation of surfacebound explosive followed by ultraviolet (UV) laser photofragmentation of the explosive chemical vapor, and then UV laser-induced fluorescence (LIF) of nitric oxide. This method offers the potential of long standoff range (up to 100 m or more), high sensitivity (vaporized solid), simplicity (no spectrometer or library of reference spectra), and selectivity (only nitrocompounds).

  5. Physical and chemical microstructural damage in pressed CL-20 explosives

    Science.gov (United States)

    Demol, Gauthier; Sandusky, Harold W.

    2000-04-01

    The ultimate utility of CL-20 as an ingredient in explosive and propellant formulations will depend upon the ability to understand the factors that are responsible for batch-to-batch variability with respect to sensitivity, and also to control the sensitivity in formulations within acceptable limits. We used light microscopy of cold-mounted, polished samples to characterize CL-20 at various stages in its life cycle. The evolution of damage from the initial neat crystals of CL-20 to the ready-to-use pressed pellets shows that processing seriously damages the crystals. These crystals are very brittle, and several explanations are proposed.

  6. Fessibility Study on Nitrogen in Explosives using X-ray Photoelectron Spectroscopy: Chemical Fertilizer

    International Nuclear Information System (INIS)

    It was known that an explosive is defined as a material which contains a large amount of energy stored in chemical bonds. The energetic stability of gaseous products, and hence, their generation come from the strong bond formation of carbon (mono/di)oxide and (di)nitrogen. Consequently, most commercial explosives are contained -NO2, -ONO2 and/or -NHNO2 groups which when detonated release gases like the aforementioned ones, e.g., nitroglycerin, TNT, HMX, PETN, nitrocellulose, etc. It was revealed that the elemental compositions, especially N was found in most of the explosive and fertilizer. Chemical fertilizers that used as explosive stimulants were analyzed using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope coupled with energy-dispersive X-ray fluorescence spectroscopy (SEM-EDS). XPS spectra showed relatively high amount of nitrogen (N) in the various samples, especially sample #6 and #7. In addition, the elemental analysis revealed the presence of trace elements. Explosives and fertilizers have differences in specific compositions. It can be concluded that these methods seem to be used as a fingerprint examination to identify various kinds of explosives and fertilizers.

  7. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  8. Forensic analysis methodology for thermal and chemical characterization of homemade explosives

    International Nuclear Information System (INIS)

    Highlights: • Identification of homemade explosives (HME) is critical for determining the origin of explosive precursor materials. • A novel laser-heating technique was used to obtain the thermal/chemical signatures of HME precursor materials. • Liquid-fuel saturation of the pores of a solid porous oxidizer affected the total specific heat release. • Material thermal signatures were dependent on sample mass and heating rate. • This laser-heating technique can be a useful diagnostic tool for characterizing the thermochemical behavior of HMEs. - Abstract: Forensic identification of homemade explosives is critical for determining the origin of the explosive materials and precursors, and formulation procedures. Normally, the forensic examination of the pre- and post-blast physical evidence lacks specificity for homemade-explosive identification. The focus of this investigation was to use a novel measurement technique, referred to as the laser-driven thermal reactor, to obtain the thermal/chemical signatures of homemade-explosive precursor materials. Specifically, nitromethane and ammonium nitrate were studied under a variety of operating conditions and protocols. Results indicated that liquid-fuel saturation of the internal pores of a solid particle oxidizer appear to be a limiting parameter for the total specific heat release during exothermic processes. Results also indicated that the thermal signatures of these materials are dependent on sample mass and heating rate, for which this dependency may not be detectable by other commercially available thermal analysis techniques. This study has demonstrated that the laser-driven thermal reactor can be a useful diagnostic tool for characterizing the thermal and chemical behavior of trace amounts of homemade-explosive materials

  9. Forensic analysis methodology for thermal and chemical characterization of homemade explosives

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Ashot; Presser, Cary, E-mail: cpresser@nist.gov

    2014-01-20

    Highlights: • Identification of homemade explosives (HME) is critical for determining the origin of explosive precursor materials. • A novel laser-heating technique was used to obtain the thermal/chemical signatures of HME precursor materials. • Liquid-fuel saturation of the pores of a solid porous oxidizer affected the total specific heat release. • Material thermal signatures were dependent on sample mass and heating rate. • This laser-heating technique can be a useful diagnostic tool for characterizing the thermochemical behavior of HMEs. - Abstract: Forensic identification of homemade explosives is critical for determining the origin of the explosive materials and precursors, and formulation procedures. Normally, the forensic examination of the pre- and post-blast physical evidence lacks specificity for homemade-explosive identification. The focus of this investigation was to use a novel measurement technique, referred to as the laser-driven thermal reactor, to obtain the thermal/chemical signatures of homemade-explosive precursor materials. Specifically, nitromethane and ammonium nitrate were studied under a variety of operating conditions and protocols. Results indicated that liquid-fuel saturation of the internal pores of a solid particle oxidizer appear to be a limiting parameter for the total specific heat release during exothermic processes. Results also indicated that the thermal signatures of these materials are dependent on sample mass and heating rate, for which this dependency may not be detectable by other commercially available thermal analysis techniques. This study has demonstrated that the laser-driven thermal reactor can be a useful diagnostic tool for characterizing the thermal and chemical behavior of trace amounts of homemade-explosive materials.

  10. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review

    DEFF Research Database (Denmark)

    Hakonen, Aron; Andersson, Per Ola; Schmidt, Michael Stenbæk;

    2015-01-01

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent B...

  11. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    Science.gov (United States)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  12. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  13. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  14. Uniform Contribution of Supernova Explosions to the Chemical Enrichment of Abell 3112 out to R200

    CERN Document Server

    Ezer, Cemile; Ercan, E Nihal; Smith, Randall K; Bautz, Mark W; Loewenstein, Mike; McDonald, Mike; Miller, Eric D

    2016-01-01

    The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster's nucleosynthesis and chemical enrichment history. We present measurements from deep Suzaku and Chandra observations of the cool-core galaxy cluster Abell 3112 out its virial radius (~1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions have a uniform distribution at a level of 12-16% out to the cluster's virial radius. The non-varying supernova enrichment suggests that the ICM was enriched by metals at an early stage before the cluster itself was formed. We also find that the 2D delayed detonations models CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This may indicate that CDDT explosions are not a dominant process of enriching the ICM.

  15. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  16. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  17. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  18. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator

  19. Low Cost Long Distance Detector for Explosives and Chemical Analysis by IEC Application

    Directory of Open Access Journals (Sweden)

    George H. Miley

    2005-01-01

    Full Text Available A radiation source for detecting specific chemicals at several meter distances even behind walls, car doors or other barriers is the application of Million electron Volts (MeV neutrons from nuclear fusion reactions at such low intensities to avoid any danger for human bodies. The chemical analysis consists in the neutron activation of nuclei emitting then gamma radiation of lines very specific for the excited nuclei. The neutron generation by the Inertial Electrostatic Confinement (IEC had been developed to a level where very low cost neutron generators in mass production may be developed with a power supply from a normal AC plug-in or a battery. For specific chemicals e.g. the ratio of nitrogen against other elements used in all explosives, the selection of few specific gamma lines for the detectors may be of sufficiently low cost in the case of mass production.

  20. Observations of perturbations produced by powerful chemical explosions in the ionosphere

    Science.gov (United States)

    Blanc, Elisabeth; Jacobson, Abram R.

    1990-10-01

    Observations by HF ionospheric sounding of disturbances produced by powerful chemical explosions (several KT) are described. These experiments were performed at distances of about 30 to 40 km from the explosion point. Because of the amplification due to the atmospheric density decrease with increasing altitude, the acoustic waves from such explosions are characterized by shock waves features when they reach the ionosphere. The development of the disturbance was studied from the lower E region up to the F2 region by using 8 sounding frequencies. It is shown that a blanketing sporadic E layer undergoes small scale fluctuations and becomes semi-transparent after the passage of the disturbance. Several wave fronts with different properties are followed to the F1 region. In the lower E region, the wave induced stratifications on which the radio waves are partially reflected. The echoes totally reflected in the E region undergo an amplitude modulation with a period of about 2 seconds, persisting about 30 minutes. The variations of the total reflection height and of the Doppler frequency shift are most noticeable in the F1 region. The wave loses its shock wave feature in the F2 region and the disturbance signature is then that of a pseudo-sinusoidal wave with a wave length of several tens of kilometers.

  1. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  2. Medical preparedness for chemical, biological, radiological, nuclear, and explosives (CBRNE) events: Gaps and recommendations

    International Nuclear Information System (INIS)

    The Workshop on Medical Preparedness for Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) events: national scan was held on 20 and 21 May 2010 at the Diefenbunker Museum in Ottawa (Canada). The purpose of the workshop was to provide the CBRNE Research and Technology Initiative with a Canadian national profile of existing capabilities and anticipated gaps in casualty management consistent with the community emergency response requirements. The workshop was organised to enable extensive round-table discussions and provide a summary of key gaps and recommendations for emergency response planners. (authors)

  3. Seismic identification analyses of cavity decoupled nuclear and chemical explosions. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.R.; Barker, B.W.

    1994-01-01

    Successful seismic monitoring of any eventual Comprehensive Test Ban Treaty will require development of a capability to identify signals from small cavity decoupled nuclear explosions from among numerous signals to be expected from earthquakes, rockbursts and chemical explosion (CE) events of comparable magnitude. The investigations summarized in this report focus on preliminary studies which have been carried out in an attempt to distinguish between decoupled nuclear explosions and CE events though analyses of observed and simulated seismic data for these two source types in both the U.S. and former Soviet Union. Near-regional seismic data recorded from the U.S. nuclear cavity decoupling test STERLING and the nearby tamped CE test STERLING HE are compared in Section II in an attempt to identify diagnostic differences between these two source types. This is followed in Section III by an analysis in which short-period P wave data recorded at NORSAR from Soviet nuclear tests conducted in salt cavities at Azgir site north of the Caspian Sea are systematically compared with corresponding data recorded at the same stations from presumed CE events of comparable size which have been located in the vicinity of Azgir site. In Secion IV, broadband seismic data recorded at near-regional Soviet stations from an Azgir nuclear cavity decoupling test are theoretically scaled to 1 kt fully decoupled level and compared with data recorded at the nearby IRIS station KIV from well-documented CE events. The results of these preliminary comparison studies indicate that seismic discrimination between these two explosion source types is not trivial and suggest that a reliable discrimination strategy will have to be based on detailed analysis of data.

  4. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    Science.gov (United States)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  5. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  6. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  7. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey Noreen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  8. Observations of ionospheric disturbances following a 5-kt chemical explosion. I - Persistent oscillation in the lower thermosphere after shock passage

    Science.gov (United States)

    Jacobson, Abram R.; Carlos, Robert C.; Blanc, Elizabeth

    1988-10-01

    A 6-min-period oscillation persisting for an hour has been observed in the ionospheric E region following a 5-kt chemical explosion on the ground 250 km south of the measurement site. The oscillations' phase velocity in the upper atmosphere is 0.15 km/s at an azimuth 60 W.

  9. Interpretation of S waves generated by near-surface chemical explosions at SAFOD

    Science.gov (United States)

    Pollitz, Fred F.; Ellsworth, William L.; Rubinstein, Justin L.

    2015-01-01

    A series of near-surface chemical explosions conducted at the San Andreas Fault Observatory at Depth (SAFOD) were recorded by high-frequency downhole receiver arrays in separate experiments in November 2003 and May 2005. The 2003 experiment involved ∼100  kg shots detonated along a 46-km-long line (Hole–Ryberg line) centered on SAFOD and recorded by 32 three-component geophones in the pilot hole between 0.8 and 2.0 km depth. The 2005 experiment involved ∼36  kg shots detonated at Parkfield Area Seismic Observatory (PASO) stations (at ∼1–8  km offset) recorded by 80 three-component geophones in the main hole between the surface and 2.4 km depth. These data sample the downgoing seismic wavefield and constrain the shallow velocity and attenuation structure, as well as the first-order characteristics of the source. Using forward modeling on a velocity structure designed for the near field, both observed P- and S-wave energy for the PASO shots are identified with the travel times expected for direct and/or reflected phases. Larger-offset recordings from shots along the Hole–Ryberg line reveal substantial SV and SH energy, especially southwest of SAFOD from the source as indicated by P-to-S amplitude ratios. The generated SV energy is interpreted to arise chiefly from P-to-S conversions at subhorizontal discontinuities. This provides a simple mechanism for often-observed low P-to-S amplitude ratios from nuclear explosions in the far field, as originating from strong near-field wave conversions.

  10. Line-imaging velocimetry for observing spatially heterogeneous mechanical and chemical responses in plastic bonded explosives during impact.

    Science.gov (United States)

    Bolme, C A; Ramos, K J

    2013-08-01

    A line-imaging velocity interferometer was implemented on a single-stage light gas gun to probe the spatial heterogeneity of mechanical response, chemical reaction, and initiation of detonation in explosives. The instrument is described in detail, and then data are presented on several shock-compressed materials to demonstrate the instrument performance on both homogeneous and heterogeneous samples. The noise floor of this diagnostic was determined to be 0.24 rad with a shot on elastically compressed sapphire. The diagnostic was then applied to two heterogeneous plastic bonded explosives: 3,3(')-diaminoazoxyfurazan (DAAF) and PBX 9501, where significant spatial velocity heterogeneity was observed during the build up to detonation. In PBX 9501, the velocity heterogeneity was consistent with the explosive grain size, however in DAAF, we observed heterogeneity on a much larger length scale than the grain size that was similar to the imaging resolution of the instrument. PMID:24007075

  11. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    International Nuclear Information System (INIS)

    The concept for the system described herein is an active/passive Nuclear Materials Identification System2 (NMIS) that incorporates gamma ray spectrometry3. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure

  12. Investigations of emergency destruction methods for recovered, explosively configured, chemical warfare munitions: Interim emergency destruction methods - evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Cooper, P.W.; Kipp, M.E. [and others

    1995-07-01

    At the request of the U.S. Army Non-Stockpile Chemical Material Office, the Sandia Explosives Containment System Design Team investigated mature destruction systems for destroying recovered chemical warfare munitions (CWM). The goal of the investigations was to identify and examine available techniques for the destruction of recovered CWM. The result of this study is a recommendation for an interim solution, a solution for use on any munitions found while an optimal, long-term solution is developed. Sandia is also performing the long-term solution study to develop a system that destroys CWM, contains the blast and fragments, and destroys the chemical agent without insult to the environment.

  13. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  14. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    Science.gov (United States)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  15. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    Science.gov (United States)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source ( 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave energy and the pP phase reflected from the Earth's surface. A similar effect was observed before at ISN stations for the Pakistan explosion (28.05.98) at a different frequency 1.7 Hz indicating the source- and not site-effect. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of

  16. Chemical explosive fracturing Devonian shale and Canyon Sands. Final report, 1 July 1976-31 December 1979. [Astrofrac

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Devonian shale resource which underlies much of Appalachia and was the formation of interest in Kentucky and West Virginia is discussed. The CEF process is described which consists of pumping two non-detonable chemical streams down the well bore to a mixer where the liquid explosive is manufactured. The explosive is displaced down the tubing to the bottom of the well and out into the formation rock. It detonates in thin films as well as in the borehole thus fracturing the rock and increasing the permeability. Site selection, pre and post shot flow tests, cleanout and production results are presented. The problems encountered are discussed. Evaluation led to modified and improved placement, initiation, and cleanout techniques. Projected costs for the improved simulation and cleanout technique are presented. Additional tests to determine the caging/springing effect in the borehole are planned by Petroleum Technology Corporation.

  17. Chemical and physical modification of hemp fibres by steam explosion technology

    Science.gov (United States)

    Sutka, Anna; Kukle, Silvija; Gravitis, Janis; Berzins, Agris

    2013-12-01

    In current research attempt has been made to analyse hemp fibres treated with steam explosion (SE) technology. Disintegration of hemp fibres separated from non-retted, dew-retted and dried stems of hemp ('Purini')[1] by alkali treatment and steam explosion (SE) were investigated. An average intensive SE in combination with the hydro-thermal and alkali after-treatment allows decreasing the diameter of hemp fibres and reduce the concentration of non-celluloses components, among them hemicelluloses, lignin, pectin, waxes and water [1;2].

  18. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  19. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  20. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Bohlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  1. Demonstrated Wavelength Portability of Raman Reference Data for Explosives and Chemical Detection

    Directory of Open Access Journals (Sweden)

    Timothy J. Johnson

    2012-01-01

    Full Text Available As Raman spectroscopy continues to evolve, questions arise as to the portability of Raman data: dispersive versus Fourier transform, wavelength calibration, intensity calibration, and in particular the frequency of the excitation laser. While concerns about fluorescence arise in the visible or ultraviolet, most modern (portable systems use near-infrared excitation lasers, and many of these are relatively close in wavelength. We have investigated the possibility of porting reference data sets from one NIR wavelength system to another: We have constructed a reference library consisting of 145 spectra, including 20 explosives, as well as sundry other compounds and materials using a 1064 nm spectrometer. These data were used as a reference library to evaluate the same 145 compounds whose experimental spectra were recorded using a second 785 nm spectrometer. In 128 cases of 145 (or 88.3% including 20/20 for the explosives, the compounds were correctly identified with a mean “hit score” of 954 of 1000. Adding in criteria for when to declare a correct match versus when to declare uncertainty, the approach was able to correctly categorize 134 out of 145 spectra, giving a 92.4% accuracy. For the few that were incorrectly identified, either the matched spectra were spectroscopically similar to the target or the 785 nm signal was degraded due to fluorescence. The results indicate that imported data recorded at a different NIR wavelength can be successfully used as reference libraries, but key issues must be addressed: the reference data must be of equal or higher resolution than the resolution of the current sensor, the systems require rigorous wavelength calibration, and wavelength-dependent intensity response should be accounted for in the different systems.

  2. Parameters, limits, attenuation, and suppression of detonation in mixtures of an explosive gas with chemically inert microparticles

    Science.gov (United States)

    Fedorov, A. V.; Fomin, P. A.; Tropin, D. A.; Chen, Z.-R.

    2012-03-01

    Chapman-Jouguet parameters and the cell size of a detonation wave in mixtures of an explosive gas with chemically inert particles have been calculated. The algorithm of calculation of the minimum mass and characteristic dimension of a particle cloud ensuring successful suppression of detonation in the gas has been proposed. The calculation results are in good agreement with the available experimental data. The influence of the initial composition of the gas on the efficiency of suppression of the detonation wave has been analyzed. The issue of the dependence of the concentration limits of detonation on the mass fraction of particles has been investigated. It has been established that the increase in the concentration of the condensed phase leads to a narrowing of the existence domain of detonation and that the propagation of the detonation wave becomes impossible when the concentration of the particles is fairly high.

  3. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  4. Chemical sensors for classification of mine-like objects by identification of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Woodfin, R.L.

    1997-10-01

    This paper briefly describes a prototype sensor for detecting land mines placed in shallow water. An automatic system was developed which incorporates chemical concentration technology, an ion mobility spectrometer, and control and fluid movement subsystems. The system design was successfully demonstrated using laboratory instruments and equipment. Components for the portable unit, which will weigh less than 20 pounds, have been fabricated; field demonstrations will be completed by spring 1998. 4 figs.

  5. Use of chemical explosives for emergency solar flare shelter construction and other excavations on the Martian surface

    International Nuclear Information System (INIS)

    The necessity to shelter people on the Martian surface from solar flare particles at short notice and the need for long-term habitats with thick cosmic ray shielding suggests that explosives could be used effectively for excavation of such structures. Modern insensitive high explosives are safe, efficient, and reliable for rock breakage and excavation. Extensive Earth-bound experience leads us to propose several strategies for explosively-constructed shelters based on tunneling, cratering, and rock casting techniques

  6. A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations

    NARCIS (Netherlands)

    Pekalski, A.A.; Zevenbergen, J.F.; Lemkowitz, S.M.; Pasman, H.J.

    2005-01-01

    Ideally, explosion risk is identified and prevented at an early stage of process design, forming a key part of the inherently safer design (ISD) approach. However, in practice, explosion risk often cannot be eliminated completely. Reliable preventive and protective systems must therefore be applied,

  7. Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.

    2013-05-01

    The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.

  8. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  9. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive

  10. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  11. Comparative analysis of the seismic characteristics of cavity decoupled nuclear and chemical explosions. Final report, 1 November 1992-31 October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.R.; Barker, B.W.

    1995-03-01

    Successful seismic monitoring of any eventual Comprehensive Test Ban Treaty will require the development of a capability to identify signals from small cavity decoupled nuclear explosions from among the numerous signals to be expected from earthquakes, rockbursts, and chemical explosion (CE) events of comparable magnitude. The investigations summarized in this report center on a variety of comparative analyses of observed and simulated seismic data corresponding to decoupled nuclear explosions with data recorded from both tamped and near-surface, ripple-fired CE events. More specifically, seismic data recorded from cavity decoupled nuclear tests in both the U.S. and former Soviet Union are used to assess the relative seismic coupling efficiencies of the different types of CE events and to evaluate potential seismic discriminants which might be used to identify the various source types. The results of these comparison studies indicate that tamped CE events with yields on the order of 7 tons and ripple fired CE events with yields in the 70-100 ton range can be expected to produce near-regional ground motion levels comparable to those expected from fully decoupled 1 kt nuclear explosions at Azgir.

  12. Observation of ionospheric disturbances following a 5-kt chemical explosion. II - Prolonged anomalies and stratifications in the lower thermosphere after shock passage

    Science.gov (United States)

    Blanc, Elisabeth; Jacobson, Abram R.

    1989-12-01

    Unusual stratifications and prolonged spectral deformations of radio echoes after the passage through the E region of the shock wave produced by a 5-kt chemical explosion have been observed. The observations were obtained by vertical HF pulsed ionospheric sounding. At the total reflection level of the sounding waves, at a horizontal distance of 30 km from the explosion, the passage of the shock wave generated a complex structure suggesting a significant deformation of the reflecting surface. Irregularities have also been observed in the E region for over 30 min after the shock passage by a network of continuous wave HF ionospheric sounders located 250 km west of the source. The origin of these structures is discussed.

  13. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Science.gov (United States)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  14. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  15. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerton, R.E.

    1997-07-25

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board`s investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63).

  16. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - summary report

    International Nuclear Information System (INIS)

    This report is a summary of the Accident Investigation Board Report on the May 14, 1997, Chemical Explosion at the Plutonium Reclamation Facility, Hanford Site, Richland, Washington (DOE/RL-97-59). The referenced report provides a greater level of detail and includes a complete discussion of the facts identified, analysis of those facts, conclusions derived from the analysis, identification of the accident's causal factors, and recommendations that should be addressed through follow-up action by the U.S. Department of Energy and its contractors. This companion document provides a concise summary of that report, with emphasis on management issues. Evaluation of emergency and occupational health response to, and radiological and chemical releases from, this accident was not within the scope of this investigation, but is the subject of a separate investigation and report (see DOE/RL-97-62)

  17. A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor

    Science.gov (United States)

    Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.

    2008-04-01

    Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.

  18. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    International Nuclear Information System (INIS)

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  19. Yield and depth Estimation of Selected NTS Nuclear and SPE Chemical Explosions Using Source Equalization by modeling Local and Regional Seismograms (Invited)

    Science.gov (United States)

    Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.

    2013-12-01

    Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are

  20. High Explosives Research and Development (HERD) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...

  1. Using the X-ray Morphologies of Young Supernova Remnants to Constrain Explosion Type, Ejecta Distribution, and Chemical Mixing

    CERN Document Server

    Lopez, Laura A; Huppenkothen, Daniela; Badenes, Carles; Pooley, David

    2010-01-01

    Supernova remnants (SNRs) are a complex class of sources, and their heterogeneous nature has hindered the characterization of their general observational properties. To overcome this challenge, we use statistical tools to analyze the Chandra X-ray images of Galactic and Large Magellanic Cloud SNRs. We apply two techniques, a power-ratio method (a multipole expansion) and wavelet-transform analysis, to measure the global and local morphological properties of the X-ray line and thermal emission in twenty-four SNRs. We find that Type Ia SNRs have statistically more spherical and mirror symmetric thermal X-ray emission than core-collapse (CC) SNRs. The ability to type SNRs based on thermal emission morphology alone enables, for the first time, the typing of SNRs with weak X-ray lines or with low-resolution spectra. We identify one source, SNR G344.7-0.1, as originating from a CC explosion that was previously unknown, and we confirm the tentative Type Ia classifications of G337.2-0.7 and G272.2-3.2. Although the g...

  2. Explosive laser

    International Nuclear Information System (INIS)

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO2 and other species that are beneficial or at least benign to CO2 lasing

  3. Explosive complexes

    Science.gov (United States)

    Huynh, My Hang V.

    2009-09-22

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  4. Niche explosion.

    Science.gov (United States)

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  5. Fire Supervision and Inspection of Warehouse for Flammable and Explosive Chemicals%易燃易爆危险化学品储存场所的消防监督检查

    Institute of Scientific and Technical Information of China (English)

    荣保华

    2013-01-01

      The warehouse of flammable and explosive chemicals has the high risk of disaster accidents, which caused great loss of property and casualty. It is important to strictly implement security measures of the fireproof, explosion-proof, waterproof, ventilation, cooling and so on to prevent fire and explosion accidents. So we must strengthen the fire supervision and inspection of the warehouse of flammable and explosive chemicals.%  易燃易爆危险化学品的储存场所,由于受到摩擦、挤压、震动、高(低)温、高(低)压、潮湿等因素的影响,常常引发越来越多的火灾、爆炸等灾害事故,造成了越来越大的损失和伤亡。严格落实防火、防爆、防潮、通风、降温等安全措施,对防止火灾和爆炸事故的发生,保障人民生命和财产安全,构建和谐社会,都具有十分重要的意义。因此,我们必须加强易燃易爆危险化学品储存场所的消防监督检查。

  6. Explosives signatures and analysis

    Science.gov (United States)

    Fountain, Augustus Way, III; Oyler, Jonathan M.; Ostazeski, Stanley A.

    2008-04-01

    The challenge of sampling explosive materials for various high threat military and civilian operational scenarios requires the community to identify and exploit other chemical compounds within the mixtures that may be available to support stand-off detection techniques. While limited surface and vapor phase characterization of IEDs exist, they are insufficient to guide the future development and evaluation of field deployable explosives detection (proximity and standoff) capabilities. ECBC has conducted a limited investigation of three artillery ammunition types to determine what chemical vapors, if any, are available for sensing; the relative composition of the vapors which includes the more volatile compounds in munitions, i.e., plastersizers and binders; and the sensitivity needed detect these vapors at stand-off. Also in partnership with MIT-Lincoln Laboratory, we performed a background measurement campaign at the National Training Center to determine the baseline ambient amounts and variability of nitrates and nitro-ester compounds as vapors, particulates, and on surfaces; as well as other chemical compounds related to non-energetic explosive additives. Environmental persistence studies in contexts relevant to counter-IED sensing operations, such as surface residues, are still necessary.

  7. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ... isomorphously substituted inorganic salts. *ANFO . Aromatic nitro-compound explosive mixtures. Azide explosives.... Explosive mixtures containing tetranitromethane (nitroform). Explosive nitro compounds of aromatic... polyhydric alcohol explosives. Nitric acid and a nitro aromatic compound explosive. Nitric acid...

  8. Explosive Nucleosynthesis in Hypernovae

    CERN Document Server

    Nakamura, T; Iwamoto, K; Nomoto, K; Hashimoto, M; Hix, W R; Thielemann, F K; Nakamura, Takayoshi; Umeda, Hideyuki; Iwamoto, Koichi; Nomoto, Ken'ichi; Hashimoto, Masa-aki; Thielemann, Friedrich-Karl

    2000-01-01

    We examine the characteristics of nucleosynthesis in 'hypernovae', i.e., supernovae with very large explosion energies ($ \\gsim 10^{52} $ ergs). We carry out detailed nucleosynthesis calculations for these energetic explosions and compare the yields with those of ordinary core-collapse supernovae. We find that both complete and incomplete Si-burning takes place over more extended, lower density regions, so that the alpha-rich freezeout is enhanced in comparison with ordinary supernova nucleosynthesis. In addition, oxygen and carbon burning takes place in more extended, lower density regions than in ordinary supernovae. Therefore, the fuel elements O, C, Al are less abundant while a larger amount of burning products such as Si, S, and Ar are synthesized by oxygen burning. Implications for Galactic chemical evolution and the abundances in metal-poor stars are also discussed.

  9. Leidenfrost explosions

    CERN Document Server

    Moreau, F; Dorbolo, S

    2012-01-01

    We present a fluid dynamics video showing the behavior of Leidenfrost droplets composed by a mixture of water and surfactant (SDS, Sodium Dodecyl sulfate). When a droplet is released on a plate heated above a given temperature a thin layer of vapor isolates the droplet from the plate. The droplet levitates over the plate. This is called the Leidenfrost effect. In this work we study the influence of the addition of a surfactant on the Leidenfrost phenomenon. As the droplet evaporates the concentration of SDS rises up to two orders of magnitude over the Critical Micelle Concentration (CMC). An unexpected and violent explosive behavior is observed. The video presents several explosions taken with a high speed camera (IDT-N4 at 30000 fps). All the presented experiments were performed on a plate heated at 300{\\deg}C. On the other hand, the initial quantity of SDS was tuned in two ways: (i) by varying the initial concentration of SDS and (ii) by varying the initial size of the droplet. By measuring the volume of th...

