WorldWideScience

Sample records for chemical engineering

  1. Equilibrium Chemical Engines

    OpenAIRE

    Shibata, Tatsuo; Sasa, Shin-ichi

    1997-01-01

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  2. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  3. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  4. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  5. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  6. Modeling in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    Jaap van Brakel

    2000-10-01

    Full Text Available Models underlying the use of similarity considerations, dimensionless numbers, and dimensional analysis in chemical engineering are discussed. Special attention is given to the many levels at which models and ceteris paribus conditions play a role and to the modeling of initial and boundary conditions. It is shown that both the laws or dimensionless number correlations and the systems to which they apply are models. More generally, no matter which model or description one picks out, what is being modeled is itself a model of something else. Instead of saying that the artifact S models the given B, it is therefore better to say that S and B jointly make up B and S.

  7. Fundamentals of chemical reaction engineering

    CERN Document Server

    Davis, Mark E

    2012-01-01

    Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.Each chapter contains numerous worked-out problems and real-world vignettes involving commercia

  8. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  9. Job Prospects for Chemical Engineers.

    Science.gov (United States)

    Basta, Nicholas

    1985-01-01

    The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…

  10. Metrology for Chemical Engineers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Hansen, Elo Harald

    2001-01-01

    The first full-semester course on Quality Assurance in Chemical Measurement was held at the Technical University of Denmark from September to December 1999. The course required sufficient knowledge of basic statistics to understand and apply the methods recommended in ISO 5725-1/6 Accuracy...... organizations in 1993. Chemists are notoriously reluctant to accept the BIPM philosophy, but the appearance of a new Draft Guide Quantifying Uncertainty in Analytical Measurement at the EURACHEM Workshop in Helsinki in June 1999 stimulated us to make an attempt to overcome such chemical prejudice. After...

  11. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  12. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  13. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  14. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... the individual to become more assertive and understanding of personal assets. These teaching elements included in Chemical Product Engineering represent a series of general issues in Chemical Engineering Education, which must be discussed as the education is going to adapt to the changes of the surrounding world......Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...

  15. Ecological optimization of endoreversible chemical engines

    Directory of Open Access Journals (Sweden)

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-09-01

    Full Text Available Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological function versus the efficiency characteristic of the cycles. The results can provide some theoretical guidelines for the design of practical chemical engines.

  16. Ecological optimization of endoreversible chemical engines

    OpenAIRE

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-01-01

    Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological ...

  17. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum. PMID:24702299

  18. Mini-projects in Chemical Engineering Laboratory

    OpenAIRE

    Angeles Cancela; Angel Sanchez; Rocio Maceiras

    2013-01-01

    Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of ...

  19. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    material, energy usage and waste generation without compromising the economic value of the enterprise. Responding to these challenges requires a new insight into the characteristics of a sustainable system, for example, how to incorporate the product, the process and the related supply chain within...... the system boundary under investigation? A fundamental rethinking of how to identify the needed chemicals based products and how to design, build and operate the corresponding production units, is necessary. Indeed, the chemical industry today is changed from the chemical industry of forty years ago. Clear...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...

  20. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    design, investigations, engineering practice and transferable skills) and a set guidelines (core curriculum, teaching and learning, industrial experience, review of the education process and student assessment) to achieve them, with special emphasis to the ability to solve problems. They also propose...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...... a diversity of individual, academic and labour-market needs. Within Europe, two types of higher education in chemical engineering can be found: more research-oriented or more application-oriented first cycle programmes. Both types of studies cover a period of 3-4 academic years and 60 credits per year. After...

  1. The rise and realization of molecular chemical engineering

    OpenAIRE

    Davis, Mark E.

    2009-01-01

    Modern chemical engineering involves the integration of physical and chemical phenomena over length scales ranging from the atomic/molecular to the macroscopic. The ability to delve into the molecular world and to learn how to engineer it has opened broad sectors of new technology. How has chemical engineering reached this point? How is chemical engineering taking advantage of this position? How will chemical engineering move forward based on its ability to engineer at the molecular/atomic le...

  2. Engineering microbes for efficient production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  3. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  4. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  5. Milestones of Chemical Engineering Development in Croatia

    Directory of Open Access Journals (Sweden)

    Hraste, M.

    2007-10-01

    Full Text Available Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the unit operations was broadened by molecular explanations of macroscopic phenomena. It was not long before chemical engineering extended the operation approach to chemical reaction engineering. At the same time, process optimization prompted the system approach. Instead of looking for details, higher levels of organization were recognized by synthesis. The use of computers has become the key element in process modeling and control. The methods of chemical engineering have extended to other fields, while the discipline keeps the same basis and characteristics.The changes on the global market stimulate new trends in research and education. Product development has become an important segment of the discipline, which presumes an integrated approach to the phenomena and processes at different time and length levels following the possible transfer from molecule to product at process level.This paper mainly deals with the development of this discipline in Croatia, with a preview of the persons that contributed to the acceptance and propagation of the new concepts.

  6. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  7. Milestones of Chemical Engineering Development in Croatia

    OpenAIRE

    Hraste, M.

    2007-01-01

    Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the uni...

  8. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  9. Conceptests for a Chemical Engineering Thermodynamics Course

    Science.gov (United States)

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  10. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  11. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  12. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy. PMID:20047295

  13. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  14. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  15. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson KWAUK

    2007-01-01

    Around the turn of the present century, scholars began to recognize chemical engineering as a complex system, and have been searching for a convenient point of entry for refreshing its knowledge base. From our study of the dynamic structures of dispersed particles in fluidization and the resulting multi-scale method, we have been attempting to extend our findings to structures prevailing in other multiphase systems as well as in the burgeoning industries producing functional materials. Chemical engineering itself is hierarchically structured. Besides structures based on space and time, such hierarchy could be built from ChE history scaled according to science content, or from ChE operation according to the expenditure of manpower and capital investment.

  16. Engineering electrical properties of graphene: chemical approaches

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  17. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  18. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  19. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  20. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  1. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  2. EXTENDING THE KNOWLEDGE BASE OF CHEMICAL ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Mooson Kwauk

    2005-01-01

    The obvious current reversion to micro-scale investigations in basic chemical engineering, combined with the need, of a quite different nature, in the rapid growth of high added-value and small-lot functional materials, have been pointing to an area not yet sufficiently covered by the unit operations, transport phenomena and chemical reaction engineering. Although it is difficult to define accurately this area, a cursory scan of the activities already in progress has revealed a few common attributes: multi-phased (structured), multi-scaled, multi-disciplined, nonlinear, needs for resolution to reductionism-solvable subsystems, and pervasive in the process industry. From these activities, the present paper drafts a tentative scheme for studying the related problems: first to dissect a problem into various scales - spatial, temporal or otherwise as best suits the case in hand- in order to identify pertinent parameters which are then organized into model formulations. Together with inter-scale model formulations, a zoom-in/zoom-out process is carried out between the scales, by trial-and-error and through reasoning, to arrive at a global formulation of a quantitative solution, in order to derive, eventually, the general from the particular.

  3. 2010 University Exemplary Department Award honors chemical engineering, entomology, and mechanical engineering

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Virginia Tech's Department of Entomology in the College of Agriculture and Life Sciences and the Department of Chemical Engineering and the Department of Mechanical Engineering in the College of Engineering have been recognized with the 2010 University Exemplary Department Award.

  4. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  6. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson; KWAUK

    2007-01-01

    Around the turn of the present century,scholars began to recognize chemical engineering as a com-plex system,and have been searching for a convenient point of entry for refreshing its knowledge base.From our study of the dynamic structures of dispersed particles in fluidization and the resultingmulti-scale method,we have been attempting to extend our findings to structures prevailing in othermultiphase systems as well as in the burgeoning industries producing functional materials.Chemicalengineering itself is hierarchically structured.Besides structures based on space and time,such hier-archy could be built from ChE history scaled according to science content,or from ChE operation ac-cording to the expenditure of manpower and capital investment.

  7. Energy and environmental challenges to chemical engineers

    International Nuclear Information System (INIS)

    The National Research Council's report, Frontiers in Chemical Engineering, was written four years ago. Three high-priority research areas concerned with energy and the environment were identified in the report: in situ processing, liquid fuels for the future, and responsible management of hazardous wastes. As outlined in the recently released National Energy Strategy, in situ processing is viewed by the Department of Energy (DOE) primarily through its use in enhanced oil recovery, and some research is still funded. Industry, driven by the economics of low oil prices, is doing little research on in situ processing but much more on reservoir characterization, a prerequisite to processing. Research on liquid fuels for the future is driven more by environmental concerns now than by energy security concerns. It appears to be wise policy for the future to try to solve the alternative fuel problem as quickly and simply as possible. Otherwise, the nation will find itself with a costly and complex fuel and vehicle system that may have to be changed again in a generation. For the interim, we should look closely at reformulated gasoline followed by compressed natural gas, if necessary. In the long run, vehicle systems based on electricity seem most promising for the middle of the next century. To deliver this technology we need to capitalize on three new high-priority research areas: batteries, fuel cells, and nuclear power. For chemical engineers, future challenges of a different sort will be added to the technical challenges, among them are explaining to a skeptical public the wisdom of proceeding to design the interim system of alternative fuel(s) and to move expeditiously to a final solution

  8. Ethical Standards for Publication in Chinese Journal of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Chinese Journal of Chemical Engineering is a publication of the Chemical Industry and Engineering Society of China (CIESC) dedicated to present the original contributions of knowledge with permanent value from chemical engineering researcher and technical staff in processing industries in China and the world. The Editors-in-Chief, Associate Editors-in-Chief and Editorial Staff of the journal share the responsibility to maintain the CJChE ethical standards for paper reviewing and handling process.

  9. Ethical Standards for Publication in Chinese Journal of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Journal of Chemical Engineering (CJChE) is a publication of the Chemical Industry and Engineering Society of China (CIESC) dedicated to present the original contributions of knowledge with permanent value from chemical engineering researchers and technical staff of process industries in China and the world. The editors-in-chief, associate editors-in-chief and editorial staff of the journal share the responsibility to maintain the CJChE ethical standards for paper reviewing and handling process. The following ethical standards are thought important to the contributors from Chinese and international chemical engineering communities.

  10. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  11. A Case Study of Search Engine on World Wide Web for Chemical Fiber Engineering

    Institute of Scientific and Technical Information of China (English)

    张利; 邵世煌; 曾献辉; 尹美华

    2001-01-01

    Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according to the requirement of Web information for chemical fiber engineering. The implementation method for the communication and dynamic refreshment of information on home page of the search engines are elaborated by using programming technology of Active Server Page 3.0 (ASP3.0). The query of chemical fiber information and automatic linking of chemical fiber Web sites can be easily realized by the developed search engine under Internet environment according to users' requirement.

  12. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  13. Multiscale computation from a chemical engineering perspective

    Institute of Scientific and Technical Information of China (English)

    Li Jinghai

    2014-01-01

    This-paper-mainly-discusses-the-multiscale-computation-from-a-chemical-engineering-perspective.-From-the-application-designer’s-perspective,we-propose-a-new-approach-to-investigate-and-develop-both-flexi-ble-and-efficient-computer-architectures.-Based-on-the-requirements-of-applications-within-one-category,we-first-induce-and-extract-some-inherent-computing-patterns-or-core-computing-kernels-from-the-applications.-Some-computing-models-and-innovative-computing-architectures-will-then-be-developed-for-these-patterns-or-kernels,as-well-as-the-software-mapping-techniques.-Finally-those-applications-which-can-share-and-utilize-those-computing-patterns-or-kernels-can-be-executed-very-efficiently-on-those-novel-computing-architectures.-We-think-that-the-proposed-approach-may-not-be-achievable-within-the-existing-technology.-However,we-believe-that-it-will-be-available-in-the-near-future.-Hence,we-will-describe-this-approach-from-the-following-four-as-pects:multiscale-environment-in-the-world,-mesoscale-as-a-key-scale,-energy-minimization-multiscale-(EMMS)paradigm-and-our-perspective.

  14. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    Science.gov (United States)

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  15. THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation by Christo Boyadjiev

    Directory of Open Access Journals (Sweden)

    Simeon Oka

    2010-01-01

    Full Text Available Book Title: THEORETICAL CHEMICAL ENGINEERING - Modeling and Simulation Author(s: Christo Boyadjiev Institute of Chemical Engineering, Bulgarian Academy of Science, Sofia Publisher: Springer, 2010 ISBN: 978-3-642-10777-1 Review by: Prof. Simeon Oka, Ph. D., Scientific advisor - retired

  16. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  17. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  18. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  19. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    Science.gov (United States)

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  20. Maximum work configurations of finite potential capacity reservoir chemical engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An isothermal endoreversible chemical engine operating between the finite potential capacity high-chemical-potential reservoir and the infinite potential capacity low-chemical-potential reservoir has been studied in this work.Optimal control theory was applied to determine the optimal cycle configurations corresponding to the maximum work output per cycle for the fixed total cycle time and a universal mass transfer law.Analyses of special examples showed that the optimal cycle configuration with the mass transfer law g∝△μ,where△μis the chemical potential difference,is an isothermal endoreversible chemical engine cycle,in which the chemical potential(or the concentration) of the key component in the working substance of low-chemical-potential side is a constant,while the chemical potentials(or the concentrations) of the key component in the finite potential capacity high-chemical-potential reservoir and the corresponding side working substance change nonlinearly with time,and the difference of the chemical potentials(or the ratio of the concentrations) of the key component between the high-chemical-potential reservoir and the working substance is a constant.While the optimal cycle configuration with the mass transfer law g∝△μc,where △μc is the concentration difference,is different from that with the mass transfer law g∝△μ significantly.When the high-chemical-potential reservoir is also an infinite potential capacity chemical potential reservoir,the optimal cycle configuration of the isothermal endoreversible chemical engine consists of two constant chemical potential branches and two instantaneous constant mass-flux branches,which is independent of the mass transfer law.The object studied in this paper is general,and the results can provide some guidelines for optimal design and operation of real chemical engines.

  1. Chemical Engineering Education - Current and Future Trends

    OpenAIRE

    Gani, Rafiqul

    2011-01-01

    The chemical industry today is changed from the chemical industry of twenty-five years ago. Clear evidence of this change comes from the jobs taken by graduating chemical professionals in North America, Europe, and some of the Asian countries. Twenty-five years ago, eighty percent of these graduating students went to the commodity chemical industry, exemplified by Dupont, Exxon, Shell, ICI, BASF and Dow, to name a few. Now, twenty percent do. Twenty-five years ago, around ten percent went to ...

  2. The history of Korean Institute Chemical Engineers for fifteen years

    International Nuclear Information System (INIS)

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  3. The history of Korean Institute Chemical Engineers for fifteen years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book reports the history of Korean Institute of Chemical Engineers with commemorative message, three congratulatory address and photos for fifty years. Nest, it consists of five chapters, which deals with development this institute by chronological classification. It reports the development history by activity such as education, research, publishing branch, international activity, data, woman, and executive office. It records challenge of chemical engineering, remembrance for past presidents and appendixes on history and a list of members.

  4. MICROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING

    OpenAIRE

    Brandner, Juergen; Anurjew, E.; Henning, T.; Schygulla, U.; Schubert, K.

    2006-01-01

    In this publication, an overview of the work dealing with thermal and chemical micro process engineering performed at the Institute for Micro Process Engineering (IMVT) of Forschungszentrum Karlsruhe will be given. The focus will be set on manufacturing of metallic microstructure devices and on microstructure heat exchangers. A brief outlook will describe possible future application fields.

  5. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  6. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    Science.gov (United States)

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  7. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    Science.gov (United States)

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  8. Chemical Stimulation of Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  9. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  10. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    , engineering design, investigations, engineering practice and transferable skills) and a set guidelines (core curriculum, teaching and learning, industrial experience, review of the education process and student assessment) to achieve them. They also propose a minimum set of subjects required to define......For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...

  11. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  12. My contribution to broadening the base of chemical engineering.

    Science.gov (United States)

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications. PMID:22432607

  13. Automotive fuels and internal combustion engines: a chemical perspective.

    Science.gov (United States)

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  14. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  15. The role of chemical engineering in medicinal research including Alzheimer's.

    Science.gov (United States)

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases. PMID:25416110

  16. Efficiency at maximum power of a chemical engine.

    Science.gov (United States)

    Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian

    2013-10-01

    A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.

  17. Challenges and opportunities in synthetic biology for chemical engineers

    OpenAIRE

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunitie...

  18. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  19. Exploring Simulator Use in the Preparation of Chemical Engineers

    Science.gov (United States)

    Yerrick, Randy; Lund, Carl; Lee, Yonghee

    2013-01-01

    In this manuscript, we report the impact of students' usage of a simulator in the preparation of chemical engineers. This case study was conducted using content pretest and posttests, survey questionnaires, interviews, classroom observations, and an analysis of students' written response to design problems. Results showed the use of simulator was…

  20. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    Science.gov (United States)

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  1. Microfluidics and Microfabrication in a Chemical Engineering Lab

    Science.gov (United States)

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  2. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    Science.gov (United States)

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  3. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  4. Sign control of magnetoresistance through chemically engineered interfaces.

    Science.gov (United States)

    Ciudad, David; Gobbi, Marco; Kinane, Christy J; Eich, Marius; Moodera, Jagadeesh S; Hueso, Luis E

    2014-12-01

    Chemically engineered interfaces are shown to produce inversions of the magnetoresistance in spintronic devices including lithium fluoride interlayers. This behavior is explained by the formation of anti-ferromagnetic difluoride layers. By changing the order of deposition of the different materials, the sign of the magnetoresistance can be deterministically controlled both in organic spin valves and in inorganic magnetic tunnel junctions.

  5. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    Science.gov (United States)

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  6. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan;

    2012-01-01

    : basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators...... provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research....

  7. Metabolic engineering of yeast for production of fuels and chemicals.

    Science.gov (United States)

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. PMID:23611565

  8. A Chemical Engineering Perspective on the Origins of Life

    Directory of Open Access Journals (Sweden)

    Martha A. Grover

    2015-05-01

    Full Text Available Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.

  9. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  10. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    Science.gov (United States)

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  11. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  12. Introduction to computational mass transfer with applications to chemical engineering

    CERN Document Server

    Yu, Kuo-Tsong

    2014-01-01

    This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds  mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...

  13. A paradigm-based evolution of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Alexandru Woinaroschy

    2016-01-01

    A short presentation of chemical engineering evolution, as guided by its paradigms, is exposed. The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applica-tions at the end of 19th century. The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep, scientific knowledge of the phenomena that explain what happens inside of unit operations. In the second part of 20th century, the importance of chemical product properties and qualities has become essential y in the market fights. Accordingly, it was required with additional and even new fundamen-tal approaches, and product engineering was recognized as the third paradigm. Nowadays chemical industry, as a huge materials and energy consumer, and with a strong ecological impact, couldn't remain outside of sustainability requirements. The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.

  14. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly;

    2016-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternat......The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes are needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment...

  15. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  16. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik;

    2010-01-01

    of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B.......Eng. education, one course is designated the “project” course, which should draw on material learned in parallel courses. In the 6th semester, Process Design is the project course. Process Control and Reaction Engineering are then incorporated into the final plant design project. Specifically, almost all......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...

  17. Transferring Knowledge: A Parallel between Teaching Chemical Engineering and Developing Expert Systems.

    Science.gov (United States)

    Roberge, P. R.

    1990-01-01

    Discussed are expert systems development and teaching, the representation and processing of knowledge, knowledge representation in chemical engineering, and expert systems in chemical engineering. The seven phases of expert system development are illustrated. (CW)

  18. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  19. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production. PMID:26883347

  20. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon. PMID:21666928

  1. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    Science.gov (United States)

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  2. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Science.gov (United States)

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  3. Chemical engineering and chemistry: education in a changing world

    Directory of Open Access Journals (Sweden)

    Reijenga Jetse C.

    2006-01-01

    Full Text Available Current trends in science and engineering research are analyzed, together with an inventory of changes in the field of employment and practice in industry. The resulting demands on the university education of chemists and chemical engineers have been translated into a more or less continuous updating of the curriculum at the Department of Chemical Engineering and Chemistry of the Eindhoven University of Technology in the Netherlands. In general it can be said that the emphasis within education will have to shift from the knowledge of facts, towards the ability to apply this knowledge to the process of solving problems in a realistic setting. Two topics will be highlighted. Multidisciplinary project group work was successfully introduced to enable students to apply theoretical knowledge to real life situations in a professional (industrial context, resulting among others in a sharper focus on communication skills. On the other hand, knowledge of theory and experimental practice are combined and augmented by the increased use of experiment simulations for illustration, demonstration and experimentation purposes. Here, the increased use of information technology facilities and skills is essential.

  4. Advances in Chemical Engineering — A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals, synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches are also addressed.

  5. Holographic black hole engineering at finite baryon chemical potential

    CERN Document Server

    Rougemont, Romulo

    2016-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.

  6. Integrating chemical engineering fundamentals in the capstone process design project

    OpenAIRE

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik; Abildskov, Jens

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30 students. The B.Eng. education lasts for 3½ years (seven semesters), of which the 5th semester consists of practical training with a company and the final (7th) semester consists of a research proje...