  10. Low Frequency Electromagnetic Pulse and Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J J

    2011-02-01

    This paper reviews and summarizes prior work related to low frequency (< 100 Hz) EMP (ElectroMagnetic Pulse) observed from explosions. It focuses on how EMP signals might, or might not, be useful in monitoring underground nuclear tests, based on the limits of detection, and physical understanding of these signals. In summary: (1) Both chemical and nuclear explosions produce an EMP. (2) The amplitude of the EMP from underground explosions is at least two orders of magnitude lower than from above ground explosions and higher frequency components of the signal are rapidly attenuated due to ground conductivity. (3) In general, in the near field, that is distances (r) of less than 10s of kilometers from the source, the amplitude of the EMP decays approximately as 1/r{sup 3}, which practically limits EMP applications to very close (<{approx}1km) distances. (4) One computational model suggests that the EMP from a decoupled nuclear explosion may be enhanced over the fully coupled case. This has not been validated with laboratory or field data. (5) The magnitude of the EMP from an underground nuclear explosion is about two orders of magnitude larger than that from a chemical explosion, and has a larger component of higher frequencies. In principle these differences might be used to discriminate a nuclear from a chemical explosion using sensors at very close (<{approx}1 km) distances. (6) Arming and firing systems (e.g. detonators, exploding bridge wires) can also produce an EMP from any type of explosion. (7) To develop the understanding needed to apply low frequency EMP to nuclear explosion monitoring, it is recommended to carry out a series of controlled underground chemical explosions with a variety of sizes, emplacements (e.g. fully coupled and decoupled), and arming and firing systems.

  11. Close-in airblast from underground explosions

    International Nuclear Information System (INIS)

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb1/3 along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  12. Chaotic Explosions

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2015-01-01

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  13. Explosives Detection: Exploitation of the Physical Signatures

    Science.gov (United States)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  14. Explosion modelling for complex geometries

    Science.gov (United States)

    Nehzat, Naser

    A literature review suggested that the combined effects of fuel reactivity, obstacle density, ignition strength, and confinement result in flame acceleration and subsequent pressure build-up during a vapour cloud explosion (VCE). Models for the prediction of propagating flames in hazardous areas, such as coal mines, oil platforms, storage and process chemical areas etc. fall into two classes. One class involves use of Computation Fluid Dynamics (CFD). This approach has been utilised by several researchers. The other approach relies upon a lumped parameter approach as developed by Baker (1983). The former approach is restricted by the appropriateness of sub-models and numerical stability requirements inherent in the computational solution. The latter approach raises significant questions regarding the validity of the simplification involved in representing the complexities of a propagating explosion. This study was conducted to investigate and improve the Computational Fluid Dynamic (CFD) code EXPLODE which has been developed by Green et al., (1993) for use on practical gas explosion hazard assessments. The code employs a numerical method for solving partial differential equations by using finite volume techniques. Verification exercises, involving comparison with analytical solutions for the classical shock-tube and with experimental (small-scale, medium and large-scale) results, demonstrate the accuracy of the code and the new combustion models but also identify differences between predictions and the experimental results. The project has resulted in a developed version of the code (EXPLODE2) with new combustion models for simulating gas explosions. Additional features of this program include the physical models necessary to simulate the combustion process using alternative combustion models, improvement to the numerical accuracy and robustness of the code, and special input for simulation of different gas explosions. The present code has the capability of

  15. Extrusion cast explosive

    Science.gov (United States)

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  16. CFD simulation of vented explosion and turbulent flame propagation

    Directory of Open Access Journals (Sweden)

    Tulach Aleš

    2015-01-01

    Full Text Available Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments in the explosion chamber.

  17. CFD simulation of vented explosion and turbulent flame propagation

    Science.gov (United States)

    Tulach, Aleš; Mynarz, Miroslav; Kozubková, Milada

    2015-05-01

    Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments in the explosion chamber.

  18. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10-3 to as low as 5.8 x 10-6. Other experiments in PMMA, reported recently by Stout and Larson8 provide additional particle velocity data to strains of 10-1

  19. Research progress in chemical reaction kinetics applied in confined explosions%化学反应动力学应用于约束爆炸的研究进展

    Institute of Scientific and Technical Information of China (English)

    钟巍; 田宙

    2011-01-01

    The confined explosions may cause a high-temperature and high-pressure environment. Under such environment, the explosive products and oxygen in the air easily have very active chemical reactions. The research on the chemical reaction kinetics of the confined explosions can get more accurate parameters, such as total pressure, static pressure and total energy, so the physical phenomena including the thermal strain and the mechanics effect can be described more accurately. This is important to consummate the explosion phenomenology. Summarizing the research work at home and abroad, a brief introduction to the developed history and latest investigation on the chemical reaction kinetics applied in the confined explosions was given, and the research results obtained as well as the experimental and the numerical simulation methods were also presented. The focus was on the experimental studies and the numerical simulations of the small equivalent confined explosions, and some further study and problems were pointed out.%约束爆炸会产生高温高压环境,该环境下,爆炸产物和空气中的氧气等成分极易发生化学反应.研究约束爆炸中涉及到的化学反应动力学过程,将动力学过程的具体参数耦合到约束爆炸中,可以获得约束爆炸后密封容器或者密闭爆室内更精确的总压力、静态压力和爆炸释放的总热量值,进而更准确地描述约束爆炸中的热应变、力学效应等重要物理现象,对于完善爆炸现象学研究具有重要的意义.通过总结国内外在这方面的研究工作,介绍了在约束爆炸研究中引入化学反应动力学过程的发展历史和最新进展,取得的研究成果,以及进行实验采用的技术方案和数值模拟方法.重点介绍了在化爆小当量约束爆炸的研究中,考虑化学反应动力学过程的实验研究方法和数值模拟方法,并分析指出了一些有待进一步研究解决的问题.

  20. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  1. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  2. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    The final evolution and explosion of stars from 10 M/sub solar/ to 106 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  3. On the Violence of High Explosive Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, C M; Chidester, S K

    2004-02-09

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  4. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  5. Investigation of the chemical explosion of an ion exchange resin column and resulting americium contamination of personnel in the 242-Z building, August 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-19

    As a result of an explosion in the Waste Treatment Facility, 242-Z Building, 200 West Area of the Hanford Reservation on August 30, 1976, the Manager of the Richland Operations Office (RL), Energy Research and Development Administration (ERDA), appointed an ERDA Committee to conduct a formal investigation and to prepare a report on their findings of this occurrence. The Committee was instructed to conduct the investigation in accordance with ERDAMC 0502, insofar as circumstances would permit, to cover and explain technical elements of the casual sequence(s) of the occurrence, and to describe management systems which should have or could have prevented the occurrence. This report is the result of the investigation and presents the conclusions of the review.

  6. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  7. Simulating thermal explosion of RDX-based explosives: Model comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A; Maienschein, J L; Wardell, J F; Tarver, C M

    2004-10-11

    We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  8. Fast Chromatographic Method for Explosive Profiling

    Directory of Open Access Journals (Sweden)

    Pierre-Hugues Stefanuto

    2015-05-01

    Full Text Available Security control is becoming a major global issue in strategic locations, such as airports, official buildings, and transit stations. The agencies responsible for public security need powerful and sensitive tools to detect warfare agents and explosives. Volatile signature detection is one of the fastest and easiest ways to achieve this task. However, explosive chemicals have low volatility making their detection challenging. In this research, we developed and evaluated fast chromatographic methods to improve the characterization of volatile signatures from explosives samples. The headspace of explosives was sampled with solid phase micro-extraction fiber (SPME. Following this step, classical gas chromatography (GC and comprehensive two-dimensional GC (GC×GC were used for analysis. A fast GC approach allows the elution temperature of each analyte to be decreased, resulting in decreased thermal degradation of sensitive compounds (e.g., nitro explosives. Using fast GC×GC, the limit of detection is further decreased based on the cryo-focusing effect of the modulator. Sampling of explosives and chromatographic separation were optimized, and the methods then applied to commercial explosives samples. Implementation of fast GC methods will be valuable in the future for defense and security forensics applications.

  9. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... inorganic salts. * ANFO . Aromatic nitro-compound explosive mixtures. Azide explosives. B Baranol. Baratol...). Explosive nitro compounds of aromatic hydrocarbons. Explosive organic nitrate mixtures. Explosive powders. F... explosive. Nitrated polyhydric alcohol explosives. Nitric acid and a nitro aromatic compound...

  10. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    .... *ANFO . Aromatic nitro-compound explosive mixtures. Azide explosives. B Baranol. Baratol. BEAF . Black...). Explosive nitro compounds of aromatic hydrocarbons. Explosive organic nitrate mixtures. Explosive powders. F... explosive. Nitrated polyhydric alcohol explosives. Nitric acid and a nitro aromatic compound...

  11. CFD simulation of vented explosion and turbulent flame propagation

    OpenAIRE

    Tulach Aleš; Mynarz Miroslav; Kozubková Milada

    2015-01-01

    Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments...

  12. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  13. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities

    International Nuclear Information System (INIS)

    Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined

  14. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    CERN Document Server

    Cescutti, G; François, P; Chiappini, C; Depagne, E; Christlieb, N; Cortés, C

    2016-01-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We have found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims. In the present paper we discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods. We apply a standard 1D LTE analysis to the spectrum of this star. We measure the abundances of 14 chemical elements; for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni and Zn we compute the abundances using equivalent widths; for C, Sr and Ba we obtain the abundances by means of synthetic spectra generated by MOOG. Results. We find an abundance of [Fe/H]= $-$3.5 $\\pm$0.13 dex based on our high resolution spectrum; this points to an iron content lower by a factor of three (0.5 dex) compared to the one obtained by a low resolu...

  15. Use of a Sheath in Concealing Underground Explosions

    Directory of Open Access Journals (Sweden)

    K. Viswanathan

    1966-10-01

    Full Text Available A theoretical formula is obtained for the decoupling of the seismic signals from underground explosions due to the introduction of a sheath of a stronger material on the cavity walls. The elastic-elastic decoupling clearly enhances the value of the elastic-nonelastic decoupling factor already known. The theory has applications in the concealing of underground nuclear and chemical explosions.

  16. Steam explosion studies review

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  17. Steam explosion studies review

    International Nuclear Information System (INIS)

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  18. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  19. Spectroscopic characterization of nitroaromatic landmine signature explosives

    Science.gov (United States)

    Hernandez-Rivera, Samuel P.; Manrique-Bastidas, Cesar A.; Blanco, Alejandro; Primera, Oliva M.; Pacheco, Leonardo C.; Castillo-Chara, Jairo; Castro, Miguel E.; Mina, Nairmen

    2004-09-01

    TNT and DNT are important explosives used as base charges of landmines and other explosive devices. They are often combined with RDX in specific explosive formulations. Their detection in vapor phase as well as in soil in contact with the explosives is important in landmine detection technology. The spectroscopic signatures of nitroaromatic compounds in neat forms: crystals, droplets, and recrystallized samples were determined by Raman Microspectroscopy (RS), Fourier Transform Infrared Microscopy (FTIR) and Fiber Optics Coupled - Fourier Transform Infrared Spectroscopy (FOC-FTIR) using a grazing angle (GA) probe. TNT exhibits a series of characteristic bands: vibrational signatures, which allow its detection in soil. The spectroscopic signature of neat TNT is dominated by strong bands about 1380 and 2970 cm-1. The intensity and position of these bands were found remarkably different in soil samples spiked with TNT. The 1380 cm-1 band is split into a number of bands in that region. The 2970 cm-1 band is reduced in intensity and new bands are observed about 2880 cm-1. The results are consistent with a different chemical environment of TNT in soil as compared to neat TNT. Interactions were found to be dependent on the physical source of the explosive. In the case of DNT-sand interactions, shifts in vibrational frequencies of the explosives as well as the substrates were found.

  20. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M☉, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼1055 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≅ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 107 M☉, much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ∼☉ after ∼> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today

  1. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  2. An approximate method for solving the problem of the establishment of chemical equilibrium in the products of explosion of gas mixture

    Science.gov (United States)

    Shargatov, V. A.; Gubin, S. A.; Okunev, D. Yu

    2015-11-01

    Based on the assumption of the existence of the partial chemical equilibrium in the detonation products, an approximate method for calculating composition of the detonation products is developed. The method uses the assumption of the existence of extremum of Helmholtz free energy for a given density, temperature, and molecular weight of the detonation products mixture. Without significant loss of accuracy to the solution of stiff differential equations, detailed kinetic mechanism can be replaced by one differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the decision of a stiff system, replacing it when bimolecular reactions are near equilibrium.

  3. Characterization of explosives processing waste decomposition due to composting

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Tyndall, R.L.; Stewart, A.J.; Ho, C.H.; Ironside, K.S.; Caton, J.E.; Caldwell, W.M.; Tan, E.

    1991-11-01

    Static pile and mechanically stirred composts generated at the Umatilla Army Depot Activity in a field composting optimization study were chemically and toxicologically characterized to provide data for the evaluation of composting efficiency to decontaminate and detoxify explosives-contaminated soil. Characterization included determination of explosives and 2,4,6,-trinitrotoluene metabolites in composts and their EPA Synthetic Precipitation Leaching Procedure Leachates, leachate toxicity to Ceriodaphnia Dubia and mutagenicity of the leachates and organic solvent extracts of the composts to Ames bacterial strains TA-98 and TA-100. The main conclusion from this study is that composting can effectively reduce the concentrations of explosives and bacterial mutagenicity in explosives -- contaminated soil, and can reduce the aquatic toxicity of leachable compounds. Small levels of explosive and metabolites, bacterial mutagenicity, and leachable aquatic toxicity remain after composting. The ultimate fate of the biotransformed explosives, and the source(s) of residual toxicity and mutagenicity remain unknown.

  4. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  5. Research on the Low Detonation Velocity Explosives Containing Nitroesters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some explosive mixtures detonating at low velocity were experimentally investigated. Detonation velocity and critical diameter were measured for mixtures,being different in composition and density. An attempt of physical and chemical interpretation of results obtained is also included.

  6. Liquid explosives detection

    Science.gov (United States)

    Burnett, Lowell J.

    1994-03-01

    A Liquid Explosives Screening System capable of scanning unopened bottles for liquid explosives has been developed. The system can be operated to detect specific explosives directly, or to verify the labeled or bar-coded contents of the container. In this system nuclear magnetic resonance (NMR) is used to interrogate the liquid. NMR produces an extremely rich data set and many parameters of the NMR response can be determined simultaneously. As a result, multiple NMR signatures may be defined for any given set of liquids, and the signature complexity then selected according to the level of threat.

  7. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  8. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  9. Modeling nuclear explosion

    Science.gov (United States)

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  10. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  11. Aging of civil explosives (Poster)

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Hoen, C. 't; Krämer, R.E.

    2014-01-01

    For the Dutch MoD and police, TNO composed sets with different kinds of civil explosives to train their detection dogs. The manufacturer of these explosives guarantees several years of stability of these explosives. These sets of explosives are used under different conditions, like temperature and h

  12. Modelling of gas explosions

    OpenAIRE

    Vågsæther, Knut

    2010-01-01

    The content of this thesis is a study of gas explosions in complex geometries and presentation and validation of a method for simulating flame acceleration and deflagration to detonation transition. The thesis includes a description of the mechanisms of flame acceleration and DDT that need to be modeled when simulating all stages of gas explosions. These mechanisms are flame acceleration due to instabilities that occur in fluid flow and reactive systems, shock propagation, deflagration to det...

  13. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  14. Underground explosion barriers - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.; O`Beirne, T. [ACIRL Ltd., Booval, Qld. (Australia)

    1997-12-31

    The paper focuses on explosibility conditions in underground coal mines, the behaviour of explosions from initiating gas ignition to violent dust explosions and the effectiveness and limits of operation of current designs of passive explosion barriers in suppressing the flame front. The paper also discusses performance evaluations made in full scale explosion galleries and the use of alternatives to passive barriers, including the installation of active barriers under some circumstances.

  15. 化工园区初始火灾爆炸引发连锁事故概率研究%Probability of the chain-fire accidents originated from the explosion in chemical industry parks

    Institute of Scientific and Technical Information of China (English)

    王洪德; 崔铁军

    2011-01-01

    The paper is inclined to present a simulated model for predicting the probability of chain-fire accidents caused by the explosion in chemical industry parks based on the analysis of the fire and explosion liability of the oil tanks over there. Careful study of the Domino Effect of the accidents helps us to confirm that the main physical effects of the chain accidents taking place in such parks are the explosion of incontrollable vapor clouds and the pool fires. To make the problem clearer, we have drawn the curves of the shock-waves in relation with the accident distance and the heat radiation with the distance by using MATLAB technology. At the same time, we have also worked out the probability curve of the overpressure with the damage, and that of the heat radiation with the damage. The fitting of the two groups of curves has enabled us to establish the connection between the objective hazardous sources affected and the original hazardous sources themselves, which may in turn promote the building-up of the connection between the hazardous material sources with the original hazardous sources, that is, the probability matrixes, on the basis of which we have worked out the accident probabilities of the hazardous oil tanks in a given affected field of the fire and the explosion. In so doing, it is possible for us to deduce the likely chain effects and the probability of the accidents in advance, which enabled us to prepare essential preventive methods. The example analysis shows that the probability of the chain accidents can be affected by the physical and chemical properties of the hazardous material sources in the field, the geographical location and the solidness of the container of the material. Corresponding relationship of the accident probabilities has been established with the MATLAB. Differences of the correspondent relationship or the accident order may in turn lead to the difference of the probabilities of the chain accidents. The above considerations may

  16. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    Science.gov (United States)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  17. Explosion models, light curves, spectra and H$_{0}$

    CERN Document Server

    Höflich, P; Wheeler, J C; Nomoto, K; Thielemann, F K

    1996-01-01

    From the spectra and light curves it is clear that SNIa are thermonuclear explosions of white dwarfs. However, details of the explosion are highly under debate. Here, we present detailed models which are consistent with respect to the explosion mechanism, the optical and infrared light curves (LC), and the spectral evolution. This leaves the description of the burning front and the structure of the white dwarf as the only free parameters. The explosions are calculated using one-dimensional Lagrangian codes including nuclear networks. Subsequently, optical and IR-LCs are constructed. Detailed NLTE-spectra are computed for several instants of time using the density, chemical and luminosity structure resulting from the LCs. The general methods and critical tests are presented (sect. 2). Different models for the thermonuclear explosion are discussed including detonations deflagrations, delayed detonations, pulsating delayed detonations (PDD) and helium detonations (sect.3). Comparisons between theoretical and obs...

  18. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum. PMID:17833901

  19. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... salt lattice with isomorphously substituted inorganic salts. * ANFO . Aromatic nitro-compound explosive.... Explosive mixtures containing tetranitromethane (nitroform). Explosive nitro compounds of aromatic... polyhydric alcohol explosives. Nitric acid and a nitro aromatic compound explosive. Nitric acid...

  20. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ... salt lattice with isomorphously substituted inorganic salts. * ANFO . Aromatic nitro-compound explosive.... Explosive mixtures containing tetranitromethane (nitroform). Explosive nitro compounds of aromatic... polyhydric alcohol explosives. Nitric acid and a nitro aromatic compound explosive. Nitric acid...

  1. Mechanical Model of Domestic Gas Explosion Load

    Institute of Scientific and Technical Information of China (English)

    HAN Yongli; CHEN Longzhu

    2008-01-01

    With the increase of domestic gas consumption in cities and towns in China, gas explosion accidents happened rather frequently, and many structures were damaged greatly.Rational physical design could protect structures from being destroyed, but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explosions.The explosion process has been studied for many years towards the safety of chemical industry equipments.The key problem of these studies was the equations usually involved some adjustable parameters that must be evaluated by experimental data, and the procedure of calculation was extremely complicated, so the reliability of these studies was seriously limited.Based on these studies, a simple mathematical model was established in this paper by using energy conservation,mass conservation, gas state equation, adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor, so the pressure-time curve could be obtained.By using this method, complicated calculation was avoided, while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to investigate the influences of different ignition locations, gas thickness, concentration, room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous condition when being ignited in the geometry centre of the room; the greater the burning velocity, the worse the venting effect; the larger the venting pressure, the higher the peak pressure; the larger the venting area, the lower the peak pressure.

  2. Portable raman explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Scharff, Robert J [Los Alamos National Laboratory

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  3. Hydrogen gas explosions in pipelines - modeling and experimental investigations

    OpenAIRE

    Knudsen, Vegeir

    2007-01-01

    Gas explosions in closed pipes with a single obstacle have been investigated both numerically and experimentally. Most of the work is related to hydrogen and air mixtures, but other fuels have also been used. At the present time there does not exist a software tool or a numerical method that single-handedly can cover the whole range of phenomena in gas explosions. Computational fluid dynamics is also a developing field, even for fluid flow without chemical reactions. The objective of this wor...

  4. Numerical Simulations of Heat Explosion With Convection In Porous Media

    OpenAIRE

    Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly

    2013-01-01

    In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.

  5. Continuous wave laser irradiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  6. Explosions in November

    OpenAIRE

    Steinitz, Richard

    2011-01-01

    Explosions in November tells the story of one of Europe’s leading cultural institutions, Huddersfield Contemporary Music Festival (hcmf), through the eyes of its founder and former artistic director, Professor Richard Steinitz. From its modest beginnings in 1978, when winter fog nearly sabotaged the inaugural programme, to today’s internationally renowned event, hcmf has been a pioneering champion of the best in contemporary music. Commissioning new work, reappraising existing legacies an...

  7. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  8. 道化学火灾、爆炸危险指数法在1,3丁二烯聚合安全性评价中的应用%Application of dow chemical fires and explosive index analysis method in safety evaluation of 1,3 butadiene polymerization process

    Institute of Scientific and Technical Information of China (English)

    王丽敏; 翟润培; 孙友平; 吕彩霞

    2012-01-01

    道化学火灾、爆炸危险指数法是在化工领域中广泛应用的一种评价方法,根据该法制定的指数选取规则,可对工艺单元火灾爆炸危险性进行量化和分级.以某化工厂3000t/a三聚体生产项目为背景,从工艺过程、危险物质、安全设施设计等方面,对1,3丁二烯聚合过程火灾、爆炸危险性进行分析;定量评价工艺装置及所含物料潜在危险性,得出主装置区、储罐区固有危险等级,分析不同状态下安全补偿系数对降低危险等级的影响,提出相应安全对策措施.%Dow chemical fires and explosive index analysis method is a widely used evaluation method in the field of chemical industry. According to the index selection rules, the fire explosion risk of the technics cell could be quantitated and classified. In this paper,taking the project of 3000t/a trimer production in a chemical factory as the background, the fire explosion hazard in the polymerization process of 1,3 butadiene was analyzed on the process, dangerous substances, safety facilities design and other aspects. According to the quantitative evaluation of the potentially danger for process units and materials, the intrinsic danger levels of main plant area and tank farm were obtained and some safety countermeasures were put forward by analyzing the effect of security compensation factor on danger level in different condition.

  9. Application of neutron resonance spectroscopy for explosive material accuracy detection

    International Nuclear Information System (INIS)

    To determine the chemical composition of materials in baggage or cargo at bus stations, ports or airports is conventionally using the X-ray technique, which is base on the density-specific transmission probability, but not a very good probe to detect explosive materials. However, Neutron Resonance Spectroscopy (NRS) as the element-specific transmission case, can be used to detect the accuracy chemical contentment of the materials. Carbon, Hydrogen, Nitrogen and Oxygen as the main components of the explosive material, appear prominent neutron resonance features during 0.5-7.5 MeV energy section of the injected neutrons. By solving the equation involving the differences of neutron current strength between prior to and behind the sample, the accuracy chemical contentment of these isotopes, consequently, the material are determined finally. Such explosive material detection can be used in military, anti-terrorist and civil security. (authors)

  10. Gas cloud explosions and resulting blast effects

    International Nuclear Information System (INIS)

    The design of nuclear power plant structures to resist blast effects due to chemical explosions requires the determination of load-time functions of possible blast waves. Whether the explosion of a hydrocarbon gas in the atmosphere will occur in the form of a deflagration or a detonation is largely depending on the type of the flame acceleration process which is closely related to the rate of energy release. Flame propagations at normal flame velocities in a free explosible gas cloud will certainly not lead to a detonation. With sufficiently large clouds, however, the flame acceleration could become so high that an initial deflagration changes into a detonative process. Results of recent investigations, which will be discussed in detail, show that in a free cloud with deflagrative ignition (flame, heated wire, sparks) the occurrence of a gas detonation can practically be excluded. Apparently, free gas clouds can only be induced to detonate by a sufficiently strong detonative initiation. Independently from the initiating event (deflagration, detonation) in the practice of damage analysis it has become customary to describe the consequences of an explosion event by means of the so-called TNT-equivalent. Therefore, it is attempted to specify this equivalent for hydrocarbons by means of energetic considerations including the propagation functions for the case of spherically symmetric detonations. In correspondence with U.S. recommendations it follows that with regard to the effects, 1 kg of hydrocarbon could be equated to about 1 kg TNT. In analogous manner to the safety distances required in the handling and storage of high-explosives a mass-distance relation of the form R = k x Lsup(1/3) could be considered, where L is the mass of spontaneously released hydrocarbon and k varies only with the structural shape of the blast loaded buildings. (orig./HP)

  11. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    Energy Technology Data Exchange (ETDEWEB)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  12. Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited

    CERN Document Server

    Ivlev, A V; Vasyunin, A; Caselli, P

    2015-01-01

    The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

  13. EDS V25 containment vessel explosive qualification test report.

    Energy Technology Data Exchange (ETDEWEB)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  14. Gas explosions in process pipes

    OpenAIRE

    Kristoffersen, Kjetil

    2004-01-01

    In this thesis, gas explosions inside pipes are considered. Laboratory experiments and numerical simulations are the basis of the thesis. The target of the work was to study gas explosions in pipes and to develop numer- ical models that could predict accidental gas explosions inside pipes. Experiments were performed in circular steel and plexiglass pipes. The steel pipes have an inner diameter of 22.3 mm and lengths of 1, 2, 5 and 11 m. The plexiglass pipe has an inner diame...

  15. PROBABILISTIC MODELING OF EXPLOSIVE LOADING

    OpenAIRE

    Mkrtychev Oleg Vartanovich; Dorozhinskiy Vladimir Bogdanovich

    2012-01-01

    According to existing design standards, explosive loading represents a special type of loading. Explosive loading is, in most cases, local in nature, although it can exceed the loads for which buildings are designed by a dozen of times. The analysis of terrorist attacks with explosives employed demonstrates that charges have a great power and, consequently, a substantial shock wave pressure. Blast effects are predictable with a certain probability. Therefore, we cannot discuss ...

  16. INTEGRATION OF KRAFT PULPING ON A FOREST BIOREFINERY BY THE ADDITION OF A STEAM EXPLOSION PRETREATMENT

    OpenAIRE

    Raquel Martin-Sampedro; Maria E. Eugenio; Esteban Revilla; Juan A. Martin; J. Carlos Villar

    2011-01-01

    Steam explosion has been proposed for a wide range of lignocellulosic applications, including fractionation of biomass, pre-treatment of biomass for ethanol production, or as an alternative to conventional mechanical pulping. Nevertheless, a steam explosion process could also be used as pretreatment before chemical pulping, expecting a reduction in cooking time due to the open structure of the exploded chips. Thus, to evaluate the effect of steam explosion as a pretreatment in the kraft pulpi...

  17. Controlled by Distant Explosions

    Science.gov (United States)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow

  18. Laser machining of explosives

    Science.gov (United States)

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  19. Tenderizing Meat with Explosives

    Science.gov (United States)

    Gustavson, Paul K.; Lee, Richard J.; Chambers, George P.; Solomon, Morse B.; Berry, Brad W.

    2001-06-01

    Investigators at the Food Technology and Safety Laboratory have had success tenderizing meat by explosively shock loading samples submerged in water. This technique, referred to as the Hydrodynamic Pressure (HDP) Process, is being developed to improve the efficiency and reproducibility of the beef tenderization processing over conventional aging techniques. Once optimized, the process should overcome variability in tenderization currently plaguing the beef industry. Additional benefits include marketing lower quality grades of meat, which have not been commercially viable due to a low propensity to tenderization. The simplest and most successful arrangement of these tests has meat samples (50 to 75 mm thick) placed on a steel plate at the bottom of a plastic water vessel. Reported here are tests which were instrumented by Indian Head investigators. Carbon-composite resistor-gauges were used to quantify the shock profile delivered to the surface of the meat. PVDF and resistor gauges (used later in lieu of PVDF) provided data on the pressure-time history at the meat/steel interface. Resulting changes in tenderization were correlated with increasing shock duration, which were provided by various explosives.

  20. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  1. Asymmetric Explosions of Thermonuclear Supernovae

    CERN Document Server

    Ghezzi, C R; Horváth, J E

    2004-01-01

    A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found...

  2. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab;

    2015-01-01

    Lignin is a major part of the recalcitrant fraction of lignocellulose and in nature its degradation occurs through oxidative enzymes along with microbes mediated oxidative chemical actions. Oxygen assisted wet-explosion pretreatment promotes lignin solubility and leads to an increase biodegradation.......6% for untreated material indicating the oxygen assisted explosion promoted lignin degradation....

  3. Multi-scale Computer Simulations to Study the Reaction Zone of Solid Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2006-06-23

    We have performed computer simulations at several different characteristic length scales to study the coupled mechanical, thermal, and chemical behavior of explosives under shock and other pressure loadings. Our objective is to describe the underlying physics and chemistry of the hot-spot theory for solid explosives, with enough detail to make quantitative predictions of the expected result from a given pressure loading.

  4. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  5. Lidar Detection of Explosives Traces

    Science.gov (United States)

    Bobrovnikov, Sergei M.; Gorlov, Evgeny V.; Zharkov, Victor I.; Panchenko, Yury N.

    2016-06-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  6. Lidar Detection of Explosives Traces

    OpenAIRE

    Bobrovnikov Sergei M.; Gorlov Evgeny V.; Zharkov Victor I.; Panchenko Yury N.

    2016-01-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  7. Propulsion of space ships by nuclear explosion

    Science.gov (United States)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  8. Nanosensors for trace explosive detection

    Directory of Open Access Journals (Sweden)

    Larry Senesac

    2008-03-01

    Full Text Available Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

  9. Research on Chemical Compatibility of Explosion Suppression Polyurethane Foam with Diesel Oil in Fuel Tank%油箱油罐用聚氨酯阻隔抑爆材料与柴油相容性研究

    Institute of Scientific and Technical Information of China (English)

    王浩喆; 鲁长波; 熊春华; 安高军; 谢立峰

    2014-01-01

    采用-35号军用柴油和聚氨酯阻隔抑爆材料在不同试验条件下模拟存储试验及模拟行车试验,考察试验前后油品与材料相关性能的变化情况。结果表明,经过模拟存储及行车试验后,柴油的实际胶质均明显上升,分别达到了平行储存油样的6�4倍与2�3倍,而固体颗粒污染物则出现了下降,分别为平行储存油样的58�8%和65%;与柴油共存后,聚氨酯阻隔抑爆材料的压缩永久形变量、25%形变下压缩强度、拉伸强度以及极限伸长率出现不同程度的下降。%The properties changes of diesel oil and polyurethane explosion suppression material in test were in-vestigated, using -35 military diesel and polyurethane explosion suppression material in different test conditions with simulation storage test and driving test. The results showed that, the actual diesel colloid content both significantly increased, which were 6�4 times and 2�3 times more than general storage oil respectively, after simulation storage test and driving test. The solid particulate pollutants level reduced with 58�8% and 65% more than general storage oil. The compression permanent deformation, compression strength under 25% deformation, tensile strength and ultimate elongation of the polyurethane explosion suppression material were reduced with diesel storage.

  10. Research on Chemical Compatibility of Explosion Suppression Polyurethane Foam with Diesel Oil in Fuel Tank%油箱油罐用聚氨酯阻隔抑爆材料与柴油相容性研究

    Institute of Scientific and Technical Information of China (English)

    王浩喆; 鲁长波; 熊春华; 安高军; 谢立峰

    2014-01-01

    The properties changes of diesel oil and polyurethane explosion suppression material in test were in-vestigated, using -35 military diesel and polyurethane explosion suppression material in different test conditions with simulation storage test and driving test. The results showed that, the actual diesel colloid content both significantly increased, which were 6�4 times and 2�3 times more than general storage oil respectively, after simulation storage test and driving test. The solid particulate pollutants level reduced with 58�8% and 65% more than general storage oil. The compression permanent deformation, compression strength under 25% deformation, tensile strength and ultimate elongation of the polyurethane explosion suppression material were reduced with diesel storage.%采用-35号军用柴油和聚氨酯阻隔抑爆材料在不同试验条件下模拟存储试验及模拟行车试验,考察试验前后油品与材料相关性能的变化情况。结果表明,经过模拟存储及行车试验后,柴油的实际胶质均明显上升,分别达到了平行储存油样的6�4倍与2�3倍,而固体颗粒污染物则出现了下降,分别为平行储存油样的58�8%和65%;与柴油共存后,聚氨酯阻隔抑爆材料的压缩永久形变量、25%形变下压缩强度、拉伸强度以及极限伸长率出现不同程度的下降。

  11. Electromagnetic effects on explosive reaction and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Mace, Jonathan L [Los Alamos National Laboratory; Pemberton, Steven J [Los Alamos National Laboratory; Sandoval, Thomas D [Los Alamos National Laboratory; Lee, Richard J [INDIAN HEAD DIVISION

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  12. Assessing nuclear explosions

    Science.gov (United States)

    Smith, Joseph V.

    The all-Union session on the Geophysical and Geochemical Consequences of Nuclear Explosions at the 1983 AGU Fall Meeting attracted a large audience, and many were unable to find a seat or standing room. The speakers and questioners emphasized the complexity of the processes and the need to extend the computer models. In particular, the global-circulation models presented byscientists from the National Center for Atmospheric Research showed that smoke/dust clouds should cause major changes in the weather systems with great contrast between the temperature perturbations over oceanic, coastal, and continental regions. Important developments in the models and conclusions can be expected over the next few years as AGU members from many disciplines contribute their skills.

  13. Mixing in explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  14. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices.

    Science.gov (United States)

    Brewer, R L; Dunn, W L; Heider, S; Matthew, C; Yang, X

    2012-07-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of "signatures" obtained from a test target to a collection of "templates", sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8L and larger.

  15. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  16. A new theory of a propagating trigger of steam explosions

    International Nuclear Information System (INIS)

    An energetic steam explosion may occur if a hot molten material, e.g., molten core in the case of a nuclear reactor severe accident, is dropped in water. The explosive heat transfer and vapor production is attributed to the dramatic increase of the melt/coolant contact area due to fine melt fragmentation. The propagation of the interaction has been explained by Board et al. in the framework of the steady detonation theory in analogy to chemical high explosives. According to the new proposed theory, during the premixing stage of the explosion, a layer of the liquid coolant acquires a high degree of superheat due to the lack of nucleation sites characteristic of liquid-liquid contact. Given a small triggering disturbance, nucleation occurs and escalates in the superheated coolant. The shock-induced nucleation (SIN) drives a detonation wave of sufficient strength to destabilize film boiling and results in direct liquid-liquid contact of sufficient duration to induce fragmentation by some thermal mechanism. The rather weak SIN wave is not responsible for the destructive potential of a steam explosion; it merely acts as a propagating trigger. The slower fragmentation thus occurs behind the trigger wave in a layer of an ever-increasing thickness. Thus, the coherence of the interaction depends on the inertial confinement of the interaction zone - an experimentally-acknowledged fact [e.g., Sandia National Laboratories (SNL) rigid confinement test]-and the interaction in a way resembles that occurring in low explosives like gunpowder rather than high explosives. If this theory is correct, interesting practical implications on the research efforts to control steam explosions may follow

  17. Szilard Prize Lecture: Seismic Monitoring of Nuclear Explosions

    Science.gov (United States)

    Richards, Paul

    2006-04-01

    Seismic monitoring of the more than 2000 nuclear test explosions since 1945 has been vigorously pursued, both to track the weapons development of potential adversaries, and to support initiatives in nuclear arms control, including various test ban treaties. Major funding from the US Department of Defense built up new global seismographic networks and over several decades established practical capability in monitoring nuclear explosions ``teleseismically'' (i.e. from distances more than about 1500 km), for tests that the testing nation did not attempt to conceal. What then is the capability to monitor compliance with, for example, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) of 1996, particularly if evasion scenarios are considered? Note that the CTBT, though not ratified by some countries (including the US), is now being monitored by networks that include seismographic stations at ``regional'' distances (< 1500 km) from candidate explosion locations. Years of R and D have shown that regional signals can be used to monitor down to yields significantly lower than can be detected and identified teleseismically. A US National Academy of Sciences study in 2002 concluded that ``an underground nuclear explosion cannot be confidently hidden if its yield is larger than 1 or 2 kt.'' About 1000 earthquakes and chemical explosions are now detected per day, and documented via seismic data, providing plenty of challenges for nuclear explosion monitoring organizations. Explosion monitoring capability will improve in many parts of the world, due to the growth of networks that monitor even small earthquakes to study seismic hazard. But political problems can impede improved international explosion monitoring, due to national restrictions on data access.

  18. Characterization of explosives processing waste decomposition due to composting. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Tyndall, R.L.; Stewart, A.J.; Ho, C.H.; Ironside, K.S.; Caton, J.E.; Caldwell, W.M.; Tan, E.

    1991-11-01

    Static pile and mechanically stirred composts generated at the Umatilla Army Depot Activity in a field composting optimization study were chemically and toxicologically characterized to provide data for the evaluation of composting efficiency to decontaminate and detoxify explosives-contaminated soil. Characterization included determination of explosives and 2,4,6,-trinitrotoluene metabolites in composts and their EPA Synthetic Precipitation Leaching Procedure Leachates, leachate toxicity to Ceriodaphnia Dubia and mutagenicity of the leachates and organic solvent extracts of the composts to Ames bacterial strains TA-98 and TA-100. The main conclusion from this study is that composting can effectively reduce the concentrations of explosives and bacterial mutagenicity in explosives -- contaminated soil, and can reduce the aquatic toxicity of leachable compounds. Small levels of explosive and metabolites, bacterial mutagenicity, and leachable aquatic toxicity remain after composting. The ultimate fate of the biotransformed explosives, and the source(s) of residual toxicity and mutagenicity remain unknown.

  19. Innovations Help Chemical Makers Improve Growing Potential

    Institute of Scientific and Technical Information of China (English)

    Zhong Weike

    2007-01-01

    @@ With overheated construction all over the country, China's GDP continued its fast growth in the first half. After suffering an explosion at a Jilin aniline facility, another explosion at Cangzhou TDI and a big outbreak of water pollution at Wuxi, the chemical raw materials and chemical manufacturing sectors are getting strict supervision from the central government.

  20. Explosive signatures: Pre & post blast

    Science.gov (United States)

    Bernier, Evan Thomas

    Manuscripts 1 and 2 of this dissertation both involve the pre-blast detection of trace explosive material. The first manuscript explores the analysis of human hair as an indicator of exposure to explosives. Field analysis of hair for trace explosives is quick and non-invasive, and could prove to be a powerful linkage to physical evidence in the form of bulk explosive material. Individuals tested were involved in studies which required handling or close proximity to bulk high explosives such as TNT, PETN, and RDX. The second manuscript reports the results of research in the design and application of canine training aids for non-traditional, peroxide-based explosives. Organic peroxides such as triacetonetriperoxide (TATP) and hexamethylenetriperoxidediamine (HMTD) can be synthesized relatively easily with store-bought ingredients and have become popular improvised explosives with many terrorist groups. Due to the hazards of handling such sensitive compounds, this research established methods for preparing training aids which contained safe quantities of TATP and HMTD for use in imprinting canines with their characteristic odor. Manuscripts 3 and 4 of this dissertation focus on research conducted to characterize pipe bombs during and after an explosion (post-blast). Pipe bombs represent a large percentage of domestic devices encountered by law enforcement. The current project has involved the preparation and controlled explosion of over 90 pipe bombs of different configurations in order to obtain data on fragmentation patterns, fragment velocity, blast overpressure, and fragmentation distance. Physical data recorded from the collected fragments, such as mass, size, and thickness, was correlated with the relative power of the initial device. Manuscript 4 explores the microstructural analysis of select pipe bomb fragments. Shock-loading of the pipe steel led to plastic deformation and work hardening in the steel grain structure as evidenced by optical microscopy and

  1. Radiologic diagnosis of explosion casualties.

    Science.gov (United States)

    Eastridge, Brian J; Blackbourne, Lorne; Wade, Charles E; Holcomb, John B

    2008-01-01

    The threat of terrorist events on domestic soil remains an ever-present risk. Despite the notoriety of unconventional weapons, the mainstay in the armament of the terrorist organization is the conventional explosive. Conventional explosives are easily weaponized and readily obtainable, and the recipes are widely available over the Internet. According to the US Department of State and the Federal Bureau of Investigation, over one half of the global terrorist events involve explosions, averaging two explosive events per day worldwide in 2005 (Terrorism Research Center. Available at www.terrorism.com. Accessed April 1, 2007). The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads, published by the Institute of Medicine, states that explosions were the most common cause of injuries associated with terrorism (Institute of Medicine Report: The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads. Washington DC: National Academic Press, 2007). Explosive events have the potential to inflict numerous casualties with multiple injuries. The complexity of this scenario is exacerbated by the fact that few providers or medical facilities have experience with mass casualty events in which human and material resources can be rapidly overwhelmed. Care of explosive-related injury is based on same principles as that of standard trauma management paradigms. The basic difference between explosion-related injury and other injury mechanisms are the number of patients and multiplicity of injuries, which require a higher allocation of resources. With this caveat, the appropriate utilization of radiology resources has the potential to impact in-hospital diagnosis and triage and is an essential element in optimizing the management of the explosive-injured patients. PMID:19069034

  2. A study of small explosions and earthquakes during 1961--1989 near the Semipalatinsk Test Site, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Khalturin, V.I.; Rautian, T.G. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physics of the Earth; Richards, P.G. [Lamont-Doherty Earth Observatory, Palisades, NY (United States)]|[Columbia Univ., New York, NY (United States). Dept. of Geological Sciences

    1994-03-01

    Several Russian sources have stated that 343 underground nuclear explosions were conducted during 1961--1989 at the Semipalatinsk Test Site. However, only 282 of them appear to have been described, in the openly available technical literature, with well-determined coordinates; and only 272 have both good locations and magnitudes. The authors have used regional data from 52 stations to study 65 seismic sources initially thought to be in or near the Semipalatinsk region, additional to the 272 underground nuclear explosions with known locations and magnitudes. Of these 65 events, the authors believe 8 are not explosions on the test site, namely: two earthquakes close to the test site; three earthquakes or chemical explosions 100--300 km from the test site; and three events at greater distances from Semipalatinsk. Of the remaining 57 events: 10 were known to be underground nuclear explosions with known locations and the authors have supplied magnitudes where none were previously available; one was a chemical explosion at Degelen; they believe 21 were underground nuclear explosions; 13 were chemical explosions at Balapan; 8 were chemical explosions elsewhere on the test site; three were either nuclear or chemical explosions; and one was either a chemical explosion or a cavity collapse. The largest magnitude of their 44 possible underground nuclear explosions is around 5 (February 4, 1965, obscured at many teleseismic stations by a large Aleutian earthquake). Others lie in the magnitude range 3.5--4.5, and clearly most have sub kiloton yields. Their data set of small events is important for purposes of evaluating the detection capability of teleseismic arrays, and the detection and identification capability of regional stations.

  3. Active explosion barrier performance against methane and coal dust explosions

    Institute of Scientific and Technical Information of China (English)

    J J L du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial l Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.

  4. Explosive Contagion in Networks

    Science.gov (United States)

    Gómez-Gardeñes, J.; Lotero, L.; Taraskin, S. N.; Pérez-Reche, F. J.

    2016-01-01

    The spread of social phenomena such as behaviors, ideas or products is an ubiquitous but remarkably complex phenomenon. A successful avenue to study the spread of social phenomena relies on epidemic models by establishing analogies between the transmission of social phenomena and infectious diseases. Such models typically assume simple social interactions restricted to pairs of individuals; effects of the context are often neglected. Here we show that local synergistic effects associated with acquaintances of pairs of individuals can have striking consequences on the spread of social phenomena at large scales. The most interesting predictions are found for a scenario in which the contagion ability of a spreader decreases with the number of ignorant individuals surrounding the target ignorant. This mechanism mimics ubiquitous situations in which the willingness of individuals to adopt a new product depends not only on the intrinsic value of the product but also on whether his acquaintances will adopt this product or not. In these situations, we show that the typically smooth (second order) transitions towards large social contagion become explosive (first order). The proposed synergistic mechanisms therefore explain why ideas, rumours or products can suddenly and sometimes unexpectedly catch on.

  5. Disaster management following explosion.

    Science.gov (United States)

    Sharma, B R

    2008-01-01

    Explosions and bombings remain the most common deliberate cause of disasters involving large numbers of casualties, especially as instruments of terrorism. These attacks are virtually always directed against the untrained and unsuspecting civilian population. Unlike the military, civilians are poorly equipped or prepared to handle the severe emotional, logistical, and medical burdens of a sudden large casualty load, and thus are completely vulnerable to terrorist aims. To address the problem to the maximum benefit of mass disaster victims, we must develop collective forethought and a broad-based consensus on triage and these decisions must reach beyond the hospital emergency department. It needs to be realized that physicians should never be placed in a position of individually deciding to deny treatment to patients without the guidance of a policy or protocol. Emergency physicians, however, may easily find themselves in a situation in which the demand for resources clearly exceeds supply and for this reason, emergency care providers, personnel, hospital administrators, religious leaders, and medical ethics committees need to engage in bioethical decision-making. PMID:18522253

  6. Furball Explosive Breakout Test

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Joshua David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  7. The Cambrian explosion.

    Science.gov (United States)

    Briggs, Derek E G

    2015-10-01

    The sudden appearance of fossils that marks the so-called 'Cambrian explosion' has intrigued and exercised biologists since Darwin's time. In On the Origin of Species, Darwin made it clear that he believed that ancestral forms 'lived long before' their first fossil representatives. While he considered such an invisible record necessary to explain the level of complexity already seen in the fossils of early trilobites, Darwin was at a loss to explain why there were no corresponding fossils of these earlier forms. In chapter 9 of the Origin, entitled 'On the imperfection of the geological record', he emphasized the 'poorness of our palaeontological collections' and stated categorically that 'no organism wholly soft can be preserved'. Fortunately much has been discovered in the last 150 years, not least multiple examples of Cambrian and Precambrian soft-bodied fossils. We now know that the sudden appearance of fossils in the Cambrian (541-485 million years ago) is real and not an artefact of an imperfect fossil record: rapid diversification of animals coincided with the evolution of biomineralized shells. And although fossils in earlier rocks are rare, they are not absent: their rarity reflects the low diversity of life at this time, as well as the low preservation potential of Precambrian organisms (see Primer by Butterfield, in this issue). PMID:26439348

  8. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  9. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  10. Lidar Detection of Explosives Traces

    Directory of Open Access Journals (Sweden)

    Bobrovnikov Sergei M.

    2016-01-01

    Full Text Available The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT, hexogen (RDX, trotyl-hexogen (Comp B, octogen (HMX, and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  11. Simulation Analysis of Indoor Gas Explosion Damage

    Institute of Scientific and Technical Information of China (English)

    钱新明; 陈林顺; 冯长根

    2003-01-01

    The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.

  12. Tagging of Explosives for Detection

    Directory of Open Access Journals (Sweden)

    J. S. Gharia

    2000-01-01

    Full Text Available This paper gives the results of a study on estimation of shelf life of2,3-dimethyI2,3-dinitrobutane (DMNB-tagged RDX and PETN expiosives by monitoring DMNB depletion by high performanceliquid chromatography and simultaneously recording the detectability of the tagged explosive composition using explosive vapoUf detector Model-97 HS. DMNB was incorporated in the explosive using methanol as solvent for DMNB and the explosive compositions were stored at 35,55 and 75 °C over a long period. Methods developed for preparing the homogeneously tagged composition with DMNB at 0.5 per cent level and for the analysis ofDMNB for ensuring homogeneity of DMNB in the composition are described. The results show no change in compatibility and sensitivity on the incorporation of DMNB in the explosive. Estimation of shelf life of DMNB in the explosive was done for a period of storage of 202-304 days at different temperatures.

  13. DSC Study of Chemical Compatibility of 3,3-Bis(Difluoroaminomethyl)Oxetane with Explosives and Solid Propellant Components%用DSC研究3,3-偕二氟氨甲基氧杂环丁烷与炸药和固体推进剂组分的化学相容性

    Institute of Scientific and Technical Information of China (English)

    李欢; 张路遥; 潘仁明; 王万军

    2012-01-01

    The chemical compatibility of 3, 3-bis(difluoroaminomethyl) oxetane(BDFAO) with typical single compound explosives and solid propellant components was studied by specifications of standardization method GJB 772A-97 502. 1. The results show that the chemical compatibility between BDFAO and five samples RDX, HMX, LLM-105 , AP and basic lead carbonate is level 1. The compatibility between BOFAO with DNTF, HNS,B and 1st central-ite (C1) is level 2, whereas TNT, NC-NG and Al were not chemical compatibable with BDFAO.%按照GJB 772A-97 502.1法测量了该黏合剂单体3,3-偕二氟氨甲基氧杂环丁烷(BDFAO)与典型单质炸药、推进剂组分的化学相容性.结果表明,BDFAO与RDX、HMX、LLM-105、AP、碱式碳酸铅的化学相容性达到1级,与DNTF、HNS、B、1号中定剂的化学相容性达到2级,BDFAO与TNT、NC-NG、Al化学不相容.

  14. Sublimation rates of explosive materials : method development and initial results.

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, James M.; Patton, Robert Thomas

    2004-08-01

    Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

  15. NQR detection of explosive simulants using RF atomic magnetometers

    Science.gov (United States)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  16. A Window on Surface Explosions: Tartaric Acid on Cu(110)

    Energy Technology Data Exchange (ETDEWEB)

    Mhatre, B S; Pushkarev, V; Holsclaw, B; Lawton, T J; Sykes, E C. H.; Gellman, A J

    2013-04-18

    Autocatalytic reaction mechanisms are observed in a range of important chemical processes including catalysis, radical-mediated explosions, and biosynthesis. Because of their complexity, the microscopic details of autocatalytic reaction mechanisms have been difficult to study on surfaces and heterogeneous catalysts. Autocatalytic decomposition reactions of S,S- and R,R-tartaric acid (TA) adsorbed on Cu(110) offer molecular-level insight into aspects of these processes, which until now, were largely a matter of speculation. The decomposition of TA/Cu(110) is initiated by a slow, irreversible process that forms vacancies in the adsorbed TA layer, followed by a vacancy-mediated, explosive decomposition process that yields CO{sub 2} and small hydrocarbon products. Initiation of the explosive decomposition of TA/Cu(110) has been studied by measurement of the reaction kinetics, time-resolved low energy electron diffraction (LEED), and time-resolved scanning tunneling microscopy (STM). Initiation results in a decrease in the local coverage of TA and a concomitant increase in the areal vacancy concentration. Observations of explosive TA decomposition on the Cu(651)S surface suggest that initiation does not occur at structural defects in the surface, as has been suggested in the past. Once the vacancy concentration reaches a critical value, the explosive, autocatalytic decomposition step dominates the TA decomposition rate. The onset of the explosive decomposition of TA on Cu(110) is accompanied by the extraction of Cu atoms from the surface to form a (±6,7; {-+}2,1) overlayer that is readily observable using LEED and STM. The explosive decomposition step is second-order in vacancy concentration and accelerates with increasing extent of reaction.

  17. Measurements and modeling of explosive vapor diffusion in snow

    Science.gov (United States)

    Albert, Mary R.; Cragin, James H.; Leggett, Daniel C.

    2000-08-01

    The detection of buried mines is important to both for humanitarian and military strategic de-mining both at home and abroad, and recent efforts in chemical detection show promise for definitive identification of buried miens. The impact of weather has a large effect on the fate and transport of the explosives vapor that these systems sense. In many areas of military conflict, and at Army military training grounds in cold regions, winter weather affects military operations for many months of the year. In cold regions, the presence of freezing ground or a snow cover may provide increased temporary storage of the explosive, potentially leading to opportunities for more optimal sensing conditions later. This paper discusses the result of a controlled laboratory experiment to investigate explosives diffusion through snow, quantitative microscopy measurements of snow microstructure including specific surface, and verifications of our transport model using this data. In experiments measuring 1,3-DNB, 2,4-DNT and 2,4,6-TNT we determined an effective diffusion coefficient of 1.5 X 10-6 cm2/s from measurements through isothermal sieved snow with equivalent sphere radius of 0.11 mm. Adsorption is a major factor in diffusive transport of these explosives through snow. The data was used to verify our finite element mole of explosives transport. Measurements and model results show close agreement.

  18. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  19. Gas cloud explosions and resulting blast effects

    International Nuclear Information System (INIS)

    The design of nuclear power plant structures to resist blast effects due to chemical explosions requires the determination of load-time functions of possible blast waves. Results of recent investigations show that in a free cloud with deflagrative ignition (flame,heat wire, sparks) the occurrence of a gas detonation can practically be excluded. Apparently, free gas clouds can only be induced to detonate by a sufficiently strong detonative initiation. Independently of the initiating event in the practice of damage analysis, it has become customary to describe the consequences of an explosion by means of the so-called TNT equivalent. Therefore, it is attempted to specify this equivalent for hydrocarbons by means of energetic considerations including the propagation functions for the case of spherically symmetric detonations. Analogous to the safety distances required in the handling and storage of high explosives, a mass-distance relation of the form R = k(L)sup(1/3) could be considered where L is the mass of spontaneously released hydrocarbon and k varies only with the structural shape of the blast loaded buildings. With the inclusion of an empirical relation which relates the quasi-static design pressure for a building with the normally reflected blast pressure of a blast wave, it is further attempted to establish a relation between the structural capacity of a building - i.e. the pressure resistance of a building structure for detonative dynamic loading and for quasi-static loading - and the unit-mass distance R/L 1/3. (Auth.)

  20. THE INFLUENCE OF BARRIERS ON FLAME AND EXPLOSION WAVE IN GAS EXPLOSION

    Institute of Scientific and Technical Information of China (English)

    林柏泉; 周世宁; 张仁贵

    1998-01-01

    This paper researches into the influence of barriers on flame and explosion wave in gasexplosion on the basis of experiment. The result shows that the barrier is very important to thetransmission of flame and explosion wave in gas explosion. When there are barriers, the speed oftransmission would be very fast and shock wave will appear in gas explosion, which would in-crease gas explosion power. The result of research is very important to prevent gas explosion anddecrease the power of it.

  1. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  2. The Quiet Explosion

    Science.gov (United States)

    2008-07-01

    A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought. Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts. The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe. Black Hole ESO PR Photo 23a/08 A Galaxy and two Supernovae These striking results, partly based on observations with ESO's Very Large Telescope, will appear tomorrow in Science Express, the online version of Science. Stars that were at birth more massive than about 8 times the mass of our Sun end their relatively short life in a cosmic, cataclysmic firework lighting up the Universe. The outcome is the formation of the densest objects that exist, neutron stars and black holes. When exploding, some of the most massive stars emit a short cry of agony, in the form of a burst of very energetic light, X- or gamma-rays. In the early afternoon (in Europe) of 9 January 2008, the NASA/STFC/ASI Swift telescope discovered serendipitously a 5-minute long burst of X-rays coming from within the spiral galaxy NGC 2770, located 90 million light-years away towards the Lynx constellation. The Swift satellite was studying a supernova that had exploded the previous year in the same galaxy, but the burst of X-rays came from another location, and was soon shown to arise from a different supernova, named SN 2008D. Researchers at the Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA), ESO, and at various other institutions have observed the supernova at great length. The team is led by Paolo Mazzali of INAF's Padova Observatory and MPA. "What made this event very interesting," says Mazzali, "is that the X-ray signal was very

  3. The differing locations of massive stellar explosions

    CERN Document Server

    Fruchter, A S; Burud, I; Castro-Tirado, A J; Cerón, J M C; Conselice, C J; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levan, A J; Levay, Z; Livio, M; Metzger, M R; Nugent, P; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Strolger, L; Tanvir, N R; Thorsett, S E; Vreeswijk, P M; Wijers, R A M J; Woosley, S E

    2006-01-01

    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we find that the gamma-ray bursts are far more concentrated on the very brightest regions of their hosts than are the supernovae. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that lon...

  4. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  5. The Development of Explosive Metalworking in Poland

    Directory of Open Access Journals (Sweden)

    Babul W.

    2014-10-01

    Full Text Available The author coordinated the research in Poland by the collaboration with civil and military scientific and research centres. In result they elaborated detonation process of spraying coats designed and constructed stands equipped with detonative devices, they also elaborated the techniques of basic coating parameter measurement and built devices for commercial and scientific services. In the research the author's achievements within the range of explosive welding have been used. The experience of the scientific teams was very effective. It was observed that many phenomena that take place in the processes of detonative layer coating and explosive welding are the same. In order to obtain a required connection the plastic strain of the connected material surfaces has to be achieved and cumulative flows have to be formed. There are a similar range of the connecting process conditions and the mechanisms of plastic strain. The highest connection strength is obtained when an intermediate zone is formed. The zone has to be composed of the two connected materials. The intermediate layer is formed as a result of mechanical alloying of the materials due to large plastic strain. The plastic strain leads to forming meta-stable phases that have properties of pseudo solid solution, chemical compounds, intermetallic phases and fragmentation corresponding to nanomaterials and amorphous states.

  6. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  7. Evidence for Nearby Supernova Explosions

    CERN Document Server

    Benítez, N; Canelles, M; Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  8. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  9. An Analysis of the Initiation Process of Electro-Explosive Devices

    Directory of Open Access Journals (Sweden)

    Paulo Cesar de Carvalho Faria

    2012-03-01

    Full Text Available Electro-explosive devices (an electric resistance encapsulated by a primary explosive fundamentally convert electrical energy into thermal energy, to start off an explosive chemical reaction. Obviously, the activation of those devices shall not happen by accident or, even worse, by intentional exogenous influence. From an ordinary differential equation, which describes the electro-explosive thermal behavior, a remarkable, but certainly not intuitive, dependence of the temperature response on the time constant of the heat transfer process is verified: the temperature profile dramatically changes as the time constant spans a wide range of values, from much lesser than the pulse width to much greater than the pulse period. Based on this dependence, important recommendations, concerning the efficient and safety operation of electro-explosive devices, are proposed.

  10. The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground

    Science.gov (United States)

    Drobzheva, Ya. V.; Krasnov, V. M.