  7. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  8. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  9. Chemical respiratory allergy: Reverse engineering an adverse outcome pathway

    International Nuclear Information System (INIS)

    Allergic sensitisation of the respiratory tract by chemicals is associated with rhinitis and asthma and remains an important occupational health issue. Although less than 80 chemicals have been confirmed as respiratory allergens the adverse health effects can be serious, and in rare instances can be fatal, and there are, in addition, related socioeconomic issues. The challenges that chemical respiratory allergy pose for toxicologists are substantial. No validated methods are available for hazard identification and characterisation, and this is due in large part to the fact that there remains considerable uncertainty and debate about the mechanisms through which sensitisation of the respiratory tract is acquired. Despite that uncertainty, there is a need to establish some common understanding of the key events and processes that are involved in respiratory sensitisation to chemicals and that might in turn provide the foundations for novel approaches to safety assessment. In recent years the concept of adverse outcome pathways (AOP) has gained some considerable interest among the toxicology community as a basis for outlining the key steps leading to an adverse health outcome, while also providing a framework for focusing future research, and for developing alternative paradigms for hazard characterisation. Here we explore application of the same general principles to an examination of the induction by chemicals of respiratory sensitisation. In this instance, however, we have chosen to adopt a reverse engineering approach and to model a possible AOP for chemical respiratory allergy working backwards from the elicitation of adverse health effects to the cellular and molecular mechanisms that are implicated in the acquisition of sensitisation

  10. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 700C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease.

  11. Engineering Microbial Chemical Factories to Produce Renewable ‘Biomonomers’

    Directory of Open Access Journals (Sweden)

    Jake eAdkins

    2012-08-01

    Full Text Available By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called ‘biomonomers’. Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way towards new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible.

  12. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  13. A view on chemical and biochemical engineering: Where are they going?

    OpenAIRE

    Veljković Vlada B.

    2002-01-01

    A short history of chemical and biochemical engineering is presented, both industrial and educational aspects being considered. The most important trend in the future development of bio/chemical engineering - biological engineering - is pointed out. The current state and near future of biotechnology are described.

  14. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The…

  15. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    Science.gov (United States)

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  16. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  17. Development of Natural Gas Chemical Engineering in China

    Institute of Scientific and Technical Information of China (English)

    Yuan Qingmin

    1996-01-01

    @@ The equivalent ratio of natural gas to oil has reached 0.73:1 worldwide by 1994. The Chinese output of natural gas and oil ranks the 22nd and 5th respectively in the world's oil and gas production. The quantity equivalent ratio of gas to oil in China is only 0.11:1, which can not meet the needs of future economic development. Since the beginning of the 1990s, the discovery and expansion of natural gas reserves in Sichuan, Shaanxi, Xinjiang and Hainan Provinces and offshore area have brought about a solid foundation for the rapid development of the country's natural gas industry. It is sure that a new era of the development of China's natural gas chemical engineering is coming.

  18. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  19. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod...

  20. Phase Diagrams in Chemical Engineering: Application to Distillation and Solvent Extraction

    OpenAIRE

    Coquelet, Christophe; Ramjugernath, Deresh

    2012-01-01

    Chapter 19Published under CC BY 3.0 licenseAvailable from: http://www.intechopen.com/books/advances-in-chemical-engineering/phase-diagrams-in-chemical-engineering-example-of-distillation International audience A phase diagram in physical chemistry and chemical engineering is a graphical representation showing distinct phases which are in thermodynamic equilibrium. Since these equilibrium relationships are dependent on the pressure, temperature, and composition of the system, a phase dia...

  1. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  2. Advances in Chemical Engineering A Review of Petrochemical Industry in China

    Institute of Scientific and Technical Information of China (English)

    洪定一

    2001-01-01

    Chemical engineering has played an important role in the development of petrochemical industry. Some important advances in chemical engineering have been discussed in detail, i. e. petroleum refining, organic chemicals,synthetic resin, synthetic fibers and relevant raw materials, synthetic rubber, and process energy integration. The main business targets of China Petroleum & Chemical Corporation (SINOPEC Corp.) and the focus of further researches axe also addressed.

  3. An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores

    Science.gov (United States)

    O'Connor, Kim C.

    2007-01-01

    Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…

  4. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  5. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  6. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  7. Teaching chemical product design to engineering students: course contents and challenges

    OpenAIRE

    Skov, Anne Ladegaard; Kiil, Søren

    2011-01-01

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course contents and relevant teaching methods are discussed.

  8. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  9. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    Science.gov (United States)

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  10. 100 years of refrigeration engineering in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, K.

    1987-11-01

    The report reviews the many uses of cold in the chemical industry. As an example, the development of the refrigeration system of a large chemical plant is described which distributes cold nearly without losses from a central refrigeration unit and can be controlled for optimum adaptation to the various chemical production processes. The contribution of refrigeration to higher product quality, higher product yield, materials recycling to save feedstocks, energy conservation by means of heat pumps, and environmental protection is pointed out.

  11. A 15-Month MS Chemical Engineering Degree Program for BS Chemists.

    Science.gov (United States)

    Hanks, Richard W.; Oscarson, John L.

    1979-01-01

    The key to shortening the time-frame for this program is a special summer course in unit operations, and the replacement of the usual nine credits of minor courses with undergraduate chemical engineering courses. (BB)

  12. Effects of different chemical additives on biodiesel fuel properties and engine performance. A comparison review

    Directory of Open Access Journals (Sweden)

    Ali Obed Majeed

    2016-01-01

    Full Text Available Biodiesel fuel can be used as an alternative to mineral diesel, its blend up to 20% used as a commercial fuel for the existing diesel engine in many countries. However, at high blending ratio, the fuel properties are worsening. The feasibility of pure biodiesel and blended fuel at high blending ratio using different chemical additives has been reviewed in this study. The results obtained by different researchers were analysed to evaluate the fuel properties trend and engine performance and emissions with different chemical additives. It found that, variety of chemical additives can be utilised with biodiesel fuel to improve the fuel properties. Furthermore, the chemical additives usage in biodiesel is inseparable both for improving the cold flow properties and for better engine performance and emission control. Therefore, research is needed to develop biodiesel specific additives that can be adopted to improve the fuel properties and achieve best engine performance at lower exhaust emission effects.

  13. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  14. Process-oriented knowledge-sharing platform for chemical engineering design projects

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge...

  15. The role of chemical engineering in medicinal research including Alzheimer’s

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.

    2015-01-01

    ” disease), and Alzheimer’s which are connected to “protein aggregation.” Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics...... (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer’s and similar diseases....

  16. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    Science.gov (United States)

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  17. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    Science.gov (United States)

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  18. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  19. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  20. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  1. Flow sheeting software as a tool when teaching Chemical Engineering

    OpenAIRE

    Abbas, Asad

    2011-01-01

    The aim of this thesis is to design different chemical processes by using flow sheeting software and to show the usefulness of flow sheeting software as an educational tool. The industries studied are hydrogen, sulfur, nitric acid and ethylene glycol production and a model of drying technique is also included. Firstly, there is an introduction of chemcad as a tool when teaching chemical processes and explanation of each industry which is selected to design. Various production methods for each...

  2. Recent advances in chemical engineering. Tracers and tracing methods

    International Nuclear Information System (INIS)

    The first congress on 'tracers and tracing methods' has taken place in Nancy in November 1998. It has been a successful national event with more than 100 participants and 65 presentations. The applications of radiotracers in different industries have been studied. The target participants were the researchers, engineers and technologists of various industrial and research sectors

  3. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  4. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  5. From multiscale modeling to meso-science a chemical engineering perspective

    CERN Document Server

    Li, Jinghai; Wang, Wei; Yang, Ning; Liu, Xinhua; Wang, Limin; He, Xianfeng; Wang, Xiaowei; Wang, Junwu; Kwauk, Mooson

    2013-01-01

    Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimization multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of th...

  6. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  7. Virtual laboratories in (bio)chemical engineering education

    OpenAIRE

    Domingues, Lucília; Rocha, I.; Dourado, Fernando; Alves, M.M.; Ferreira, E. C.

    2010-01-01

    In the last decades, Information and Communications Technologies (ICT) have been promoting the creation and adoption of new learning and teaching styles. Virtual laboratories, by overcoming some limitations of conventional hands-on experiments, have been adopted as a complement or in substitution of laboratory sessions. This paper describes the design and implementation of two virtual labs for biochemical engineering education intended for students at the BSc degree. One of the virtua...

  8. Compilation of contract research for the Chemical Engineering Branch, Division of Engineering Technology. Annual report for FY 1985

    International Nuclear Information System (INIS)

    This compilation of annual research reports by the contractors to the Chemical Engineering Branch, DET, is published to disseminate information from ongoing programs and covers research conducted during fiscal year 1985. The programs covered in this document include research on: (1) engineered safety feature (ESF) system effectiveness in terms of fission product retention under severe accident conditions; (2) effectiveness and safety aspects of selected decontamination methods; (3) decontamination impacts on solidification and waste disposal; (4) evaluation of nuclear facility decommissioning projects and concepts, and (5) operational schemes to prevent or mitigate the effects of hydrogen combustion during LWR accidents

  9. Molecular and chemical engineering of bacteriophages for potential medical applications.

    Science.gov (United States)

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  10. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    Science.gov (United States)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic

  11. Green strength sustainability: a case study of chemical engineering students

    OpenAIRE

    Avsec, Stanislav; Kaučič, Branko

    2015-01-01

    Green chemistry is a relatively new area of science and technology aimed at improving chemical processes and thereby avoiding negative impacts on human health, safety, and the environment (EHS). It is based on careful selection of raw materials for the production of various products, excluding the use of hazardous substances. The field of green chemistry has received much attention from the scientific and industrial communities in almost every highly industrialized nation. It i...

  12. CHEMCAD as a tool when teaching Chemical Engineering.

    OpenAIRE

    Khan, Imran Ullah

    2011-01-01

    The aim of this project was to design different chemical processes using Chemcad software. Following five Chemcad models that had industrial relevance were designed and discussed, production of nitric acid by ammonia oxidation process, Production of sodium carbonate by Solvay process, production of hydrogen by steam reforming of natural gas, production of sulphuric acid by Contact process and production of sulphur by Claus process. Equilibrium reactor, Gibbs reactor, absorption tower, heat ex...

  13. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  14. Solar photochemical process engineering for production of fuels and chemicals

    Science.gov (United States)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  15. Paper-based chemical and biological sensors: Engineering aspects.

    Science.gov (United States)

    Ahmed, Snober; Bui, Minh-Phuong Ngoc; Abbas, Abdennour

    2016-03-15

    Remarkable efforts have been dedicated to paper-based chemosensors and biosensors over the last few years, mainly driven by the promise of reaching the best trade-off between performance, affordability and simplicity. Because of the low-cost and rapid prototyping of these sensors, recent research has been focused on providing affordable diagnostic devices to the developing world. The recent progress in sensitivity, multi-functionality and integration of microfluidic paper-based analytical devices (µPADs), increasingly suggests that this technology is not only attractive in resource-limited environments but it also represents a serious challenger to silicon, glass and polymer-based biosensors. This review discusses the design, chemistry and engineering aspects of these developments, with a focus on the past few years.

  16. An approach in building a chemical compound search engine in oracle database.

    Science.gov (United States)

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework. PMID:17282834

  17. Effectiveness of an Applied Microbiology Course Specifically Designed for Chemical Engineering Majors

    Directory of Open Access Journals (Sweden)

    Gregory B. Hecht

    2009-12-01

    Full Text Available In recent years, the disciplines of microbiology and chemical engineering have developed an increasing convergence. To meet the needs of their future employers, today’s chemical engineering students must receive some background in microbiology. This report describes the development and content of “Biological Systems and Applications,” a novel course specifically designed to provide basic biology and applied microbiology knowledge, skills, and experience to sophomore chemical engineering majors. Data collected from entrance and exit surveys of the students demonstrated that the course is successful. The importance of the “project-base” learning technique and of interdisciplinary faculty-student and faculty-faculty collaborations are proposed as elements essential to the success of this particular course.

  18. Chemistry of fossil fuels and biofuels (cambridge series in chemical engineering)

    CERN Document Server

    Schobert, Harold

    2013-01-01

    Focusing on today's major fuel resources - ethanol, biodiesel, wood, natural gas, petroleum products and coal - this book discusses the formation, composition and properties of the fuels, and the ways in which they are processed for commercial use. The book examines the origin of fuels through natural processes such as photosynthesis and the geological transformation of ancient plant material; the relationships between their composition, molecular structures, and physical properties; and the various processes by which they are converted or refined into the fuel products appearing on today's market. Fundamental chemical aspects such as catalysis and the behaviour of reactive intermediates are presented, and global warming and anthropogenic carbon dioxide emissions are also discussed. The book is suitable for graduate students in energy engineering, chemical engineering, mechanical engineering and chemistry, as well as professional scientists and engineers.

  19. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  20. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework......T) for model translation, analysis and solution. The integration of ModDev, MoT and ICAS or any other external software or process simulator (using COM-Objects) permits the generation of different models and/or process configurations for purposes of simulation, design and analysis. Consequently, it is possible...... for model generation, analysis, solution and implementation is necessary for the development and application of the desired model-based approach for product-centric process design/analysis. This goal is achieved through the combination of a system for model development (ModDev), and a modelling tool (Mo...

  1. Design Hybrid Methods for Encoding Prior Knowledge in Feedforward Network with Application in Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    CHENChongwei; CHENDezhao

    2002-01-01

    Three-layer feedforward networks have been widely used in modeling chemical engineering processes and prior-knowledge-based methods have been introduced to improve their performances.In this paper,we propose the methodology of designing better prior-knowledge-based hybrid methods by combining the existing ones. Then according to this methodology,two hybrid methods,interpolation-optimization (IO) method and interpolation penalty-function (IPF) method,are designed as examples.Finally,both methods are applied to modeling two cases in chemical engineering to investigate their effectiveness.Simulation results show that the performances of the hybrid methods are better than those of their parents.

  2. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  3. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  4. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    Science.gov (United States)

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  5. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jun-hyung [Department of Nuclear and Energy System, Dongguk University, Gyeongju Campus, Gyeongju, 780-714 (Korea, Republic of)

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  6. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  7. State estimation of chemical engineering systems tending to multiple solutions

    Directory of Open Access Journals (Sweden)

    N. P. G. Salau

    2014-09-01

    Full Text Available A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF formulations and one constrained EKF formulation (CEKF. As benchmark case studies we have chosen: a a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.

  8. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    Science.gov (United States)

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  9. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition

    Science.gov (United States)

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  10. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  11. Model Reduction in Chemical Engineering: Case studies applied to process analysis, design and operation

    NARCIS (Netherlands)

    Dorneanu, B.

    2011-01-01

    During the last decades, models have become widely used for supporting a broad range of chemical engineering activities, such as product and process design and development, process monitoring and control, real time optimization of plant operation or supply chain management. Although tremendous advan

  12. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    Science.gov (United States)

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  13. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    Science.gov (United States)

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  14. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    Science.gov (United States)

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  15. Finding hidden chemistry in ancient egyptian artifacts: Pigment degradation taught in a chemical engineering course

    OpenAIRE

    Giménez Izquierdo, Francisco Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled

  16. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    Science.gov (United States)

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  17. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    Science.gov (United States)

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  18. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    Science.gov (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  19. Design and analysis of questionnaires for survey skills in chemical engineering

    Directory of Open Access Journals (Sweden)

    Susana Lucas

    2011-09-01

    Full Text Available 800x600 Normal 0 21 false false false CA X-NONE X-NONE The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the identification of the main general and transferable skills, the implementation of the new teaching and learning strategies necessary to achieve them and, in addition, an evaluation procedure for determining the importance and the degree of development of a student´s skills and competences. In this exercise, two obligatory chemical reactor engineering subjects of the still in effect Chemical Engineering degree were chosen as examples of competence-based learning disciplines. For each one, a significant group of transferable and specific skills were selected to be developed. The identification and selection of skills was made according to the recommendations of the European Federation of Chemical Engineering (EFCE together with the established requirements in the ministerial order for the new Chemical Engineering Degree (Ministerial order CIN/351/2009. In order to check the effectiveness of teaching strategies in helping students to acquire these abilities, specific questionnaires were designed. These tests allowed for the utility of the competences in question to be evaluated in terms of the students´ professional work as future chemical engineering graduates and also facilitated the perception of skill development acquired through the methodology implemented in these subjects. The results of the skill evaluation questionnaires revealed the importance that both university collectives (students and professors give to the development of transferable skills. These skills included the ability to communicate effectively (including in English, to work in

  20. Progressively Fostering Students' Chemical Information Skills in a Three-Year Chemical Engineering Program in France

    Science.gov (United States)

    Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien

    2016-01-01

    Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…

  1. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...... and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production....

  2. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  3. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  4. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  5. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    Science.gov (United States)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  6. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  7. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    Science.gov (United States)

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  8. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  9. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  10. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors

    Science.gov (United States)

    Cho, Seunghee H.; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-07-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  11. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Maliaritsi, E. [Laboratory of Physical Metallurgy, School of Mining and Metallurgy Engineering, National Technical University of Athens, Zografou Campus, Athens 15780 (Greece); Zoumpoulakis, L. [Laboratory of Materials Science and Technology, Inter-disciplinary Postgraduate Programme of NTUA, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 157 73 Athens (Greece); Simitzis, J. [Laboratory of Materials Science and Technology, Inter-disciplinary Postgraduate Programme of NTUA, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 157 73 Athens (Greece); Vassiliou, P. [Iaso General Hospital, Athens (Greece); Hristoforou, E. [Laboratory of Physical Metallurgy, School of Mining and Metallurgy Engineering, National Technical University of Athens, Zografou Campus, Athens 15780 (Greece)]. E-mail: eh@metal.ntua.gr

    2006-04-15

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications.

  12. Top-cited Articles in Chemical Engineering in Science Citation Index Expanded: A Bibliometric Analysis

    Institute of Scientific and Technical Information of China (English)

    Yuh-Shan Ho

    2012-01-01

    This study aimed to identify and to analyze characteristics of top-cited articles published in the Web of Science chemical engineering subject category from 1899 to 2011. Articles that have been cited more than 100 times were assessed regarding publication outputs, and distribution of outputs in journals. Five bibliometric indica- tors were used to evaluate source countries, institution and authors. A new indicator, Y-index, was created to assess quantity and quality of contribution to articles. Results showed that 3828 articles, published between 1931 and 2010, had been cited at least 100 times. Among them 54% published before 1991, and 49% top-cited articles originated from US. The top eight productive institutions were all located in US. The top journals were Journal of Catalysis, AIChE Journal, Chemical Engineering Science and Journal of Membrane Science. Y-index was successfully ap- plied to evaluate publication character of authors, institutions, and countries/regions.

  13. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  15. The design of licensing contracts: Chemicals, Pharmaceuticals, and Electrical Engineering in Imperial Germany

    OpenAIRE

    Burhop, Carsten; Lübbers, Thorsten

    2011-01-01

    We investigate a sample of 180 technology licensing contracts closed by German chemical, pharmaceutical, and electrical engineering companies between 1880 and 1913. Our empirical results suggest that strategic behaviour seems to be relevant for the design of licensing contracts, whereas inventor moral hazard and risk aversion of licensor or licensee seem to be irrelevant. Moreover, our results suggest that uncertainty regarding the profitability of licensed technology influenced the design of...

  16. Editorial : special Issue contributed by the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008

    OpenAIRE

    Ferreira, E. C.; Mota, M.

    2009-01-01

    The 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, was held in Braga, Portugal, from the 4th to the 6th of September, 2008. The conference was jointly organized by the University of Minho, the “Ordem dos Engenheiros,” and the Institute for Biotechnology and Bioengineeing, with the support of “Sociedade Portuguesa de Qu´ımica” and “Sociedade Portuguesa de Biotecnologia”. The CHEMPOR series traditionally brings together both young and establishe...

  17. Introducing Statistical Experimental Designs to Chemical and Industrial Engineering Using Collaborative and Problem Based Learning Approach

    OpenAIRE

    González Fernández, Camino

    2010-01-01

    This work describes the use of the Collaborative and Problem Based- Project Based Learning (PBL) methodology in a Statistical Experimental Design course for Chemical and Industrial Engineering students at the Universidad Politécnica de Madrid (UPM). The objetives, motivation, and the roles of the teacher and the students in the classroom to get a better understanding of the concepts and examples are explained in detail. Since 2000, there exists in our univesity (UPM) the aim to adapt the c...

  18. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    Science.gov (United States)

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems. PMID:26857072

  19. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G;

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  20. World War I chemical weapons bunker engineering evaluation and cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Craig, C.A.; Crotteau, A.

    1995-12-31

    This paper provides a review of the US Army Corps of Engineers development and execution of a CERCLA chemical weapons and soil removal from two World War 1 underground test bunkers. The non-time critical removal action was completed from October 1994 to January 1995 in conjunction with Operation Safe Removal, Spring Valley, Washington, D.C. On January 5, 1993, a startled backhoe operator unearthed three 75mm artillery shells, exposing the legacy of a World War 1 (WWI) chemical weapons test facility in the midst of the nation`s capitol. That discovery, made in an exclusive residential neighborhood, prompted an intensive two year environmental cleanup. The Army immediately responded to the chemical ordnance threat, initiating Operation Safe Removal, a $20 million emergency response action and remedial investigation.

  1. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective pr...... developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid....