    2003-02-01

    In this paper, we present a set of equations and their solutions which describe the propagation of acoustic pulses through a model terrestrial atmosphere due to a chemical explosion on the ground, and the effects of these pulses on the ionosphere above the explosion. Our calculations appear to agree remarkably well with acoustic and radio sounding data measured for the 1981 Mill Race explosion at seven different altitudes from approximately /10-260km. We show that (i) the acoustic wave speed depends on the viscosity and thermal conductivity of the atmosphere, (ii) the amplitude of the fluid velocity in the acoustic wave reaches a maximum at an altitude of about 120km, (iii) the altitude of the maximum does not depend on the initial launch angle of the acoustic wavefront or the size of the explosion, and (iv) the path taken by different parts of the acoustic wavefront depends on the yield of explosion.

  11. Seismic Methods of Identifying Explosions and Estimating Their Yield

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models

  12. Air Blasts from Cased and Uncased Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg1/3 at sea level. At a height of 30 km, where the ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and

  13. Magic ultramagnetized nuclei in explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Direct evidence of the presence of 44Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational 44Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly “bound” nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of 44Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.

  14. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  15. Explosion mitigation by water mist

    NARCIS (Netherlands)

    Wal, R. van der; Cargill, S.; Longbottom, A.; Rhijnsburger, M.P.M.; Erkel, A.G. van

    2010-01-01

    The internal explosion of an anti-ship missile or stored ammunition is a potentially catastrophic threat for a navy vessel. These events generally cause heavy blast loading and fragments to perforate the ship structure. As a solution to reduce the blast loading, the compartment can be filled with wa

  16. Episodic Explosions in Interstellar Ices

    CERN Document Server

    Rawlings, J M C; Viti, S; Cecchi-Pestellini, C

    2013-01-01

    We present a model for the formation of large organic molecules in dark clouds. The molecules are produced in the high density gas-phase that exists immediately after ice mantles are explosively sublimated. The explosions are initiated by the catastrophic recombination of trapped atomic hydrogen. We propose that, in molecular clouds, the processes of freeze-out onto ice mantles, accumulation of radicals, explosion and then rapid (three-body) gas-phase chemistry occurs in a cyclic fashion. This can lead to a cumulative molecular enrichment of the interstellar medium. A model of the time-dependent chemistries, based on this hypothesis, shows that significant abundances of large molecular species can be formed, although the complexity of the species is limited by the short expansion timescale in the gas, immediately following mantle explosion. We find that this mechanism may be an important source of smaller organic species, such as methanol and formaldehyde, as well as precursors to bio-molecule formation. Most...

  17. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.

    2008-01-01

    Explosive evaporation occurs when a liquid is exposed to extremely high heat-fluxes. Within a few microseconds a bubble in the form vapour film is generated, followed by rapid growth due to the pressure impulse and finally the bubbles collapse. This effect, which already has proven its use in curren

  18. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and fina

  19. Statistical estimation of loads from gas explosions

    OpenAIRE

    Høiset, Stian

    1998-01-01

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. This is usually incorporated by performing explosion simulations. However, estimations based on such calculations introduce uncertainties in the design process. The main uncertainties in explosion simulations are the assumption of the gas cloud,the location of the ignition point and the properties of the explosion simulator itself. In this thesis, we try to investi...

  20. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R.L.; Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Heider, S., E-mail: s79a81@ksu.edu [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States); Matthew, C.; Yang, X. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506-5205 (United States)

    2012-07-15

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of 'signatures' obtained from a test target to a collection of 'templates', sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: Black-Right-Pointing-Pointer Signature-based radiation-scanning techniques applied to detection of explosives. Black-Right-Pointing-Pointer Nitrogen-rich fertilizer samples served as surrogate explosive samples. Black-Right-Pointing-Pointer Signatures of a target compared to collections of templates of surrogate explosives. Black-Right-Pointing-Pointer Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. Black-Right-Pointing-Pointer Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  1. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersen, Kyle Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-05

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test. The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate

  2. Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms.

    Science.gov (United States)

    Abdul-Karim, Nadia; Blackman, Christopher S; Gill, Philip P; Morgan, Ruth M; Matjacic, Lidija; Webb, Roger; Ng, Wing H

    2016-04-01

    The possibility of recovering undetonated explosive residues following detonation events is well-known; however, the morphology and chemical identity of these condensed phase postblast particles remains undetermined. An understanding of the postblast explosive particle morphology would provide vital information during forensic examinations, allowing rapid initial indication of the explosive material to be microscopically determined prior to any chemical analyses and thereby saving time and resources at the crucial stage of an investigation. In this study, condensed phase particles collected from around the detonations of aluminized ammonium nitrate and RDX-based explosive charges were collected in a novel manner utilizing SEM stubs. By incorporating the use of a focused ion beam during analysis, for the first time it is possible to determine that such particles have characteristic shapes, sizes, and internal structures depending on the explosive and the distance from the detonation at which the particles are recovered. Spheroidal particles (10-210 μm) with microsurface features recovered following inorganic charge detonations were dissimilar to the irregularly shaped particles (5-100 μm) recovered following organic charge firings. Confirmatory analysis to conclude that the particles were indeed explosive included HPLC-MS, Raman spectroscopy, and mega-electron volt-secondary ionization mass spectrometry. These results may impact not only forensic investigations but also the theoretical constructs that govern detonation theory by indicating the potential mechanisms by which these particles survive and how they vary between the different explosive types. PMID:26938055

  3. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with...

  4. 77 FR 55108 - Explosive Siting Requirements

    Science.gov (United States)

    2012-09-07

    ... where solid propellants, energetic liquids, or other explosives are located to prepare launch vehicles... locations and facilities at a launch site where solid propellants, liquid propellants or other explosives... a launch site where solid propellants, energetic liquids, or other explosives are stored or...

  5. 14 CFR 420.63 - Explosive siting.

    Science.gov (United States)

    2010-01-01

    ... launch site boundary; (2) A listing of the maximum quantities of liquid and solid propellants and other explosives to be located at each explosive hazard facility, including the class and division for each solid explosive and the hazard and compatibility group for each liquid propellant; and (3) A description of...

  6. Experiments on explosive interactions between zirconium-containing melt and water (ZREX).

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D. H.

    1998-04-10

    The results of two series of experiments on explosive interactions between zirconium-containing melt and water are described. The first series of experiments involved dropping 1-kg batches of zirconium-zirconium dioxide mixture melt into a column of water while the second series employed 1.2-kg batches of zirconium-stainless steel mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite large, the explosion energies estimated from the experimental measurements were found to be small compared to the combined thermal and chemical energy available.

  7. Monte-Carlo simulations of elastically backscattered neutrons from hidden explosives using three different neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    ElAgib, I. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia)], E-mail: elagib@ksu.edu.sa; Elsheikh, N. [College of Applied and Industrial Science, University of Juba, Khartoum, P.O. Box 321 (Sudan); AlSewaidan, H. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia); Habbani, F. [Faculty of Science, Physics Department, University of Khartoum, Khartoum, P.O. Box 321 (Sudan)

    2009-01-15

    Calculations of elastically backscattered (EBS) neutrons from hidden explosives buried in soil were performed using Monte-Carlo N-particle transport code MCNP5. Three different neutron sources were used in the study. The study re-examines the performance of the neutron backscattering methods in providing identification of hidden explosives through their chemical composition. The EBS neutron energy spectra of fast and slow neutrons of the major constituent elements in soil and an explosive material in form of TNT have shown definite structures that can be used for the identification of a buried landmine.

  8. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions

    OpenAIRE

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent data sets accumulated on young, ejecta dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints o...

  9. Numerical Simulations of Heat ExplosionWith Convection In Porous Media

    OpenAIRE

    Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly

    2013-01-01

    In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.

  10. Successful treatment of a severely injured victim from 8.12 Tianjin Port Explosion, China

    Institute of Scientific and Technical Information of China (English)

    Wen-Xu Zhang; Sheng-Ting Gao; Xiao-Ning Zhang; Wei-Feng Zhen; Yu Zhu; Na Wang; Zhen-Hua Shi

    2015-01-01

    A male patient, 55 years old, was found from a container yard 65 h later following a chemical warehouse explosion in Tianjin, China on August 12, 2015.He was about 50 m away from the explosion center.He was subjected to compound multiple trauma, multi-viscera function damage, multiple fractures, hemothorax, traumatic wet lung, respiratory failure I, hypovolemic shock and impaired liver and kidney functions.After a series of successful treatments, he was rescued and recovered well.

  11. Numerical computation algorithm of explosion equations and thermodynamics parameters of mine explosives

    Institute of Scientific and Technical Information of China (English)

    李守巨; 刘迎曦; 何翔; 周圆π

    2001-01-01

    A new numerical algorithm is presented to simulate the explosion reaction process of mine explosives based on the equation of state, the equation of mass conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has been developed. The computation values show that computer simulation results are identical with the testinq ones.

  12. Numerical computation algorithm of explosion equations and thermodynamics parameters of mine explosives

    Institute of Scientific and Technical Information of China (English)

    LI Shou-ju; LIU Ying-xi; HE Xiang; ZHOU Y uan-pai

    2001-01-01

    A new numerical algorithm is presented to simulate the explosion reacti on process of mine explosives based on the equation of state, the equation of ma ss conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has be en developed. The computation values show that computer simulation results are i dentical with the testing ones.

  13. Chemical equilibrium modeling of detonation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, Sorin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-05-19

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Furthermore the history of HE materials is long, their condensed-phase chemical properties are poorly understood.

  14. Damage Effects of Shelled Explosive Explosion in Concrete

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2010-10-01

    Full Text Available The damage of concrete subjected to explosion loading is an important issue in defense engineering. The damage degree of concrete is related to many factors, such as the type of explosive charge, the depth of burial and the parameters of concrete. In this paper, three factors are considered for experiments of shelled explosives in concrete targets, which are the filling coefficient, length-to-diameter ratio and the depth of burial. The filling coefficient is from 0.1 to 1 by changing thickness of shell, and length-to-diameter ratio is from 2.5 to 10. The unconfined compressive strength of concrete target for test is 35MPa. The experimental results showed that the sizes of craters of concretes are varied as the filling coefficient, length-to-diameter ratio and the depth of burial. The optimal values of filling coefficient, length-to-diameter ratio and the depth of burial of shelled charges were obtained to get largest damage regions of concrete targets. This work provides a base for evaluating the damage of concrete and designing the penetrating warhead.Defence Science Journal, 2010, 60(6, pp.672-677, DOI:http://dx.doi.org/10.14429/dsj.60.434

  15. Multiphase flow simulation of ignition of solid explosive

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Q. (Qisu); Zhang, D. Z. (Duan Z.); Padial-Collins, N. T. (Nely T.); VanderHeyden, W. B. (William Brian)

    2004-01-01

    Ignition of a solid explosive involves chemical reaction, phase change, heat, mass and momentum transfers between the solid explosive and the product gas. To simulate the motion of the solid material Lagrangian method is needed to trace the deformation of the material. Calculation of the large deformation involved in the gas and the solid materials demands an Eulerian method to avoid mesh tangling issues that cripple conventional Lagrangian methods. To satisfy the demands for both Lagrangian and Eulerian methods, a particle-in-cell (PIC) method is adopted. While the method is computationally expensive compared to other numerical methods, it offers unique capability of combining the advantages of the Lagrangian and Eulerian treatments in handling material deformations. When the method is applied to multiphase flows, it can solve many complicated multi-material flow problems that are extremely difficult or impossible for other methods. Ignition of a solid explosive is such a problem. In the present paper we use a two-phase flow model based on available experimental data and commonly used momentum and thermal coupling models to investigate the ignition mechanisms and processes in a solid explosive material. Despite unresolved uncertainties in the model, results obtained are in qualitative agreements with experimental data.

  16. Hazards of explosives dusts: Particle size effects

    Energy Technology Data Exchange (ETDEWEB)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  17. Underwater explosions and cavitation phenomena

    International Nuclear Information System (INIS)

    Some aspects of underwater explosions and cavitation phenomena have been studied by using a thermodynamic equation of state for water and a one-dimensional Lagrangian hydrocode. The study showed that surface cavitation is caused by the main blast wave and a bubble pulse from rebound of a release wave moving toward the center of the exploding bubble. Gravity has little effect on the surface cavitation. In nuclear explosions the bubble is bounded by a two-phase region rather than a gas-water interface. The two-phase region cavitates as the bubble expands, changing the optical absorption coefficient by many orders of magnitude and significantly affecting the optical signature. In assessing cavitation damage, it is concluded that a water jet of unstable bubble collapse erodes solid walls. The study leads to suggestions for future research

  18. RANCHERO explosive pulsed power experiments

    CERN Document Server

    Goforth, J H; Armijo, E V; Atchison, W L; Bartos, Yu; Clark, D A; Day, R D; Deninger, W J; Faehl, R J; Fowler, C M; García, F P; García, O F; Herrera, D H; Herrera, T J; Keinigs, R K; King, J C; Lindemuth, I R; López, E; Martínez, E C; Martínez, D; McGuire, J A; Morgan, D; Oona, H; Oro, D M; Parker, J V; Randolph, R B; Reinovsky, R E; Rodríguez, G; Stokes, J L; Sena, F C; Tabaka, L J; Tasker, D G; Taylor, A J; Torres, D T; Anderson, H D; Broste, W B; Johnson, J B; Kirbie, H C

    1999-01-01

    The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of ~50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long. (6 refs).

  19. Waves from an underground explosion

    Science.gov (United States)

    Krymskii, A. V.; Lyakhov, G. M.

    1984-05-01

    The problem of the propagation of a spherical detonation wave in water-saturated soil was solved in [1, 2] by using a model of a liquid porous multicomponent medium with bulk viscosity. Experiments show that soils which are not water saturated are solid porous multicomponent media having a viscosity, nonlinear bulk compression limit diagrams, and irreversible deformations. Taking account of these properties, and using the model in [2], we have solved the problem of the propagation of a spherical detonation wave from an underground explosion. The solution was obtained by computer, using the finite difference method [3]. The basic wave parameters were determined at various distances from the site of the explosion. The values obtained are in good agreement with experiment. Models of soils as viscous media which take account of the dependence of deformations on the rate of loading were proposed in [4 7] also. In [8] a model was proposed corresponding to a liquid multicomponent medium with a variable viscosity.

  20. EXPLOSION RISK ASSESSMENTS FOR FACILITIES

    Directory of Open Access Journals (Sweden)

    Martin KULICH

    2015-12-01

    Full Text Available In the first part of the article we discuss the possibilities and analytical tools that can deal with the classification of space into zones with danger of explosion for devices with the presence of compressed flammable gases. Then we continue with specifications of possibilities for practical utilization linked to variables such as ventilation degree, hypothetical volume etc., including the examples. At the end we also give a brief overview of software for modelling gas leak, including examples of an outcome.

  1. Explosive Formulation Code Naming SOP

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  2. Causes of the Cambrian Explosion.

    OpenAIRE

    Smith, M P; Harper, D.A.T.

    2013-01-01

    In the last decade, at least thirty individual hypotheses have been invoked to explain the Cambrian Explosion, ranging from starbursts in the Milky Way to intrinsic genomic reorganization and developmental patterning. It has been noted (1) that recent hypotheses fall into three categories: a) developmental/genetic, b) ecologic and c) abiotic environmental, with geochemical hypotheses forming an abundant and distinctive subset of the last. With a few notable exceptions, a significant majority ...

  3. JOHNSTON ATOLL CHEMICAL AGENT DISPOSAL SYSTEM (JACADS) CLOSURE PLAN DEVELOPMENT

    Science.gov (United States)

    The JACADS project consists of four incinerators including a liquid chemical agent waste processor, an explosives treatment incinerator and a batch metal parts treatment unit. Its mission was to disassemble and destroy chemcial weapons and bulk chemical agent. This prototypical...

  4. Nuclear Explosions 1945-1998

    International Nuclear Information System (INIS)

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  5. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  6. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  7. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-01

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range.

  8. Improved Explosive Collection and Detection with Rationally Assembled Surface Sampling Materials

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.; Cinson, Anthony D.; Ewing, Robert G.; Atkinson, David A.; Addleman, Raymond S.

    2016-09-21

    Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple uses of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.

  9. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  10. Quantum control for initiation and detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Margo T [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Scharff, R. Jason [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    We employ quantum control methods towards detection and quantum controlled initiation (QCI) of energetic materials. Ultrafast pulse shaping of broadband Infrared ({approx}750 nm to 850 run) and ultraviolet (266 nm, 400 nm) light is utilized for control. The underlying principals behind optimal control can be utilized to both detect and initiate explosives. In each case, time dependent phase shaped electric fields drive the chemical systems towards a desired state. For optimal dynamic detection of explosives (ODD-Ex) a phase specific broadband infrared pulse is created which increases not only the sensitivity of detection but also the selectivity of an explosive's spectral signatures in a background of interferents. QCI on the other hand, seeks to initiate explosives by employing shaped ultraviolet light. QCI is ideal for use with explosive detonators as it removes the possibility of unintentional initiation from an electrical source while adding an additional safety feature, initiation only with the proper pulse shape. Quantum control experiments require: (1) the ability to phase and amplitude shape the laser pulse and (2) the ability to effectively search for the pulse shape which controls the reaction. In these adaptive experiments we utilize both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex. Pulse shaping the broadband IR light, produced by focusing 800 nm light through a pressurized tube of Argon, is straightforward as commercial pulse shapers are available at and around 800 nm. Pulse shaping in the UV requires a home built shaper. Our system is an acoustic optical modulator (AOM) pulse shaper in which consists of a fused silica AOM crystal placed in the Fourier plane of a 4-f zero dispersion compressor.

  11. Signatures of Explosion Models of Type Ia Supernovae and Cosmology

    Science.gov (United States)

    Höflich, P.

    2005-12-01

    Based on detailed models for the progenitors, explosions, light curves (LCs) and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. Consistency is needed to link observables and explosion physics. Type Ia supernovae (SNe Ia) most probably result from the explosion of a degenerate C/O-White Dwarf (WD) close to the Chandrasekhar mass. There is strong evidence that most of the WD is burned with an extended outer layer of explosive C-burning products (O, Ne, Mg) and very little C remaining. Overall, the chemical structure is radially stratified. This leads to the currently favored delayed detonation model in which a phase of slow nuclear burning as a deflagration front is followed by a detonation phase. The importance of pre-conditioning became obvious. Within an unified scenario, spherical models allow to understand both the homogeneity and basic properties of LCs and spectra, and they allow to probe for their diversity which is a key for high precision cosmology by SNe Ia. For local SNe Ia, the diversity becomes apparent by the combination of high-quality spectra and LCs whereas, for high-z objects, we will rely mostly on information from light curves. Therefore, we emphasize the relation between LC and spectral features. We show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics. We demonstrate the influence of the metallicity Z on the progenitors, explosion physics and the combined effect on light curves. By and large, a change of Z causes a shift of along the brightness-decline relation because Z shifts the balance between ^{56}Ni and non-radioactive isotopes but hardly changes the energetics or the ^{56}Ni distribution. However, the diversity of the progenitors produces an intrinsic dispersion in B-V which may pose a problem for reddening corrections. We discuss the nature of subluminous SN1999by, and how it can be understood in the same framework as

  12. Investigation of the explosion hazards of hydrogen sulphide

    International Nuclear Information System (INIS)

    The results of Phase I of an investigation directed towards quantifying the explosion hazards of hydrogen sulphide in air are described. The first phase is focussed on detonation in free hydrogen sulphide/air clouds. Detonation properties, including velocity and pressure, have been calculated and compared with experimental results. The observed detonation structure together with critical tube tests tests are used to assess the detonability of hydrogen sulphide/air mixtures relative to hydrogen and common hydrocarbon gases. Detailed chemical kinetic modelling of hydrogen sulphide combustion in air has been performed to correlate the detonation cell size data and to determine the influence of water vapour on the detonability of hydrogen sulphide in air. Calculations of the blast wave properties for detonation of a hydrogen sulphide/air cloud provide the data required to assess the blast effects of such explosions

  13. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  14. Finding the First Cosmic Explosions I: Pair-Instability Supernovae

    CERN Document Server

    Whalen, Daniel J; Frey, Lucille H; Johnson, Jarrett L; Lovekin, C C; Fryer, Chris L; Stiavelli, Massimo; Holz, Daniel E; Heger, Alexander; Woosley, S E; Hungerford, Aimee L

    2012-01-01

    The first stars are the key to the formation of primitive galaxies, early cosmological reionization and chemical enrichment, and the origin of supermassive black holes. Unfortunately, in spite of their extreme luminosities, individual Population III stars will likely remain beyond the reach of direct observation for decades to come. However, their properties could be revealed by their supernova explosions, which may soon be detected by a new generation of NIR observatories such as JWST and WFIRST. We present light curves and spectra for Pop III pair-instability supernovae calculated with the Los Alamos radiation hydrodynamics code RAGE. Our numerical simulations account for the interaction of the blast with realistic circumstellar envelopes, the opacity of the envelope, and Lyman absorption by the neutral IGM at high redshift, all of which are crucial to computing the NIR signatures of the first cosmic explosions. We find that JWST will detect pair-instability supernovae out to z > 30, WFIRST will detect them...

  15. Airbag for the closing of pipelines on explosions and leakages

    DEFF Research Database (Denmark)

    Eisenreich, N.; Neutz, J.; Seiler, F.;

    2007-01-01

    was the idea to use airbags similar to those utilized in cars. Two pipeline applications were taken into consideration: a low-pressure module able to suppress explosion propagation and a high-pressure module to stop leakages from, e.g. natural gas pipeline capable to be used for duct diameters up to 0.6 m......This paper is a result of international effort aimed at the construction of a device for quick closing of pipelines in the case of explosion propagation and/or chemical leakage. Such a problem exists in industries where flammable substances are transported by pipelines. The basic solution principle...... into a pipe flow and analysis of the bag shapes was also completed. Two gas generators were constructed and tested with novel propellant materials. Different airbag models were tested to evaluate their effectiveness. Risk analysis approach was applied to evaluate the safety and economic benefits of the new...

  16. ATEX explosive atmospheres : risk assessment, control and compliance

    CERN Document Server

    Jespen, Torben

    2016-01-01

    This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation – especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects – the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different – and often complicated – aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.

  17. Shock response of the commercial high explosive Detasheet

    Science.gov (United States)

    Asay, B. W.; Ramsay, J. B.; Anderson, M. U.; Graham, R. A.

    1994-12-01

    The mechanical and chemical response of the flexible commercial high explosive DetasheetR is studied under controlled impact and plane-wave, high explosive loading. Results on nonreactive material behavior, sound speed, shock-initiation sensitivity and detonation pressure are presented. The material is found to respond in a viscous manner reminiscent of viscoelastic response of polymeric materials. Time-resolved pressure and pressure-rate measurements with PVDF piezoelectric polymer gauges are presented along with Manganin pressure and plate-dent test measurements of detonation pressure. Detonation pressures of 18GPa are indicated. Pressure measurements show initiation of reaction between 3 and 8 mm for an impact stress of 3.1 GPa. Plane wave loading wedge tests show run distances to detonation consistent with the pressure measurements, and with behavior like that of XTX8003 (80 % PETN/20 % Sylgard 182R).

  18. Measurement of ground shock in explosive centrifuge model tests

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has begun a project to simulate the formation and collapse of underground cavities produced by nuclear explosions using chemical explosions at much smaller scale on a large geotechnical centrifuge. Use of a centrifuge for this project presents instrumentation challenges which are not encountered in tests at similar scale off of the centrifuge. Electromagnetic velocity measuring methods which have been very successfully applied to such models at 1 g would be very difficult, if not impossible, to implement at 100 g. We are investigating the feasibility of other techniques for monitoring the ground shock in small-scale tests including accelerometers, stress gauges, dynamic strain meters and small, mutual-inductance particle velocity gauges. Initial results indicate that some of these techniques can be adapted for centrifuge applications. 17 references, 4 figures

  19. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    Science.gov (United States)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  20. Thermal explosion in oscillating ambient conditions

    Science.gov (United States)

    Novozhilov, Vasily

    2016-07-01

    Thermal explosion problem for a medium with oscillating ambient temperature at its boundaries is considered. This is a new problem in thermal explosion theory, not previously considered in a distributed system formulation, but important for combustion and fire science. It describes autoignition of wide range of fires (such as but not limited to piles of biosolids and other organic matter; storages of munitions, explosives, propellants) subjected to temperature variations, such as seasonal or day/night variation. The problem is considered in formulation adopted in classical studies of thermal explosion. Critical conditions are determined by frequency and amplitude of ambient temperature oscillations, as well as by a number of other parameters. Effects of all the parameters on critical conditions are quantified. Results are presented for the case of planar symmetry. Development of thermal explosion in time is also considered, and a new type of unsteady thermal explosion development is discovered where thermal runaway occurs after several periods of temperature oscillations within the medium.

  1. APPLICATION OF EXPLOSIVE ENERGY IN METALWORKING

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2013-07-01

    Full Text Available When an explosive charge is detonate, considerable amount of energy in a very short period of time is released. Energy, released in this way, is used for performing various kinds of useful work. Most explosives are consumed to obtain mineral raw materials in the mining industry and for various excavations in the construction industry. One of the specific areas of application explosive energy is an area of explosive metalworking. Using energy of explosive metal is welded, formed, cuts, harden etc. This paper presents an overview of the existing explosive metalworking methods. Methods are explained and comparative advantages in comparison to conventional metalworking methods are given (the paper is published in Croatian.

  2. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  3. Haz-Mat Refresher: Chemical Precautions

    Science.gov (United States)

    Caliendo, Louis A.

    2012-01-01

    It is important that first responders remain aware of the possible hazards resulting from chemical accidents or the intentional use of chemicals in destructive devices. Chemical components can be utilized in the manufacturing of improvised explosive devices (IEDs), can enhance the effect of a more conventional device, or can pose hazards based on…

  4. Advances in sublimation studies for particles of explosives

    Science.gov (United States)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the

  5. Transmission of detonation from a medium with bubbles to an explosive-gas volume

    Science.gov (United States)

    Pinaev, A. V.

    2015-11-01

    For the first time, the possibility of transmission of detonation from a gas-liquid medium with bubbles of a chemically active gas mixture to an explosive-gas volume occurring above the interface is established. The experiments are fulfilled in a formulation in which bubble detonation was initiated by the explosion of a conductor located inside the bubble medium. The distance between the wire and the bubblemedium boundary was varied by decreasing it to 1 cm, when the gas volume was more frequently initiated by hot products of the conductor explosion and the discharge plasma. The dynamics of the gas-liquid interface after the arrival of the bubble-detonation wave to it is investigated. The probabilities of transmission of detonation from the bubble medium to the gas-mixture volume in dependence on the wire-immersion depth are determined, and the mechanism of ignition of the explosive-gas volume is described.

  6. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges

    DEFF Research Database (Denmark)

    Senesac, Larry R.; Yi, Dechang; Greve, Anders;

    2009-01-01

    heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection...... layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate...

  7. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  8. New Dark Matter Detector using Nanoscale Explosives

    OpenAIRE

    Lopez, Alejandro; Drukier, Andrzej; Freese, Katherine; Kurdak, Cagliyan; Tarle, Gregory

    2014-01-01

    We present nanoscale explosives as a novel type of dark matter detector and study the ignition properties. When a Weakly Interacting Massive Particle WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of energy deposited can trigger an explosion. For specificity, this paper focuses on a type of two-component explosive known as a nanothermite, consisting of a metal and an oxide in close proximity. When the two components interact they undergo a ...

  9. Analysis of TROI-13 Steam Explosion Experiment

    OpenAIRE

    Mitja Uršič; Matjaž Leskovar

    2008-01-01

    The prediction of steam explosion inducing loads in nuclear power plants must be based on results of experimental research programmes and on simulations using validated fuel-coolant interaction codes. In this work, the TROI-13 steam explosion experiment was analysed with the fuel-coolant interaction MC3D computer code. The TROI-13 experiment is one of several experiments performed in the TROI research program and resulted in a spontaneous steam explosion using corium melt. First, the TROI-13 ...

  10. Is a Cambrian Explosion Coming for Robotics?

    OpenAIRE

    Gill A. Pratt

    2015-01-01

    About half a billion years ago, life on earth experienced a short period of very rapid diversification called the "Cambrian Explosion." Many theories have been proposed for the cause of the Cambrian Explosion, one of the most provocative being the evolution of vision, allowing animals to dramatically increase their ability to hunt and find mates. Today, technological developments on several fronts are fomenting a similar explosion in the diversification and applicability of robotics. Many of ...

  11. Explosive Effectiveness Capability (ExEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nakafuji, G.; Daily, L.; Leake, J.

    2000-07-26

    Gaining accurate predictions of damage inflicted by high explosive devices is vital in order to minimize collateral damage effects on a target. ExEC provides a means for conducting very detailed analysis of weapons effects on targets for advanced mission planning purposes. ExEC is composed of a suite of high fidelity physics codes, which have been used for decades by the nuclear weapons laboratories for assessing high explosive, thermal, and structural effects. The ExEC capability should not be confused with the fast running empirical codes MEA and MEVA, which are good for fast scoping analysis. MEA and MEVA rely on look-up tables or simple approximations to quickly obtain a rough estimate of weapon damage on a target. In contrast, the ExEC capability provides a much higher fidelity damage prediction and a limitless number of target configurations by solving the time dependent conservation equations for mass, momentum, and energy, in order to directly simulate the interaction of a weapon with a target component. In contrast, MEA/MEVA must be calibrated for every different weapon type and target. ExEC has produced accurate simulations for weapon disablement, shape charge penetration, sympathetic detonation, fragment damage effects, and blast effects. For example, ExEC was used to look at a DTRA test performed at White Sands Missile Range, Dipole Orbit 1 (DO1). In DO1, a BLU-109 bomb was statically detonated in a partially buried four-room building that was storing chemical and biological weapon simulants, as well as inactive equipment typical of a CBW (Chemical and Biological Warfare) facility. The blast wave (overpressure) histories were recorded and compared to an ExEC and MEVA simulation. A direct comparison between experimental data and calculations, for a single pressure gauge, indicated that MEVA had a 200% error compared to 5% for ExEC. In addition, ExEC tracks the time dependant fluctuations in pressure (for an accurate prediction of the impulse), while MEVA

  12. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  13. The gas dynamics of explosions

    CERN Document Server

    Lee,\tJohn H S

    2016-01-01

    Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.

  14. Explosive demolition of activated concrete

    International Nuclear Information System (INIS)

    This paper describes the removal of a radiologically contaminated concrete pad. This pad was removed during 1979 by operating personnel under the direction of the Waste Management Program of EG and G Idaho, Inc. The concrete pad was the foundation for the Organic Moderated Reactor Experiment (OMRE) reactor vessel located at the Idaho National Engineering Laboratory (INEL). The pad consisted of a cylindrical concrete slab 15 ft in diameter, 2 ft thick, and reinforced with steel bar. It was poured directly onto basalt rocks approximately 20 ft below grade. The entire pad contained induced radioactivity and was therefore demolished, boxed, and buried rather than being decontaminated. The pad was demolished by explosive blasting

  15. Detonation Propagation Characteristics of Superposition Explosive Materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip-shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.

  16. Analysis of TROI-13 Steam Explosion Experiment

    Directory of Open Access Journals (Sweden)

    Mitja Uršič

    2008-01-01

    Full Text Available The prediction of steam explosion inducing loads in nuclear power plants must be based on results of experimental research programmes and on simulations using validated fuel-coolant interaction codes. In this work, the TROI-13 steam explosion experiment was analysed with the fuel-coolant interaction MC3D computer code. The TROI-13 experiment is one of several experiments performed in the TROI research program and resulted in a spontaneous steam explosion using corium melt. First, the TROI-13 premixing simulations were performed to determine the initial conditions for the steam explosion simulations and to evaluate the melt droplets hydrodynamic fragmentation model. Next, a number of steam explosion simulations were performed, varying the steam explosion triggering position and the melt droplets mass participating in the steam explosion. The simulation results revealed that there is an important influence of the participating melt droplets mass on the calculated pressure loads, whereas the influence of the steam explosion triggering position on the steam explosion development was less expressive.

  17. Explosive Field Visualization Based on Image Fusion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-yao; JIANG Ling-shuang

    2009-01-01

    m the composite sequence. Experimental results show that the new images integrate the advantages of sources, effectively improve the visualization, and disclose more information about explosive field.

  18. Forensic analyses of explosion debris from the January 2, 1992 Pd/D2O electrochemistry incident at SRI International

    International Nuclear Information System (INIS)

    The January 2, 1992 explosion in an electrochemistry laboratory at SRI International (SRI) resulted in the death of scientist Andrew Riley, and gained some notoriety due to its association with experimental work in the controversial field of cold fusion research. Selected components of explosion debris were subjected to forensic analyses at LLNL to elucidate potential causes of, or contributing factors to, the explosion. Interrogation of the debris by LLNL encompassed nuclear, chemical, physical, and materials investigations. Nuclear studies for the determination of tritium and neutron-activation products in stainless steel and brass were negative. No evidence of signature species indicative of orthodox nuclear events was detected. The inorganic and particulate analyses were likewise negative with respect to residues of unexpected chemical species. Such target compounds included conventional explosives, accelerants, propellants, or any exceptional industrial chemicals. The GC-MS analyses of trace organic components in the explosion debris provided perhaps the most interesting results obtained at LLNL. Although no evidence of organic explosives, oxidizers, or other unusual compounds was detected, the presence of a hydrocarbon oil in the interior of the electrochemical cell was established. It is likely that its source was lubricating fluid from the machining of the metal cell components. If residues of organic oils are present during electrolysis experiments, the potential exists for an explosive reaction in the increasingly enriched oxygen atmosphere within the headspace of a metal cell

  19. 27 CFR 555.181 - Reporting of plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting of plastic..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.181 Reporting of plastic explosives. All persons, other than an agency of the United...

  20. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only permissible explosives, approved sheathed explosive units,...

  1. Chernobyl: Anatomy of the explosion

    International Nuclear Information System (INIS)

    On Friday, 26 April 1986, it was planned to shut down the fourth unit of the Chernobyl Atomic Power Station, U.S.S.R., for periodic maintenance. The procedure supplied the opportunity to perform a further experiment; operation of the turbine in free rotation regime, which occurs when the steam is cut down while the turbine is still running. It so happened that carrying out this experiment turned out to be the worst accident in the history of nuclear power industry. The first part of the article proceeds to a second by second detailed analysis of the causes of the catastrophe. The analysis uses official data and reports. The author covers the sequence of events, which led up to two explosions in the second hour of that tragic morning. In the second part of the article, the author provides hints and suggestions, so that 'the tragedy of Chernobyl does not become a useless lesson'. With regard to what, so far, has been published, the novelty of the article may be a diagram showing the excessive changes that affected the main parameters (power, water flow through circulating pumps, steam pressure in separators, and length of the immersed part of control rods) in the fourth unit during the last seconds before the explosion. If may be noteworthy to mention that the curves supplied here are based on data stored in the computer 'SCALA'. 2 figs

  2. Cosmic Explosions in Three Dimensions

    Science.gov (United States)

    Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig

    2004-12-01

    Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E

  3. Photoluminescent Detection of Dissolved Underwater Trace Explosives

    Directory of Open Access Journals (Sweden)

    Tye Langston

    2010-01-01

    Full Text Available A portable, rapid, and economical method for in situ trace explosive detection in aqueous solutions was demonstrated using photoluminescence. Using europium/thenoyltrifluoroacetone as the reagent, dissolved nitroglycerin was fluorescently tagged and detected in seawater solutions without sample preparation, drying, or preconcentration. The chemical method was developed in a laboratory setting and demonstrated in a flow-through configuration using lightweight, inexpensive, commercial components by directly injecting the reagents into a continually flowing seawater stream using a small amount of organic solvent (approximately 8% of the total solution. Europium's vulnerability to vibrational fluorescence quenching by water provided the mode of detection. Without nitroglycerin in the seawater solution, the reagent's fluorescence was quenched, but when dissolved nitroglycerin was present, it displaced the water molecules from the europium/thenoyltrifluoroacetone compound and restored fluorescence. This effort focused on developing a seawater sensor, but performance comparisons were made to freshwater. The method was found to perform better in freshwater and it was shown that certain seawater constituents (such as calcium have an adverse impact. However, the concentrations of these constituents are not expected to vary significantly from the natural seawater used herein.

  4. Summary of European directives for explosion safety

    NARCIS (Netherlands)

    Versloot, N.H.A.; Klein, A.J.J.; Maaijer, M. de

    2008-01-01

    On July 1, 2003 a transitional period has ended and two European directives became fully active: • Directive 1999/92/EC • Directive 94/9/EC These directives have an impact on companies with an explosion hazard (gas, vapor, mist, or dust explosions) and on manufacturers of equipment intended to be us

  5. Splitting PMMA with Mini Cutting Explosives

    Institute of Scientific and Technical Information of China (English)

    LI Zhiqiang; LIU Xiaomin; XIAO Yin; ZHAO Yonggang; ZHAO Longmao

    2006-01-01

    In order to improve the present aviation ejection escape system,the application of explosion cutting technique to aviation escape system is proposed to weaken the strength of canopy before ejecting it.A series of mini cutting explosives are designed to investigate the process of splitting PMMA plate.The phenomenon of spallation in PMMA is observed.The effects of different parameters of mini cutting explosives on the cutting depth are obtained.Consequently the appropriate material of half-circular metal covers,explosive types and the ranges of charge quantities are determined.On the other hand,the cutting process of aviation PMMA plate by mini cutting explosives is simulated by means of nonlinear dynamic analysis code LS-DYNA.In finite element analysis,Arbitrary Lagrangian Euler (ALE) algorithm is used to depict the fluid property of high energy explosives.Continuous damage material model is used to simulate the complicate dynamic damage behavior of PMMA due to explosion shock waves.Only sliding contact option is defined to fulfill the fluid-structure interaction between explosives and PMMA plate by distributed parameter methods.Phenomenon of spallation observed in the experiment is presented in the simulation.The relationship between the penetration depth of PMMA plate and charge linear density obtained by numerical simulation agrees well with experimental result.

  6. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  7. 76 FR 8923 - Explosive Siting Requirements

    Science.gov (United States)

    2011-02-16

    ... ``explosive hazard facility'' as a facility at a launch site where solid propellant, liquid propellant, or... would no longer refer to the solid explosives governed by this section as solid propellants because, technically, the provision applies to more than just solid propellants. Currently, Sec. 420.65 states that...

  8. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (1012 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  9. Some analytical methods for explosives: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.

    1965-12-08

    This report is the second compilation of methods for analyzing explosives. All the methods were developed for routine performance by techniques, and an attempt has therefore been made to keep them as simple as possible. Methods are presented for analyzing plastic-bonded explosives based on sym-cyclomethylenetetra-nitramine (HMX), based on viton in addition to HMX, and based on pentraerythritol tetranitrate (PETN).

  10. 49 CFR 173.59 - Description of terms for explosives.

    Science.gov (United States)

    2010-10-01

    .... Substances consisting of a deflagrating liquid explosive, used for propulsion. Propellant, solid. Substances consisting of a deflagrating solid explosive, used for propulsion. Propellants. Deflagrating explosives used... equipment quickly. Rocket motors. Articles consisting of a solid, liquid, or hypergolic propellant...

  11. Remanufacturing strategy for chemical equipment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-cheng; XU Bin-shi; WANG Hai-dou; JIANG Yi; WU Yi-xiong; GONG Jian-ming; TU Shan-dong

    2005-01-01

    Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic losses. To assure the long-term and safety service, it is necessary to apply the remanufacturing technology on the chemical equipment containing cracks. The recent research advances on the remanufacturing, the failure modes and the life extension technology for chemical equipment were reviewed. The engineering strategy of the remanufacturing for the chemical equipment was proposed, which could provide a reasonable and reliable technical route for the remanufacturing operation of chemical equipment. In the strategy, the redesign was also been considered.

  12. Suppression of Chemotactic Explosion by Mixing

    Science.gov (United States)

    Kiselev, Alexander; Xu, Xiaoqian

    2016-11-01

    Chemotaxis plays a crucial role in a variety of processes in biology and ecology. In many instances, processes involving chemical attraction take place in fluids. One of the most studied PDE models of chemotaxis is given by the Keller-Segel equation, which describes a population density of bacteria or mold which is attracted chemically to substance they secrete. Solutions of the Keller-Segel equation can exhibit dramatic collapsing behavior, where density concentrates positive mass in a measure zero region. A natural question is whether the presence of fluid flow can affect singularity formation by mixing the bacteria thus making concentration harder to achieve. In this paper, we consider the parabolic-elliptic Keller-Segel equation in two and three dimensions with an additional advection term modeling ambient fluid flow. We prove that for any initial data, there exist incompressible fluid flows such that the solution to the equation stays globally regular. On the other hand, it is well known that when the fluid flow is absent, there exists initial data leading to finite time blow up. Thus the presence of fluid flow can prevent the singularity formation. We discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers. The first class are the relaxation enhancing (RE) flows of (Ann Math:643-674, 2008). These flows are stationary. The second class of flows are the Yao-Zlatos near-optimal mixing flows (Mixing and un-mixing by incompressible flows. arXiv:1407.4163, 2014), which are time dependent. The proof is based on the nonlinear version of the relaxation enhancement construction of (Ann Math:643-674, 2008), and on some variations of the global regularity estimate for the Keller-Segel model.

  13. Suppression of Chemotactic Explosion by Mixing

    Science.gov (United States)

    Kiselev, Alexander; Xu, Xiaoqian

    2016-06-01

    Chemotaxis plays a crucial role in a variety of processes in biology and ecology. In many instances, processes involving chemical attraction take place in fluids. One of the most studied PDE models of chemotaxis is given by the Keller-Segel equation, which describes a population density of bacteria or mold which is attracted chemically to substance they secrete. Solutions of the Keller-Segel equation can exhibit dramatic collapsing behavior, where density concentrates positive mass in a measure zero region. A natural question is whether the presence of fluid flow can affect singularity formation by mixing the bacteria thus making concentration harder to achieve. In this paper, we consider the parabolic-elliptic Keller-Segel equation in two and three dimensions with an additional advection term modeling ambient fluid flow. We prove that for any initial data, there exist incompressible fluid flows such that the solution to the equation stays globally regular. On the other hand, it is well known that when the fluid flow is absent, there exists initial data leading to finite time blow up. Thus the presence of fluid flow can prevent the singularity formation. We discuss two classes of flows that have the explosion arresting property. Both classes are known as very efficient mixers. The first class are the relaxation enhancing (RE) flows of (Ann Math:643-674, 2008). These flows are stationary. The second class of flows are the Yao-Zlatos near-optimal mixing flows (Mixing and un-mixing by incompressible flows. arXiv:1407.4163, 2014), which are time dependent. The proof is based on the nonlinear version of the relaxation enhancement construction of (Ann Math:643-674, 2008), and on some variations of the global regularity estimate for the Keller-Segel model.

  14. FINDING THE FIRST COSMIC EXPLOSIONS. I. PAIR-INSTABILITY SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Daniel J.; Smidt, Joseph; Lovekin, C. C. [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Frey, Lucille H. [HPC-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johnson, Jarrett L.; Hungerford, Aimee L. [XTD-6, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Woosley, S. E. [Department of Astronomy and Astrophysics, UCSC, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The first stars are the key to the formation of primitive galaxies, early cosmological reionization and chemical enrichment, and the origin of supermassive black holes. Unfortunately, in spite of their extreme luminosities, individual Population III (Pop III) stars will likely remain beyond the reach of direct observation for decades to come. However, their properties could be revealed by their supernova explosions, which may soon be detected by a new generation of near-IR (NIR) observatories such as JWST and WFIRST. We present light curves and spectra for Pop III pair-instability supernovae calculated with the Los Alamos radiation hydrodynamics code RAGE. Our numerical simulations account for the interaction of the blast with realistic circumstellar envelopes, the opacity of the envelope, and Lyman absorption by the neutral intergalactic medium at high redshift, all of which are crucial to computing the NIR signatures of the first cosmic explosions. We find that JWST will detect pair-instability supernovae out to z ∼> 30, WFIRST will detect them in all-sky surveys out to z ∼ 15-20, and LSST and Pan-STARRS will find them at z ∼< 7-8. The discovery of these ancient explosions will probe the first stellar populations and reveal the existence of primitive galaxies that might not otherwise have been detected.

  15. Supplier's Status for Critical Solid Propellants, Explosive, and Pyrotechnic Ingredients

    Science.gov (United States)

    Sims, B. L.; Painter, C. R.; Nauflett, G. W.; Cramer, R. J.; Mulder, E. J.

    2000-01-01

    In the early 1970's a program was initiated at the Naval Surface Warfare Center/Indian Head Division (NSWC/IHDIV) to address the well-known problems associated with availability and suppliers of critical ingredients. These critical ingredients are necessary for preparation of solid propellants and explosives manufactured by the Navy. The objective of the program was to identify primary and secondary (or back-up) vendor information for these critical ingredients, and to develop suitable alternative materials if an ingredient is unavailable. In 1992 NSWC/IHDIV funded Chemical Propulsion Information Agency (CPIA) under a Technical Area Task (TAT) to expedite the task of creating a database listing critical ingredients used to manufacture Navy propellant and explosives based on known formulation quantities. Under this task CPIA provided employees that were 100 percent dedicated to the task of obtaining critical ingredient suppliers information, selecting the software and designing the interface between the computer program and the database users. TAT objectives included creating the Explosive Ingredients Source Database (EISD) for Propellant, Explosive and Pyrotechnic (PEP) critical elements. The goal was to create a readily accessible database, to provide users a quick-view summary of critical ingredient supplier's information and create a centralized archive that CPIA would update and distribute. EISD funding ended in 1996. At that time, the database entries included 53 formulations and 108 critical used to manufacture Navy propellant and explosives. CPIA turned the database tasking back over to NSWC/IHDIV to maintain and distribute at their discretion. Due to significant interest in propellant/explosives critical ingredients suppliers' status, the Propellant Development and Characterization Subcommittee (PDCS) approached the JANNAF Executive committee (EC) for authorization to continue the critical ingredient database work. In 1999, JANNAF EC approved the PDCS panel

  16. Morphomechanical Innovation Drives Explosive Seed Dispersal.

    Science.gov (United States)

    Hofhuis, Hugo; Moulton, Derek; Lessinnes, Thomas; Routier-Kierzkowska, Anne-Lise; Bomphrey, Richard J; Mosca, Gabriella; Reinhardt, Hagen; Sarchet, Penny; Gan, Xiangchao; Tsiantis, Miltos; Ventikos, Yiannis; Walker, Simon; Goriely, Alain; Smith, Richard; Hay, Angela

    2016-06-30

    How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. VIDEO ABSTRACT.

  17. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  18. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  19. User Friendly Explosives Reactive Armour a Long term Reality

    Directory of Open Access Journals (Sweden)

    S. N. Dikshit

    1997-04-01

    Full Text Available Abstract : There is a strong need to develop explosive reactive armour (ERA for protecting battle tanks against an emerging threat of kinetic and chemical energy missiles. In this context, global trends, principle and limitations of ERA and threat perception-based types of ERA have been dwelt upon. User-friendly ERA is a long-term reality. User-friendly ERA system is thus defined to be an efficient and protective system that not only provide full protection to the tank crew, but is also harmless to the supporting infantory. The indigenously-developed ERA system is close to be termed as a user-friendly ERA.

  20. Ionospheric effects of supernova explosions

    Science.gov (United States)

    Edwards, P. J.

    Possible ionospheric effects of supernova explosions are considered, with special attention given to those of SN 1987a. Results are presented on the calculations of anticipated X-ray/UV flare parameters, including the shock temperature, the minimum flare duration, the average photon energy, and the shock-front travel time for a range of stellar radii bracketing SK 202-69, which was identified by White Malin (1987) as the progenitor star for SN 1987a. It is shown that the characteristics of the X-ray/UV flare are strongly influenced by the radius of the shock wave breakout, so that the flare from SN 1987a can be anticipated to have characteristics intermediate between those attributed to compact stars and stars with extended envelopes.

  1. Mass extinctions and supernova explosions

    CERN Document Server

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be exclude...

  2. 40 CFR 799.5085 - Chemical testing requirements for certain high production volume chemicals.

    Science.gov (United States)

    2010-07-01

    ... Aberration Test (40 CFR 799.9537) to generate the needed data unless known chemical properties (e.g., physical/chemical properties, chemical class characteristics) preclude its use. A subject person who uses...). PETN cannot be tested at 99% purity because of its explosive properties. It must be diluted in water...

  3. Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios

    International Nuclear Information System (INIS)

    Process- and chemical plants may constitute a critical target for a terrorist attack. In the present study, the analysis of industrial accidents induced by intentional acts of interference is carried out focusing on accident chains triggered by attacks with home-made (improvised) explosives. The effects of blast waves caused by improvised explosive devices are compared with those expected from a net equivalent charge of TNT by using a specific methodology for the assessment of stand-off distances. It is demonstrated that a home-made explosive device has a TNT efficiency comprised between 0.2 and 0.5. The model was applied to a case study, demonstrating the potentiality of improvised explosives in causing accident escalation sequences and severe effects on population and assets. The analysis of the case-study also allowed obtaining suggestions for an adequate security management. - Highlights: • Improvised explosives possibly used for terrorist attacks were described. • The TNT efficiency of ANFO and TATP was characterized. • Domino effects caused by an attack with improvised explosive were analyzed. • Domino scenarios induced by an attack were compared to conventional scenarios

  4. Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection

    Science.gov (United States)

    Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai

    2016-04-01

    The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.

  5. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    Science.gov (United States)

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-05-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.

  6. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.

    Science.gov (United States)

    Wang, Chen; Huang, Helin; Bunes, Benjamin R; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-01-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2(+)) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and (1)H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290

  7. 27 CFR 555.109 - Identification of explosive materials.

    Science.gov (United States)

    2010-04-01

    ... Business or Operations § 555.109 Identification of explosive materials. (a) General. Explosive materials... in the English language, using Roman letters and Arabic numerals. (3) Licensed manufacturers...

  8. Determining VCE damage zones using the GAME correlations and explosion regions

    NARCIS (Netherlands)

    Boot, H.; Voort, M.M. van der

    2013-01-01

    Predicting potential consequences of Vapor Cloud Explosions (VCEs) has always been an important issue in safety assessments, because of the devastating damage that this phenomenon can create on (petro chemical) production sites. Although the TNO Multi-Energy method has been recognized as one of the

  9. Pixelated diffraction signatures for explosive detection

    Science.gov (United States)

    O'Flynn, Daniel; Reid, Caroline; Christodoulou, Christiana; Wilson, Matt; Veale, Matthew C.; Seller, Paul; Speller, Robert

    2012-06-01

    Energy dispersive X-ray diffraction (EDXRD) is a technique which can be used to improve the detection and characterisation of explosive materials. This study has performed EDXRD measurements of various explosive compounds using a novel, X-ray sensitive, pixelated, energy resolving detector developed at the Rutherford Appleton Laboratory, UK (RAL). EDXRD measurements are normally performed at a fixed scattering angle, but the 80×80 pixel detector makes it possible to collect both spatially resolved and energy resolved data simultaneously. The detector material used is Cadmium Telluride (CdTe), which can be utilised at room temperature and gives excellent spectral resolution. The setup uses characteristics from both energy dispersive and angular dispersive scattering techniques to optimise specificity and speed. The purpose of the study is to develop X-ray pattern "footprints" of explosive materials based on spatial and energy resolved diffraction data, which can then be used for the identification of such materials hidden inside packages or baggage. The RAL detector is the first energy resolving pixelated detector capable of providing an energy resolution of 1.0-1.5% at energies up to 150 keV. The benefit of using this device in a baggage scanner would be the provision of highly specific signatures to a range of explosive materials. We have measured diffraction profiles of five explosives and other compounds used to make explosive materials. High resolution spectra have been obtained. Results are presented to show the specificity of the technique in finding explosives within baggage.

  10. Techniques of industrial radiology in military explosives

    International Nuclear Information System (INIS)

    The use of industrial radiology techniques id very important for military explosive fabrication. The cylindrical-ogive bodies made in forged metal have their interior fulfilled with high melted explosive and they must explode when they reach the target. The granades, as these bodies are called, are thrown by cannons and their interior are submitted to high pressures and accelerations which can cause a premature detonation, in most case, in interior of tube, in case of they have defects in explosive mass. The origins of defects, its localization and classification presenting the techniques used and disposable in Brazil are discussed. (M.C.K.)

  11. Study on Property of Desensitized Explosive Film

    Institute of Scientific and Technical Information of China (English)

    李国新; 王晓丽; 焦清介; 刘淑珍

    2004-01-01

    The mechanical sensitivity, the critical thickness of detonation wave propagation and detonation velocity of desensitized PETN film were studied by experiments. The relationship between the mass of desensitizer paraffin wax and the friction sensitivity of desensitized PETN film was tested. According to the microstructure of film, the function of desensitizer was explained. It was proved that the explosive film could make explosive element micromation and kept its inherence properties by the result of testing the propagating critical dimension of the desensitized PETN film detonation wave. The explosive velocity of confined desensitized PETN film was tested by the multiplex optical fibre.

  12. Explosive Detection and Identification by PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; A.J. Caffrey

    2004-11-01

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.

  13. Explosive Detection and Identification by PGNAA

    International Nuclear Information System (INIS)

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another

  14. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  15. Explosives detection: a challenge for physical chemistry.

    Science.gov (United States)

    Steinfeld, J I; Wormhoudt, J

    1998-01-01

    The detection of explosives, energetic materials, and their associated compounds for security screening, demining, detection of unexploded ordnance, and pollution monitoring is an active area of research. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. This review focuses on techniques such as optical and mass spectrometry and chromatography for detection of trace amounts of explosives with short response times. We also review techniques for detecting the decomposition fragments of these materials. Molecular data for explosive compounds are reviewed where available. PMID:15012428

  16. Laser initiated endotracheal tube explosion.

    Science.gov (United States)

    De Vane, G G

    1990-06-01

    A 62-year-old male with a diagnosis of subglottic and tracheal stenosis resulting from a prolonged intubation was scheduled for a laser bronchoscopy and placement of a silicon T-shaped tube. His history was significant for two myocardial infarctions, an episode of congestive heart failure and exertional angina. A 6 mm polyvinyl chloride endotracheal tube, wrapped with aluminum tape, was placed in an existing tracheostomy stoma. During the course of the procedure, a sudden bright flash occurred followed by an explosive noise and black smoke rising in the anesthesia circuit and from the patient's mouth. The endotracheal tube was removed and the patient was treated for first and second degree burns in the supraglottic area and base of the tongue. In laser surgery of the airway, special care should be given to reducing the flammability of the inspired gases which can be best accomplished by the mixture of helium with oxygen. Helium acts to retard ignition of polyvinyl chloride tubes in concentrations of 60% or greater. The external surface of the tube can also be protected with the application of a metallic tape affixed in a spiral fashion. Finally, a protocol for the management and treatment of this emergency should be adopted and rehearsed. PMID:2378234

  17. The optimum conditions of radio sounding of ionosphere for detecting and monitoring of explosions

    International Nuclear Information System (INIS)

    To determine the optimum conditions of radio sounding of ionosphere for the remote monitoring of explosion it is necessary: to work out the adequate to experiment model of acoustic wave propagation from earth's surface to ionospheric heights, then - the interaction of the acoustic waves with ionosphere and to determine the variations of Doppler shift of radio wave. Such model was worked out in the Institute of Ionosphere. The model have been tested with using of acoustic and Doppler shift measurements during Mill Race experiment (surface chemical explosion, power about 500 tons TNT, U.S.A., 1981)

  18. Glossary on peaceful nuclear explosions terms

    International Nuclear Information System (INIS)

    The report presents a glossary of terms in the area of peaceful nuclear explosions. The terms are in English, French, Russian and Spanish with cross-references for the corresponding terms of the other languages

  19. Pretreatment of Corn Stalk by Steam Explosion

    Institute of Scientific and Technical Information of China (English)

    邵自强; 田永生; 谭惠民

    2003-01-01

    A steam explosion pretreatment, which is one of the best ways of pretreating plant stalk, is applied at various severities to corn stalk. It could effectively modify the super-molecular structure of corn stalk and defibrating corn stalk into individual components. The relationship between yield of reducing sugar and the operating conditions, including temperature, pressure of steam explosion pretreatment and acidity, is also established. Experimental results prove that the steam explosion substantially increases the yield of reducing sugar, and the optimal condition for steam explosion is as follows: the pressure is 2.0 MPa, the pressure-retaining time 300 s, the initial acid concentration 1% and the acid treatment time 24 h.

  20. Isolator fragmentation and explosive initiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Peter [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Rae, Philip John [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Foley, Timothy J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Novak, Alan M. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Armstrong, Christopher Lee [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Baca, Eva V. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.

  1. Magnetorotational Explosive Instability in Keplerian Disks

    CERN Document Server

    Shtemler, Yuri; Mond, Michael

    2015-01-01

    In this paper it is shown that deferentially rotating disks that are in the presence of weak axial magnetic field are prone to a new nonlinear explosive instability. The latter occurs due to the near-resonance three-wave interactions of a magnetorotational instability with stable Alfven-Coriolis and magnetosonic modes. The dynamical equations that govern the temporal evolution of the amplitudes of the three interacting modes are derived. Numerical solutions of the dynamical equations indicate that small frequency mismatch gives rise to two types of behavior: 1. explosive instability which leads to infinite values of the three amplitudes within a finite time, and 2. bounded irregular oscillations of all three amplitudes. Asymptotic solutions of the dynamical equations are obtained for the explosive instability regimes and are shown to match the numerical solutions near the explosion time.

  2. Corona-discharge-initiated mine explosions

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, H.K.; Novak, T. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States). Dept. of Mining & Minerals Engineering

    2005-10-01

    Strong circumstantial evidence suggests that lightning has initiated methane explosions in abandoned and sealed areas of underground coal mines. The Mine Safety and Health Administration (MSHA) investigated several of these occurrences within recent years. The investigated explosions occurred at significant depths, ranging from 700 to 1200 ft. Data from the National Lightning Detection Network indicated a strong correlation between the times and locations of the explosions with those of specific lightning strikes. This paper proposes that corona discharge from a steel borehole casing is the most likely mechanism responsible for these ignitions. A recently investigated mine explosion and fire at a depth greater than 1000 ft was selected for this study. Computer simulations were performed, using data collected at the mine site. CDEGS software from Safe Engineering Services & Technologies, Ltd. and MaxwellSV from Ansoft Corporation were used for the simulations.

  3. Optical chemosensors and reagents to detect explosives

    OpenAIRE

    Salinas Soler, Yolanda; Martínez Mañez, Ramón; Marcos Martínez, María Dolores; Sancenón Galarza, Félix; Costero Nieto, Ana Maria; PARRA ALVAREZ, MARGARITA; GIL GRAU, SALVADOR

    2012-01-01

    This critical review is focused on examples reported from 1947 to 2010 related to the design of chromo-fluorogenic chemosensors and reagents for explosives (141 references). © 2012 The Royal Society of Chemistry.