  2. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  3. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  4. Effect of Chemical Admixtures on the Engineering Properties of Tropical Peat Soils

    Directory of Open Access Journals (Sweden)

    Bujang B.K. Huat

    2005-01-01

    Full Text Available This research describes a study on the effect of chemical (cement and lime admixtures on the index and engineering properties (compaction and unconfined strength of tropical peat soils. The ordinary Portland cement and hydrated lime were used. The amounts cement and lime added to the peat soil sample, as a percentage of the dry soil mass was in the range of 5-15% and 5-25%, respectively. The results of the study show that the addition of the chemical admixture, cement and lime, can improve the engineering properties of tropical peat soils. The soil liquid limit is found to decrease with an increase in the cement and lime content. The soil maximum dry density is found to increase while the optimum water content is found to decrease with an increase in the cement and lime content. The unconfined compressive strength of the soil is found to increase significantly with increase in cement and lime content, especially after a long curing period. However it is also found that higher organic content of the soil negate the positive effect of the cement and lime in altering (improving the mechanical properties of the soil. When comparing the performance of the cement and lime as a chemical admixture for the tropical peat soil, the ordinary Portland cement appears to perform better than the hydrated lime.

  5. Chemical Reaction Route Selection Based on Green Chemical Engineering%基于绿色化工的化学反应路径选择

    Institute of Scientific and Technical Information of China (English)

    何潮洪; 葛挺峰; S.H.Yang; D.W.Edwards

    2004-01-01

    In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of "extended atom economy", material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture.

  6. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  7. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    Science.gov (United States)

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable. PMID:24364352

  8. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  9. Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory

    Science.gov (United States)

    Zhang, Lei; Chen, Lingen; Sun, Fengrui

    2016-03-01

    The finite-time thermodynamic method based on probability analysis can more accurately describe various performance parameters of thermodynamic systems. Based on the relation between optimal efficiency and power output of a generalized Carnot heat engine with a finite high-temperature heat reservoir (heat source) and an infinite low-temperature heat reservoir (heat sink) and with the only irreversibility of heat transfer, this paper studies the problem of power optimization of chemically driven heat engine based on first and second order reaction kinetic theory, puts forward a model of the coupling heat engine which can be run periodically and obtains the effects of the finite-time thermodynamic characteristics of the coupling relation between chemical reaction and heat engine on the power optimization. The results show that the first order reaction kinetics model can use fuel more effectively, and can provide heat engine with higher temperature heat source to increase the power output of the heat engine. Moreover, the power fluctuation bounds of the chemically driven heat engine are obtained by using the probability analysis method. The results may provide some guidelines for the character analysis and power optimization of the chemically driven heat engines.

  10. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko;

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two...... scientific research efforts have taken into account some key lessons learned from past experiences with chemicals at the same time that many key challenges remain to applying these frameworks to ENM. In that setting, two main proposed approaches to use LCA and RA together for ENM are identified: i) LC...

  11. Effect of continuous assessment on learning outcomes on two chemical engineering courses: case study

    Science.gov (United States)

    Tuunila, R.; Pulkkinen, M.

    2015-11-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning results after the adoption of continuous assessment in the courses. Also student feedback suggests higher quality in teaching after the adoption of more activating teaching methods which compel students to study effectively throughout the course.

  12. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  13. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  14. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

    2011-01-15

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  15. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    International Nuclear Information System (INIS)

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together

  16. Environmentally-engineered concrete system - concrete for oil and chemical plant environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Beer, K; Early, C.; Gillen, M. [Dupont Civil Engineering Systems (United States)

    2000-07-01

    Properties expected of concrete used in oil production and refining facilities and chemical plants are discussed. Concrete in these types of applications must be capable of resisting a wide range of deleterious chemical and thermal exposure conditions, therefore, compressive strength is of lesser importance than the ability to resist chemical attack, maximum resistance to cracking, and other properties relating to durability. Environmental requirements are also an important factor in concrete used in containment structures where potentially hazardous materials are stored or used in plant operations. This paper describes the development, performance characteristics and field experience with what is known as an 'environmentally engineered concrete system' (EECS), which consists of mixture proportions, design details and construction methods which was developed and used for production and environmental containment concrete structures in Dupont plants and plants of its former subsidiary, Conoco. The EECS technology, with its emphasis on the special demands on concrete performance under severe exposure conditions, is considered to have significant potential for application within the oil and chemical industries, including remote overseas locations. 5 refs., 2 tabs., 3 figs.

  17. Non-Natural Sugar Analogues: Chemical Probes for Metabolic Oligosaccharide Engineering

    Science.gov (United States)

    Aich, Udayanath; Yarema, Kevin J.

    Metabolic oligosaccharide engineering (MOE) is a rapidly growing technology emerging from the field of chemical biology that allows novel chemical functionalities to be biosynthetically installed into the carbohydrates of living cells and animals. Since pioneering efforts to modulate sialic acid display through the use of non-natural N-acetyl-D-mannosamine (ManNAc) analogues were reported 15 years ago, monosaccharide probes have been developed to manipulate N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc), and fucose-containing glycans. The 'first generation' of analogues, comprised of a series of ManNAc derivatives with elongated N-acyl chains, demonstrated pathway permissivity and the ability of this methodology to impinge on biological processes ranging from pathogen binding to gene expression and cell adhesion. Later analogues have incorporated chemical function groups including ketones, azides, thiols, and alkyne not normally found in carbohydrates. These groups serve as 'tags' for the subsequent use of chemoselective ligation reactions to further elaborate the chemical properties of the cell surface and thereby greatly expand the potential of MOE technology to offer control over biological processes.

  18. Aplication of the Simulation Process During the Working Practice of Chemical Engineering Students

    Directory of Open Access Journals (Sweden)

    Mario Jesús Muñoz Batista

    2011-10-01

    Full Text Available The success of chemical engineering graduates depends on their aptitude and the skills received during the academic formation. Employers not only require that graduates have the knowledge of basic chemical engineering principles but knowing how to apply this knowledge in solving practical problems. In this paper, one form to obtain important skills is presented. The working practice is one of the most important subjects in the curriculum. HYSYS simulator which can realize the energetic evaluation was introduced. A simulation model of the preheat train of Fluid Catalytic Cracking Unit was obtained. The model was built using prebuilt models in HYSYS, however a fired heater to steady state doesn’t exist. In this case, a spreadsheet was utilized in programming the energetic evaluation. Sometimes it is useful because it is necessary to use our models for specific equipment. Finally, the model was utilized to predict the system efficiency when changes on the operation variables occur. The use of simulation inside of core subjects helps to improve the level and quality of students’ formation.

  19. Automatic differentiation tools in the dynamic simulation of chemical engineering processes

    Directory of Open Access Journals (Sweden)

    Castro M.C.

    2000-01-01

    Full Text Available Automatic Differentiation is a relatively recent technique developed for the differentiation of functions applicable directly to the source code to compute the function written in standard programming languages. That technique permits the automatization of the differentiation step, crucial for dynamic simulation and optimization of processes. The values for the derivatives obtained with AD are exact (to roundoff. The theoretical exactness of the AD comes from the fact that it uses the same rules of differentiation as in differential calculus, but these rules are applied to an algorithmic specification of the function rather than to a formula. The main purpose of this contribution is to discuss the impact of Automatic Differentiation in the field of dynamic simulation of chemical engineering processes. The influence of the differentiation technique on the behavior of the integration code, the performance of the generated code and the incorporation of AD tools in consistent initialization tools are discussed from the viewpoint of dynamic simulation of typical models in chemical engineering.

  20. Stirling engine based solar-thermal power plant with a thermo-chemical storage system

    International Nuclear Information System (INIS)

    Highlights: • The system is unaffected by climatic and seasonal variation. • Drawbacks of solar power generation are eliminated. • A constant uninterrupted output power is obtained. - Abstract: This paper describes a solar-thermal run Stirling engine based uninterrupted power generating system employing magnesium sulphate impregnated Zeolite pellets for thermal energy storage. In the proposed system, Stirling engine design is based on the average temperature difference of 480 °C, assuming the heat sink temperature equal to the ambient temperature of that place. In presence of sun, Fresnel lenses of a specially designed hybrid capsule capture solar energy and concentrate them to provide necessary heat for the operation of the engine. In absence of the sun, required heat is provided by the thermo-chemical energy stored in Zeolite pellets. Working methodologies, modelling and simulation of the proposed system along with analyses of the obtained simulated results are presented in this paper. Possible performance of the scheme at different global positions for different period of a year has also been investigated

  1. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    Science.gov (United States)

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  2. Using an operator training simulator in the undergraduate chemical engineering curriculim

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the last four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined

  3. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  4. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  5. Innovating in a 4th course of Chemical Engineering: A Bolognese Recipe

    Directory of Open Access Journals (Sweden)

    Sara García Sastre

    2010-10-01

    Full Text Available In this article we analyze a case study conducted within a pilot innovation experience in an undergraduate course on Chemical Engineering. The study was developed during three years, 2005/06, 2006/07 y 2007/08, at the University of Valladolid (Spain. The main goal of this work is to show evidence to better understand the methodological changes promoted by the aforementioned pilot experience, as well as to reflect on whether or not this sort of innovations help to reach EHEA thorny demands. The methodological innovation carried out in the course was based on active learning methods, such as Project-based Learning, and the study of real cases from multiple perspectives and subjects.

  6. Band gap engineering in polymers through chemical doping and applied mechanical strain.

    Science.gov (United States)

    Lanzillo, Nicholas A; Breneman, Curt M

    2016-08-17

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage. PMID:27324304

  7. Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality

    Science.gov (United States)

    Lucia, Umberto

    2016-11-01

    Exergy is a fundamental quantity because it allows us to obtain information on the useful work obtainable in a process. The analyses of irreversibility are important not only in the design and development of the industrial devices, but also in fundamental thermodynamics and in the socio-economic analysis of municipality. Consequently, the link between entropy and exergy is discussed in order to link econophysics to the bio-chemical engineering thermodynamics. Last, this link holds to the fundamental role of fluxes and to the exergy exchanged in the interaction between the system and its environment. The result consists in a thermodynamic approach to the analysis of the unavailability of the economic, productive or social systems. The unavailability is what the system cannot use in relation to its internal processes. This quantity result is interesting also as a support to public manager for economic decisions. Here, the Alessandria Municipality is analyzed in order to highlight the application of the theoretical results.

  8. Implementation and student perceptions of e-assessment in a Chemical Engineering module

    Science.gov (United States)

    Sorensen, Eva

    2013-05-01

    This paper describes work carried out at the Department of Chemical Engineering at UCL into the use of e-assessment in a second year module and, in particular, the student perceptions of this mode of assessment. Three quizzes were implemented in Moodle, the first two as formative assessment and the final quiz as summative assessment. The results were very encouraging and practically all students engaged with the process. An online survey was delivered to all students after the module, which showed that the students felt that e-assessment added value to their learning and they would like to see it implemented in other modules. The quizzes were intended to be mainly beneficial to the weaker students as it gave them an opportunity to go over key aspects of the material in their own time. Interestingly, the stronger students were even more in favour of e-learning than the weaker students, for whom the quizzes were originally designed.

  9. Band gap engineering in polymers through chemical doping and applied mechanical strain

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  10. Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium difficile Toxoids.

    Science.gov (United States)

    Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin

    2016-07-01

    A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. PMID:27233688

  11. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    Science.gov (United States)

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  12. Space environment utilization and chemical engineering; Uchu kankyo riyo to kagaku kogaku

    Energy Technology Data Exchange (ETDEWEB)

    Imaishi, N.; Shiraishi, F. [Kyushu Univ., Fukuoka (Japan)] Suzuki, M. [Tohoku Univ., Sendai (Japan)

    1997-10-05

    Construction of a giant international space station on an orbit of 460 km distant from the earth will be begun since 1998, JEM (Japanese Experimental Module) will also be launched on 2001, and various experiments using the space environment under a condition of staying 2 to 4 members in the JEM will be planned after the end of that year. Characteristics of the space environment are microgravity, super high vacuum at surrounding apace, superior vision and so forth. In order to utilize the space environment different from the earth environment, it is necessary to consider extremely many things. The chemical engineers who have conducted a lot of complex systems on the earth hitherto shares some large roles in the fields of planning and executing scientific and engineering researches conducted in JEM, utilization of lunar surface and space for materials and energy production base in future, and so forth. In this paper, the Closed Ecological Life Support system (CELSS) essential to specific phenomena and long-term manned space flight under microgravity environment were introduced. 29 refs., 7 figs.

  13. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    Science.gov (United States)

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  14. Strain engineering of selective chemical adsorption on monolayer MoS2

    Science.gov (United States)

    Kou, Liangzhi; Du, Aijun; Chen, Changfeng; Frauenheim, Thomas

    2014-04-01

    Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the properties of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB strain also induces an electronic phase transition between the half-metal and the metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain conditions in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the properties of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the

  15. The role of the chemist/chemical engineer for the trouble-free operation of thermal plants with heat recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Addison, David; Weir, Judy [Thermal Chemistry Limited, Horsham Downs, Hamilton (New Zealand)

    2012-06-15

    The importance of a chemist/chemical engineer for the reliable and efficient operation of combined cycle gas turbine (CCGT) plants is discussed along with the key differences between routine and strategic chemistry and how these potentially impact on CCGT plant operation. Potential risks and issues with the full outsourcing of cycle chemistry services for a CCGT plant to chemical service providers are outlined. Also discussed are the interactions between a chemist/chemical engineer and plant management, operations, engineering and maintenance personnel. Proposed chemist/chemical engineer staffing levels for a number of hypothetical CCGT plants are also discussed. (orig.)

  16. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  17. Chemical Engineering of China Three Gorges University Materials and Chemical Engineering College%三峡大学材料与化工学院化工专业谈

    Institute of Scientific and Technical Information of China (English)

    张争光; 李德莹

    2014-01-01

    本文从三峡大学材料与化工学院的化工专业的培养目标、课程设置及简介以及该专业毕业生的就业出路三个方面进行了阐述,为化工专业的入学新生尽快适应学校新环境、明确学习目的等起到一定的作用。%This paper discussed from three aspects of training target, material and Chemical Engineering College of China Three Gorges University chemical professional courses and introduction and the graduates employment, clear learning ob-jective to play a certain role for Chemical Engineering Freshmen to adapt to the new school environment.

  18. Chemical Engineering of China Three Gorges University Materials and Chemical Engineering College%浅谈三峡大学材料与化工学院化工专业

    Institute of Scientific and Technical Information of China (English)

    张争光; 李德莹

    2014-01-01

    本文从三峡大学材料与化工学院的化工专业的培养目标、课程设置及简介以及该专业毕业生的就业出路三个方面进行了阐述,为化工专业的入学新生尽快适应学校新环境、明确学习目的等起到一定的作用。%This paper discussed from three aspects of training target, material and Chemical Engineering College of China Three Gorges University chemical professional courses and introduction and the graduates employment, clear learning ob-jective to play a certain role for Chemical Engineering Freshmen to adapt to the new school environment.

  19. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    Science.gov (United States)

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  20. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    Science.gov (United States)

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  1. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    Science.gov (United States)

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  2. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    Science.gov (United States)

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  3. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    Márquez Luzardoa, N.M.; Venselaar, Jan

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically i

  4. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    Science.gov (United States)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  5. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry; Streszczenia 40. Zjazdu Naukowego Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inzynierow i Technikow Przemyslu Chemicznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods.

  6. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  7. Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering.

    Science.gov (United States)

    Ekenseair, Adam K; Boere, Kristel W M; Tzouanas, Stephanie N; Vo, Tiffany N; Kasper, F Kurtis; Mikos, Antonios G

    2012-09-10

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.

  8. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  9. A critical Action Research approach to curriculum development in a laboratory-based chemical engineering course

    Science.gov (United States)

    White, Scott R.

    This dissertation is a report of an attempt to critically evaluate a novel laboratory course from within the context of a chemical engineering curriculum. The research was done in a college classroom-laboratory setting, entrenched in the everydayness of classroom activities. All of the students, instructors, and educational researchers were knowing participants in this Action Research study. The students, a mixture of juniors, seniors, & graduate students, worked together on semester-long projects in groups that were mixed by age, gender and academic level. Qualitative techniques were used to gather different forms of representations of the students and instructors' experiences. Emergent patterns from the data gave strength to emergent knowledge claims that informed the instructors and the researcher about what the students were learning about performing experimental work and communicating results with their peers and instructor. The course challenged and in some cases changed the conceptions of instruction previously held by the students and the instructors. The course did not proceed without problems, yet the majority of these problems were overcome by the design of the course. Assertions and recommendations for improvement and application to other educational contexts are suggested.

  10. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies. PMID:26461982

  11. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  12. Analysis of the Engineering Restoration Effect of Abandoned Yongledian Quarry in Beijing City Based on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    Liwei; CAI

    2014-01-01

    The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.

  13. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  14. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals. PMID:25431012

  15. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    Science.gov (United States)

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

  16. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    Science.gov (United States)

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  17. Carbon Dioxide Extraction from the Atmosphere Through Engineered Chemical Sinkage: Enabling Energy and Environmental Security

    Science.gov (United States)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Smith, W. S.; Colman, J.; Elliott, S.; Lackner, K.; Johnston, N. A.

    2002-05-01

    We present the case for carbon dioxide (CO2) extraction from air using engineered chemical sinks as a means of sustaining fossil energy use by avoiding climate change. Existing carbon sequestration strategies such as CO2 injection into geologic formations or the deep ocean and mineral carbonation, require a pure stream of concentrated CO2 to be viable. Furthermore, current emphasis on reducing the global CO2 emissions is on large centralized power plants. However, more than half of all emissions are from the transportation sector and small, distributed sources such as home heating, etc. Most solutions for dealing with these sources explicitly or implicitly entail completely overhauling the existing infrastructure. To solve these problems, Los Alamos National Laboratory has conceived a novel approach for directly extracting CO2 from the atmosphere. Direct extraction converts the dilute CO2 (370 parts per million) in the atmosphere into a pure CO2 stream ready for permanent sequestration. It provides the following advantages: (1) Preserves our existing energy use and fuel distribution systems, which represent a large investment, (2) Indirectly captures CO2 from the myriad of small, distributed, and mobile sources that otherwise are not accessible to sequestration, (3) Allows atmospheric CO2 levels to be restored to their pre-industrial age value, (4) Provides free transport of CO2 to suitable sequestration sites by using natural atmospheric circulation, and (5) Is relatively compact and therefore inexpensive when compared to renewable concepts. Our concept harnesses atmospheric circulation to transport CO2 to sites where the CO2 is extracted by binding it to an adsorbent. The bound CO2 is then recovered as pure gas by heating together with the solid adsorbent that is recycled. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts CO2 to a CaCO3 solid that can be heated to obtain pure CO2 and recover the CaO. Even with recycling costs

  18. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    Science.gov (United States)

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  19. Food engineering --chemical engineering elite should pay attention to the field%食品工程--化工精英应该关注的领域

    Institute of Scientific and Technical Information of China (English)

    陈晓东

    2016-01-01

    Food production and its market economy are the most important sector in national economy and security. Here the characteristics are introduced:food engineering is not a simple application of the chemical engineering principles. Food is a unique material consisting of mostly protein,fat and carbohydrate,which are all large polymeric molecules yet possessing characteristics that are more complex than those usually encountered. Most importantly,all food related phenomena are time-dependent,which are influenced significantly by their water contents. Here,the author has through some examples,e.g. food microstructure characteristics,water activity and its importance, separation and purification technologies in food industry,new emerging food processing technologies, food nutrition engineering,and nano technology applied to food industry,described the nature of food engineering as a multidisciplinary subject linked with biological engineering,chemical engineering, mechanical engineering and electrical and electronic engineering. A typical example,spray drying to make milk powder,is given with a futurd prospect suggested. There is no doubt that the current article reflects only a small part of area of food engineering. Nevertheless,it would make a good read for someone who is interested in food processing.%食品生产与市场是现代经济与国家安全中的重要一环。本文介绍了食品工程的特殊性:食品工程并非是化工原理的简单应用,因为食品是种特殊的物质,其主要组分(包括蛋白质、脂肪及碳水化合物)都是大分子,但拥有普通高分子材料不具备的各种特性。并且,食品中发生的物理化学现象是随时间变化的并且在很大程度上受其水分的影响。本文从食品的微结构特性、水活度及其重要性、食品的分离与纯化、“新兴”的食品加工技术、食品的营养过程工程、纳米技术在食品加工中的应用等方面全面阐述了食品

  20. Development of test stand for experimental investigation of chemical and physical phenomena in Liquid Rocket Engine

    OpenAIRE

    Emerson Andrade Santos; Wilton Fernandes Alves; André Neves Almeida Prado; Cristiane Aparecida Martins

    2011-01-01

    The main objective of this work was to present the specification of an experimental firing test stand for liquid rocket engines (LRE) and develop a program for control and acquisition of data. It provides conditions to test rocket engines with thrust from 50 to 100 kgf. A methodology for laboratory work implementation using information technology, which will allow the automatic and remote functioning of the test stand, permits users to input the necessary data to conduct tests safely, achieve...

  1. PARTICLE METHODS FOR COMPLEX FLOWS IN CHEMICAL ENGINEERING--THE PSEUDO-PARTICLE APPROACH

    Institute of Scientific and Technical Information of China (English)

    Wei; GE; Jinghai; LI

    2005-01-01

    The multi-scale structures of complex flows in chemical engineering have been great challenges to the design and scaling of such systems, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constituents and powerful tools of multi-scale models, owing to their physical fidelity and computational simplicity. Especially,pseudo-particle modeling (PPM, Ge & Li, 1996; Ge & Li, 2003) is most suitable for molecular scale flow prediction and exploration of the origin of multi-scale structures; macro-scale PPM (MaPPM, Ge & Li, 2001) and similar models are advantageous for meso-scale simulations of flows with complex and dynamic discontinuity, while the lattice Boltzmann model is more competent for homogeneous media in complex geometries; and meso-scale methods such as dissipative particle dynamics are unique tools for complex fluids of uncertain properties or flows with strong thermal fluctuations. All these methods are favorable for seamless interconnection of models for different scales.However, as PMs are not originally designed as either tools for complexity or constituents of multi-scale models, further improvements are expected. PPM is proposed for microscopic simulation of particle-fluid systems as a combination of molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC). The collision dynamics in PPM is identical to that of hard-sphere MD, so that mass, momentum and energy are conserved to machine accuracy. However, the collision detection procedure, which is most time-consuming and difficult to be parallelized for hard-sphere MD, has been greatly simplified to a procedure identical to that of soft-sphere MD. Actually, the physical model behind such a treatment is essentially different from MD and is more similar to DSMC, but an intrinsic difference is that in DSMC the collisions follow designed statistical rules that are reflection of the real physical processes only in very limited cases such as dilute gas.PPM is ideal

  2. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  3. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    such as random mutagenesis to a systems level which decreases the time and efforts on design and implementation. Here, the authors review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of developments for systems metabolic engineering of these organisms......Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has...... of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent...

  4. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian [UC; (USF)

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  5. Four Engineers...

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are four engineers traveling in a car;a mechanical engineer,a chemical engi-neer,an electrical engineer and a comput-er engineer.The car breaks down.“Sounds to me as if the pistons have seized.We ll have to strip down the engine before we canget the car working again,”says the mechanical

  6. Differential and differential-algebraic systems for the chemical engineer solving numerical problems

    CERN Document Server

    Buzzi-Ferraris, Guido

    2014-01-01

    This fourth in a suite of four practical guides is an engineer''s companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them.The volume focuses on differential and differential-algebraic systems, providing numerous real-life industrial case studies to illustrate this complex topic. It describes the methods, innovative techniques and strategies that are all implemented in a freely available toolbox called BzzMath, which is developed and maintained by the autho

  7. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    Science.gov (United States)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  8. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  9. Engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring chemical plant area

    International Nuclear Information System (INIS)

    This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the proposed removal action for managing contaminated surface waters impounded at the chemical plant area of the Weldon Spring site, located near Weldon Spring, Missouri. The US Department of Energy is responsible for cleanup activities at the site under its Surplus Facilities Management Program (SFMP). The major goals of SFMP are to eliminate potential hazards to human health and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses, to the extent possible. The objectives of this EE/CA report are to identify the cleanup as a removal action, document the selection of a response that will mitigate the potential release of radioactive or chemical contaminants from the impounded waters into the nearby environment, and address environmental impacts associated with the proposed action. 41 refs., 8 figs., 8 tabs

  10. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ of the National University of Colombia, Bogotá

    Directory of Open Access Journals (Sweden)

    Javier Gama Chávez

    2010-04-01

    Full Text Available An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ. The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water contamination by effusions generation and air contamination. These impacts were the base for formulating following and control programs, furthermire, a training an communication program was done. All the programs, including the requiered documents and procedures, were published in the Environmental Management Plan and the Environmental Procedures Manual.

  11. Planejamento participativo no subprograma QEQ do PADCT Joint strategic planning in the chemistry and chemical engineering subprogram of PADCT

    Directory of Open Access Journals (Sweden)

    Eucler B. Paniago

    2007-12-01

    Full Text Available The development of the Brazilian chemistry sector, during the last 30 years, is nowadays being attributed to PADCT (Science and Technology Development Program. Since the seventies, the Government took notice of the importance of research in chemistry for the Brazilian economy, therefore creating PADCT to support chemistry and chemical engineering among other areas of science and technology. Planning and implementation of the second phase of this program represented a real joint strategic planning. Since then, academic research and human resources education have experienced significant improvements. However, in the chemical trade, the deficit continues to grow, in spite of an almost constant ratio between importation costs and export revenues. Continued investments for research in the area remain necessary.

  12. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  13. Design and development of visual learning techniques to construct chemical engineering safety knowledge

    OpenAIRE

    Nishaben Santibhai, Dholakiya

    2009-01-01

    People working in the chemical industry require specific skills to deal with hazardous environments and to operate complicated machinery which often requires on site training. The importance of designing systems and environments with safe possible ways to train operators is essential for the chemical industries. Virtual reality offers the potential to train personnel in a safe highly visual and interactive manner. Virtual Learning Environments(VLE) represent an entirely new form of educat...

  14. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, David [Alstom Power Inc., Windsor, CT (United States)

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  16. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    Science.gov (United States)

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  17. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    Science.gov (United States)

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  18. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  19. Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses

    Science.gov (United States)

    Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.

    2010-01-01

    Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…

  20. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    Science.gov (United States)

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  1. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bireswar; Datta, Amitava, E-mail: amdatta_ju@yahoo.com [Jadavpur University, Department of Power Engineering (India); Datta, Aparna; Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre (India)

    2013-04-15

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm{sup -1} has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  2. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  3. Projects elaboration, a didactics approach for the chemical engineering final course students; Elaboracao de projetos, uma abordagem didatica para alunos de final de curso de engenharia quimica

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Marco Antonio Gaya de; Ricardo Izidoro [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Operacoes e Projetos Industriais]. E-mail: mgaya@uerj.br; Costa, Joao Manuel da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello

    2003-07-01

    This paper presents the adopted approach by the Department of Industrial Operations and Projects of the Institute of Chemistry in the graduation course Design II, where a group of chemical engineering students elaborates a project to finish their graduation. The differential of our proposal consists in the integration of the previous chemical engineering courses (e.g. heat transfer, unit operations, etc.) and to take the student to an activity with a structure similar to those found in the engineering companies, with large application in the oil and gas industries, especially in the petroleum processing and refining. (author)

  4. Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH2 Template

    Directory of Open Access Journals (Sweden)

    Wu Junshu

    2010-01-01

    Full Text Available Abstract A size-controlled Zn(OH2 template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH2 octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process without loss of the original shape of Zn(OH2 template. Ion-replacement reaction is suitable for fabrication of hollow sulfides based on the solubility difference between Zn(OH2 and products. Controlled chemical deposition is utilized to coat an oxide layer on the surface of Zn(OH2 template. The abundant hydroxyl groups on Zn(OH2 afford strong coordination ability with cations and help to the coating of a shell layer. The rudimental Zn(OH2 core is eliminated with ammonia solution. In addition, ZnO-based heterostructures possessing better chemical or physical properties can also be prepared via this unique templating process. Room-temperature photoluminescence spectra of the heterostructures and hollow structures are also shown to study their optical properties.

  5. Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.

    Science.gov (United States)

    Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E

    2016-02-10

    Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate. PMID:26784372

  6. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design......This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  7. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    Science.gov (United States)

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.

  8. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    OpenAIRE

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was tak...

  9. Phonon Engineering of ZnO nanowires with controlled chemical doping

    Science.gov (United States)

    Bohorquez-Ballen, Jaime; Jayasekera, Thushari

    2013-03-01

    Using the first principles density functional theory (DFT) calculations, we have investigated electronic and dynamical properties of ZnO nanowires in [001] direction with different diameters in the presence of impurities such as Mg, Al, and Ga. As the impurity concentration is varied, electrical and thermal conductivities of nanowires change. In this way, nanowires can be engineered to reduce the thermal transport, such that their thermoelectric properties can be enhanced.

  10. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    Science.gov (United States)

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  11. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    Science.gov (United States)

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  12. Single and two-phase flows on chemical and biomedical engineering

    CERN Document Server

    Antonio, Martins; Rui, Lima

    2012-01-01

    ""Single or two-phase flows are ubiquitous in most natural process and engineering systems. Examples of systems or process include, packed bed reactors, either single phase or multiphase, absorber and adsorber separation columns, filter beds, plate heat exchangers, flow of viscoelastic fluids in polymer systems, or the enhanced recovery of oil, among others. In each case the flow plays a central role in determining the system or process behaviour and performance. A better understanding of the underlying physical phenomena and the ability to describe the phenomena properly are both crucial to

  13. Nonlinear systems and optimization for the chemical engineer solving numerical problems

    CERN Document Server

    Buzzi-Ferraris, Guido

    2013-01-01

    This third in a suite of four practical guides is an engineer's companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them.The volume focuses on optimization from experimental to large-scale processes, detailing the algorithms needed to solve real-life problems. It describes the methods, innovative techniques and strategies that are all implemented in a well-established, freeware mathematical toolbox called BzzMath, which is developed and maintained by the au

  14. Surface morphology engineering of metal-oxide films by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Solis, J.L.; Estrada, W. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru); Gomez, M. [Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru)

    2007-07-01

    The Chemical Spray Pyrolysis technique and a combination of sol-gel and spray pyrolysis techniques have been used in order to monitor the morphology of metal-oxide-based thin films to be used as functional materials. We can obtain surfaces from specular to rough-porous according to the physico-chemical conditions of the precursor/spraying solution. We have produced coatings of ZnO-based and NiO{sub x}-based coatings from alcoholic and aqueous solutions. A single glass, ITO-precoated glass or alumina was used as the substrate. Porous materials of WO{sub 3}, WO{sub 3}-SnO{sub 2} and SnO{sub 2} have been produced by spraying either inorganic or metal alkoxide gels over a hot substrate. The morphologies of coatings were evaluated by either SEM or optical measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Surface morphology engineering of metal-oxide films by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Chemical spray pyrolysis technique and a combination of sol-gel and spray pyrolysis techniques have been used in order to monitor the morphology of metal-oxide-based thin films to be used as functional materials. We can get from specular to rough-porous surfaces according to the physical-chemical conditions of the precursor / spraying solution. We have produced coatings of ZnO-based and NiOx-based coatings from alcoholic and water solution. A single glass, ITO-precoated glass or alumina was used as the substrate. Porous materials of WO3, CuWO4-x and SnO2 have been produced spraying either inorganic or metal alkoxide gels over a hot substrate. Morphology of coatings were evaluated by either SEM or optical measurements. (author)

  16. Spreadsheets in chemical engineering education : a tool in process design and process integration

    OpenAIRE

    Ferreira, E. C.; Lima, Ricardo; Salcedo, Romualdo

    2004-01-01

    Recent developments in embedding numerical optimization procedures with linear and nonlinear solvers within a spreadsheet environment have greatly enhanced the use of these tools for teaching chemical process design and process integration. Student skills with respect to these topics are usually gained by complex and expensive modular simulators, e.g. ASPEN Plus® or algebraic tools such as GAMS® or AMPL®. However, modular simulators have a significant learning curve, and algebraic modeling la...

  17. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  18. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Sei Jin; Zhao, Hangbo; Kim, Sanha; De Volder, Michael; John Hart, A

    2016-08-01

    High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

  19. Application of Nanocomposite Coatings with Different Structural Physical and Chemical Characteristics in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    A.N. Goltsev

    2013-03-01

    Full Text Available The research covers the results of experimental studies of the effect character of nanocomposite coatings with different physical and chemical parameters (type, roughness, hydrophilic-hydrophobic characteristics on structural and functional properties (adhesive potential, phenotype, gene expression of mesenchymal stem cells (MSCs. On the tested nanocoatings (Al2O3, ZrO2, Ta2O5 the capability of oxide coating Al2O3 to enrich the in vitro cultured bone marrow (BM with the cells of MSCs phenotype markers as well as to increase the expression rate of ido gene in them, which may extend the spectrum of their therapeutic application in clinics, has been found.

  20. MSE-THERMO: Integrated computer system for application of chemical thermodynamics in materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, J.; Chuchvalec, P.; Vonka, P. [Inst. of Chemical Technology, Prague (Czech Republic)

    1995-08-01

    MSE-THERMO is an integrated computer system embodying thermochemical databases with sophisticated computational software for diverse thermodynamic calculations. It consists of a database MSE-DATA, where thermodynamic data for pure substances are stored, as well as programs for the calculation of thermodynamic functions of pure substances, changes of thermodynamic functions for chemical reactions, ternary phase diagrams in a subsolidus region, phase stability diagrams, and equilibrium composition of multicomponents and multiphases systems. Datafiles as well as computational software tools are at present intensively extended.

  1. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  2. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    Science.gov (United States)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  3. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  4. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  5. Superior Mobility in Chemical Vapor Deposition Synthesized Graphene by Grain Size Engineering

    Science.gov (United States)

    Petrone, Nicholas; Dean, Cory; Meric, Inanc; van der Zande, Arend; Huang, Pinshane; Wang, Lei; Muller, David; Shepard, Kenneth; Hone, James

    2012-02-01

    Chemical vapor deposition (CVD) offers a promising method to produce large-area films of graphene, crucial for commercial realization of graphene-based applications. However, electron transport in CVD grown graphene has continued to fall short of the performance demonstrated by graphene derived from mechanical exfoliation. Lattice defects and grain boundaries developed during growth, structural defects and chemical contamination introduced during transfer, and charged scatterers present in sub-optimal dielectric substrates have all been identified as sources of disorder in CVD grown graphene devices. We grow CVD graphene and fabricate field-effect transistors, attempting to minimize potential sources of disorder. We reduce density of grain boundaries in CVD graphene by controlling domain sizes up to 250 microns. By transferring CVD graphene onto h-BN utilizing a dry-transfer method, we minimize trapped charges at the interface between graphene and in the underlying substrate. We report field-effect mobilities up to 110,000 cm2V-1s-1 and oscillations in magnetotransport measurements below 1 T, confirming the high quality and low disorder in our CVD graphene devices.

  6. Proceedings of the sixty third annual session of Indian Institute of Chemical Engineers: souvenir

    International Nuclear Information System (INIS)

    Biotechnology is on a wide range of industrial agenda covering fine chemicals, bulk chemicals, pharmaceuticals food, textiles, pulps, paper, mineral and energy areas paving the way of an industrial revolution in the 21st century. Broadly, industrial applications face different economic pressures as 'green', 'red' and 'white'. While 'green' biotechnology's agricultural applications emerge from millennia of human selective breeding of animals and plants, 'red' applications draw their lineage back to the healing arts 'white' include new and emerging non-medical and non-agricultural applications. Fuels produced using bio-technology such as bioethanol and bio-diesel are all potential oil replacement. Thus bio-technology is proving its worth as a technology that can contribute to sustainable industrial development. Many bio-catalytic tools are rapidly becoming available for industrial applications because of the recent advances in this technique. The present conference will enable the researchers and industrialists to exchange their ideas and rejuvenate their bio-technological skills aiming towards industrial sustainability. Papers relevant to INIS are indexed separately

  7. 化工原理实验中的低碳经济理念%The low carbon economic ideas in experiments of Chemical Engineering Principles

    Institute of Scientific and Technical Information of China (English)

    徐宁; 牟建明

    2011-01-01

    在化工原理实验教学中,用处理工程问题的方法揭示节能的原理,将节能减排问题始终贯穿于化工单元操作之中.通过优化化工单元操作、权衡多种工程因素、引入合理利用能量、循环经济和环境保护概念以及具有新技术的单元操作实验,使得学生在掌握实验技能的同时,也关注节能减排这一社会热点问题,认识到节能减排是可以从身边事做起的,而科学、合理地进行化工单元操作也是对低碳经济作出的重要贡献.%In experiment teaching of Chemical Engineering Principles, the principle of energy saving was revealed with the method of dealing with engineering problems, and energy saving and emission reduction will always run through the chemical engineering unit operation.By optimizing chemical engineering unit operation,weighing a variety of factors of engineering, introducing the idea of rational use of energy, recycling economy and environmental protection, and also introducing the experiment of chemical engineering unit operation of new technologies, students can not only master the skills of experiment, but also concern about energy saving and emission reduction of social hot issues.Awareness of energy saving and emission reduction can be started from the routine work.The scientific and rational operation of the chemical engineering unit operation is also an important contribution to low carbon economy.

  8. Evaluation of social competencies in chemical engineering: Application and results of the pilot test (academic year 2012-2013

    Directory of Open Access Journals (Sweden)

    Francisco José Suñé Grande

    2015-06-01

    Full Text Available The Escola Tècnica Superior d’Enginyeria Química has a long tradition in the deployment of social competencies in engineering curricula through Integrated Projects (IP carried out in structured teams. Social competencies are taught and practiced during the development of the IPs. We conceptually introduce a methodology for a 360o assessment of the students’ social competencies, as a tool to foster the improvement of their competency levels. In this article we analyze the results of the pilot test where the aforementioned methodology has been implemented in the Bachelor studies of Chemical Engineering. The results indicate that it is possible to objectively obtain the student’s competency level discriminating among different social competencies, as well as among different students in the same team. The application of this tool fosters the development of specific educative actions to help the students with low competency profile, to reach acceptable levels for a successful insertion in the labor market.

  9. Annette Bunge: developing the principles in percutaneous absorption using chemical engineering principles.

    Science.gov (United States)

    Stinchcomb, A L

    2013-01-01

    Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field. PMID:23921118

  10. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.

    Science.gov (United States)

    Buffière, Marie; Brammertz, Guy; Sahayaraj, Sylvester; Batuk, Maria; Khelifi, Samira; Mangin, Denis; El Mel, Abdel-Aziz; Arzel, Ludovic; Hadermann, Joke; Meuris, Marc; Poortmans, Jef

    2015-07-15

    The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this contribution, the KCN/KOH chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)2 thin films, is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells. PMID:26039042

  11. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  12. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  13. Dopant's chemical coordination: a path for engineering high performance thermoelectric sodium cobaltate

    Science.gov (United States)

    Assadi, M. Hussein N.; Katayama-Yoshida, Hiroshi

    2014-03-01

    Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to generate electricity from waste heat. Our recent experiments on Mg doped Na0.75CoO2 demonstrated 50% enhancement in power factor at ambient. This motivated us to theoretically analyze the mechanisms behind simultaneous improvement of interdependent Seebeck coefficient and electrical conductivity. For this, we comprehensively studied the electronic and crystallographic structure of Na0.75CoO2 doped with 5 elements Mg, Sb, Zn, Ni and Eu. These elements represent wide variety of electronic configurations such as open d and f shells, closed d and s shells, combined with great variation in atomic mass. Systematic density functional calculations showed that the Ni and Zn were more stable when substituting Co with formation energy 2.35 eV, 2.08 eV. While Eu and Mg and Sb are more stable when it substitutes Na. In the case of Mg these results are consistent with Raman scattering measurement. This suggests that the doped Mg ions immobilize Na ions, reducing the resistivity by improving the mobility of carriers and thus enhancing the thermo-power. This work was supported by JSPS and Intersect.

  14. 化工单元仿真在化工原理教学中的应用%The Application of Chemical Unit Simulation to Chemical Engineering Principles Teaching

    Institute of Scientific and Technical Information of China (English)

    张甲

    2011-01-01

    化工单元仿真是针对化工专业学生开展的化工单元DCS仿真操作的教学环节。它即属于实践环节又与理论知识紧密相连,是一个以化工原理为基础,以计算机模拟操作为手段的综合教学。文章阐述了化工单元仿真在化工原理教学中的重要意义和开展教学的方法,提出了完善管理机制的一些建议。%Chemical unit simulation is the course for chemical engineering students and about DCS simulation of chemical unit operation.It was an empirical course also closely linked with the theoretical knowledge.It was a chemical engineering principles-based,computer simulation operation as a means of integrated teaching.The paper describedthe importance of chemical unit simulation in Chemical Engineering Principles teaching,the method of teaching,and put forward some suggestions improve the management mechanism.

  15. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Fabio Salvatore [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Pitarresi, Giovanna, E-mail: giovanna.pitarresi@unipa.it [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo (Italy); Fiorica, Calogero [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); Rigogliuso, Salvatrice; Ghersi, Giulio [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Biologia Cellulare, Università degli Studi di Palermo, Viale delle Scienze ed. 16, 90128, Palermo (Italy); Giammona, Gaetano [Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo (Italy); IBIM-CNR, Via Ugo La Malfa 153, 90146 Palermo (Italy)

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. - Highlights: ► Hyaluronic acid (HA) has been functionalized with ethylenediamine (EDA). ► Amino groups of HA-EDA allow the reaction with α-elastin and ethylene glycol diglycidyl ether (EGDGE). ► Chemical scaffolds of HA-EDA-graft-α-elastin/EGDGE have been characterized. ► The presence of α-elastin affects porosity, swelling and enzymatic degradation of scaffolds. ► The presence of α-elastin improves attachment, viability and proliferation of fibroblasts and smooth muscle cells.