  4. Rabbit lung injury induced by explosive decompression

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the mechanism of rabbit lunginjury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompressiondecompression test and an explosive decompression test were applied to the animals, respectively. And the effects of the given tests on the animals were discussed. Results: The slow recompression-decompression did not cause an obvious lung injury, but the explosive decompression did cause lung injuries in different degrees. The greater the decompression range was, the shorter the decompression duration was, and the heavier the lung injuries were. Conclusions: Explosive decompression can cause a similar lung injury as shock wave does. The primary mechanical causes of the lung injury might be a tensile strain or stress in the alveolar wall and the pulmonary surface's impacts on the inside wall of the chest.

  5. Unreacted Hugoniots for porous and liquid explosives

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, R.L.; Sheffield, S.A.

    1993-08-01

    Numerous authors have measured the Hugoniots of a variety of granular explosives pressed to different densities. Each explosive at each density was typically then treated as a unique material having its own Hugoniot. By combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. We discuss application of this method to several materials including HMX, PETN, TNT, and Tetryl, as well as HNS. We also show that the ``Universal Liquid Hugoniot`` can be used to calculate the unreacted Hugoniot for liquid explosives. With this method only the ambient pressure sound speed and density are needed to predict the Hugoniot. Applications presented include nitromethane and liquid TNT.

  6. Traumatic corneal endothelial rings from homemade explosives.

    Science.gov (United States)

    Ng, Soo Khai; Rudkin, Adam K; Galanopoulos, Anna

    2013-08-01

    Traumatic corneal endothelial rings are remarkably rare ocular findings that may result from blast injury. We present a unique case of bilateral traumatic corneal endothelial rings secondary to blast injury from homemade explosives. PMID:23474743

  7. Explosives Detection and Identification by PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    E. H. Seabury; A. J. Caffrey

    2006-04-01

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  8. Explosives Detection and Identification by PGNAA

    International Nuclear Information System (INIS)

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  9. Isolator fragmentation and explosive initiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rae, Philip John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Foley, Timothy J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Novak, Alan M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, Christopher Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baca, Eva V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-19

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.

  10. Numerical Simulation of Underwater Explosion Loads

    Institute of Scientific and Technical Information of China (English)

    XIN Chunliang; XU Gengguang; LIU Kezhong

    2008-01-01

    Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.

  11. 30 CFR 77.1300 - Explosives and blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting. 77.1300 Section 77... Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled,...

  12. Remote monitoring of nuclear explosions during radio sounding of ionosphere over explosion place

    International Nuclear Information System (INIS)

    To solve the problem of non propagation of nuclear weapons it is necessary to develop the methods of remote detecting and monitoring of underground nuclear explosions too. At present , the basic method of underground nuclear explosions monitoring is seismic method. Because of decreasing of boundary of explosion power and development methods to decrease of seismic efficacy of explosions it is necessary the further development both as a seismic method as new independent methods of underground nuclear explosions monitoring. So the remote monitoring of explosions with helping radio physical method for measurement of slight blast waves over explosion place is promising. To determine all possibilities of that method it is necessary to work off the model of physical processes with using of experimental material. At the same time we can tell about some advantages of present method. The measurement of disturbance is releasing over explosion place and it does not depend from length of radio trace. Then seismic method measures the vibration of point of earth surface. Ionospheric method is integral method: the disturbances of ionosphere are produced by the whole epicenter region of explosion. As a result, the space inhomogeneities are averaging and the influence of stochastic factors is decreasing

  13. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.Defence Science Journal, 2013, 63(4, pp.376-380, DOI:http://dx.doi.org/10.14429/dsj.63.2770

  14. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils

    Directory of Open Access Journals (Sweden)

    Chun-Hua Bai

    2013-07-01

    Full Text Available A seismic wave is essentially an elastic wave, which propagates in the soil medium, with the strength of initial elastic wave being created by an explosion source that has a significant effect on seismic wave energy. In order to explore the explosive energy effect on output characteristics of the elastic wave field, four explosives with different work capacity (i.e., TNT, 8701, composition B and THL were used to study the effects of elastic wave pressure and rise time of stress wave to the peak value of explosions in soils. All the experimental data was measured under the same geological conditions using a self-designed pressure measuring system. This study was based on the analysis of the initial pressure of elastic waves from the energy output characteristics of the explosives. The results show that this system is feasible for underground pressure tests, and the addition of aluminum powder increases the pressure of elastic waves and energy release of explosions in soils. The explosive used as a seismic energy source in petroleum and gas exploration should have properties of high explosion heat and low volume of explosion gas products.

  15. Wave generations from confined explosions in rocks

    OpenAIRE

    C. L. Liu; Ahrens, Thomas J.

    1998-01-01

    In order to record P- and S-waves generated from confined explosions in rocks in the laboratory, a method is developed based on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle displacements of incident P- and SV-waves, and the strains measured using strain gauges attached on free-surfaces of rocks are analytically derived. P- and SV-waves generated from confined explosions in Bedford limestone are recorded.

  16. Scaling the electromagnetically driven explosive shock simulator

    Science.gov (United States)

    Persh, Robert I.

    1987-01-01

    A heavy payload electromagnetically driven explosive shock simulator, referred to as EDESS-3, has been assembled and characterized at the Navel research Weapons Center. EDESS-3 is the logical outgrowth of the earlier EDESS 1 and 2 simulator work which explored the use of electrical pulse power technology for the generation of explosive like shocks. The features of the EDESS-3 are presented, and designs for the next generation of EDESS machines are introduced.

  17. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  18. The ionospheric effects of industrial explosions

    Science.gov (United States)

    Varshavskii, I. I.; Kalikhman, A. D.

    1984-04-01

    A mathematical model is developed which describes the effect of an industrial explosion on the parameters of a radio signal reflected from the ionosphere. The model predictions are shown to be in good agreement with the observed Doppler shift and angle of arrival of radio signals for actual explosions near Alma-Ata and Sliudianka. Estimates are made of the amplitude and shape of a perturbation wave at the heights of the F layer.

  19. Did Gamma Ray Burst Induce Cambrian Explosion?

    OpenAIRE

    Chen, Pisin; Ruffini, Remo

    2014-01-01

    One longstanding mystery in bio-evolution since Darwin's time is the origin of the Cambrian explosion that happened around 540 million years ago (Mya), where an extremely rapid increase of species occurred. Here we suggest that a nearby GRB event ~500 parsecs away, which should occur about once per 5 Gy, might have triggered the Cambrian explosion. Due to a relatively lower cross section and the conservation of photon number in Compton scattering, a substantial fraction of the GRB photons can...

  20. Explosion and detonation characteristics of dimethyl ether.

    Science.gov (United States)

    Mogi, Toshio; Horiguchi, Sadashige

    2009-05-15

    In this study, the explosion and detonation characteristics of dimethyl ether (DME) were experimentally investigated. A spherical pressure vessel with an internal volume of 180L was used as the explosion vessel. Therefore, tubes 10m in length with internal diameters of 25mm and 50mm were used as detonation tubes. In addition, we compared the characteristics of DME with those of propane since DME is considered as a substitute fuel for liquid petroleum gas (LPG). At room temperature and atmospheric pressure, the maximum explosive pressure increased tenfold. The explosion index (K(G) values), an indicator of the intensity of an explosion, was larger than that of propane, indicating that the explosion was intense. No experimental study has been conducted on the detonation behavior of DME so far, but this research confirmed a transition to detonation. The detonation characteristics were similar to the characteristics of the Chapman-Jouguet detonation, and the concentration range for detonation was from 5.5% to 9.0%. PMID:18774641

  1. Risk Assessment Study for Storage Explosive

    Directory of Open Access Journals (Sweden)

    S. S. Azhar

    2006-01-01

    Full Text Available In Malaysia, there has been rapidly increasing usage in amount of explosives due to widely expansion in quarrying and mining industries. The explosives are usually stored in the storage where the safety precaution had given high attention. As the storage of large quantity of explosive can be hazardous to workers and nearby residents in the events of accidental denotation of explosives, a risk assessment study for storage explosive (magazine had been carried out. Risk assessment study had been conducted in Kimanis Quarry Sdn. Bhd, located in Sabah. Risk assessment study had been carried out with the identification of hazards and failure scenarios and estimation of the failure frequency of occurrence. Analysis of possible consequences of failure and the effects of blast waves due to the explosion was evaluated. The risk had been estimated in term of fatalities and eardrum rupture to the workers and public. The average individual voluntary risk for fatality to the workers at the quarry is calculated to be 5.75 x 10-6 per person per year, which is much lower than the acceptable level. Eardrum rupture risk calculated to be 3.15 x 10-6 per person per year for voluntary risk. There is no involuntary risk found for fatality but for eardrum rupture it was calculated to be 6.98 x 10-8 per person per year, as given by Asian Development Bank.

  2. Screening sealed bottles for liquid explosives

    Science.gov (United States)

    Kumar, Sankaran; McMichael, W. Casey; Kim, Y.-W.; Sheldon, Alan G.; Magnuson, Erik E.; Ficke, L.; Chhoa, T. K.; Moeller, C. R.; Barrall, Geoffrey A.; Burnett, Lowell J.; Czipott, Peter V.; Pence, J. S.; Skvoretz, David C.

    1997-01-01

    A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.

  3. Explosive compaction of CuCr alloys

    Institute of Scientific and Technical Information of China (English)

    李金平; 罗守靖; 龚朝晖; 牛玮; 纪松

    2002-01-01

    The production of CuCr alloys utilizing explosive compaction was studied. Mixture powders of CuCr alloys placed in tubes with a dimension of d14.0mm×21.4mm can be compacted using explosive pads of 16.5mm or 22.5mm. Thicker pads of explosive make the compacts more porous. The effects of the ratio of me/mp, ratio of me/(mp+mt) and impact energy on the density of compacts were similar, they were chosen to control explosive compaction, respectively. When adequate value of the parameters me/mp, me/(mt+mp) and impact energy of unit area of tube was chosen, high density(7.858g/cm3), high hardness(HB189) and low conductance (13.6MS/m) of CuCr alloys could be made by explosive compaction. The general properties of CuCr alloys by explosive compaction are similar to those of CuCr alloys by traditional process.

  4. Experimental Study on Unconfined Vapor Cloud Explosion

    Institute of Scientific and Technical Information of China (English)

    毕明树; ABULITI; Abudula

    2003-01-01

    An experimental system was setup to study the pressure field of unconfined vapor cloud explosions.The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film.In the Center of the cloud was an ignition electrode that met ISO6164"Explosion protection System" and NFPA68 "Guide for Venting of Deflagrations". A data-acquisition system,with dymame responding time less than 0.001s with 0.5% accuracy,recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio.The initial cloud diameters varied from 60cm to 300cm.Based on the analysis of experimental data,the quantitative relationship is obtained for the cloud explosion pressure,the cloud radius and the distance from ignition point .Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.

  5. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  6. Statistical estimation of loads from gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiset, Stian

    1998-12-31

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. The main uncertainties in computerized simulation of gas explosions are the assumptions of the gas cloud, the location of the ignition point and the properties of the simulator itself. This thesis quantifies the levels of these uncertainties by performing a large number of simulations on three offshore modules and one onshore plant. It is found that (1) there is an approximate linear relation between pressure and gas volume, (2) it may be possible to find a linear relation between pressure and impulse, (3) there is an inverse relation between pressure and duration, (4) the response of offshore structures exposed to gas explosions are rarely in the impulsive regime, (5) loading rates vary widely in magnitude, (6) an assumption of a triangular explosion pulse is often correct, (7) louvres increase pressure, impulse and duration of an explosion. The effect of ignition point location is studied in detail. It is possible to derive an ignition point uncertainty load factor that shows predictable behaviour by generalizing the non-parametric properties of the explosion pressure. A model for taking into account the uncertainties regarding gas volume, ignition point location and simulator imperfectness is proposed. The model is intended to produce a characteristic load for structural design. 68 refs., 51 figs., 36 tabs.

  7. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  8. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    OpenAIRE

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for mi...

  9. Explosions in Majestic Spiral Beauties

    Science.gov (United States)

    2004-12-01

    Images of beautiful galaxies, and in particular of spiral brethren of our own Milky Way, leaves no-one unmoved. It is difficult indeed to resist the charm of these impressive grand structures. Astronomers at Paranal Observatory used the versatile VIMOS instrument on the Very Large Telescope to photograph two magnificent examples of such "island universes", both of which are seen in a southern constellation with an animal name. But more significantly, both galaxies harboured a particular type of supernova, the explosion of a massive star during a late and fatal evolutionary stage. The first image (PR Photo 33a/04) is of the impressive spiral galaxy NGC 6118 [1], located near the celestial equator, in the constellation Serpens (The Snake). It is a comparatively faint object of 13th magnitude with a rather low surface brightness, making it pretty hard to see in small telescopes. This shyness has prompted amateur astronomers to nickname NGC 6118 the "Blinking Galaxy" as it would appear to flick into existence when viewed through their telescopes in a certain orientation, and then suddenly disappear again as the eye position shifted. There is of course no such problem for the VLT's enormous light-collecting power and ability to produce sharp images, and this magnificent galaxy is here seen in unequalled detail. The colour photo is based on a series of exposures behind different optical filters, obtained with the VIMOS multi-mode instrument on the 8.2-m VLT Melipal telescope during several nights around August 21, 2004. About 80 million light-years away, NGC 6118 is a grand-design spiral seen at an angle, with a very small central bar and several rather tightly wound spiral arms (it is classified as of type "SA(s)cd" [2]) in which large numbers of bright bluish knots are visible. Most of them are active star-forming regions and in some, very luminous and young stars can be perceived. Of particular interest is the comparatively bright stellar-like object situated directly

  10. Generation and characterization of nano aluminium powder obtained through wire explosion process

    Indian Academy of Sciences (India)

    T K Sindhu; R Sarathi; S R Chakravarthy

    2007-04-01

    In the present study, nano aluminium particles were produced by wire explosion process (WEP) in nitrogen, argon and helium atmospheres. Thus produced nano particles were characterized through certain physico-chemical diagnostic studies using wide angle X-ray diffraction (WAXD) and by energy dispersive analysis by X-rays (EDAX). The size and shape of the powder were analysed by using transmission electron microscopic (TEM) studies. The particle size distribution studies were performed by adopting log-normal probability distribution. The relationship between size of the particle generated in the explosion process and the type of inert gas/pressure was analysed. The mechanisms of nano particle formation, the factors which can aid the process of formation of nano particle in the wire explosion process were analysed. It is realized that energy deposited to the conductor and duration of current flow have major impact on particles produced by this process.

  11. Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge

    Science.gov (United States)

    McNesby, Kevin; Homan, Barrie

    This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves

  12. The Pore Collapse “Hot-Spots” Model Coupled with Brittle Damage for Solid Explosives

    Directory of Open Access Journals (Sweden)

    L. R. Cheng

    2014-01-01

    Full Text Available This paper is devoted to the building of a numerical pore collapse model with “hot-spots” formation for the impacted damage explosives. According to damage mechanical evolution of brittle material, the one-dimensional elastic-viscoplastic collapse model was improved to incorporate the impact damage during the dynamic collapse of pores. The damage of explosives was studied using the statistical crack mechanics (SCRAM. The effects of the heat conduction and the chemical reaction were taken into account in the formation of “hot-spots.” To verify the improved model, numerical simulations were carried out for different pressure states and used to model a multiple-impact experiment. The results show that repeated weak impacts can lead to the collapse of pores and the “hot-spots” may occur due to the accumulation of internal defects accompanied by the softening of explosives.

  13. Canard explosion of limit cycles in templator models of self-replication mechanisms

    DEFF Research Database (Denmark)

    Brøns, Morten

    2011-01-01

    Templators are differential equation models for self-replicating chemical systems. Beutel and Peacock-López [J. Chem. Phys. 126, 125104 (2007)]10.1063/1.2716396 have numerically analyzed a model for a cross-catalytic self-replicating system and found two cases of canard explosion, that is......, a substantial change of amplitude of a limit cycle over a very short parameter interval. We show how the model can be reduced to a two-dimensional system and how canard theory for slow-fast equations can be applied to yield analytic information about the canard explosion. In particular, simple expressions...... for the parameter value where the canard explosion occurs are obtained. The connection to mixed-mode oscillations also observed in the model is briefly discussed. © 2011 American Institute of Physics....

  14. New numerical algorithms in SUPER CE/SE and their applications in explosion mechanics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched al-gorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method,a local hybrid particle level set method,three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges,explosive welding,cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy,wide application field and good compatibility. The numerical algo-rithms presented in this paper may be applied to the numerical research of explosion mechanics.

  15. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  16. The Use of the Propellant Specific Impulse for the Prediction of the Prompt and Terminal Gurney Velocity of High Explosives

    Science.gov (United States)

    Frem, Dany

    2016-10-01

    Simple relationships are presented for the calculation of both prompt and terminal Gurney velocity of chemical high explosives. By considering that a given explosive behaves like a propellant, its specific impulse ? was calculated using Mader's ISPBKW code; it was found that the density impulse (?where ? is the explosive density and ? is an empirically optimized variable) performance factor correlates well with the terminal Gurney velocity of both ideal and nonideal explosives. Furthermore, the cylinder wall energy can be computed from (?from which the prompt Gurney velocity can be obtained through the application of the Gurney's cylinder equation. It was concluded that (? is a powerful factor for the prediction of the Gurney velocities, especially for nonideal compositions.

  17. Explosion characteristics of methane for CFD modeling and simulation of turbulent gas flow behavior during explosion

    Science.gov (United States)

    Skřínský, Jan; Vereš, Ján; Peer, Václav; Friedel, Pavel

    2016-06-01

    The effect of initial concentration on the explosion behavior of a stoichiometric CH4/O2/N2 mixture under air-combustion conditions was studied. Two mathematical models were used with the aim at simulating the gas explosion in the middle scale explosion vessel, and the associated effects of the temperature for different gas/air concentrations. Peak pressure, maximum rate of pressure rise and laminar burning velocity were measured from pressure time records of explosions occurring in a 1 m3 closed cylindrical vessel. The results of the models were validated considering a set of data (pressure time histories and root mean square velocity). The obtained results are relevant to the practice of gas explosion testing and the interpretation of test results and, they should be taken as the input data for CFD simulation to improve the conditions for standard tests.

  18. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    Energy Technology Data Exchange (ETDEWEB)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  19. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    International Nuclear Information System (INIS)

    As a result of Sandia's radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia's Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels

  20. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  1. Electrostatic sensitivity of secondary high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campos, C.A.

    1980-06-01

    An Electrostatic Sensitivity Test System designed at Pantex was used to evaluate the secondary high explosives PETN, HMX, RDX, HNS I, HNS II and TATB. The purpose of this study was to establish test conditions for a standard electrostatic sensitivity test and measure baseline data of a few secondary explosives. Although secondary explosives are often considered quite insensitive to an electrostatic discharge, PETN, HMX, and RDX were initiated. Several external elements to the high explosive were found to have an influence on sensitivity. Initiation appeared to be dependent on the nature of the discharge current curve. Those elements recognized as having a significant effect on the results were held constant in this study. These included: distance between discharge plates; sample moisture content; material density; and system resistance, capacitance and inductance. However, no attempt was made in this study to determine the extent to which the high explosive response to electrostatic discharge is affected by these factors since such correlation is not necessary to determine relative sensitivities.

  2. Canine detection odor signatures for explosives

    Science.gov (United States)

    Williams, Marc; Johnston, J. M.; Cicoria, Matt; Paletz, E.; Waggoner, L. Paul; Edge, Cindy C.; Hallowell, Susan F.

    1998-12-01

    Dogs are capable of detecting and discriminating a number of compounds constituting a complex odor. However, they use only a few of these to recognize a substance. The focus of this research is to determine the compounds dogs learn to use in recognizing explosives. This is accomplished by training dogs under behavioral laboratory conditions to respond differentially on separate levers to 1) blank air, 2) a target odor, such as an explosive, and 3) all other odors (non-target odors). Vapor samples are generated by a serial dilution vapor generator whose operation and output is characterized by GC/MS. Once dogs learn this three-lever discrimination, testing sessions are conducted containing a number of probe trials in which vapor from constituent compounds of the target is presented. Which lever the dogs respond to on these probe trials indicates whether they can smell the compound at all (blank lever) or whether it smells like toe target odor (e.g., the explosive) or like something else. This method was conducted using TNT, C-4, and commercial dynamite. The data show the dogs' reactions to each of the constituent compounds tested for each explosive. Analysis of these data reveal the canine detection odor signature for these explosives.

  3. Multi-modal, ultrasensitive detection of trace explosives using MEMS devices with quantum cascade lasers

    Science.gov (United States)

    Zandieh, Omid; Kim, Seonghwan

    2016-05-01

    Multi-modal chemical sensors based on microelectromechanical systems (MEMS) have been developed with an electrical readout. Opto-calorimetric infrared (IR) spectroscopy, capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules, has been realized with a microthermometer/microheater device using a widely tunable quantum cascade laser. A microthermometer/microheater device responds to the heat generated by nonradiative decay process when the adsorbed explosive molecules are resonantly excited with IR light. Monitoring the variation in microthermometer signal as a function of illuminating IR wavelength corresponds to the conventional IR absorption spectrum of the adsorbed molecules. Moreover, the mass of the adsorbed molecules is determined by measuring the resonance frequency shift of the cantilever shape microthermometer for the quantitative opto-calorimetric IR spectroscopy. In addition, micro-differential thermal analysis, which can be used to differentiate exothermic or endothermic reaction of heated molecules, has been performed with the same device to provide additional orthogonal signal for trace explosive detection and sensor surface regeneration. In summary, we have designed, fabricated and tested microcantilever shape devices integrated with a microthermometer/microheater which can provide electrical responses used to acquire both opto-calorimetric IR spectra and microcalorimetric thermal responses. We have demonstrated the successful detection, differentiation, and quantification of trace amounts of explosive molecules and their mixtures (cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) using three orthogonal sensing signals which improve chemical selectivity.

  4. Numerical simulation of dust explosions in pneumatic conveyors

    Science.gov (United States)

    Bielert, U.; Sichel, M.

    Dust conveyors are used in a wide range of industrial applications. Explosions can be transmitted through dust conveyors to different parts of a processing facility and thus can cause a large amount of damage. In order to study the evolution of dust explosions in such conveyors, a numerical model was developed which combines a front tracking method with a solver for the Euler equations. In this model the effects of the chemical reactions and of the flow turbulence were summarized in the turbulent burning velocity of the dust-air mixture. This approach results in a large reduction of the computational effort and thus allows to study the influence of parameter variations. Here results are presented for corn starch-air mixtures. The numerical model was first calibrated by comparison with one set of experimental data. The model was then tested by comparison with different experimental data and the sensitivity of the model parameters is discussed. Finally calculations were performed for different dust concentrations, flow velocities and tube lengths.

  5. Local magnitudes of small contained explosions.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  6. Criticality safety in high explosives dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Troyer, S.D.

    1997-06-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig.

  7. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  8. Securing Infrastructure from High Explosive Threats

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  9. Road Foundation Improvement by Explosive Force

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A highway was constructed in Jiangxi Province, China, through mountainous area. Some sections of the highway went through valleys where a soft clay layer of 6-8.5 m deep was encountered. A new explosive method was developed and adopted for this project. In this method, blasting is used to remove and replace soft clay with crushed stones. Explosive charges are placed in the soil to be improved according to a certain pattern. Crushed stones are piled up behind the area where charges are installed. The explosion removes most of the soil in the exploded area and causes the pile of crushed stones to slide into the area where the soil is removed by blasting. A formular was suggested to calculate the charge weight used for improving a certain type of soil. The effectiveness of the method is evaluated using borehole exploration, plate load tests,and ground-probing radar tests.

  10. Probing thermonuclear supernova explosions with neutrinos

    CERN Document Server

    Odrzywolek, A

    2010-01-01

    Aims: We present for the first time neutrino light curves and energy spectra for two representative Type Ia supernova explosion models: a pure deflagration and a delayed detonation model. Methods: Weak neutrino flux is calculated using NSE abundances convoluted with the approximate neutrino spectra of the individual nuclei. Thermal neutrino spectrum (pair+plasma) is calculated using PSNS code. Results: The two competing explosion scenarios, while producing almost identical electromagnetic output are shown to be completely different in neutrinos. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on protons, Co55, and Ni56), and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trig...

  11. A new formal perspective on 'Cambrian explosions'.

    Science.gov (United States)

    Wallace, Rodrick

    2014-01-01

    The 'Cambrian explosion' 500 Myr ago saw a relatively sudden proliferation of organism Bauplan and ecosystem niche structure that continues to haunt evolutionary biology. Here, adapting standard methods from information theory and statistical mechanics, we model the phenomenon as a noise-driven phase transition, in the context of deep-time relaxation of current path-dependent evolutionary constraints. The result is analogous to recent suggestions that multiple 'explosions' of increasing complexity in the genetic code were driven by rising intensities of available metabolic free energy. In the absence of severe path-dependent lock-in, 'Cambrian explosions' are standard features of blind evolutionary process, representing outliers in the ongoing routine of evolutionary punctuated equilibrium. PMID:24439546

  12. Deformation and Failure of Polymer Bonded Explosives

    Institute of Scientific and Technical Information of China (English)

    陈鹏万; 黄风雷; 丁雁生

    2004-01-01

    The deformation and failure of pressed polymer bonded explosives under different types of loads including tension, compression and low velocity impact are presented. Brazilian test is used to study the tensile properties. The microstructure of polymer bonded explosives and its evolution are studied by use of scanning electronic microscopy and polarized light microscopy. Polishing techniques have been developed to prepare samples for microscopic examination. The failure mechanisms of polymer bonded explosives under different loads are analyzed. The results show that interfacial debonding is the predominant failure mode in quasi-static tension, while extensive crystal fractures are induced in compression. With the increase of strain rate, more crystal fractures occur. Low velocity impact also induces extensive crystal fractures.

  13. Explosive fragmentation of liquids in spherical geometry

    Science.gov (United States)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2016-07-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  14. Insights into explosion dynamics at Stromboli in 2009 from ash samples collected in real-time

    Science.gov (United States)

    Taddeucci, J.; Lautze, N.; Andronico, D.; D'Auria, L.; Niemeijer, A.; Houghton, B.; Scarlato, P.

    2012-04-01

    Rapid characterization of tephra during explosive eruptions can provide valuable insights into eruptive mechanisms, also integrating other monitoring systems. Here we reveal a perspective on Stromboli's conduit processes by linking ash textures to geophysical estimates of eruption parameters of observed explosions. A three day campaign at Stromboli was undertaken by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) in October 2009. At this time activity was moderately intense, with an average 4 to 5, both ash-rich and ash-poor, explosions per hour at each the SW and NE vents. A total of fifteen ash samples were collected in real time. We used binocular and scanning electron microscopes to analyze the components, grain size and morphology distributions, and surface chemistry of ash particles within eight selected samples. In addition, the INGV monitoring network provided visual, thermal, and seismic information on the explosions that generated the sampled ash. In each sample, the proportion of fluidal, glassy sideromelane (as opposed to blocky, microcrystalline tachylite plus lithics), the degree of "chemical freshness" (as opposed to chemical alteration), and the average size of particles appear to correlate directly with the maximum height and the seismic amplitude of the corresponding explosion, and inversely correlate with the amount of ash erupted, as estimated by monitoring videos. These observations suggest that more violent explosions (i.e., those driven by the release of larger and more pressurized gas volumes) produce ash via the fragmentation of hotter, more fluid magma, while weaker ones mostly erupt ash-sized particles derived by the fragmentation of colder magma and incorporation of conduit wall debris. The formation of fluidal ash particles (up to Pele's hairs) requires aerodynamic deformation of a relatively low-viscosity magma, in agreement with the strong acceleration imposed upon fragmented magma clots by the rapid expansion of

  15. Non-Shock Initiation Model for Plastic Bonded Explosive PBXN-5 and Cast Explosive: Experimental Results

    Science.gov (United States)

    Anderson, Mark; Todd, Steven; Caipen, Terry; Jensen, Charlie; Hughs, Chance

    2009-06-01

    A damage initiated reaction (DMGIR) computational model is being developed for the CTH shock physics code to predict the response of an explosive to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of reaction in the explosive, and its growth to detonation. The DMGIR model is a complement to the History Variable Reactive Burn (HVRB) model embedded in the current CTH code. Specifically designed experiments are supporting the development, implementation, and validation of the DMGIR numerical approach. PBXN-5 was the initial explosive material used experimentally to develop the DMGIR model. This explosive represents a family of plastically bonded explosives with good mechanical strength and rigid body properties. The model has been extended to cast explosives represented by Composition B. Furthermore, the DMGIR model will extended to predict results of non-shock mechanical insults for moldable plastic explosives such as C4 and PrimaSheet.

  16. Non-Shock Initiation Model for Plastic Bonded Explosive PBXN-5 and Cast Explosive

    Science.gov (United States)

    Todd, Steven; Caipen, Terry; Grady, Dennis; Anderson, Mark

    2009-06-01

    A damage initiated reaction (DMGIR) computational model is being developed for the CTH shock physics code to predict the response of an explosive to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of reaction in the explosive, and its growth to detonation. The DMGIR model is a complement to the History Variable Reactive Burn (HVRB) model embedded in the current CTH code. Specifically designed experiments are supporting the development, implementation, and validation of the DMGIR numerical approach. PBXN-5 was the initial explosive material used experimentally to develop the DMGIR model. This explosive represents a family of plastically bonded explosives with good mechanical strength and rigid body properties. The model has been extended to cast explosives represented by Composition B. Furthermore, the DMGIR model will extended to predict results of non-shock mechanical insults for moldable plastic explosives such as C4 and PrimaSheet.