  16. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  17. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  18. Chemical Engineering Division reactor fuels and materials chemistry research: July 1976--September 1977. [LMFBR; GCFR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    Reactor safety studies were directed primarily toward obtaining high-temperature physical property data for use in reactor safety analyses. Spectroscopic data and an oxygen-potential model were used to calculate thermodynamic properties applicable to the equations of state of (U,Pu)O/sub 2/ and UO/sub 2/. Work was continued on the compilation of standard sets of property data on reactor fuels and materials. The viscosity of molten alumina and the thermal diffusivity of molten UO/sub 2/ were measured as functions of temperature. Modeling and chemical-interaction studies related to post-accident heat removal were conducted. The efforts in sodium technology supported the LMFBR program. Studies were conducted to explore the feasibility of upgrading the quality of commercial-grade sodium and sodium from decommissioned reactors to provide new sources of reactor-grade sodium. Work was started on the development of methods for disposal of contaminated alkali--metal wastes. In work related to tritium, a model was developed to describe the behavior of tritium in an LMFBR, tritium permeation through steam-generator materials was measured, and an in-sodium tritium meter was developed and tested in reactor environments. Work in the area of fuels and materials chemistry was conducted in support of the GCFR program. Portions of the cesium--uranium--oxygen phase diagram were investigated to aid in understanding the reaction of fission-product cesium with urania blanket material, particularly in relation to axial gas flow in vented GCFR fuel pins. Data on the oxidation of vanadium, niobium, and titanium were assessed to determine the suitability of these materials for use in controlling oxidative attack of stainless steel cladding.

  19. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  20. Graphic constructions of characteristic diagrams in chemical engineering and the application of differential geometry

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2012-01-01

    Full Text Available Starting from the experimental concentration-time ( cA,t diagram this work gives the construction of the rate of reaction-time (rA,t diagram using the pure graphic method. The diagram was constructed based on the constructed tangents in arbitrary points of the starting diagram by drawing lines parallel to them in the predetermined pole. The evidence of the construction was derived using differential geometry, i.e. the main theorem of differential calculus. Differential properties between the observed values were used in the method. Starting from the analytic relations rA = rA(t and cA = cA(t, which can be very complex (polynomes of the n-th order, and, eliminating time t in order to give a full description of the process, we obtain the analytical relation rA = rA(cA, which is then graphically represented. Hoewever, this elimination of time can also be done graphically, in a relatively simple way. After that, through the use of the integral calculus, it was shown that concentration increase in a time interval is proportional to the (rA,t diagram surface area. Using a similar procedure, further in the paper, it was shown that the time increase is proportional to the (1/rA, cA diagram surface area. In order for the method to be applicable in practice, we have derived relations for appropriate coefficients of proportionality. Verification of the method is illustrated by the two characteristic examples from chemical kinetics at different monotonies of the starting experimental functions.

  1. Chemical Engineering Division fuel cycle programs. Progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1979-04-01

    Fuel cycle studies reported for this period include studies of advanced solvent extraction techniques focussed on the development of centrifugal contactors for use in Purex processes. Miniature single-stage and eight-stage centrifugal contactors are being employed in studies of contactor performance and the kinetics of extraction. A 9-cm-ID centrifugal contactor has been completed, and fabrication drawings are being prepared for a plant-scale contactor. In other work, tricaprylmethyl-ammonium nitrate and di-n-amyl n-amylphosphonate are being evaluated as extractants in the Thorex process. Literature on the dispersion of liquids by explosions is being reviewed. A process was developed for extracting TBP degradation products from TBP-Na/sub 2/CO/sub 3/ scrub solutions while the actinides remain with the raffinate. In the program on pyrochemical and dry processing of nuclear fuel, the literature is being reviewed for acceptable materials for containment vessels, decladding methods are being evaluated, salt transport processes are being studied, a candidate flow sheet (based upon the Dow Aluminum Pyrometallurgical process) for reprocessing spent uranium metal fuel was prepared, work was begun on the use of molten salts for reprocessing actinide oxides, and the reprocessing of (Th,U)O/sub 2/ solid solution in a KCl-LiCl salt containing ThCl/sub 4/ and thorium chips was studied. Work on the encapsulation of solidified radioactive waste in a metal matrix includes study of (1) chemical interactions between simulated waste forms and matrix metals, (2) the leach rates of simulated encapsulated waste forms, and (3) the corrosion of candidate matrix metals and canister materials in brine solutions.Work to establish criteria for the handling of waste cladding hulls is continuing. The transport properties of nuclear waste in geologic media are being studied to estimate leaching of radionuclides from deep repositories by groundwater.

  2. Study on Teaching Reform of Chemical Engineering Unit Operations Course%“化工单元操作”课程教学改革探索

    Institute of Scientific and Technical Information of China (English)

    林木森

    2016-01-01

    Chemical engineering unit operations are the core course of chemical engineering technology, which belongs to the professional basic course, and plays an important role in the development of chemical engineering majors in higher vocational colleges. This paper discusses the nature of chemical engineering unit operation course, the idea and method of curriculum design, and the main results of the reform of the course in recent years. Finally, proposed are some suggestions on the development of the reform and development of the curriculum teaching.%“化工单元操作”是化工技术类专业核心课程,属于专业基础课程。阐述“化工单元操作”课程的性质,分析该课程设计的理念与思路以及近几年来课程教学改革的主要成果,并对课程教学改革发展的趋势提出建议,以利于高职院校化工类学生岗位操作能力的培养和职业能力的提升。

  3. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier

    Science.gov (United States)

    Fernández, A. M. a.; Baeyens, B.; Bradbury, M.; Rivas, P.

    Compacted bentonites are being considered in many countries as a backfill material in high-level radioactive waste disposal concepts. A knowledge of the porewater chemistry in the clay barrier is essential since the porewater composition influences the release and transport of the radionuclides. However, quantification of the water chemistry in compacted bentonite under repository conditions is difficult. The methodology followed to obtain the porewater composition of the FEBEX bentonite is described in this paper. It is based on the characterisation of the solid phase, determination of the physico-chemical properties of the montmorillonite component and geochemical modelling. The FEBEX bentonite has a high cation exchange capacity (∼1 eq/kg), high surface area (∼725 m 2/g total surface area and 62 m 2/g external surface area) and accessory minerals such as carbonates, sulphates, pyrite, etc.; and organic matter. The chloride inventory in the FEBEX bentonite is ∼22 mmol/kg. The montmorillonite, together with the other mineral phases present, will determine the composition of the porewater. However, in order to calculate a unique aqueous chemistry, two further quantities are required, the chloride concentration and the pH. Water vapour adsoption/desorption isotherms, together with c-lattice spacing determinations, were used to identify the different states and location of water. Most of the water in the as received bentonite resides in the interlayer space. However, the measurements indicate that about 0.053 l/kg may be regarded as free water, implying a chloride concentration of 0.42 M. The pH of the system is fixed by equilibrium with the atmosphere ( PCO 2=10 -3.5 bar) and saturation with the carbonate phases present. The porewater calculated to be in equilibrium with the as received FEBEX bentonite powder is a Na-Ca-Mg chloride type with a high ionic strength, 0.66 M, and a pH of ∼7.4. Likewise, in order to calculate the porewater composition of

  4. 基于工程设计理念的化工原理教学%The Teaching of Unit Operations of Chemical Engineering Based on the Engineering Design Principles

    Institute of Scientific and Technical Information of China (English)

    李燕

    2012-01-01

    化工原理课程是一门内容繁多、工程性很强的课程。教学中以工程设计为指导思想,突出工程理论和工程问题的分析,在不同单元过程中寻求共同点,才能化繁为简,起到良好教学效果。%Principles of chemical engineering course is a project of various content,and have a strong curriculum.Teaching in engineering design as the guiding ideology,outstanding engineering theories and engineering problems,in a different unit process of seeking common points,can be simplified,played a good teaching effect.

  5. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  6. The Application of Aspen Plus 7.3 in Chemical Engineering Design%Aspen Plus 7.3在化工设计中的应用

    Institute of Scientific and Technical Information of China (English)

    薛科创

    2014-01-01

    Chemical engineering design is the calculation process of the related parameters by computer. Because of the large amount of calculation, it must through the corresponding chemical simulation software to achieve. Aspen Plus 7.3 because the precise calculating, fast running speed, become the preferred software in chemical engineering design. This paper show the steps and methods of chemical engineering design by computer thought the flash condition is determined by Aspen Plus 7.3.%由于化工设计计算量大,必须通过相应的化工模拟软件来实现。Aspen Plus 7.3计算精确,运行速度快,成为化工设计者的首选软件。通过介绍利用Aspen Plus 7.3进行闪蒸条件的确定,说明利用计算机进行化工设计的步骤和方法。

  7. 化工装置建筑工程测量技术研究%Chemical Plant Construction Engineering Measurement Technology Research

    Institute of Scientific and Technical Information of China (English)

    王松

    2015-01-01

    The construction of chemical plant is related to the production of the country, the development of the economy. However, construction measurement technology and relates to the construction of a chemical plant level is in line with the standard . So construction engineering measurement technology is particularly important. From another aspect of construction engi-neering survey is to determine the stand or fall of chemical pro-duction equipment to build. Chemical plant construction engi-neering measurement technology research is of great importance.%化工装置的建筑施工关系到国家的生产、经济的发展。然而建筑工程的测量技术水平又关系到化工装置的建造水平是否符合标准。所以化工装置的测量技术研究就显得非常有必要了。从另一个方面说建筑工程测量是决定化工生产装置建造的好坏。因此,该项技术研究就具有重要的意义。

  8. Chemical engineering research

    International Nuclear Information System (INIS)

    Results of research are reported on hydrodynamics and mass transfer in three-phase fluidized beds. In hydrogen permeation-oxidation studies it was found that at 300 to 5000C, and 10-6 oxygen pressure, stainless steel oxidizes 40 to 50 percent of the permeating deuterium. Methods of preparing less than 10-μ sorbent particles were studied using erbium oxide. Adiabatic graphite oxidation studies demonstrated that burning rates are mass transfer controlled, and that the product gas temperature can be controlled by adjusting the recycle gas rate. Apparatus was assembled for evaluation of a perfusion-impactor to remove solid or liquid particles from gas streams. In studies of continuous chromatography the separation of Blue Dextran and CoCl2 on Spandex G-10 resin was demonstrated

  9. Chemical engineering research

    International Nuclear Information System (INIS)

    Studies are reported on continuous chromatography of Co--Ni mixtures, performance of three-phase fluidized beds that are potential choices for coal conversion reactors, oxidation of H isotopes that permeate metal surfaces, hydroclones, and particulate agglomeration in heavy organic media (such as coal liquids)

  10. Development and application of characteristic database for uranium mining and metallurgy in the library of Beijing Research Institute of Chemical Engineering and Metallurgy

    International Nuclear Information System (INIS)

    Beijing Research Institute of Chemical Engineering and Metallurgy (BRICEM) is a multi disciplinary comprehensive research institute engaged in uranium mining, engineering design and related material researches. After 53 years of researches and development, BRICEM has accumulated a plenty of valuable data and resources. By analyzing the actual conditions of BRICEM's technological database, this thesis aims to propose the idea of building a characteristic database for uranium mining and metallurgy. It gives an in-depth analysis on content design, development status and problems of database development, in order to come up with solutions to these problems, as well as suggestions on the future development plans of the characteristic database. (author)

  11. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  12. 化学化工专业德育浅析%A Brief Analysis on Specialty Moral Education of Chemistry and Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    程学礼; 赵燕云; 郑国兵

    2015-01-01

    In recent years, food and drug events and major chemical accidents arising from misoperation manifested the importance and urgency of chemistry and chemical engineering specialty moral education. The moral education of chemistry, chemical engineering and related specialties should be carried out in the whole process of college education. Employed plentiful examples to demonstrate the insufficiency of current specialty moral education, it was put forward that specialty moral education should be integrated into the teaching of specialized courses and chemical experiments, and the periods of internship stages and dissertation writing. The implementation strategy of specialty moral education of chemistry and chemical engineering was also analyzed, and several outstanding textbooks about chemical safety in production for the specialty moral education were recommended.%近年来的食品、药品事件以及由操作失误造成的重大化工事故凸显了化学、化工专业德育的重要性和紧迫性。化学化工及相关专业的德育教育应贯穿大学教育的整个过程。本文用大量实例证明了目前专业德育的缺失,提出在专业课教学、实验教学、实习阶段和毕业论文期间要融入专业德育教育,并分析了化学化工专业德育的实施策略。本文也推荐了一些优秀化学化工安全生产教材供专业德育教育使用。

  13. Engineering Chemically Exfoliated Large-Area Two-Dimensional MoS2 Nanolayers with Porphyrins for Improved Light Harvesting.

    Science.gov (United States)

    Zhang, Hanyu; Choi, Jungwook; Ramani, Arjun; Voiry, Damien; Natoli, Sean N; Chhowalla, Manish; McMillin, David R; Choi, Jong Hyun

    2016-09-19

    Molybdenum disulfide (MoS2 ) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface-engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large-area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)-, gallium(III)-, iron(III)-centered, and metal-free protoporphyrin IX (ZnPP, GaPP, FePP, H2 PP); metal-free and zinc(II) tetra-(N-methyl-4-pyridyl)porphyrin (H2 T4, ZnT4); and metal-free and zinc(II) tetraphenylporphyrin (H2 TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible-light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron-hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4-functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high-performance light-harvesting applications.

  14. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95.

  15. Review on the intensification of chemical engineering processes by microwave%微波强化化工过程技术进展

    Institute of Scientific and Technical Information of China (English)

    王笃政; 孙永杰; 孙彬峰; 贾兴龙; 张红富; 向阳

    2012-01-01

    The intensification of chemical engineering processes is the main way of energy saving and emission reduction in enterprises. There are several methods of intensificatio in chemical engineering processes. In this paper, the enhancement intensification by microwave in the processes of catalysis, synthesis, extraction, degradation and demulsification are briefly introduced. The intensification effect and application progress are also recommended.%化工过程强化是企业节能减排的主要途径,化工过程强化手段有多种,简要介绍了微波在催化、合成、萃取、降解及破乳过程的强化作用机理,并介绍了微波在这些过程中的强化效果与应用进展。

  16. A Review on Some Chemical Engineering and Microbiological Aspects Considered in the Production of Highly Concentrated Probiotic Cultures and Bacteriocins by Lactococci and Lactobacilli

    OpenAIRE

    Nelson Pérez Guerra

    2012-01-01

    The main purpose of this work is to give an overview on the chemical engineering aspects related with the production of probiotic cultures and bacteriocins. Firstly, some evidence of the potential of different Lactococci and Lactobacilli strains for prevention or treatment of different human diseases, or as growth promoters in farm animals is given. In addition, examples of different commercial dietary supplements containing probiotic lactoccocci and lactobacilli in combination or not with ot...

  17. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper;

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...... characteristics under high load condition in a marine diesel engine. Comparisons to the measurement show that the simulated pressure rise started 1.0 crank angle degree in advance and the calculated peak pressure is 1.7 % lower. The associated flame liftoff length is negligible, yielding high local equivalence...

  18. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    Science.gov (United States)

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. PMID:25704499

  19. Student Chemical Engineering Reflective ePortfolios--ChE Student Perceptions of Learning from Reflective ePortfolio Creation

    Science.gov (United States)

    Cherrstrom, Catherine A.; Raisor, Cindy; Fowler, Debra

    2015-01-01

    Engineering educators and employers value and prioritize communication skills, but developing and assessing such skills in engineering programs is challenging. Reflective ePortfolios provide opportunities to enhance communication skills. The purpose of this three-­year qualitative case study was to investigate the use of reflective ePortfolios in…

  20. The Balance Calculating System of Chemical Engineering Counting and Its Selection Methods%化工计算衡算体系及其选择技巧

    Institute of Scientific and Technical Information of China (English)

    张南哲

    2015-01-01

    化工计算是化学工程学的基础,在化工计算中衡算体系的划定是一项重要环节。以物料衡算为例,说明了化工计算衡算体系划分的多样化和重要性,指出了选择衡算体系的基本原则和一些具体的方法和技巧。恰当选择化工衡算体系不仅可以简化计算、提高衡算效率,而且可以避免错误的出现。%Chemical calculations are the basis of chemical engineering. In chemical engineering calculation, division of balance calculating system is an important part. Took the material balance as an example, the diversification and the importance of balance chemical calculation division were explained, the basic principles to choose the balance calculating and some specific methods and skills were pointed out. Proper selection of the balance calculating system can not only simplify the calculation and improve the efficiency, but also avoid the errors.

  1. Reform and Practice of Strengthening Engineering Design Training in the Chemical Reaction Engineering Courses%化学反应工程教学中加强工程设计训练的改革与实践

    Institute of Scientific and Technical Information of China (English)

    赵启文; 张兴儒; 成春春; 许新乐

    2012-01-01

    我们以培养学生的工程设计能力、提高解决实际工程问题的水平为目的,采取理论教学中围绕工程问题讲解,开设反应器、精馏塔、换热器等化工单元装置设计,典型化工产品工艺流程设计,综合设计型实验,鼓励学生结合实际工程项目完成毕业设计、组建化工设计课程群等系列教学改革措施,取得了良好的教学效果。%For the purpose of training students' ability of engineering design and upgrading their ability in solving practical problems, a new teaching approach is adopted, that is, more practical engineering problems are explained when teaching theory. A series engineering design courses are set up: chemical unit design such as reactor, rectifying tower, heat exchanger, process design of typical chemical products and the integrated design experiments are established. Meanwhile, the students are encouraged to complete graduate design combining the practical project. Good teaching effects are obtained after the reform.

  2. Design of chemical plant

    International Nuclear Information System (INIS)

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  3. Heat transfer and chemical kinetics in the exhaust system of a cold-start engine fitted with a three-way catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S.H.; Hoang, D.L. [Nanyang Technological Univ., School of Mechanical and Production Engineering, Nanyang (Singapore); Zhou, P.L. [Newcastle upon Tyne Univ., Dept. of Marine Technology, Newcastle upon Tyne (United Kingdom)

    2000-10-01

    Modelling of cold-start engine exhaust behaviour is a difficult task as it involves complicated heat transfer processes associated with water condensation and evaporation at the walls of the exhaust manifold/pipe and monolith cells, and the chemical reactions of CO/HC/NO in the three-way catalytic converter. This paper presents a model that is capable of predicting the exhaust gas temperatures along the exhaust system and across the catalyst monolith, both spatially and temporally, from the moment when the engine is cranked. The conversions of CO/HC/NO to harmless carbon dioxide, water and nitrogen at the catalytic converter downstream have been validated satisfactorily by the experimental data. The distortion of measured NO emission data/signals due to the dynamic behaviour of the chemiluminescence analyser has been reconstructed by means of a signal inference technique before these signals were used to validate the predictive capability of the model developed. (Author)

  4. Discussion and Practice of Teaching Transformation on Chemical Engineering Unit Operation%化工原理教学改革的实践与探讨

    Institute of Scientific and Technical Information of China (English)

    胡洁

    2014-01-01

    化工原理课程对化工专业学生的综合分析能力和工程实践能力有很重要的作用。在该课程的教学改革中,运用从点到面,从易到难,从浅到深的引导式、类比式、直观式的教学实践方法,教学效果较好。%Chemical engineering unit operation teaching play vital role in developing students' comprehensive analysis and practice ability of engineering. Teaching reforms methods and practices has gradual carried on, which has contributed to ob-tain good teaching effect.

  5. Engineering Knowledge

    OpenAIRE

    Nathan Rosenberg; W. Edward Steinmuller

    2012-01-01

    In historical perspective, both the nature of and arrangements for the generation of engineering knowledge have evolved over the past 150 years. We examine the historical development of the search for ‘useful knowledge’ in agriculture, aeronautics and chemical engineering during the first half of this period and the evolving balance between public and private initiative in supporting this search. During this period, the US was engaged in the engineering knowledge was often empirical, practice...

  6. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  7. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Laurent, Alexis; Miseljic, Mirko;

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance...... on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis...... of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key ‘‘lessons learned’’ from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches...

  8. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996

    International Nuclear Information System (INIS)

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels

  9. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

    1997-06-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  10. Responsiveness summary for the engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring Chemical Plant Area

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) issued the Engineering Evaluation/Cost Analysis for the Proposed Management of Contaminated Water Impounded at the Weldon Spring Chemical Plant Area in July 1990. The engineering evaluation/cost analysis (EE/CA) examines various alternatives for the proposed action to manage contaminated surface water impounded at the chemical plant area. The primary objective is to minimize potential migration of contaminants from surface impoundments to the local environment. The EE/CA addresses water currently impounded in four waste raffinate pits and two small ponds and water that will be impounded in the future as a result of upcoming response actions. Radioactive and chemical contaminants are migrating from the currently impounded water to underlying on-site groundwater via seepage and to off-site surface water via runoff. The treatment process and facilities that will be provided for management of currently impounded water can subsequently be used to manage other contaminated water in the future. Based on the evaluation of various alternatives in the EE/CA, DOE determined that the best approach for managing surface water impounded at the chemical plant area would be to remove contaminants from the water and release the treatment water to the Missouri River via a natural drainage channel. To establish requirements for releasing this treated water, DOE applied for a modification to its existing discharge permit from the Missouri Department of Natural Resources (DNR) under the National Pollutant Discharge Elimination System (NPDES) program. The EE/CA provided a major source of technical input to the application for modifying the permit. This responsiveness summary has been prepared to address the major issues identified in oral and written comments on the proposed action. 1 tab

  11. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-12-15

    The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

  12. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  13. 化学品数据信息搜索引擎ChemDB Portal%ChemDB Portal,A Search Engine for Chemicals

    Institute of Scientific and Technical Information of China (English)

    李晓霞; 袁小龙; 夏诏杰; 聂峰光; 陶晓芳; 唐武成; 郭力

    2011-01-01

    化学品的性质、用途、安全使用等相关的知识是专业人员、特别是工业界的从业人员最大程度地降低健康和环境风险,合理地合成新化学品以及利用已有化学品的基础,也是公众消除对化学的误解、客观认识化学品在日常生活中功用和使用限度的前提。利用网络化、可公开访问的化学数据库资源获取化学品数据信息日益成为首选的途径,但目前对这些数据库的检索仍然是分散的单库检索,利用通用的文本搜索引擎如Google、百度还不能对这些库进行统一、有效的检索。最近几年来为解决网络化学数据库的统一检索问题出现了两种策略,一种基于information repository,另一种基于化学深层网的数据提取。本文简要介绍基于化学深层网的数据提取实现网络上多来源化学数据库统一检索的方法以及在此基础上建立的化学品数据信息搜索引擎ChemDB Portal(http://www.chemdb-portal.cn)。%The properties,uses and safety knowledge on chemicals are essential for professional healthy and environmental risk assessment when academic and industrial professional synthesize new chemicals and make proper use of existing chemicals,which is also a necessity for public to avoid misunderstanding of chemistry and chemicals in daily life.Internet is becoming the first choice for professional and public to find data on chemicals from web based chemical databases.However,there is still no single entry to access the data in distributed chemical databases on Internet,even with the general text search engine like Google and Baidu.There are two approaches to create search engine specific for chemicals in the past 5 to 6 years,one is based on information repository and another is based on the data extraction for Chemistry Deep Web.This paper briefly introduces the data extraction approach and presents ChemDB Portal(http://www.chemdb-portal.cn),a search engine prototype for

  14. Matlab在《化工热力学》教学中的应用%Application of Matlab on Teaching and Learning Chemical Engineering Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    邱挺; 黄智贤; 王红星; 李晓

    2012-01-01

    The properties of fluid thermodynamic and calculations of phase equilibria are difficult in the process of teaching and learning, which are frequently required iterative try and error calculation and time-con- suming and laborious by manual. Engineering calculation software Matlab applied in the calculation of chemical engineering thermodynamics is introduced in this paper. The results show that Matlab can solve problems of chemical thermodynamic calculation and improve ability ofengineering calculating of students.%在化工热力学理论教学过程中,流体热力学性质、相平衡等计算较困难,经常需要迭代试差计算,手算费时费力.本文探讨了工程计算软件Matlab用于化工热力学的计算,结果表明:Matlab易学易用,可有效解决化工热力学计算问题,提高学生的工程计算能力.

  15. Learning in style: Investigation of factors impacting student success in chemical engineering at individual and team-levels with a focus on student learning styles

    Science.gov (United States)

    Miskioglu, Elif Eda

    Our three studies examine the factors of learning styles, student self-efficacy, collective (team) efficacy, attitudes, perceptions, and performance at individual and team levels. Each study addresses a different environment: (i) Individual Level-we are interested in how variability in learning styles engaged by specific exam problems may correlate with student learning styles, self-efficacy, and performance in our introductory chemical engineering course, Process Fundamentals (i.e., mass and energy or material balances); (ii) Team Level-we are interested in understanding how team composition with respect to learning styles (homogeneous vs. heterogeneous teams) may influence these factors in the upper level Unit Operations course; (iii) Combinatorial Level-we are interested in understanding how collective efficacy may influence individual self-efficacy and again if there are any correlations with learning styles and performance in the senior level Process Design and Development course. Some of the most interesting results of these studies have stemmed from the study on individual students, which has shown correlations between learning style preferences and performance in specific instances. Even more interesting, evaluating and characterizing the learning styles that exam problems engage has shown strong variations in problem types by instructor. This presents new questions regarding how these variations may affect student understanding and subsequent performance. Also included are details regarding a course developed in Technical and Professional Communication (for Chemical Engineers) that was offered Spring 2014 and Spring 2015.

  16. Considerations about Improving Teaching Effect of "Unit Operations of Chemical Engineering"%提高化工原理教学效果的点滴思考

    Institute of Scientific and Technical Information of China (English)

    唐四叶; 李桂连

    2013-01-01

    Unit Operations of Chemical Engineering is a course which practicalness is very strong. Consequently, it is difficult to understand. The authors have explored effective teaching for long time. In this paper, effective teaching was discussed from practi-cal cases, teaching methods, textbook and question-answer pro-cess in class. This work may provide a reference for enhancing teaching effect of Unit Operations of Chemical Engineering.%化工原理是一门实践性很强的课程,较难理解。笔者在教学过程中一直探索有效教学。本文从课堂案例的使用、教学手段、教材处理和课堂问答几个方面对有效教学进行了探讨,对提高化工原理教学效果有一定的参考价值。

  17. The research on investment control of large chemical engineering construction project%大型化工建设项目投资控制探讨

    Institute of Scientific and Technical Information of China (English)

    陈世均

    2012-01-01

    探讨大型化工建设项目在决策阶段、设计阶段、工程实施阶段全过程的投资控制方法,以笔者最近参与建设的新建800kt/a尿素项目为实例,通过从工艺路线的比选、总体方案优化、加强设计管理、设备材料招标采购、工程造价管理等环节进行有效控制,取得了良好的效果,工程建设投资费用控制在批准的概算范围之内,对类似大型化工建设项目的投资控制具有一定借鉴作用。%The investment controlling method of large chemical engineering construction project was researched at whole process of decision, design and project implementation phase. Taking a new 800000 ton/a urea project for example, all links had been controlled effectively as comparison and selection of process route, overall scheme opti- mization, strengthen design management, equipment and materials procurement,engineering cost management etc, so that the project investment cost had been controlled in the approved budget range. It could be used as reference for investment control of similar large chemical engineering construction project.

  18. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  19. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    Science.gov (United States)

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil. PMID:11227411

  20. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.

    Science.gov (United States)

    Harder, Daniel; Hirschi, Stephan; Ucurum, Zöhre; Goers, Roland; Meier, Wolfgang; Müller, Daniel J; Fotiadis, Dimitrios

    2016-07-25

    For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system. PMID:27294681

  1. 化工原理教学中的几点体会%Experience Achieved in the Teaching of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    王韵芳; 李双志; 樊彩梅; 郝晓刚

    2012-01-01

    化工原理课程是一门关于化学加工过程的专业技术基础课程,它是化工及相近学科学生由自然科学领域的基础课向工程科学的专业课过渡的入门课程。本文针对化工原理课程的教材内容,结合笔者多年的授课经验,详细介绍了教学中的几点体会,从基本原理出发,以基本方程为基准,深入浅出定性定量地描述了单元操作过程涉及的概念和现象,让学生用自己学过的知识来解决出现的新问题,充分发挥了学生的主观能动性,激发了学生的学习兴趣,从而培养了学生思考问题、解决问题的能力,并树立了科学和工程观念。%The course of Principles of Chemical Engineering is a basic technical course in the process of chemical processing. And it is also an introductory course for the students majoring chemistry subject and the like. In this paper, ideas obtained in years of teaching are explained. According to the teaching materials of chemical engineering principles, the concept and the phenomena involved in the unit operation process are described by qualitative and quantitative simple terms from basic principles and with the basic equation, which helps students to solve problems by themselves. That fully arouses the students' interest and cultivates the students' initiative. In the end, student's capability in considering and solving problems is upgraded and their scientific and engineering concept is set up.

  2. 美国化学工程师学会与化学工程学科的形成%AIChE and Its Role in the Early Shaping of Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    郑康妮

    2012-01-01

      In the 20 years from the late 19th century to early 20th century, industry developed rapidly in Europe and the U.S. During this period new branches of engineering science came into being. In order to have deep understanding of engineering science, the author chooses American Institute of Chemical Engineers as her case study target. On the basis of important sources and literatures, the paper made a study on the history of the formulation of chemical engineering as a new discipline from the perspectives of historiography and sociology of science. The paper shows that in the rapid growth of the chemical industry in the U.S, chemical engineers has become a new profession, and chemical engineering as a discipline is gradually shaped by the interaction and intersection of chemistry and mechanical engineering. In 1888, Boston Institute of Technology (the predecessor of MIT) started to design chemical engineering courses and to train engineers needed in chemical industry. Chemical engineers paid more attention to the connection of their work with pure chemistry and mechanical engineering. They tried to find out their own professional and knowledge boundaries in industry. The chemical industry grew along with the formation of chemical engineer groups and institutionalization of chemical engineering education. In such a context, the American Institute of Chemical Engineers was established in 1908. The AIChE was a distinguished mark of the institutionalization of chemical engineering. It played an important role in the shaping and promoting of the new discipline: defining the professional identity of the chemical engineer; constructing a platform of academic communication; clarifying the boundary of chemical engineering and the relationship among chemical engineering, chemistry, mechanical engineering and other disciplines; reforming the education of chemical engineering at American universities, standardizing the curriculum of chemical engineering;promoting the

  3. Applications of microreactor in chemistry and chemical engineering%微反应器在化学化工领域中的应用

    Institute of Scientific and Technical Information of China (English)

    刘兆利; 张鹏飞

    2016-01-01

    微反应器是微型化学反应系统,具有换热和传质效率高、严格控制反应时间、易于放大、安全性能好等特点。和传统搅拌反应器相比,这些特点使得微反应器在缩短反应时间、大幅度提高化学反应的转化率和产品收率等方面展现出一定的优势。但微反应器也存在易堵塞,催化剂负载、微通道的设计与制造难度大等问题。本文介绍了近年来快速发展的微反应器技术,回顾了微反应器的特点,重点探讨微反应器在化学化工领域的应用以及微反应器在精细化工和制药工业、生物化工领域的应用实例,讨论了微反应器目前存在的诸多挑战。微反应器目前是化学和化工学科的前沿和热点方向,分析表明微反应器仍然有很大的发展空间,有潜力改变化学化工前景。提出应进一步深入系统地认识微反应器内化学反应以及微通道设计的基本规律和机理,将微反应器技术引入更广泛的反应体系中,加强微反应器的集成化水平。%Microreactor belongs to the miniature chemical reaction system,which has some characteristics of high heat- and mass- transfer rates,strictly-controlled reaction time,easy scale-up, excellent safety performance,and so on. Comparing with the common batch reactors,advantages of microreactors are reducing reaction time,greatly promoting conversion and yields. On the other hand, there are some existing challenges,such as the clogging problem,catalyst loading,design and fabrication of microchannels,and so on. This paper aims to introduce the microreactor technology, which has been growing rapidly in recent years. Some of the basic characteristics of microreactor are summarized focusing on applications of microreactor in chemistry and chemical engineering as well as some of typical examples of existing in fine chemical and pharmaceutical industry. A variety of challenges are also discussed. Microreactor is a

  4. Chemical Equilibrium And Transport (CET)

    Science.gov (United States)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  5. Analysis of nonequilibrium chemical processes in the plume of subsonic and supersonic aircraft with hydrogen and hydrocarbon combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Starik, A.M.; Lebedev, A.B.; Titova, N.S. [Central Inst. of Aviation Motors, Moscow (Russian Federation)

    1997-12-31

    On the basic of quasi one dimensional mixing model the numerical analysis of nonequilibrium chemical processes in the plume of subsonic and hypersonic aircraft is presented. It was found that species HNO, HNO{sub 3}, HNO{sub 4}, N{sub 2}O{sub 5}, ClO{sub 2}, CH{sub 3}NO{sub 2} could be formed as a result of nonequilibrium processes in the plume and their concentrations can essentially exceed both background values in free stream of atmosphere and their values at the nozzle exit plane. (author) 10 refs.

  6. Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Walther, Jens Honore;

    2016-01-01

    n-heptane mechanism and a revised multi-step soot model using laser extinction measurements of diesel soot obtained at different ambient pressure levels in an optical accessible, constant volume chamber experiment. It is revealed that ignition delay times and liftoff lengths generated using the new...... skeletal model are close to those produced by the larger and more comprehensive chemical mechanisms, apart from those at the low pressure condition. The current study also demonstrates that the variation of averaged soot volume fraction with respect to the change of combustion chamber pressure captured......In this reported work, multi-dimensional computational fluid dynamics studies of diesel combustion and soot formation processes in a constant volume combustion chamber and a marine diesel engine are carried out. The key interest here is firstly to validate the coupling of a newly developed skeletal...

  7. 化学镀镍废水处理工程实例%Chemical Nickel Plating Wastewater Treatment Engineering

    Institute of Scientific and Technical Information of China (English)

    丁杰; 王丽亚

    2012-01-01

    Considering the chemical nickel plating process and the characteristics of wastewater, the operation reliability and economy of the technology shall be taken into account in the design. The paper, based on the complexing agents added in the chemical plating solution and the effect of additives on the wastewater treat- ment, proposes such methods as chemical oxidation, precipitation and added heavy metal capture agent in combination for treating electroless nickel plating wastewater and comes up with the result of stable effluent quality. The study indicates that the ammonia nitrogen, related water quality standard CJ343 - 2010, the total phosphate nanotubes concentration conforms with the nickel with the related execution emission standard GB21900 - 2008 in Table 2 and the other contaminants with the related standard GB8978 - 1996%根据化学镀镍工艺及废水的特点,在设计上主要应考虑工艺的运行可靠性和经济性。根据化学镀液中添加的各种络合剂及其助剂对废水处理的影响,提出了采用化学氧化、沉淀以及添加重金属捕捉剂联合处理化学镀镍废水的方法,出水水质稳定。氨氮、磷酸盐纳管浓度达到《污水排入城市下水道水质标准》(CJ343—2010)的要求,总镍含量满足《电镀污染物排放标准》(GB21900—2008)中表2新建企业水污染物排放限值,其他污染物达到《污水综合排放标准》(GB8978—1996)的三级标准。

  8. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  9. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.

    Science.gov (United States)

    Cam, Yvan; Alkim, Ceren; Trichez, Debora; Trebosc, Vincent; Vax, Amélie; Bartolo, François; Besse, Philippe; François, Jean Marie; Walther, Thomas

    2016-07-15

    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks. PMID:26186096

  10. Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA's National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impact associated with the proposed action

  11. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, FRT, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l' Ecole (France); Guibert, Philippe [UPMC Universite Paris 06, FRT, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l' Ecole (France)

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  12. Contemporary engineering economics

    CERN Document Server

    Park, Chan S

    2011-01-01

    Contemporary Engineering Economics, 5/e, is intended for undergraduate engineering students taking introductory engineering economics while appealing to the full range of engineering disciplines for which this course is often required: industrial, civil, mechanical, electrical, computer, aerospace, chemical, and manufacturing engineering, as well as engineering technology. This edition has been thoroughly revised and updated while continuing to adopt a contemporary approach to the subject, and teaching, of engineering economics. This text aims not only to build a sound and comprehensive coverage of engineering economics, but also to address key educational challenges, such as student difficulty in developing the analytical skills required to make informed financial decisions.

  13. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    Directory of Open Access Journals (Sweden)

    Christopher L Schardl

    Full Text Available The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species, which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne, and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species, a morning-glory symbiont (Periglandula ipomoeae, and a bamboo pathogen (Aciculosporium take, and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories

  14. Applications of a morphological scene change detection (MSCD) for visual leak and failure identification in process and chemical engineering

    Science.gov (United States)

    Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.

    2010-10-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.

  15. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  16. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    International Nuclear Information System (INIS)

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not

  17. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, B.J.; Knobel, L.L.; Bartholomay, R.C.

    1995-11-01

    The US Geological Survey, in response to a request from the US Department of Energy`s Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not.

  18. 面向石化行业的化工原理教学改革探%Teaching Reformation on Petrochemical-oriented Chemical Engineering Principles

    Institute of Scientific and Technical Information of China (English)

    黄贵秋; 陈艳辉; 熊拯; 陈敏娥

    2011-01-01

    在面向石油化工行业的《化工原理》课程教学中,教师应该注重实践,尤其要注重理论与石油化工行业实践的结合,使理论教学工作与时俱进、不断创新;要找准教学切入点,认真设计教学环节,合理分解教学难点;要充分调动学生学习积极性,运用各种教学方法与手段调整学生学习状态。%In the teaching of petrochemical-oriented Chemical Engineering Principles, the teacher ought to focus the following points. Great importance should be attached to practice, in particular to the integration of theory with the practice of petrochemical industry, so teaching activity can be innovated and updated as the times proceed ; with starting point being pinpointed by teachers, the teaching procedures ought to be carefully designed, so that difficult points can be rationally handled; students' motivation need stimulating while various teaching methods and strategies need to be used to adjust students' learning state.

  19. Review of the impact of the Ukraine-EU free trade agreement on manufacturing industries (mechanical engineering, chemical and light industry

    Directory of Open Access Journals (Sweden)

    Olga Usenko

    2007-03-01

    Full Text Available The article gives a definition to the concept of ‘deep integration’ taken by the Ukrainian Government as a framework concept for the establishment of a Ukraine-EU free trade area. The paper uses the term ‘deep free trade’ or ‘free trade area +’. It offers a review of the Ukrainian economy and its readiness to open such industries as mechanical engineering, chemical and light industry to free trade with the EU. It examines which cooperative steps might be taken in the sectors in question in the framework of a free trade area by identifying specific features of those sectors in Ukraine and the EU through SWOT analysis and review of certain provisions in relevant agreements between the EU and other countries. It proposes to forecast the possible impact of a free trade area on stakeholders’ position regarding the agreement by using the ‘stakeholder approach’ (identifying and classifying interest groups and the European Commission’s method of ‘impact assessment’. Based on the results of this research, conclusions are made concerning the fundamental negotiation principles for talks between Ukraine and the EU as to the economic and trade component of the new ‘enhanced agreement.

  20. Biochemistry engineering

    International Nuclear Information System (INIS)

    This deals with biochemistry engineering with nine chapters. It explains bionics on development and prospect, basics of life science on classification and structure, enzyme and metabolism, fundamentals of chemical engineering on viscosity, shear rate, PFR, CSTR, mixing, dispersion, measurement and response, Enzyme kinetics, competitive inhibition, pH profile, temperature profile, stoichiometry and fermentation kinetics, bio-reactor on Enzyme-reactor and microorganism-reactor, measurement and processing on data acquisition and data processing, separation and purification, waste water treatment and economics of bionics process.

  1. Teaching Reform and Practice of Biochemistry for Chemical Engineering Specialty%化工类专业生物化学教学改革与实践

    Institute of Scientific and Technical Information of China (English)

    胡国元

    2014-01-01

    通过分析化工类专业生物化学教学过程中存在的主要问题,提出了加强教材选择,优化内容配置,建立合理教学体系;制作精良的多媒体课件,控制讲授节奏,提高课堂教学效率;合理设置问题,启发学生联想与推理,多角度提高学生学习兴趣;注重培养学生自学能力,加强理论联系实际,提高课堂教学效果等教学改革措施。这些改革措施在实际教学中应用效果较好。%The main problems in the teaching process of biochemistry for chemical engineering specialty were analyzed.Four teaching reform measures were put forward and applied , which were founding reasonable teaching system by strengthening the teaching material choice and optimizing teaching content , improving teaching efficiency by making excellent multimedia courseware and controlling lecturing rhythm , multiple perspectives to promote the students'interest by setting up reasonable question and inspiring the students association and reasoning , and improving the effect of classroom teaching by paying attention to training students'self-study ability and strengthening the theory with practice.The application effect of these reform measures in the actual teaching was good.

  2. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  3. 高职化工类专业学生职业素质培养研究与实践%Study and Practice on Professional Quality Cultivation for Students in Higher Vocational Chemical Engineering Specialties

    Institute of Scientific and Technical Information of China (English)

    董相军; 张彩霞

    2015-01-01

    In order to meet the requirements of chemical engineering enterprises in the professional quality of staff ,Qingdao Technical College has taken a series of measures .It improved the non‐spe‐cialty quality education system to cultivate the public quality of the students in chemical engineering specialties .It took practical teaching in campus ,professional skills competitions ,internship in enter‐prises and campus culture as the significant methods to cultivate the profession quality of the students .And it built the chemical engineering museum and the enterprises in campus for the students'internship by means of school‐enterprise cooperation so as to improve the practical effect of high quali‐ty talents cultivation of chemical engineering specialties .%为适应化工企业对员工职业素质的要求,青岛职业技术学院健全非专业素质教育体系,培育化工专业学生的公共素质;以校内实践教学、职业技能大赛、企业顶岗实习和校园文化作为培养学生专业素质的重要手段;通过校企合作,搭建化工博物馆、校中企作为学生实习、实训的平台,从而提高化工专业高素质人才的培养实效。

  4. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  5. Problems and Reforms in the Undergraduate Thesis for Specialty in Chemistry and Chemical Engineering%化学化工本科毕业论文存在问题和改革措施

    Institute of Scientific and Technical Information of China (English)

    崔茂金; 祝勇; 李长恭; 李永芳

    2015-01-01

    本科毕业论文教学是本科教育中一个非常重要的教学环节。本文针对化学化工专业本科毕业论文教学的特点从学生、教师和管理者三个方面分析了化学化工专业本科毕业论文教学中存在的一些问题,并从这三个方面就提高化学化工专业本科毕业论文的质量进行探讨并提出了一些改革措施。只有学生、教师和管理者三者密切配合,化学化工专业本科毕业论文的教学质量才能得到提高。%The teaching of the undergraduate thesis was a very important teaching step in undergraduate education. Problems in the teaching of the undergraduate thesis for specialty in chemistry and chemical engineering were analyzed from three aspects which were students, teachers and administrators according to the characteristics of the teaching of the undergraduate thesis for specialty in chemistry and chemical engineering in this study. The improvement of the quality of the undergraduate thesis for specialty in chemistry and chemical engineering was discussed from the three aspects and proposed some reforms. Only students, teachers and administrators cooperate with each other closely, the teaching quality of the undergraduate thesis for specialty in chemistry and chemical engineering could be improved.