  17. Long-lived explosive volcanism on Mercury

    OpenAIRE

    Thomas, Rebecca J.; Rothery, David A.; Conway, Susan J.; Anand, Mahesh

    2014-01-01

    The duration and timing of volcanic activity on Mercury are key indicators of the thermal evolution of the planet and provide a valuable comparative example for other terrestrial bodies. The majority of effusive volcanism on Mercury appears to have occurred early in the planet's geological history (~4.1–3.55 Ga), but there is also evidence for explosive volcanism. Here we present evidence that explosive volcanism occurred from at least 3.9 Ga until less than a billion years ago and so was sub...

  18. Expansion of Metallic Cylinders under Explosive Loading

    Directory of Open Access Journals (Sweden)

    M.S. Bola

    1992-07-01

    Full Text Available The behaviour of expanding metallic cylinders under explosive loading was studied. Using ultra high speed photography, the expansion characteristics of aluminium and copper metallic cylinders have been evaluated with different c/m ratio, and by changing the nature of high explosive. The results obtained are comparable to those predicted by the Gurney's energy and momentum balance equations. A cylinder test has been established for comparative to the metal by octol, TNT, PEK-1, baratol and composition B are calculated. The results are in close agreement with those calculated by Kury et al.

  19. Biodegradation of the Nitramine Explosive CL-20

    OpenAIRE

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobact...

  20. THEORIES OF ROCK BREAKAGE WITH EXPLOSIVES

    Directory of Open Access Journals (Sweden)

    Vinko Škrlec

    2014-12-01

    Full Text Available The prediction and observation of the nature and dimensions of damaged zones in the surrounding rock mass and understanding the mechanisms of fracturing and crushing of the rock mass with explosives is one of the most important parameters in blasting design in order to obtain preferred granulation and reduce damaging effects of blasting on the environment. An overview of existing rock breakage theories with the energy released by the detonation of explosives is given in this paper (the paper is published in Croatian.

  1. Statistical Hot Spot Model for Explosive Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, III, A L

    2005-07-14

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a non-local equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  2. Statistical Hot Spot Model for Explosive Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Nichols III, A L

    2004-05-10

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a nonlocal equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  3. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  4. Chemicapacitive microsensors for detection of explosives and TICs

    Science.gov (United States)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  5. Fire and Explosion Hazards Expected in a Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Shireen R.; Al-Dahhan, Wedad; Al-Zuhairi, Ali Jassim; Hussein, Falah; Rodda, Kabrena E.; Yousif, Emad

    2016-08-15

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the fifth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we summarize unsafe practices involving the improper installation of a Gas Chromatograph (GC) at an Iraqi university which, if not corrected, could have resulted in a dangerous fire and explosion. We summarize the identified infractions and highlight lessons learned. By openly sharing the experiences at the university involved, we hope to minimize the possibility of another researcher being injured due to similarly unsafe practices in the future.

  6. Chemical detection of buried landmines

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1998-03-01

    Of all the buried landmine identification technologies currently available, sensing the chemical signature from the explosive components found in landmines is the only technique that can classify non-explosive objects from the real threat. In the last two decades, advances in chemical detection methods has brought chemical sensing technology to the foreground as an emerging technological solution. In addition, advances have been made in the understanding of the fundamental transport processes that allow the chemical signature to migrate from the buried source to the ground surface. A systematic evaluation of the transport of the chemical signature from inside the mine into the soil environment, and through the soil to the ground surface is being explored to determine the constraints on the use of chemical sensing technology. This effort reports on the results of simulation modeling using a one-dimensional screening model to evaluate the impacts on the transport of the chemical signature by variation of some of the principal soil transport parameters.

  7. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  8. Problems of Solid-Phase Synthesis in Cylindrical Ampoules under Explosive Loading

    Science.gov (United States)

    Zelepugin, S. A.; Ivanova, O. V.; Yunoshev, A. S.; Zelepugin, A. S.

    2016-04-01

    The peculiarities of solid-phase synthesis are studied experimentally and numerically in the aluminum-fluoroplastic and aluminum-sulfur mixtures in cylindrical ampoules under explosive loading. The experimental results show that the use of a mixture capable of ultrafast exothermic reactions leads to the destruction of a cylindrical ampoule under explosive loading. When the transient shock wave is reflected from the bottom lid of the ampoule as a compression wave, there is a sharp increase in pressure in the lower part of the ampoule, which is accompanied by the increase in rate of the chemical reaction. The high rate of heat release during the chemical reaction in the lower part of the ampoule causes the formation of a gas phase, which leads to a further increase in pressure and destruction of the ampoule.

  9. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  10. Using History to Teach Hazard Communication (HAZCOM): The Halifax Explosion

    International Nuclear Information System (INIS)

    The purpose of the Occupational Safety and Health Administration's (OSHA's) Hazard Communication (HAZCOM) Standard is to ensure that the hazards of all chemicals produced or imported are evaluated and that information is transmitted to employers and employees. This transmittal of information is to be accomplished by means of a comprehensive hazard communication program consisting of container labeling and other warnings, material safety data sheets, and employee training. Unfortunately, HAZCOM is often ranked fairly high on OSHA's 'top 10 list' of violations. The violations typically result from either neglecting to have a written HAZCOM program or failing to provide information and training on hazardous chemicals. Specifically, enhancements are needed to provide training that combines training effectiveness with the three primary learning styles: visual (seeing), auditory (hearing) and kinesthetic/tactile (learning by doing). Although training-by-video captures approximately 95% of the population's primary learning styles, the key to effective training, however, is that it must create genuine interest and motivation for students to make use of the presented information. In this specific application, there is a desire to provide HAZCOM training in practical terms and concepts, such that the employees are capable of responding to situations in the field and have a heightened awareness of the unfortunate events that can occur when this information is disregarded. This paper documents how WESKEM, LLC's Environmental, Safety and Health (ES and H) Department enhanced its HAZCOM training program by incorporating 'non-traditional videos', such as the Halifax Explosion, one of the largest ever non-nuclear, man-made explosions, that occurred in 1917. This maritime event serves as an excellent educational tool demonstrating how one single event can become life threatening when failing to either train employees effectively or disseminate available information (i.e., HAZCOM

  11. Bistatic phase sounding in the ionosphere above the Minor Scale explosion

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, J.

    1986-02-01

    A 4.8-kT chemical explosion named Minor Scale was detonated at the White Sands Missile Range on June 26, 1985. Following the detonation, three bistatic HF phase sounders observed disturbances in the ionosphere directly over the explosion. The path from transmitters to receivers, which were 283 km apart, had a midpoint 7 km northeast of ground zero. We describe the experiment and present time histories of the power spectra of the three transmission. Between 300 and 360 s after the explosion, all three links showed changes in spectra. The lowest frequency shifted by -1 Hz, indicating the passage of the acoustic wave from the explosion through the total reflection height in the E-layer at about 95 km. We model the Doppler shift and absorption change to be expected for this disturbance assuming the acoustic wave had an N-wave profile with a maximum amplitude of 15%. The spectra of the lowest frequency also show temporary peaks at negative Doppler that indicate partial reflection modes from upper and lower edges of the N-wave. We calculate the Doppler shift and reflection coefficients for these partial reflection modes. During the same time period, the spectra of the two higher frequency transmissions also showed temporary peaks at negative Doppler that rapidly changed their frequency offset. From 380 to 480 s after the explosion, broad peaks at negative Doppler shift appeared in the spectra of the two higher frequencies. These peaks could be caused by reflection in the F-region induced by a temporary increse in the critical frequency by the passage of the acoustic wave from the explosion. We calculate the Doppler shift to be observed from such a mode. 11 refs., 10 figs.

  12. Explosion of Ultrahigh Pressure Minerals in Mantle

    Institute of Scientific and Technical Information of China (English)

    BAI Wenji; YANG Jingsui; FANG Qingsong; YAN Binggang; ZHANG Zhongming

    2001-01-01

    @@ The microexplosion stucture of ultrahigh pressure minerals was found for the first time in podform chromitites within the mantle peridotite facies of Luobusa ophiolite along the Yarlung Zangbo suture zone.The explosion stuctures of high-energy silicate inclusions are commonly seen in thin sections (see figure).

  13. Incremental Pressing Technique in Explosive Charge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pressing technique has become available that might be useful for compressing granular explosives. If the height-diameter ratio of the charge is unfavorable,the high quality charge can not be obtained with the common single-action pressing. This paper presents incremental pressing technique, which can obtain the charge with higher overall density and more uniform density.

  14. Underground nuclear explosions: tectonic utility and dangers.

    Science.gov (United States)

    Toksöz, M N; Kehrer, H H

    1971-07-16

    The tectonic strain energy released by several underground nuclear explosions has been calculated through an analysis of seismic surface waves. The proportionally great amount of energy released in certain events suggests the possible uses for, as well as the hazards of, underground testing.

  15. Differential thermal analysis microsystem for explosive detection

    DEFF Research Database (Denmark)

    Olsen, Jesper Kenneth; Greve, Anders; Senesac, L.;

    2011-01-01

    A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed...

  16. Java: An Explosion on the Internet.

    Science.gov (United States)

    Read, Tim; Hall, Hazel

    Summer 1995 saw the release, with considerable media attention, of draft versions of Sun Microsystems' Java computer programming language and the HotJava browser. Java has been heralded as the latest "killer" technology in the Internet explosion. Sun Microsystems and numerous companies including Microsoft, IBM, and Netscape have agreed upon…

  17. Modeling Astrophysical Explosions with Sustained Exascale Computing

    CERN Document Server

    Zingale, M; Malone, C M; Timmes, F X

    2015-01-01

    Our understanding of stars and their fates is based on coupling observations to theoretical models. Unlike laboratory physicists, we cannot perform experiments on stars, but rather must patiently take what nature allows us to observe. Simulation offers a means of virtual experimentation, enabling a detailed understanding of the most violent ongoing explosions in the Universe---the deaths of stars.

  18. Explosives safety research in the Netherlands

    NARCIS (Netherlands)

    Voort, M.M. van der; Weerheijm, J.; Wees, R.M.M. van; Dongen. P. van

    2013-01-01

    The handling of explosives and ammunition introduces a safety risk for personnel and third parties. Accidents related to storage, transport and transhipment may result in severe injury and material damage. TNO has developed a number of tools to quantify the consequences and risks of accidental explo

  19. Ionospheric disturbances produced by powerful explosives

    Science.gov (United States)

    Nagorskii, P. M.; Tarashchuk, Yu. E.

    1992-09-01

    Results of a study of wave-like ionospheric disturbances initiated by powerful explosives are presented and analyzed. Three types of wave processes with differing physical natures which propagate in the upper atmosphere and ionosphere to distances of thousands of kilometers are distinguished. The effect of shock-acoustic waves on indirect short wave radio propagation is considered.

  20. Ionospheric disturbances produced by powerful explosives

    International Nuclear Information System (INIS)

    Results of a study of wave-like ionospheric disturbances initiated by powerful explosives are presented and analyzed. Three types of wave processes with differing physical natures which propagate in the upper atmosphere and ionosphere to distances of thousands of kilometers are distinguished. The effect of shock-acoustic waves on indirect short wave radio propagation is considered

  1. Multiphase Instabilities in Explosive Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''

    2015-11-01

    Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  2. New Dark Matter Detector using Nanoscale Explosives

    CERN Document Server

    Lopez, Alejandro; Freese, Katherine; Kurdak, Cagliyan; Tarle, Gregory

    2014-01-01

    We present nanoscale explosives as a novel type of dark matter detector and study the ignition properties. When a Weakly Interacting Massive Particle WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of energy deposited can trigger an explosion. For specificity, this paper focuses on a type of two-component explosive known as a nanothermite, consisting of a metal and an oxide in close proximity. When the two components interact they undergo a rapid exothermic reaction --- an explosion. As a specific example, we consider metal nanoparticles of 5 nm radius embedded in an oxide. One cell contains more than a few million nanoparticles, and a large number of cells adds up to a total of 1 kg detector mass. A WIMP interacts with a metal nucleus of the nanoparticles, depositing enough energy to initiate a reaction at the interface between the two layers. When one nanoparticle explodes it initiates a chain reaction throughout the cell. A number of possible thermite mat...

  3. RDX/Sylgard extrudable explosive development

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, A.G.; Schmitz, G.T.; Stallings, T.L.; West, G.T.; Ashcraft, R.W.

    1977-10-01

    Formulation procedures for X-0208, an 80 percent RDX/20 percent Sylgard extrudable, have been developed. The extrudable explosive, made from a mixture of micronized RDX and Class E RDX, will sustain detonation in a 1.65 mm channel and can be mechanically extruded into ribbon-type configurations.

  4. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  5. Delta 2 Explosion Plume Analysis Report

    Science.gov (United States)

    Evans, Randolph J.

    2000-01-01

    A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

  6. Magic nuclei at explosive dynamo activity

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2016-01-01

    Full Text Available Explosive nucleosynthesis at conditions of magnetorotational instabilities is considered for iron group nuclides by employing arguments of nuclear statistical equilibrium. Effects of ultra-strong nuclear magnetization are demonstrated to enhance the portion of titanium product. The results are corroborated with an excess of 44Ti revealed from the Integral mission data.

  7. Phenomenology of atmospheric, submarine and underground explosions

    International Nuclear Information System (INIS)

    An atmospheric nuclear explosion, particularly at ground level or at low altitude, generates immediate radiation that is propagated via different modes of energy transfer, i.e.: electromagnetic waves, light and heat, mechanical effects. Late-stage phenomena, such as the formation and propagation of the cloud, follow on after these early effects. The whole range of different effects - including acoustic and seismic waves as well as the products contained in the cloud - can be detected at distances up to several hundred or several thousand km. When the nuclear source is submarine, a shock wave is generated due to the interaction with the medium. According to the depth of the source, a gas bubble is created which starts to pulsate. As a result of this effect, the acoustic signal is modulated and then propagated to great distances away from the source, thus enabling identification of the explosive phenomenon in the water column. In the case of underground explosions, it is possible to establish a complete description of the interaction with the medium. This comprises generation and propagation of the shock wave, creation of the cavity, zonation of explosion effects, vent collapse, etc. The influence of depth on crater formation, subsidence and decoupling is also discussed. (authors)

  8. Some properties of explosive mixtures containing peroxides

    International Nuclear Information System (INIS)

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E0, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m-3. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities

  9. Energetic nanocomposites for detonation initiation in high explosives without primary explosives

    Science.gov (United States)

    Comet, Marc; Martin, Cédric; Klaumünzer, Martin; Schnell, Fabien; Spitzer, Denis

    2015-12-01

    The mixing of aluminum nanoparticles with a metal containing oxidizer (here, WO3 or Bi2(SO4)3) gives reactive materials called nanothermites. In this research, nanothermites were combined with high explosive nanoparticles (RDX) to prepare energetic nanocomposites. These smart nanomaterials have higher performances and are much less hazardous than primary explosives. Their flame propagation velocity can be tuned from 0.2 to 3.5 km/s, through their explosive content. They were used to initiate the detonation of a high explosive, the pentaerythritol tetranitrate. The pyrotechnic transduction of combustion into detonation was achieved with short length systems (<2 cm) and small amounts of energetic nanocomposites (˜100 mg) in semi-confined systems.

  10. The Limits of Applicability of Usual Kinetic Relations to the Detonation Waves Chemistry. Homogeneous Explosives

    OpenAIRE

    Kondrikov, B.

    1995-01-01

    The report presented contains the brief description of some of the macrokinetic dependencies in field of detonation of homogeneous, preferably liquid, explosives. Chemical kinetics data and mechanisms of the detonation reactions of pure nitrocompounds at different initial temperature, and the mixtures of them with sulfuric acid are obtained. The data from both groups of measurements for TNT virtually coincide with results of kinetic calculations at which the frequency of spin-pulsating subsur...

  11. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  12. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production

    OpenAIRE

    Jeoh, Tina

    1998-01-01

    Steam Explosion Pretreatment of Cotton Gin Waste for Ethanol Production By Tina Jeoh Foster A. Agblevor, Chair Biological Systems Engineering ABSTRACT The current research investigates the utilization of cotton gin waste as a feedstock to produce a value-added product - fuel ethanol. Cotton gin waste consists of pieces of burs, stems, motes (immature seeds) and cotton fiber, and is considered to be a lignocellulosic material. The three main chemical constituents are ce...

  13. Explosive cyclones in CMIP5 climate models

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  14. 30 CFR 19.7 - Protection against explosion hazard.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against explosion hazard. 19.7..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC CAP LAMPS § 19.7 Protection against explosion hazard. Unless properly designed, electric cap lamps may present two sources of probable explosion...

  15. 30 CFR 77.304 - Explosion release vents.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion release vents. 77.304 Section 77.304... Dryers § 77.304 Explosion release vents. Drying chambers, dry-dust collectors, ductwork connecting dryers... explosion release vents which open directly to the outside atmosphere, and all such vents shall be:...

  16. Specimen size effect of explosive sensitivity under low velocity impact

    Science.gov (United States)

    Ma, Danzhu; Chen, Pengwan; Dai, Kaida; Zhou, Qiang

    2014-05-01

    Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important issues in handling, manufacture, storage, and transportation procedures. Various evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in some impact tests such as drop hammer test and Steven tests, including the threshold velocity/height and reaction violence. To analyse the specimen size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the critical specific mechanical energy were introduced to investigate the size-effect on the explosive reaction thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the deformation localization of the impact loading. The critical specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the critical mechanical energy needed for explosive ignition decreases and tends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.

  17. Recent Advances in the Synthesis of High Explosive Materials

    OpenAIRE

    Jesse J. Sabatini; Karl D. Oyler

    2015-01-01

    This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  18. 4 CFR 25.14 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives...

  19. 14 CFR 417.417 - Propellants and explosives.

    Science.gov (United States)

    2010-01-01

    ... materials in close proximity to solid or liquid propellants, electro-explosive devices, or systems... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Propellants and explosives. 417.417 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives....

  20. Explosive-train initiated through solid bulkhead by pressure cartridge

    Science.gov (United States)

    Wilkowski, J. C.

    1968-01-01

    Explosive-train initiated pressure cartridge transmits a shock wave igniting a main charge of explosive through a solid bulkhead without destroying or damaging the seal or the bulkhead. The main charge could be an explosive, a pyrotechnic, or a propellant.

  1. Increase of water resistance of ammonium nitrate explosives

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Developed a method of kapsulating of ammonium nitrate with liquid paraffin increase finding explosives in water for 60 minutes. Placing explosives in the plastic shell, the explosive was, as in standing or running water during the day. When conducting field tests failures were absent.

  2. Recent Advances in the Synthesis of High Explosive Materials

    Directory of Open Access Journals (Sweden)

    Jesse J. Sabatini

    2015-12-01

    Full Text Available This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials, processing improvement and formulating aspects using these ingredients, where applicable, are discussed in detail.

  3. Dimensional analysis for the mechanical effects of some underground explosions

    International Nuclear Information System (INIS)

    The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)

  4. Explosive limits and its container factors of polybasic explosive mixture gas containing H2, CH4 and CO

    Institute of Scientific and Technical Information of China (English)

    胡耀元; 李勇; 朱凯汉; 周邦智; 杨元法

    2002-01-01

    Explosive characteristics of polybasic explosive mixture gas are systematically researched. Over 28000 experimental data have been obtained from 1278 effective experiments. The paper probes into the concentration explosive limits and the container factors of polybasic explosive mixture gas which contains H2, CH4 and CO. It has worked out the sufficient and necessary condition for branch-chain explosion and the unified expression of the probability of the heterogeneous chain termination. Experiments indicate that the concentration explosive limits of polybasic explosive mixture gas (H2, CH4, CO) relate to many factors. They enlarge with the augmentability of the container (linear size, geometric shape, and flame spread direction). This will be of great significance to guiding the revision of related industrial safety targets, reclaiming and reusing related industrial tail gas and waste gas, taking precautions against the explosion hazard of mixture gas in correlated industry and mines, and applying the br

  5. Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method

    Science.gov (United States)

    Cao, Wei; He, Zhongqi; Chen, Wanghua

    2015-04-01

    The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.

  6. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A. [Argonne National Lab., IL (United States); Peters, C.W. [Nuclear Diagnostic Systems, Inc., Springfield, VA (United States)

    1992-07-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ``electronic collimation`` (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs.

  7. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A. (Argonne National Lab., IL (United States)); Peters, C.W. (Nuclear Diagnostic Systems, Inc., Springfield, VA (United States))

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs.

  8. Compact standoff Raman system for detection of homemade explosives

    Science.gov (United States)

    Misra, Anupam K.; Sharma, Shiv K.; Bates, David E.; Acosta, Tayro E.

    2010-04-01

    We present data on standoff detection of chemicals used in synthesis of homemade explosives (HME) using a compact portable standoff Raman system developed at the University of Hawaii. Data presented in this article show that good quality Raman spectra of various organic and inorganic chemicals, including hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, and gasoline, can be easily obtained from remote distances with a compact standoff Raman system utilizing only a regular 85 mm Nikon camera lens as collection optics. Raman spectra of various chemicals showing clear Raman fingerprints obtained from targets placed at 50 m distance in daylight with 1 to 10 second of integration time are presented in this article. A frequency-doubled mini Nd:YAG pulsed laser source (532 nm, 30 mJ/pulse, 20 Hz, pulse width 8 ns) is used in an oblique geometry to excite the target located at 50 m distance. The standoff Raman system uses a compact spectrograph of size 10 cm (length) × 8.2 cm (width) × 5.2 cm (height) with spectral coverage from 100 to 4500 cm-1 Stokes-Raman shifted from 532 nm laser excitation and is equipped with a gated thermo-electrically cooled ICCD detector. The system is capable of detecting both the target as well as the atmospheric gases before the target. Various chemicals could be easily identified through glass, plastic, and water media. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  9. 30 CFR 77.1909 - Explosives and blasting; use of permissible explosives and shot-firing units.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting; use of permissible explosives and shot-firing units. 77.1909 Section 77.1909 Mineral Resources MINE SAFETY AND HEALTH... blasting; use of permissible explosives and shot-firing units. Except as provided in § 77.1909-1,...

  10. Investigation of aluminum-steel joint formed by explosion welding

    Science.gov (United States)

    Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I.

    2015-04-01

    Explosion welding is a solid state welding process that is used for the metallurgical joining of metals. Explosion cladding can be used to join a wide variety of dissimilar or similar metals [1]. This process uses the controlled detonation of explosives to accelerate one or both of the constituent metals into each other in such a manner as to cause the collision to fuse them together [2]. In this study, bonding ability of aluminum and steel with explosion welding was investigated. Experimental studies, microscopy, microhardness, tensile and bend test showed out that, aluminum and steel could be bonded with a good quality of bonding properties with explosion welding.

  11. Numerical analysis of welded joint treated by explosion shock waves

    Institute of Scientific and Technical Information of China (English)

    GUAN Jianjun; CHEN Huaining

    2007-01-01

    This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distri-bution was predicted with coupled Lagrange-ALE algorithm.It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment's effect on welding residual stresses and the factors that may influence it.

  12. The effect of duct surface character on methane explosion propagation

    Institute of Scientific and Technical Information of China (English)

    LIN Bai-quan; YE Qing; JIAN Cong-guang; WU Hai-jin

    2007-01-01

    The effect of duct surface character on methane explosion propagation was experimentally studied and theoretically analyzed. The roughness has effect on methane explosion propagation. The flame propagation velocity and the peak value pressure of methane explosion in rough duct are larger than the parameters in smooth duct. The heat exchange of the surface has effect on methane explosion propagation. The propagation velocity of flame and strength of explosion wave in the duct covered by heat insulation material are larger than those in duct with good heat transmittability.

  13. Nucleosynthetic Signatures of Asymmetric Supernovae - Lessons from 1-dimensional Explosions

    International Nuclear Information System (INIS)

    We review the evidence for asymmetries in explosions, and in particular, the nucleosynthetic signatures from these asymmetries. To guide our intuition for these yields, we have modeled a series of spherically symmetric explosions with a range of explosion energies. Here we present the results from these 1-dimensional simulations, focusing on the yields of the radioactive elements 44Ti and 56Ni. We find that, although the abundance yields of 44Ti do depend sensitively on the explosion energy, the trend (whether it increases or decreases with explosion energy) depends very sensitively on the model

  14. Nucleosynthetic Signatures of Asymmetric Supernovae - Lessons from 1-dimensional Explosions

    Science.gov (United States)

    Hungerford, A. L.; Fryer, C. L.; Timmes, F. X.; McGhee, K.

    2005-07-01

    We review the evidence for asymmetries in explosions, and in particular, the nucleosynthetic signatures from these asymmetries. To guide our intuition for these yields, we have modeled a series of spherically symmetric explosions with a range of explosion energies. Here we present the results from these 1-dimensional simulations, focusing on the yields of the radioactive elements 44Ti and 56Ni. We find that, although the abundance yields of 44Ti do depend sensitively on the explosion energy, the trend (whether it increases or decreases with explosion energy) depends very sensitively on the model.

  15. Multiparametric Geophysical Signature of Vulcanian Explosions

    Science.gov (United States)

    Gottsmann, J.; de Angelis, S.; Fournier, N.; van Camp, M. J.; Sacks, S. I.; Linde, A. T.; Ripepe, M.

    2010-12-01

    Extrusion of viscous magma leading to lava dome-formation is a common phenomenon at arc volcanoes recently demonstrated at Mount St. Helens (USA), Chaiten (Chile), and SoufriËre Hills Volcano (British West Indies). The growth of lava domes is frequently accompanied by vigorous eruptions, commonly referred to as Vulcanian-style, characterized by sequences of short-lived (tens of seconds to tens of minutes) explosive pulses, reflecting the violent explosive nature of arc volcanism. Vulcanian eruptions represent a significant hazard, and an understanding of their dynamics is vital for risk mitigation. While eruption parameters have been mostly constrained from observational evidence, as well as from petrological, theoretical, and experimental studies, our understanding on the physics of the subsurface processes leading to Vulcanian eruptions is incomplete. We present and interpret a unique set of multi-parameter geophysical data gathered during two Vulcanian eruptions in July and December, 2008 at SoufriËre Hills Volcano from seismic, geodetic, infrasound, barometric, and gravimetric instrumentation. These events document the spectrum of Vulcanian eruptions in terms of their explosivity and nature of erupted products. Our analysis documents a pronounced difference in the geophysical signature of the two events associated with priming timescales and eruption triggering suggesting distinct differences in the mechanics involved. The July eruption has a signature related to shallow conduit dynamics including gradual system destabilisation, syn-eruptive decompression of the conduit by magma fragmentation, conduit emptying and expulsion of juvenile pumice. In contrast, sudden pressurisation of the entire plumbing system including the magma chambers resulted in dome carapace failure, a violent cannon-like explosion, propagation of a shock wave and pronounced ballistic ejection of dome fragments. We demonstrate that with lead times of between one and six minutes to the

  16. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.

    Science.gov (United States)

    Oh, Seok-Young; Yoon, Hyun-Su

    2016-05-01

    The mobility and bioavailability of nitro explosives (2,4-dinitrotoluene [DNT], 2,4,6-trinitrotoluene [TNT], and hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX]) in biochar-amended soils and toxic metals (As, Cd, Cu, Pb, and Zn) in biochar-amended mine tailings were investigated via various types of leaching procedures in laboratory-scale batch experiments. The results from the toxicity characteristic leaching procedure (TCLP) and hydroxypropyl-β-cyclodextrin (HPCD) extraction showed that approximately 55 to 95% of the explosives were released from the contaminated soils and would thus be considered as mobile. With the addition of biochar, the extracted concentrations of explosives were reduced to less than 10% of the initial concentrations after 10 d. According to the results from a Korean waste leaching method, the TCLP method, and diethylenetriaminepentaacetic acid (DTPA) extraction, adding biochar to mine tailings reduced the extractability and bioavailability of metals. The chemical forms of the metals, types of extractants, pH, and curing period strongly affected the extractability of metals from mine tailings. The results suggest that biochar is a promising immobilizer of explosives and metals in contaminated soils and mine tailings under limited conditions. PMID:27136167

  17. Low amplitude impact testing and analysis of pristine and aged solid high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Garza, R; Tarver, C M

    1998-08-17

    The critical impact velocities of 60.1 mm diameter blunt steel projectiles required for ignition of exothermic chemical reaction were determined for heavily confined charges of new and aged (15-30 years) solid HMX-based high explosives. The explosives in order of decreasing impact sensitivity were: PBX 9404; LX-lo; LX-14; PBX 9501; and LX-04. Embedded pressure gauges measured the interior pressure histories. Stockpile aged LX-04 and PBX 9501 from dismantled units were tested and compared to freshly pressed charges. The understanding of explosive aging on impact ignition and other hazards must improve as systems are being deployed longer than their initial estimated lifetimes. The charges that did not react on the first impact were subjected to multiple impacts. While the violence of reaction increased with impact velocity, it remained much lower than that produced by an intentional detonation. Ignition and Growth reactive flow models were developed to predict HMX-based explosive impact sensitivity in other geometries and scenarios.

  18. Bistatic phase sounding in the ionosphere above the Minor Scale explosion

    Science.gov (United States)

    Fitzgerald, J.

    1986-02-01

    A 4.8-kT chemical explosion named Minor Scale was detonated at the White Sands Missile Range on June 26, 1985. Following the detonation, three bistatic HF phase sounders observed disturbances in the ionosphere directly over the explosion. The path from transmitters to receivers, which were 283 km apart, had a midpoint 7 km northeast of ground zero. We describe the experiment and present time histories of the power spectra of the three transmission. Between 300 and 360 s after the explosion, all three links showed changes in spectra. The lowest frequency shifted by -1 Hz, indicating the passage of the acoustic wave from the explosion through the total reflection height in the E-layer at about 95 km. We model the Doppler shift and absorption change to be expected for this disturbance assuming the acoustic wave had an N-wave profile with a maximum amplitude of 15%. The spectra of the lowest frequency also show temporary peaks at negative Doppler that indicate partial reflection modes from upper and lower edges of the N-wave. We calculate the Doppler shift and reflection coefficients for these partial reflection modes. During the same time period, the spectra of the two higher frequency transmissions also showed temporary peaks at negative Doppler that rapidly changed their frequency offset.

  19. Accreting He-rich material onto carbon-oxygen white dwarfs until explosive carbon ignition

    Science.gov (United States)

    Wu, Cheng-Yuan; Liu, Dong-Dong; Zhou, Wei-Hong; Wang, Bo

    2016-10-01

    Type Ia supernovae (SNe Ia) play an important role in studies of cosmology and galactic chemical evolution. They are believed to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses approach the Chandrasekar (Ch) mass limit. However, it is still not completely understood how a CO WD increases its mass to the Ch-mass limit in the classical single-degenerate (SD) model. In this paper, we studied the mass accretion process in the SD model to examine whether the WD can explode as an SN Ia. Employing the stellar evolution code called modules for experiments in stellar astrophysics (MESA), we simulated the He accretion process onto CO WDs. We found that the WD can increase its mass to the Ch-mass limit through the SD model and explosive carbon ignition finally occurs in its center, which will lead to an SN Ia explosion. Our results imply that SNe Ia can be produced from the SD model through steady helium accretion. Moreover, this work can provide initial input parameters for explosion models of SNe Ia.

  20. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  1. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  2. Chemical recognition with broadband THz spectroscopy

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Helm, Hanspeter; Jepsen, Peter Uhd

    2004-01-01

    contains unique fingerprints of a very large number of crystalline materials, including explosives, illicit drugs as well as most other chemicals in powder form. Since many packaging materials are transparent to THz radiation this fundamental property of crystalline compounds allows remote (contact...

  3. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  4. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  5. Towards quantum controlled initiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Marge T [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Scharff, R Jason [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    As a first step toward understanding and controlling excited state dynamics in explosives, transient absorption spectra of Hexanitroazobenzene (HNAB) in acetone, Trinitroaniline (TNA) in acetone and Diaminoazoxyfurazan (DAAF) in dimethylsulfoxide (DMSO) were investigated in an ultrafast shaped pump/supercontinuum probe experiment for their dependence on single parameter control schemes. Two single parameter control methods, second order spectral phase (linear chirp) and the effect of pump energy on the amount of transmitted pump light were investigated. Novel transient absorption spectra were obtained for the three explosives. The spectral features found in the HNAB and TNA solutions had evidence of more complex control possibilities, while the spectral features of DAAF were dominated by intensity control.

  6. Explosive magnetorotational instability in Keplerian disks

    CERN Document Server

    Shtemler, Yu; Mond, M

    2016-01-01

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly-detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads EMRI occurs due to the resonant interactions of a MRI mode with stable Alfv\\'en-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  7. Diatremes and craters attributed to natural explosions

    Science.gov (United States)

    Shoemaker, Eugene Merle

    1956-01-01

    Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.

  8. Biodegradation of the nitramine explosive CL-20.

    Science.gov (United States)

    Trott, Sandra; Nishino, Shirley F; Hawari, Jalal; Spain, Jim C

    2003-03-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20. PMID:12620886

  9. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...

  10. Explosive magnetorotational instability in Keplerian disks

    Science.gov (United States)

    Shtemler, Yu.; Liverts, E.; Mond, M.

    2016-06-01

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén-Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the three amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.

  11. Sub-photospheric shocks in relativistic explosions

    CERN Document Server

    Beloborodov, Andrei M

    2016-01-01

    This paper examines the mechanism of shocks in opaque outflows from astrophysical explosions, in particular in cosmological gamma-ray bursts. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow: (1) Shocks in `photon gas' with small plasma inertial mass have a unique structure determined by the `force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. (2) Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. We evaluate the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure. (3) Shocks in outflows carrying a free neutron component involve dissipation through nuclear c...

  12. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  13. Signatures of nucleosynthesis in explosive stellar processes.

    Science.gov (United States)

    Wiescher, M.

    This paper presents a discussion of the characteristic observables of stellar explosions and compares the observed signatures such as light curve and abundance distribution with the respective values predicted in nucleosynthesis model calculations. Both the predicted energy generation as well as the abundance distribution in the ejecta depends critically on the precise knowledge of the reaction rates and decay processes involved in the nucleosynthesis reaction sequences. The important reactions and their influence on the production of the observed abundances will be discussed. The nucleosynthesis scenarios presented here are all based on explosive events at high temperature and density conditions. Many of the nuclear reactions involve unstable isotopes and are not well understood yet. To reduce the experimental uncertainties several radioactive beam experiments will be dicussed which will help to come to a better understanding of the correlated nucleosynthesis.

  14. Pipelines explosion, violates Humanitarian International Right

    International Nuclear Information System (INIS)

    Recently and for first time, an organism of the orbit of the human rights put the finger in the wound of the problem that represents for Colombia the pipelines explosion and the social and environmental impact that those actions in this case the Defense of the People office, the institution that published a document related this denounces, in the one that sustains that the country it cannot continue of back with a serious and evident reality as the related with the explosions of pipelines. We are the only country of the world where happen these facts and enormous losses are not only causing to the Colombian economy, but rather our environmental wealth is affecting, the document, denounced the ignorance of the humanitarian international right on the part of those who apply to that class of attacks

  15. Lower head integrity under steam explosion loads

    International Nuclear Information System (INIS)

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the risk oriented accident analysis methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully three-dimensional mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors are brought together in a ROAAM probabilistic framework to evaluate failure likelihood. The conclusion is that failure is 'physically unreasonable'. (orig.)

  16. Lower head integrity under steam explosion loads

    International Nuclear Information System (INIS)

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is 'physically unreasonable'. (author)

  17. Neutrino oscillations in magnetically driven supernova explosions

    CERN Document Server

    Kawagoe, Shio; Kotake, Kei

    2009-01-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarcy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which lea...

  18. Detecting underwater improvised explosive threats (DUIET)

    Science.gov (United States)

    Feeley, Terry

    2010-04-01

    Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.

  19. Explosion propagation in inert porous media.

    Science.gov (United States)

    Ciccarelli, G

    2012-02-13

    Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity. PMID:22213663

  20. Prediction of Overpressure from Finite Volume Explosions

    Directory of Open Access Journals (Sweden)

    K. Ramamurthi

    1995-01-01

    Full Text Available Tri-nitro toluene (TNT equivalence is not a good criterion for evaluating the practically encounted nonideal blast waves during ignition and in explosion-safety problems. A theoretical model which shows the trends related to the effects of source volume and energy time release on blast wave strength is discussed. A slower energy release and a larger source volume are shown to be necessary to reduce the blast effects.

  1. The Full Function Test Explosive Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  2. Microarray sensors for detecting airborne explosives

    OpenAIRE

    Caygill, J. S.

    2011-01-01

    Due to the enhanced level of national security currently required due to the possibility of terrorist attack, monitoring devices for trace levels of explosive materials are now of the upmost importance. One such method that offers a possible route towards the development of a system for the detection of such analytes is via an electrochemical regime, coupled to the use of disposable sensor technology. Within this study, the use of modified carbon screen-printed sensors for the ...

  3. Relative flow rates of explosive powders

    Energy Technology Data Exchange (ETDEWEB)

    Willson, V.P.

    1988-05-31

    A study was performed to determine the relative flow rates of various explosive powders and evaluate their adaptability for use in automated dispensing systems. Results showed that PBX 9407, LX-15, RX-26-BH, and HNAB are potential candidates for use in these systems. It was also shown that powders with graphite and stearate additives generated the least amount of static and were the easiest to handle.

  4. Duration of nuclear explosion ground motion

    International Nuclear Information System (INIS)

    This paper evaluates the duration of strong ground shaking that results from nuclear explosions and identifies some of the problems associated with its determination. Knowledge of the duration of horizontal ground shaking is important out to epicentral distances of about 44 km and 135 km, the approximate distances at which the ground shaking level falls to 0.01 g for nuclear explosions having yields of about 100 kt and 1,000 kt, respectively. Evaluation of the strong ground motions recorded from the event STRAIT (M/sub L/ = 5.6) on a linear array of five, broad-band velocity seismographs deployed in the distance range 3.2 to 19.5 km provides information about the characteristics of the duration of ground shaking. The STRAIT data show that: (1) the definition that is used for defining duration is very important; (2) the duration of ground acceleration, as defined in terms of 90% of the integral of the squared time history, increased from about 4 to 26 sec over the approximately 20-km distance range; and (3) the duration of ground velocity and displacement were slightly greater because of the effect of the alluvium layer on the propagating surface waves. Data from other events augment the STRAIT data and show that: (1) duration of shaking is increased by frequency-dependent site effects and (2) duration of shaking, as defined by the integral of the squared time history, does not increase as rapidly with increase in yield as is indicated by other definitions of duration that are stated in terms of an amplitude threshold (e.g., bracketed duration, response envelopes). The available data suggest that the duration of ground acceleration, based on the integral definition, varies from about 4 to 40 sec for a 100-kt range explosion and from about 4 to 105 sec for a megaton range explosion in the epicentral distance range of 0 to 44 km and 0 to 135 km, respectively

  5. Non-explosion criteria for relativistic diffusions

    CERN Document Server

    Bailleul, Ismael

    2010-01-01

    General Lorentz covariant operators, associated to so-called $\\Theta$(or $\\Xi$)-relativistic diffusions, and making sense in any Lorentz manifold, were introduced by Franchi and Le Jan in [F-LJ-1], [F-LJ-2]. Only a few examples have been studied. We provide in this work non-explosion criteria for these diffusions, which can be used in generic cases.

  6. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  7. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  8. Remote detection of explosives using trained canines

    International Nuclear Information System (INIS)

    Use of dogs is a search method which combines high probability of detection, speed of search, and low cost. It was concluded that the canine could be used for explosive screening of personnel, but that it was imperative that the dog be in a position remote from employees and employee traffic. A study was made of the design of booths and air flow for this purpose. Results of tests and conclusions are given and discussed

  9. DOE explosives safety manual. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  10. Nitroaromatic explosives detection using electrochemically exfoliated graphene.

    Science.gov (United States)

    Yew, Ying Teng; Ambrosi, Adriano; Pumera, Martin

    2016-01-01

    Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the -NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives. PMID:27633489

  11. Ionospheric Effects of Underground Nuclear Explosions

    Science.gov (United States)

    Park, J.; von Frese, R. R.; G-Brzezinska, D. A.; Morton, Y.

    2010-12-01

    Telemetry from the Russian INTERCOSMOS 24 satellite recorded ELF and VLF electromagnetic disturbances in the outer ionosphere from an underground nuclear explosion that was detonated at Novaya Zemlya Island on 24 October 1994. The IC24 satellite observations were obtained at about 900 km altitude within a few degrees of ground zero. The disturbances were interpreted for magnetohydrodynamic excitation of the ionosphere’s E layer by the acoustic wave. Electrons are accelerated along the magnetic force lines to amplify longitudinal currents and magnetic disturbances that may be measured by magnetometers at ground-based observatories and on-board satellites. The underground nuclear test near P’unggye, North Korea on 25 May 2009 provides a further significant opportunity for studying the utility of ionospheric disturbances for characterizing ground zero. Of the seismic, infrasound, hydroacoustic, and radionuclide detection elements of the International Monitoring System (IMS) established by the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), only the first two elements detected this event. However, the event also appears to have been recorded as a direct traveling ionospheric disturbance (TID) in the slant total electron content (TEC) observations derived from a network of the Global Navigation Satellite System (GNSS) measurements. The TID was observed to distances of at least 600 km from the explosion site propagating with a speed of about 281m/s. Thus, the global distributions and temporal variations of the TEC, may provide important information to help detect and characterize clandestine underground nuclear explosions.

  12. The Biggest Explosions in the Universe

    CERN Document Server

    Johnson, Jarrett L; Even, Wesley; Fryer, Chris L; Heger, Alex; Smidt, Joseph; Chen, Ke-Jung

    2013-01-01

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs) at high redshift. Supermassive stars with masses of ~ 55,000 M_Sun, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ~ 10^55 erg, instead of collapsing to a BH. Such events, roughly 10,000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. We carry out a simulation of such a supermassive star SN in two stages. Using the RAGE radiation hydrodynamics code we first evolve the explosion from the earliest stages, through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ~ 15. Then, using the GADGET cosmological hydrodynamics code we...

  13. Explosive events associated with a surge

    CERN Document Server

    Madjarska, M S; De Pontieu, B

    2009-01-01

    The solar atmosphere contains a wide variety of small-scale transient features. Here, we explore the inter-relation between some of them such as surges, explosive events and blinkers via simultaneous spectral and imaging data taken with the TRACE imager, the SUMER, and CDS spectrometers on board SoHO, and SVST La Palma. The alignment of all data both in time and solar XY shows that SUMER line profiles, which are attributed to explosive events, are due to a surge phenomenon. The surge is triggered, most probably, by one or more Elerman bombs which are best visible in Halpha +-350 A but were also registered by TRACE Fe IX/X 171 A and correspond to a strong radiance increase in the CDS Mg IX 368.07 A line. With the present study we demonstrate that the division of small-scale transient events into a number of different subgroups, for instance explosive events, blinkers, spicules, surges or just brightenings, is ambiguous, implying that the definition of a feature based only on either spectroscopic or imaging cha...

  14. Computed tomography experiments of Pantex high explosives

    Science.gov (United States)

    Perkins, D. E.; Martz, H. E.; Hester, L. O.; Sobczak, G.; Pratt, C. L.

    1992-04-01

    X-ray computed tomography is an advanced imaging technique which provide three-dimensional nondestructive characterization of materials, components and assemblies. The CT Project group at Lawrence Livermore National Laboratory (LLNL) and the Pantex Plant are cooperating to examine the use of CT technology to inspect and characterize high-explosives pressings (e.g., PBX-9502, LX-10-2). High-explosives pressings manufactured by Pantex must be characterized prior to assembling into weapons systems; a nondestructive examination of all assembly parts would be preferable to the current sampling and destructive testing. The earlier in the processing cycle this can be done the more cost effective it will be. We have performed experiments that show that this characterization can be performed at the pressed billet stage using CT. We have detected 2-mm inclusions in a 15-cm diameter billet and 3.5-mm voids in a 20-cm diameter billet. Based on these results we show calculations that can be used to design production CT systems for characterization of high-explosives.

  15. Neutrino oscillations in MHD supernova explosions

    International Nuclear Information System (INIS)

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  16. Neutrino oscillations in MHD supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2010-01-01

    We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.

  17. Explosive Detection in Aviation Applications Using CT

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

  18. Near-Source Scattering of Explosion-Generated Rg: Insight From Difference Spectrograms of NTS Explosions

    Science.gov (United States)

    Gupta, I.; Chan, W.; Wagner, R.

    2005-12-01

    Several recent studies of the generation of low-frequency Lg from explosions indicate that the Lg wavetrain from explosions contains significant contributions from (1) the scattering of explosion-generated Rg into S and (2) direct S waves from the non-spherical spall source associated with a buried explosion. The pronounced spectral nulls observed in Lg spectra of Yucca Flats (NTS) and Semipalatinsk explosions (Patton and Taylor, 1995; Gupta et al., 1997) are related to Rg excitation caused by spall-related block motions in a conical volume over the shot point, which may be approximately represented by a compensated linear vector dipole (CLVD) source (Patton et al., 2005). Frequency-dependent excitation of Rg waves should be imprinted on all scattered P, S and Lg waves. A spectrogram may be considered as a three-dimensional matrix of numbers providing amplitude and frequency information for each point in the time series. We found difference spectrograms, derived from a normal explosion and a closely located over-buried shot recorded at the same common station, to be remarkably useful for an understanding of the origin and spectral contents of various regional phases. This technique allows isolation of source characteristics, essentially free from path and recording site effects, since the overburied shot acts as the empirical Green's function. Application of this methodology to several pairs of closely located explosions shows that the scattering of explosion-generated Rg makes significant contribution to not only Lg and its coda but also to the two other regional phases Pg (presumably by the scattering of Rg into P) and Sn. The scattered energy, identified by the presence of a spectral null at the appropriate frequency, generally appears to be more prominent in the somewhat later-arriving sections of Pg, Sn, and Lg than in the initial part. Difference spectrograms appear to provide a powerful new technique for understanding the mechanism of near-source scattering

  19. Calibrated explosive triangle for determining capacity of explosion of gas mixtures

    Institute of Scientific and Technical Information of China (English)

    Cheng Jianwei; Yang Shengqiang; Sun Qi

    2011-01-01

    Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue operations.A number of methods have been developed to determine the capacity for explosion of gas mixtures in sealed areas.One of the more popular methods is the Coward explosive triangle,published by Coward.He presented a fast and easy way to determine the capacity for explosion of gas mixtures,which has proved to be a very useful tool for mining engineers and members of rescue teams.However,due to few drawbacks in this method; potential errors would be introduced when it is applied.In a brief introduction we first describe the Coward method and then,we propose and discuss new calibrated explosive triangles.We demonstrate the method in two case studies where we compare our results with those of the old model.The results indicate that the calibrated method have improved accuracy and reliability.Therefore,assessments can be made more accurately.

  20. Towards mitigating explosive threats using quantum controlled initiation

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Margo T [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Scharff, R. Jason [Los Alamos National Laboratory

    2010-12-08

    Quantum control of localized energy deposition into an energetic material is being investigated as a method to allow controlled initiation and propagation of action without transition to detonation. Quantum controlled initiation (QCI) of explosives utilize time dependent phase shaped ultraviolet (UV) electric fields to drive the energetic chemical systems towards reaction. QCI searches for an optimally shaped ultrafast laser pulse that will guide energy flow along a desired path. QCI can be exploited as a stand-off mitigation technology that strives to reduce the impact of explosive blasts on people and property by initiating controlled low order reaction. Quantum controlled initiation experiments require: (1) optimally shaped light pulses, (2) pulse shaping measurement, (3) feedback control algorithms, and (4) feedback measurement methods. Femtosecond laser pulse shaping in the UV at 400 nm employs a fused silica acousto-optic modulator (AOM) pulse shaper that consists of a 4-f zero dispersion compressor. Tr sient absorption spectroscopy is used to measure the pulse shaper effects. Both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex are used to search for the optimal pulse shape. Hexanitroazobenzene (HNAB), Trinitroanaline (TNA) and Diaminoazozyfurazan (DAAF) are excited to the first electronic state with 400 nm light. Our initiation experiments are studying the effect of phase shaped 400 nm pulses on HNAB, TNA and DAAF. The transient absorption spectra for each material have been obtained and note worthy regions further investigated with single parameter control (second order spectral phase and energy). Many systems have simple intensity control such as that shown by DAAF. TNA and HNAB have spectral features that are not single parameter driven and are being further investigated to obtain fully optimized complex control.

  1. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  2. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  3. Features of the incorporation of single and double based powders within emulsion explosives

    Science.gov (United States)

    Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.

    2014-05-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  4. Features of the Valorization of Single and Double Based Powders for Codetonation in Emulsion Explosives

    Science.gov (United States)

    Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina

    2013-06-01

    In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.

  5. Features of the incorporation of single and double based powders within emulsion explosives

    International Nuclear Information System (INIS)

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the gap-test. DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  6. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In combination with experimental research,numerical simulation is performed to investigate the influence law of the obstacles in a duct on the explosion flame of premixed coal gas and air. The numerical method uses upwind WENO scheme and two-step chemical reaction model. The interaction mechanism is addressed between the compression wave from reflection on the right end of the duct and flame propagation. The reflected wave is found to result in the decrease of flame velocity. On this basis,we analyze the mechanism of the obstacles on flame as well as the law of flow field variation thus caused. The results suggest that,due to the obstacles,deflagration wave is repeatedly reflected,combustible gas mixture is fully compressed,temperature and pressure rise,chemical reaction speed increases,and hence flame intensity is strengthened. At the same time,a tripe point forms as a result of wall reflection of the deflagration wave from the obstacles and furthermore local flame speed increases. As the triple point propagates forward,the flame speed gradually decreases due to dissipation of energy. These conclusions provide a valuable theoretical foundation for the prediction of explosion field,prevention of fire and explosion and effective control of the com-bustion speed and flame propagation speed in detonation propulsion.

  7. Explosion approach for external safety assessment: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. Michael; Halford, Ann [Germanischer Lloyd, Loughborough (United Kingdom); Mendes, Renato F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Several questions related to the potential for explosions are explored as this became an important subject during an enterprise risk analysis. The understanding of explosions underwent a substantial evolution in the final 20 years of the 20{sup th} century following international research projects in Europe involving several research institutes, as well gas and oil companies. This led to the development of techniques that could be used to assess the potential consequences of explosions on oil, gas and petrochemical facilities. This paper presents an overview of the potential for explosions in communities close to industrial sites or pipelines right of way (RoW), where the standard explosion assessment methods cannot be applied. With reference to experimental studies, the potential for confined explosions in buildings and Vapor Cloud Explosions is explored. Vapor Cloud Explosion incidents in rural or urban areas are also discussed. The method used for incorporating possible explosion and fire events in risk studies is also described using a case study. Standard explosion assessment methodologies and a revised approach are compared as part of an on going evaluation of risk (author)

  8. Multidimensional detection of explosives and explosive signatures via laser electrospray mass spectrometry

    Science.gov (United States)

    Brady, John J.; Flanigan, Paul M., IV; Perez, Johnny J.; Judge, Elizabeth J.; Levis, Robert J.

    2012-06-01

    Nitro- and inorganic-based energetic material is vaporized at atmospheric pressure using nonresonant, 70 femtosecond laser pulses prior to electrospray post-ionization and transfer into a time-of-flight mass spectrometer for mass analysis. Measurements of a nitro-based energetic molecule, cyclotrimethylenetrinitramine (RDX), adsorbed on metal and dielectric surfaces indicate nonresonant vaporization of intact molecules, demonstrating the universality of laser electrospray mass spectrometry (LEMS) technique for explosives. In addition, RDX is analyzed at a distance of 2 meters to demonstrate the remote detection capability of LEMS. Finally, the analysis and multivariate statistical classification of inorganic-based explosives containing ammonium nitrate, chlorate, perchlorate, black powder, and an organic-based explosive is presented, further expanding the capabilities of the LEMS technique for detection of energetic materials.

  9. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    Science.gov (United States)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  10. Gas cloud explosions and their effect on nuclear power plant. Phase 1: basic development of explosion codes

    International Nuclear Information System (INIS)

    The study of factors influencing the pressure and velocity fields produced by the burning of clouds of flammable substances has been in progress in SRD for some years. During this time several computer codes have been developed to aid these studies. This report concerns an extension of these studies, which involves firstly, the use of the existing codes for systematic parameter surveys and secondly, the removal of some of the limitations on the code capabilities so that they become capable of producing more realistic representations of real explosions. This work is all aimed at the study of wave and velocity fields and the influence of rigid boundaries, such as the presence of strong buildings, e.g. nuclear power plants. These existing computer models have been used to investigate the scope and range of possible pressure loadings produced by gas cloud explosions and the interaction of their pressure fields with structures. Calculations have been undertaken for a number of different fuels and at different concentrations and burning velocities. The results of some of these calculations have been used in two-dimensional wave-structure interaction calculations with structures representative of nuclear power plant buildings. Finally, the development of a two-dimensional code capable of modelling flame and pressure wave interactions with structures is presented. This code has user-oriented input and output routines with particular attention having been paid to initial conditions, obstacles and graphics. The flux corrected transport method (the state-of-the-art method for dealing with flow with shocks) is used to solve a system of equations consisting of the usual conservation equations and a simple turbulence model (two-equation K-E model) including a simple turbulence-dependent chemical reaction rate

  11. A Sparse Semi-Blind Source Identification Method and Its Application to Raman Spectroscopy for Explosives Detection

    CERN Document Server

    Sun, Y

    2011-01-01

    Rapid and reliable detection and identification of unknown chemical substances is critical to homeland security. It is challenging to identify chemical components from a wide range of explosives. There are two key steps involved. One is a nondestructive and informative spectroscopic technique for data acquisition. The other is an associated library of reference features along with a computational method for feature matching and meaningful detection within or beyond the library. Recently several experimental techniques based on Raman scattering have been developed to perform standoff detection and identification of explosives, and they prove to be successful under certain idealized conditions. However data analysis is limited to standard least squares method assuming the complete knowledge of the chemical components. In this paper, we develop a new iterative method to identify unknown substances from mixture samples of Raman spectroscopy. In the first step, a constrained least squares method decomposes the dat...

  12. Effect of Dynamic Compression on Accelerating and Sustaining Over-Driven Explosive Detonation

    Science.gov (United States)

    Lusk, Joshua; Murch, Paul; Sapienza, Mike; Amondson, Dave; Williams, Ronald; Vandersall, Kevin; Garcia, Frank; Gamache, Ray; Sinibaldi, Jose; Brown, Ronald

    2009-11-01

    A novel circumferential initiation technique is used to create pseudo-steady-state convergence conditions at rates faster than those attainable by conventional means. Once established, the convergent front envelops and pre-compresses un-reacted explosive to a continuum of higher von-Neumann spike condition prior to chemical reaction. The mechanism will be described along with specific experiments with high-energy and extremely insensitive explosives. Measured velocity increases achieved to-date range between 35 and 65 percent faster than Chapman-Jouguet: Predicted peak pressures increases are greater than 300 percent and well-beyond the detection range of traditionally employed piezo-electric gauges. Very good correlation between experimentally observed detonation front geometry and computational modeling will also be shown. The background of work leading to these accomplishments and details of the experimentation and simulation will be reported. The Office of Navel Research supported this work.

  13. Effect of apple varieties and irradiation on the quality of explosion puffed apple slices

    International Nuclear Information System (INIS)

    Many factors affect the quality of explosion puffed apple slices. Apple varieties of Guoguang, Fuji, Hongxiangjiao and Huangxiangjiao were used as materal, the quality of fresh apple and explosion puffed products were analyzed based on the data of their physical and chemical characteristics and flavor. The results showed that Guoguang apple had the optimal flavor and Huangxiangjiao apple had the optimal product quality. So the Guoguang apple was selected as the material for the following results showed that irradiation could soften apple tissue, improve the pre-drying rate, increase products crispness, and also reduce the products hardness, but the irradiation of 2 and 5 kGy could turn products brown seriously, which reduced the product quality. (authors)

  14. Study of the mineralogical transformations of granite by underground nuclear explosions

    International Nuclear Information System (INIS)

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  15. Distribution and Fate of Military Explosives and Propellants in Soil: A Review

    Directory of Open Access Journals (Sweden)

    John Pichtel

    2012-01-01

    Full Text Available Energetic materials comprise both explosives and propellants. When released to the biosphere, energetics are xenobiotic contaminants which pose toxic hazards to ecosystems, humans, and other biota. Soils worldwide are contaminated by energetic materials from manufacturing operations; military conflict; military training activities at firing and impact ranges; and open burning/open detonation (OB/OD of obsolete munitions. Energetic materials undergo varying degrees of chemical and biochemical transformation depending on the compounds involved and environmental factors. This paper addresses the occurrence of energetic materials in soils including a discussion of their fates after contact with soil. Emphasis is placed on the explosives 2,4,6-trinitrotoluene (TNT, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, and the propellant ingredients nitroglycerin (NG, nitroguanidine (NQ, nitrocellulose (NC, 2,4-dinitrotoluene (2,4-DNT, and perchlorate.

  16. Explosive nucleosynthesis, p-process and s-process in massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M. [Kyushu Univ., Fukuoka (Japan); Nomoto, K.; Prantzos, N.; Rayet, M.; Arnould, M.

    1994-06-01

    Explosive nucleosynthesis, p-process and s-process in massive stars for the main-sequence star masses from 13 (solar mass) to 70 (solar mass) are reviewed. We examine the dependence of the supernova yields on the stellar mass and {sup 12}C({alpha},{gamma}){sup 16}O rate. The supernova yields and overproduction factors integrated over the initial mass function are compared with the solar system abundances. The good agreement or enough overproductions compared with the solar abundances suggest that our present model represents a good indicator to develop the present study to the chemical evolution of elements from the early universe. On the other hand, some isotopes cannot be produced enough in the present models. Another model would be necessary to get whole reasonable agreement between the relevant solar system abundances of explosive, s, and p-process classification and those by a model calculation. (author).

  17. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2002-08-26

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  18. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F

    2002-03-14

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  19. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    Science.gov (United States)

    De Vuyst, T.; Kong, K.; Djordjevic, N.; Vignjevic, R.; Campbell, JC; Hughes, K.

    2016-08-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the steel plate based on forming limit failure criteria has been investigated. Aspects such as shape of plates deformation and thickness of the plate during the forming process have been examined. The model results indicate that a multi-explosives model does not always guarantee a faster rate of target deformation without central explosive. On the other hand the model results indicate that the multi-explosives setup is capable of preventing crack failure of the steel plate during the forming process which would occur if a single explosive model was used.

  20. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    Science.gov (United States)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.