  6. 现代新型煤化工工程建设项目管理模式探讨%Discussion of project management pattern of modern new coal chemical engineering construction

    Institute of Scientific and Technical Information of China (English)

    武祥东

    2012-01-01

    Based on the analysis of the strengths and weeknesses of the traditional self-supporting management mode, international PMC and IPMT pattern, the speciality of the modern new coal chemical engineering construction and the fact of China Coal Group' s coal chemical engineering construction, the effective management mode for China Coal Group' s coal chemical engineering contruction is dicussed and a proposal for project management is suggested.%笔者分析了传统的自营管理模式、国际PMC(project management contractor,项目管理承包商)模式和IPMT( integrated project management team,联合管理团队)模式3种现行项目管理模式的优缺点,结合现代新型煤化工项目建设特点和建设业主的实际,探讨了现代煤化工项目建设的有效管理模式,提出了项目管理建议.

  7. 化工原理课程教学与应用型创新人才的培养%Teaching on the Principle of Chemical Engineering and Cultivation of Innovative Talents in Application-oriented Universities

    Institute of Scientific and Technical Information of China (English)

    郭雨; 陈君华; 丁志杰

    2012-01-01

    The course of Chemical Engineering Principles plays an intermediate role from science to engineering technology in cultivating project of engineering students,and is one of the important technical and basic courses.It is therefore very significant for teachers to optimize the course system for chemical engineering principles to cultivate applied,innovated and professional personnel.In this paper,the effective way to promote students' abilities for innovation is to establish a cultivation system were discussed,which conclude arranging for didactical course logically,theoretical teaching innovation and practical teaching innovation.%化工原理课程是重要技术基础课,在工科学生的培养计划中起着由理及工的"桥梁"作用;优化化工原理课程体系对于培养面向基层和生产的应用型高级专门人才具有重要意义。本文探讨了应用型创新人才的培养,改革理论教学和加强实践性教学是培养应用型创新人才培养的有效途径。

  8. Teaching Reform Direction of Improving the Ability of Chemical Engineering Design%提高化工专业学生工程设计能力的改革思路

    Institute of Scientific and Technical Information of China (English)

    郑辉东; 赵素英; 林诚; 李晓

    2012-01-01

    工程设计能力是化工专业学生一项非常重要的能力。本文针对高校对化工专业学生工程设计能力培养上的不足提出了几点措施:强化学生工程意识、提高计算机设计水平、整合相关专业课程、借助外部力量提高实际工程设计能力等等。%The ability of chemical engineering design was one of the most important capacities of students who majored in chemical engineering.Aimed at solving the problems exiting in the teaching system for cultivating the student's engineering design ability,several teaching reform measures were put forward,such as the intensification of engineering consciousness,the improvement for computer aided process design,the integration of related professional courses,and the additional help from professional design institutes.

  9. Time scales of change in chemical and biological parameters after engineered levee breaches adjacent to Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Wood, Tamara M.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Carlson, Rick A.; Fend, Steven V.

    2012-01-01

    Eight sampling trips were coordinated after engineered levee breaches hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. The reconnection, by a series of explosive blasts, was coordinated by The Nature Conservancy to reclaim wetlands that had for approximately seven decades been leveed for crop production. Sets of nonmetallic porewater profilers (U.S. Patent 8,051,727 B1; November 8, 2011; http://www.uspto.gov/web/patents/patog/ week45/OG/html/1372-2/US08051727-20111108.html.) were deployed during these trips in November 2007, June 2008, May 2009, July 2009, May 2010, August 2010, June 2011, and July 2011 (table 1). Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae and spatially involved three lake and four wetland sites. Spatial and temporal variation in solute benthic flux was determined by the field team, using the profilers, over an approximately 4-year period beginning 3 days after the levee breaches. The highest flux to the water column of dissolved organic carbon (DOC) was detected in the newly flooded wetland, contrasting negative or insignificant DOC fluxes at adjacent lake sites. Over the multiyear study, DOC benthic fluxes dissipated in the reconnected wetlands, converging to values similar to those for established wetlands and to the adjacent lake (table 2). In contrast to DOC, benthic sources of soluble reactive phosphorus, ammonium, dissolved iron and manganese from within the reconnected wetlands were consistently elevated (that is, significant in magnitude relative to riverine and established-wetland sources) indicating a multi-year time scale for certain chemical changes after the levee breaches (table 2). Colonization of the reconnected wetlands by aquatic benthic invertebrates during the study trended toward the assemblages in established wetlands, providing further evidence of a multiyear transition of this area to permanent aquatic habitat (table 3). Both the

  10. The "Outstanding Engineers" Curriculum System Reform for the Chemical Fiber Branch of the Materials Science and Engineering Major%浅谈材料科学与工程专业化学纤维方向“卓越工程师”课程体系改革

    Institute of Scientific and Technical Information of China (English)

    丁长坤; 尹翠玉; 赵义平; 程博闻; 肖长发

    2014-01-01

    It is a great reform measure for China's higher engi-neering education to implement the plan of training outstanding engineers. This paper introduces the reform experience and mea-sures of the chemical fiber curriculum system in Tianjin Poly-technic University,which is ba sed on the reference of successful experience of higher engineering education at home and abroad, according to the development of chemical fiber industry and its request to the profession setting,and combined with the current situation of materials science and engineering in the university. We take engineering technology as the main line, aim at improv-ing students' engineering consciousness and engineering quality, cultivating their engineering practical ability and innovation spir-it. By optimizing curriculum module and reforming practical teaching system,students' engineering practical and innovation a-bilities were trained to provide the favorable instruction for train-ing chemical fiber talents in local colleges and universities.%实施卓越工程师教育培养计划是我国高等工程教育的重大改革措施。本文介绍了我校在借鉴国内外高等工程教育成功经验的基础上,根据我国化学纤维行业发展对专业设置的要求,结合我校材料科学与工程专业的现状,以工程技术为主线,着力提高学生的工程意识和工程素质,培养学生的工程实践能力及创新精神。通过整合课程模块,改革实践教学体系,多层次训练学生的工程实践与创新能力,以期为地方高校化纤人才培养提供有益的指导。

  11. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  12. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  13. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  14. Characterization of organic materials in civil engineering by chemical and physicochemical methods, chapter 25 In : Yves Mouton (Eds), Organic Materials for Sustainable Construction

    OpenAIRE

    FARCAS, Fabienne

    2013-01-01

    From the domain of roads to the domain of construction, the organic materials used are very diverse (bitumens, paints, cements, etc), but studying their chemical structure and their composition generally uses the same analysis techniques. Without claiming to be exhaustive, this chapter completes and brings up to date the presentation of chemical, physicochemical, physicomechanical and thermomechanical properties previously offered through research studying the chemical structure of basic orga...

  15. 大学生化工设计创业大赛的组织与思考%Organization and Thinking of Student Chemical Engineering Design and Business Competition

    Institute of Scientific and Technical Information of China (English)

    陈砺; 吴妙娴; 董新法; 严宗诚; 王红林

    2012-01-01

    Student ChemicaI Engineering Design and Business Competition has been successfully held for five sessions. It provides a broad stage to the chemical engineering students to show their abilities of en- gineering design, innovation, creativity and entrepreneurship. This is a helpful exploration for the mode of higher education in Chemical Engineering. As the founder and the organizer of the competition, the authors give an account and thinking of the form, game system, technical and organizational scheme and existing problems of the competition.%大学生化工设计创业大赛已成功举办五届,为我国化工类本科生提供了一个展现工程设计、创新、创造和创业能力的广阔舞台,对化工高等工程教育的模式进行了有益的探索。作为大赛的创办和组织者,笔者对大赛形式、赛制、技术和组织方案及存在问题等进行了叙述和思考。

  16. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  17. Spark ignition engine control: estimation and prediction of the in-cylinder mass and chemical species; Controle moteur a allumage commande: estimation / prediction de la masse et de la composition du melange enferme dans le cylindre

    Energy Technology Data Exchange (ETDEWEB)

    Giansetti, P.

    2005-09-15

    Spark ignition engine control has become a major issue regarding compliance with emissions legislation while ensuring driving comfort. The objective of this thesis was to estimate the mass and composition of gases inside the cylinder of an engine based on physics in order to insure better control of transient phases taking into account residual gases as well as exhaust gas recirculation. Residual gas fraction has been characterized using two experiments and one CFD code. A model has been validated experimentally and integrated into an observer which predicts pressure and temperature inside the manifold. The predictions of the different gas flows and the chemical species inside the cylinder are deduced. A closed loop observer has been validated experimentally and in simulation. Moreover, an algorithm estimating the fresh and burned gas mass from the cylinder pressure has been proposed in order to obtain the information cycle by cycle and cylinder by cylinder. (author)

  18. Computers in Engineering Teaching.

    Science.gov (United States)

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  19. Cultivation of Students' Creative Thinking Skills in the Teaching of Principles of Chemical Engineering%浅谈“化工原理”教学中学生创造性思维的培养

    Institute of Scientific and Technical Information of China (English)

    李鑫; 卢其明; 陈明洁; 刘海峰

    2012-01-01

    从创新欲望、发散思维、批判性思维及想象能力四个方面对化工原理教学过程创造性思维的培养进行了详细的分析与说明。%Four diathesises innovative desire, divergent thinking, critical thinking and the ability to imagine, were proposed which can effectively improve the creative thinking skills of high school students in the teaching of Principles of Chemical Engineering, And the above four aspects were further analyzed and described detailedly with specific examples.

  20. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Four - Appendix G

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix G. Appendix G is a presentation of VOC chromatography data collected during the study. Information on the calibration curves and calibration checks used as well as the sample GC reports themselves are included here. The concentration values presented on the GC reports are calculation using the data from the applicable calibration curve and any necessary dilutions which were made.

  1. Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering%通过化工产品工程开发可持续的技术来控制斑纹蚌种群

    Institute of Scientific and Technical Information of China (English)

    R.Costa; P.Elliott; P M.Saraiva; D.Aldridge; G D.Moggridge

    2008-01-01

    The zebra mussel is an important aquatic pest that causes great damage to freshwater-dependent industries, due to biofouling. The main goal of the project discussed here is to develop improved solutions to control this species. Three approaches have been explored in an attempt to design innovative application strategies for existing biocides: (i) encapsulation of toxins; (ii) combination of toxins; (iii) investigation of the seasonal variation of the species' tolerance to toxins. In this paper, the principles behind these approaches and the major results on each topic are presented. The benefits of adopting a chemical product engineering approach in conducting this project are also discussed.

  2. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; B. V. Twining (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

  3. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay (USGS); L. M. Williams (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected and analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  4. Japanese Journal of Paper Technology. `98 Technology Annual (machinery, equipment, engineering, maintenance, laboratory utilities, chemical); Kami pulp gikyo times. 1998 nendo gijutsu manual (kikai shizai yakuhin soran)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-11

    The general survey of the 1998 technology manual on machinery/materials/chemicals was made public. In the part of machinery/materials, the following are included: pulp manufacturing machine/equipment, used paper treatment/stuff preparation machine/equipment, dedusting/cleaning/concentrating equipment, stuff pump/chemicals pump, paper machine and related equipment, paper machine related tools/machinery/materials, finishing machine/handling equipment, processing facility/processing finishing facilities, equipment for secondary processing/paper product making, measuring control/test analysis equipment/facility, utility/environment related equipment/facility, safety equipment/other related equipment/machinery/materials, etc. In the part of chemicals, assistants for cooking/decoloration/used paper treatment, sizing agent, paper strength reinforcing/paper quality improving agents, filler/pigment, dye/color pigment, inorganic/synthetic fiber, work improving agent, antiseptics/antifungal agent, felt cleaner, antiforming agent, freeness/yield improving agents, flocculant, various assistants, utility use chemicals, functionalizer, processing agent, coating/laminate/chemicals for paper product making, etc. 630 figs, 76 tabs.

  5. 全国化工设计大赛对化学工程与工艺专业教学的启发%An Enlightenment from the National Chemical Design Contest for College Students to the Teaching for Chemical Engineering and Technology

    Institute of Scientific and Technical Information of China (English)

    郭瑞丽; 袁军; 张建树

    2013-01-01

    全国化工设计大赛是化学工程与工艺专业的最高级别比赛,它对化工专业人才的培养也提出了更高的要求。本文根据最近几年指导大赛的经验,从化工专业教育的角度提出了关于强化工程思维、课程渗透融合和工程创新等几方面的启示。%The national chemical design contest for college students is the highest level professional contest for chemical engi-neering and technology.It has put forward requirements and suggestion for professional teaching.In this paper,the effective way to promote students’engineering viewpoint and ability of analyzing or solving engineering questions is to establish a cultivation system were discussed,which conclude arranging for didactical course logically,theoretical teaching innovation and practical teaching innovation.

  6. Research and Exploration on Security Education of Chemical Engineering Laboratory%化工类实验室学生安全教育的研究与探索

    Institute of Scientific and Technical Information of China (English)

    林静姗; 董华青; 洪一鸣

    2012-01-01

    The laboratory is an important place on university teaching and research, and an important base of students' innovation and practical ability cultivation. Presently a series of problems exists in security education of chemical engineering laboratory, such as weak safety awareness, simple styles of education, improving management system, etc. This paper, related to reality, according to the rules in laboratory security education, puts forward to building a normal and long-term security education system of chemical engineering laboratory, which focuses on building laboratory access regulation, constructs network education platform and creates peaceful campus culture.%实验室是高校教学科研的重要场所,也是培养学生创新实践能力的重要阵地。目前化工类实验室学生安全教育中存在学生安全意识淡薄、教育形式单一、安全管理体制不够完善等问题,本文结合实际。根据实验室安全教育的原则,提出构建常态化的化工类实验室学生安全教育体系,着重考虑建立实验室准入制、搭建网络教育平台和营造平安校园文化。

  7. “三传”唯象方程在《化工原理》教学中的应用%The Application of "Momentum,Heat and Mass Transfer" Phenomenological Equation in Chemical Engineering Principles Teaching

    Institute of Scientific and Technical Information of China (English)

    李青云

    2011-01-01

    《化工原理》以化工单元操作为研究对象,需要用工程方法处理实际问题。初学者面对课程中出现的大量的公式、参数往往会感到无所适从。文章选取传热和吸收两个单元操作为例,介绍了用"三传"唯象方程连接各个章节主要公式、知识点的方法,希望能起到化繁为简的作用。%The Chemical Engineering Principles studies chemical unit operations,which should solve engineering problem.Facing so many formulae and parameter,the beginners often feel puzzled.The paper selects two unit operations,heat transfer and absorption,for example,to describe the use of the " Momentum,Heat and Mass Transfer " phenomenological equation which connecting the various sections of the main formula and knowledge points,and hoping to play a role in simplifying.

  8. Scaffold of chitosan/poly(vinyl alcohol) blend chemically crosslinked by glutaraldehyde for tissue engineering applications;Constructos de blendas de quitosana/poli(alcool vinilico) reticulados quimicamente com glutaraldeido para aplicacao em engenharia de tecido

    Energy Technology Data Exchange (ETDEWEB)

    Costa Junior, Ezequiel de S., E-mail: escjr50@deii.cefetmg.b [Centro Federal de Educacao Tecnologica (DEM/CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais; Laguardia-Nascimento, Mateus; Barbosa-Stancioli, Edel F. [Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia; Mansur, Herman S., E-mail: hmansur@demet.ufmg.b [Universidade Federal de Minas Gerais (DEM/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica

    2009-07-01

    Chitosan/PVA based films were chemically crosslinked by glutaraldehyde (GA) in order to achieve scaffolds for potential tissue engineering application. Both precursors and developed films were characterized by FTIR and XRD in order to determine the presence of chemicals groups and nanostructural order, respectively. The results have showed that the GA crosslinking have altered the crystallinity of the chitosan and the increase on the C=N bands and decreasing of NH{sub 2} bands suggest that Chitosan/GA crosslinking has preference to occur in the carbon 2 by Schiff's base. The mechanical properties, swelling behavior, degradation rate in vitro and cellular viability were compatible with the characteristic of an epithelial tissue. The material presented a toughness range from 1.4 to 34MJ/m3, swelling from 150% to 700% in 24h, degradation rate from 20% to 75% (wt%) in 24h and cellular viability in vitro above 60% compared to the cellular control. The developed scaffolds from the films have also showed swelling and degradation in vitro properties well-matched for biomedical applications in tissue engineering (author)

  9. Application of problem-based learning method in teaching process of professional English of chemical engineering and technology%PBL教学法在化工工艺专业英语教学中的应用

    Institute of Scientific and Technical Information of China (English)

    薛茹君; 武成利

    2015-01-01

    The problems existing in the teaching process of professional English of chemical engineering and technology were analyzed. Based on the idea of the problem-based learning (PBL), the teaching reform project of professional English of chemical engineering and technology were proposed. The reform practice on the course content, teaching method, and examination mode were introduced as well. The paper provides a reference for training students' ability of applying professional English to listening, speaking, reading, writing and translating.%分析化工工艺专业英语教学过程中存在的问题,基于“PBL教学法”理念提出化工工艺专业英语课教学改革的方案,介绍在教学内容、教学方法和考试方式方面的改革实践,为培养学生听、说、读、写、译五个方面的专业英语应用能力提供了参考。

  10. 基于二维消隐的化工设备图形符号库设计%Design of Graphic Symbol Database in Chemical Engineering Equipment Based on Two Dimension Graphs Conceal

    Institute of Scientific and Technical Information of China (English)

    蓝晓民

    2012-01-01

    利用AutoCAD提供的Wipeout命令建立具有二维消隐功能的化工设备图形符号库.提出建立隐藏边界方法,解决了非封闭边界图形符号的消隐问题.使用该方法建立的化工设备图形符号库与通常普遍采用的断线法技术相比较,由于不需断开连接线,不影响图形的再编辑,可有效地提高绘图效率,并采用AutoCAD内嵌的VisualLISP语言编程实现.%Using the order "Wipeout" in AutoCAD to set up a graphic symbol database in chemical engineering equipment with a two dimension graphs conceal function. The method for established the hidden boundaries was introduced, and the hidden problem of non-closed boundary graphic symbol was resolved. Compare the method with the usually breaks in on lines to set up a graphic symbol database in chemical engineering equipment, It does not affect graphic edit again because that is not necessary to breaks in on lines. The method is more efficiently, and the program was written by AutoLISP in AutoCAD.

  11. An Analysis of Cultivation of Safety Consciousness in Teaching Engineering Chemical Experiment%浅谈工科化学实验教学中安全意识的培养

    Institute of Scientific and Technical Information of China (English)

    石振武

    2012-01-01

    根据工科化学实验教学的特点,在实验教学过程中采用实验前安全意识的教育、实验中安全制度的检查以及实验后安全防范的复查等措施,以此着重培养工科本科生的安全意识。在保证化学实验教学顺利进行和提高化学实验教学质量的同时,也有助于工科本科生综合素质的全面提高。%According to the characteristics of the experimental teaching of engineering chemistry,the education of safety consciousness before the experiment,inspection of safety regulation in conduction of experiment and safety measures after the completion of experiment were adopted to cultivate the engineering undergraduate safety consciousness.When the smooth conduction of chemical experiment teaching is ensured and the quality of chemistry experiment teaching improved,the engineering undergraduate all-round comprehensive quality can be improved.

  12. The Application of Aspen Energy Analyzer in Analysis and Synthesis for Chemical Engineering Process%Aspen Energy Analyzer在化工过程分析与合成课程教学中的应用

    Institute of Scientific and Technical Information of China (English)

    薄守石

    2015-01-01

    化工过程分析与合成是化工类实践性非常强的专业基础课。在过程工业中,能量是通过换热网络进行传递的,换热网络设计是此课程教学过程中的重要内容之一。本文应用夹点技术,采用Aspen Energy Analyzer软件对简单的换热网络进行分析、综合和优化,使学生更加容易理解和掌握夹点的基础理论,同时使学生熟悉该软件的使用,为后续化工设计和毕业设计的相关换热网络研究打下基础,也可为日后的科研开发、工程设计和生产管理提供了一种有力的技术手段。%Analysis and Synthesis for Chemical Engineering Process is one of the important courses in chemical engineering subject with strong practice.The energy transfer occurs in heat exchanger network in process industry, and the design of heat exchanger network is the important part for this course teaching.Pinch technology was used to analyze the heat exchanger network, this network with the help of Aspen Energy Analyzer software was optimized.Students were helped to use this software skillfully and prepare for the chemical design.At the same time, the software was a powerful means in scientific developing, process design and production management.

  13. Promena fizičko-hemijskih karakteristika sredstava za hlađenje motora tokom eksploatacije vozila / Change in physic-chemical characteristics of engine coolants during vehicle exploitation

    Directory of Open Access Journals (Sweden)

    Sreten R. Perić

    2008-07-01

    Full Text Available Identifikacija stanja sistema hlađenja bez narušavanja njegove funkcije, u uslovima kada do otkaza dolazi, pre svega, usled promene fizičko-hemijskih svojstava rashladnog sredstva motora, ima velike tehničke i ekonomske efekte. Kako se promena funkcionalnosti složenog sistema hlađenja najčešće ogleda u promenama karakteristika sredstva za hlađenje, promena fizičko-hemijskih karakteristika sredstva za hlađenje može se usvojiti kao parametar za ocenu stanja sistema hlađenja. Za ocenu i analizu fizičko-hemijskih karakteristika sredstva za hlađenje danas postoji veoma razvijena merna oprema. / Identification of the condition of a cooling system without disturbing its function, when failures primarily occur due to changes in physic- chemical characteristics of engine cooling agents, has considerable technical and economical effects. Since change in functionality of complex cooling systems is most often a consequence of changes in the characteristics of cooling agents, the change of physic-chemical characteristics of coolants can be accepted as a parameter for evaluating cooling system conditions. There is nowadays a wide range of sophisticated measuring equipment for evaluation and analysis of physic-chemical characteristics of coolants.

  14. Applications of Aspen Plus in the Teaching of the Analysis and Synthesis for Chemical Engineering Process%Aspen plus在化工过程分析与合成课程教学中的应用

    Institute of Scientific and Technical Information of China (English)

    王磊; 李书珍; 刘卫民

    2012-01-01

    Analysis and Synthesis for Chemical Engineering Process was an important professional course for chemical majors,which was also a strong practical course.In the paper,dimethyl ether distillation column of the actual process of methanol to dimethyl ether was simulated and analyzed by Aspen Plus software.Students were familiarized with the use of Aspen Plus software in the process of simulation and analysis.In addition,the application of aspen Plus could help the following teaching of Chemical Process design.%化工过程分析与合成是化工类实践性非常强的专业基础课,精馏塔的实践教学是教学的重点和难点。文章采用Aspen Plus软件,以甲醇制二甲醚的实际工艺为案例,对二甲醚精馏塔进行模拟、分析,同时使学生熟悉Aspen Plus软件的使用,为后续化工设计打下基础。

  15. Chemical Constituents in Ground Water from 39 Selected Sites with an Evaluation of Associated Quality Assurance Data, Idaho National Engineering and Environmental Laboratory and Vicinity, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    L. L. Knobel; R. C. Bartholomay; B. J. Tucker; L. M. Williams; L. D. Cecil

    1999-08-01

    This report presents a compilation of water-quality data along with an evaluation of associated quality assurance data collected during 1990-94 from the Snake River Plain aquifer and two springs located in areas that provide recharge to the Snake River Plain aquifer. The data were collected as part of the continuing hydrogeologic investigation at the Idaho National Engineering and Environmental Laboratory (INEEL). This report is the third in a series of four reports and presents data collected to quantitatively assess the natural geochemical system at the INEEL. Ground-water quality data - collected during 1990-94 from 39 locations in the eastern Snake River Plain - are presented.

  16. Automatic sorting of toxicological information into the IUCLID (International Uniform Chemical Information Database) endpoint-categories making use of the semantic search engine Go3R.

    Science.gov (United States)

    Sauer, Ursula G; Wächter, Thomas; Hareng, Lars; Wareing, Britta; Langsch, Angelika; Zschunke, Matthias; Alvers, Michael R; Landsiedel, Robert

    2014-06-01

    The knowledge-based search engine Go3R, www.Go3R.org, has been developed to assist scientists from industry and regulatory authorities in collecting comprehensive toxicological information with a special focus on identifying available alternatives to animal testing. The semantic search paradigm of Go3R makes use of expert knowledge on 3Rs methods and regulatory toxicology, laid down in the ontology, a network of concepts, terms, and synonyms, to recognize the contents of documents. Search results are automatically sorted into a dynamic table of contents presented alongside the list of documents retrieved. This table of contents allows the user to quickly filter the set of documents by topics of interest. Documents containing hazard information are automatically assigned to a user interface following the endpoint-specific IUCLID5 categorization scheme required, e.g. for REACH registration dossiers. For this purpose, complex endpoint-specific search queries were compiled and integrated into the search engine (based upon a gold standard of 310 references that had been assigned manually to the different endpoint categories). Go3R sorts 87% of the references concordantly into the respective IUCLID5 categories. Currently, Go3R searches in the 22 million documents available in the PubMed and TOXNET databases. However, it can be customized to search in other databases including in-house databanks.

  17. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  18. Engineer Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-15

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  19. Engineer Ethics

    International Nuclear Information System (INIS)

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  20. Assessment of CREAMS [Chemicals, Runoff, and Erosion from Agricultural Management Systems] and ERHYM-II [Ekalaka Rangeland Hydrology and Yield Model] computer models for simulating soil water movement on the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The major goal of radioactive waste management is long-term containment of radioactive waste. Long-term containment is dependent on understanding water movement on, into, and through trench caps. Several computer simulation models are available for predicting water movement. Of the several computer models available, CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) and ERHYM-II (Ekalaka Rangeland Hydrology and Yield Model) were tested for use on the Idaho National Engineering Laboratory (INEL). The models were calibrated, tested for sensitivity, and used to evaluate some basic trench cap designs. Each model was used to postdict soil moisture, evapotranspiration, and runoff of two watersheds for which such data were already available. Sensitivity of the models was tested by adjusting various input parameters from high to low values and then comparing model outputs to those generated from average values. Ten input parameters of the CREAMS model were tested for sensitivity. 17 refs., 23 figs., 20 tabs

  1. Development and Application of Chemical Fibers in Building & Civil Engineering%建筑与土木工程用纤维材料的开发与应用

    Institute of Scientific and Technical Information of China (English)

    芦长椿

    2013-01-01

      本文简要介绍了建筑与土木工程中使用的化学纤维的技术特征,并从纤维品质,以及特种PVA纤维、碳纤维和碳纳米纤维在高端水泥混凝土制品中的应用等方面探讨了拓展技术纺织品市场的新途径。%  Technical characteristics of chemical fibers used in building&civil engineering were introduced in this article. Based on introducing the application of special PVA fiber, carbon fiber and carbon nanofiber to high-end cement concrete components, the author showed how to explore new market for technical textiles.

  2. "发电—海水淡化—制盐及盐化工"技术发展展望%Forecast of Technology Development for Electricity Generation - Sea Water Desalination- Salt and Salt Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    邢立谦; 陈延辉

    2012-01-01

    The background, feasibility and superiority of comprehensive utilization technology for electricity generation - sea water desalination - salt and salt chemical engineering are introduced in the article. The technology accords with national policy of recycling economy. It can also contribute to the economy development around Bohai of Jing - jin - ji area.%文章主要介绍了"发电—海水淡化—制盐及盐化工"综合利用技术提出的背景、可行性及优越性,指出该综合利用技术符合国家循环经济产业政策,必将为京津冀环渤海地区的经济发展作出重要贡献.

  3. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  4. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli.

    Science.gov (United States)

    Kim, Sung-Jin; Vassão, Daniel G; Moinuddin, Syed G A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2014-01-01

    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyl- or propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved.

  5. 化工热力学教学过程中熵的统计物理解释%Entropy is Described by Statistical Physics in the Course of Chemical Engineering Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    曾勇平

    2015-01-01

    At present, the entropy is mainly defined with the basis of Carnot cycle during the course of the chemical engineering thermodynamics. Unfortunately, the equation with Carnot cycles is difficult to shed light on some direction of process. Also, the physical picture is still not clear. In this paper, statistical physics is used to describe the entropy in the chemical engineering ther-modynamics. The microcosmic of physics is more clear than that of Carnot cycle,it makes students' insight much better, and trains logical thinking and deepens their understanding of concepts and the formula. It is helpful to improve the effectiveness and quality of the course.%目前,在教学过程中,化工热力学中的熵很大程度上仍以熟知的卡诺循环为基础,但遗憾的是,对于其过程方向的判断仍然较为含糊,物理情形不够清晰.本文采用统计物理的简单公式解释熵,这种方法能够辅助经典定义,使得更加清晰,让学生能够更好地理解讲解第二定律的教学思路,并加深对熵概念和公式的理解,同时能够培养学生严密的逻辑思维,达到提高课堂热力学教学效果和质量目的.

  6. Teaching Practice and Explorations of Environmental Chemistry in Chemistry and Chemical Engineering Specialties%化学化工专业开设《环境化学》课程的教学实践与探索

    Institute of Scientific and Technical Information of China (English)

    武占省; 李炳奇; 鲁建江

    2012-01-01

    保护环境是我国的基本国策,环境教育是解决环境问题的重要途径,环境化学课程肩负着化学化工专业学生的环境教育重任。通过本门课的学习,使学生在从事化学化工相关专业过程中,从思想上增强环境保护意识,从根源上防治和解决环境污染问题。作者结合化学化工专业的特点和实际需求,努力开展了四个方面的教学实践和探索,逐渐形成了自己的课程内容体系和教学实践经验,收到了良好的教学效果。%Environmental protection was China's basic national policy,and Environmental education was an important way to solve environmental problems.Environmental Chemistry courses was the main task for students of Chemistry and Chemical Engineering specialties.Through studying,environmental awareness of students engaging in the relevant professional process were enhanced from thinking,and environmental pollution problems were solved from original.The four aspects teaching practice and explorations of Environmental Chemistry based on Chemistry and Chemical Engineering specialties characteristics and practice need,were investigated.The system of curriculum and teaching practices were gradually formed,and good teaching results were got.

  7. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  8. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  9. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  10. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  11. Chemical and radiochemical constituents in water from wells in the vicinity of the naval reactors facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Science.gov (United States)

    Bartholomay, Roy C.; Knobel, LeRoy L.; Tucker, Betty J.; Twining, Brian V.

    2000-01-01

    The U.S. Geological Survey, in response to a request from the U.S. Department of Energy?s Phtsburgh Naval Reactors Ofilce, Idaho Branch Office, sampled water from 13 wells during 1997?98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A totalof91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen qualityassurance samples also were collected and analyze~ seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however, some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  12. Practical Exploration on Curriculum Integration of Chemical Engineering Drawing and CAD Auxiliary Design%《化工制图》与《CAD 辅助设计》课程整合的实践探索

    Institute of Scientific and Technical Information of China (English)

    马其坤

    2014-01-01

    For the problems existing in the two separate creating courses of chemical engineering drawing and CAD auxiliary design, starting from the teaching practice, the reform scheme is proposed to integrate the teaching content of two courses. In the teaching process, the reform measures are taken, such as project teaching, integrated use of various teaching methods, manual drawing combined with CAD, strengthening practice. In the meanwhile, the inspection way is reformed. In order to make the students meet the needs of chemical industry jobs.%针对《化工制图》和《CAD 辅助设计》两门课程分开开设存在的问题,从教学实践出发,提出将两门课程的教学内容进行整合的改革方案。在教学过程中,采用项目化教学、多种教学方法综合运用、手工绘图与 CAD 相结合、加强实践环节等措施,并改革考核方式,使培养的学生更能满足化工岗位的需求。

  13. 钚在某处置工程屏障水环境中化学形态及影响因素%Chemical Forms and Influence Factors of Plutonium in Environmental Water of a Disposal Engineering Barrier

    Institute of Scientific and Technical Information of China (English)

    马应明; 何艺峰; 李哲; 刘莉; 刘艳; 石建芳

    2013-01-01

    Aimed at backfill structure in the engineering barrier of a certain disposal project,the geochemical modeling software,EQ3/6,was applied to simulate chemical forms of plutonium based on results of barrier samples leaching by the fracture water and chemical analysis of leaching samples.Results showed that the form of plutonium was Pu(OH)5-in Pu(Ⅳ)valence state.Changes of pH and Eh values in environmental water will affect the forms and valence state of plutonium.%针对某放射性废物包装容器回填处置工程屏障结构特征,采用岩体裂隙水浸泡工程屏障样品的方式,在对各平衡水样化学成分分析的基础上,利用地球化学模拟软件EQ3/6对钚在回填工程屏障水环境中的存在化学形态进行了模拟计算,得出钚在回填工程屏障水环境中主要以Pu(Ⅳ)价态Pu(OH)5形式存在,同时水环境中pH值和Eh值的变化皆会影响钚的存在化学形态和价态.

  14. 探究支持向量机算法在化学化工中的应用%Application of the Support Vector Machine Algorithm in Chemistry and Chemical Engineering

    Institute of Scientific and Technical Information of China (English)

    王艳芳

    2014-01-01

    计算机技术的快速发展,给化学化工数据的处理带来极大便利。通过机器学习算法,可以总结化学化工实验规律,控制化工生产过程。原有的机器算法虽能为化学化工带来很大便利,但是它本身就存在缺陷。机器学习算法的核心是数学中的渐近理论,这项理论的适用情景是必须有大量的样本,而实际的化学化工工作中样本有限,这就可能导致计算中的过拟合。为了解决这一弊病,我们采用了向量机算法取代原有的机器算法,目前使用支持向量机算法(SVM)建立数学模型已经得到国内外的广泛关注。笔者通过调查化学化工行业中SVM的使用情况,阐述了向量机算法的优势,分析了它在食品检验、化工生产等多项领域的应用。%The rapid development of computer technology brings great convenience for processing of chemistry and chemical data. By machine learning algorithms, chemistry experiment law can be summarized to control chemical production process. Although the original machine algorithm can bring great convenience for the chemical industry, but it has defects itself. The core of machine learning algorithms is mathematical asymptotic theory, this theory is applicable to the scenario that must have a large number of samples, but the actual work samples in chemistry and chemical engineering are limited, which can lead to the over-fitting of calculation. To overcome this drawback, the support vector machine algorithm (SVM) has been used to replace the original machine algorithms; currently the support vector machine algorithm (SVM) has been widely used to establish mathematical models at home and abroad. In this paper, application of SVM in the chemical industry was introduced, advantages of SVM were described, and its application prospect in various fields was analyzed.

  15. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.......Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...

  16. Engineering Special

    OpenAIRE

    Duca, Edward

    2013-01-01

    Smart phones, supersonic planes, Formula 1 cars, green cities, the Internet; engineers built them all. Engineers are everywhere. The world needs them and so do you. http://www.um.edu.mt/think/engineering-special-feature-editorial/

  17. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    Science.gov (United States)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  18. Research and Practice on Class Teaching of Introduc-tion to Green Chemical Engineering%绿色化工概论课堂教学研究与实践

    Institute of Scientific and Technical Information of China (English)

    胡久平

    2012-01-01

      绿色化工是我国一项基本国策,也是社会经济可持续发展的根本保障。化工类专业开设绿色化工概论课程,对保护生态环境、资源利用的最佳化、拓宽学生就业渠道、提升学生转岗能力和促进经济发展有着重大的意义。本文分析了绿色化工概论的课程内容特点和教学内容体系,探讨了开设本课程的必要性和课堂教学对策。目的在于提高学生的绿色意识,协调环境与经济发展的关系,有效促进经济的可持续发展%  Green chemical industry is one of basic state poli-cies and it is also the fundamental guarantee of social and ec-onomic sustainable development.Chemical majors have opened"Introduction to Green Chemical Engineering",which is of great significance to the protection of the ecological environment, the optimization of resources use and the broadening of students' employment channels,the improvement of students' employment ability and the promotion of economic development.This paper analyzes the characteristics of this course ant the system of its teaching content. Besides, this paper discusses the necessity of opening this course demand its class teaching approach. The main purpose is to improve students' green consciousness and coordinate the relationship between environment and economic developments. Meanwhile, it effectively promotes economic development.

  19. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  20. Housekeeping Closure Report for Corrective Action Unit 288: Area 25 Engine Maintenance, Assembly, and Disassembly/Treatability Test Facility Chemicals Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 11 CASs within CAU 288 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris, crates containing contaminated materials, chemicals, and other material. Based on these activities, no further action is required at these CASs

  1. 化学合成制药废水处理工程实例%Engineering Example of Chemical Synthetic Pharmaceutical Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    章正勇; 庄会中; 胡岚

    2014-01-01

    化学合成制药废水生物毒性大、可生化性差,属高浓度难降解有机废水.采用“电催化+微电解+混凝沉淀+上升式厌氧污泥床+缺氧/好氧”工艺进行处理,运行结果表明,该工艺处理效果稳定,抗冲击负荷能力强,出水COD< 300 mg/L,出水水质达到《污水综合排放标准》(GB 8978-1996)的二级排放标准.%The chemical synthetic pharmaceutical wastewater is a high concentration and refractory organic wastewater due to its high biological toxicity and poor biodegradability.The electrocatalysis,microelectrolysis,coagulation sedimentation,UASB and A/O combined process was applied to treat this type of wastewater.The running results indicated that the combined process had steady treatment effect and strong resistance to shock loading,and the effluent COD was lower than 300 mg/L.The effluent quality could meet the second class criteria specified in the Integrated Wastewater Discharge Standard (GB 8978-1996).

  2. An Introduction to Thermal-Fluid Engineering

    Science.gov (United States)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  3. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  4. Vision 2020. Reaction Engineering Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Klipstein, David H. [Reaction Design, San Diego, CA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  5. Engineering and Software Engineering

    Science.gov (United States)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  6. [Development of domain specific search engines].

    Science.gov (United States)

    Takai, T; Tokunaga, M; Maeda, K; Kaminuma, T

    2000-01-01

    As cyber space exploding in a pace that nobody has ever imagined, it becomes very important to search cyber space efficiently and effectively. One solution to this problem is search engines. Already a lot of commercial search engines have been put on the market. However these search engines respond with such cumbersome results that domain specific experts can not tolerate. Using a dedicate hardware and a commercial software called OpenText, we have tried to develop several domain specific search engines. These engines are for our institute's Web contents, drugs, chemical safety, endocrine disruptors, and emergent response for chemical hazard. These engines have been on our Web site for testing.

  7. Ship diesel emission aerosols: A comprehensive study on the chemical composition, the physical properties and the molecular biological and toxicological effects on human lung cells of aerosols from a ship diesel engine operated with heavy or light diesel fuel oil

    Science.gov (United States)

    Zimmermann, R.; Buters, J.; Öder, S.; Dietmar, G.; Kanashova, T.; Paur, H.; Dilger, M.; Mülhopt, S.; Harndorf, H.; Stengel, B.; Rabe, R.; Hirvonen, M.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Berube, K.; Sippula, O.; Streibel, T.; Karg, E.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Arteaga Salas, M.; Orasche, J.; Müller, L.; Reda, A.; Passig, J.; Radischat, C.; Gröger, T.; Weiss, C.

    2013-12-01

    The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties, transformation processes and health effects of anthropogenic combustion emissions. This is performed by thorough comprehensive chemical and physical characterization of combustion aerosols (including application of advantageous on-line methods) and studying of biological effects on human lung cell-cultures. A new ALI air-liquid-interface (ALI) exposition system and a mobile S2-biological laboratory were developed for the HICE-measurements. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized (e.g. proteomics). By using stable isotope labeling technologies (13C-Glucose/metabolomics; 2H-Lysine/SILAC-proteomics), high sensitivity and accuracy for detection of molecular-biological effects is achievable even at sub-toxic effect dose levels. Aerosols from wood combustion and ship diesel engine (heavy/light fuel oil) have been investigated. The effect of wood combustion and ship diesel PM e.g. on the protein expression of ALI-exposed A549 cells was compared. Filtered aerosol is used as gas-reference for the isotope labeling based method (SILAC). Therefore the effects of wood combustion- and shipping diesel-PM can be directly compared. Ship diesel aerosol causes a broader distribution in the observed fold changes (log2), i.e. more proteins are significantly up-/down-regulated in case of shipping diesel PM-exposure. This corresponds to a stronger biological reaction if compared to wood combustion-PM exposure. The chemical analysis results on wood combustion- and ship diesel-PM depict more polycyclic aromatic hydrocarbons (PAH)/oxidized-PAH but less of some transition metals (V, Fe) in the wood combustion case. Interestingly, alkylated PAH are considerably more abundant in shipping PM, suggesting that PAH/Oxy-PAH may be less relevant for

  8. Opportunities for Merging Chemical and Biological Synthesis

    OpenAIRE

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecu...

  9. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  10. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  11. Chemical Product Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2004-01-01

    This paper highlights for a class of chemical products, the design process, their design with respect to the important issues, the need for appropriate tools and finally, lists some of the challenges and opportunities for the process systems engineering (PSE)/computer-aided process engineering (C...... with the overall objective to reduce the time and cost to market a new or improved product. (C) 2004 Elsevier Ltd. All rights reserved....... are highlighted in terms of the needs for multi-level modeling with emphasis on property models that are suitable for computer-aided applications, flexible solution strategies that are able to solve a large range of chemical product design problems and finally, a systems chemical product design framework......This paper highlights for a class of chemical products, the design process, their design with respect to the important issues, the need for appropriate tools and finally, lists some of the challenges and opportunities for the process systems engineering (PSE)/computer-aided process engineering...

  12. Next Generation Prokaryotic Engineering

    NARCIS (Netherlands)

    Mougiakos, Ioannis; Bosma, Elleke F.; Vos, de Willem M.; Kranenburg, van Richard; Oost, van der John

    2016-01-01

    The increasing demand for environmentally friendly production processes of green chemicals and fuels has stimulated research in microbial metabolic engineering. CRISPR-Cas-based tools for genome editing and expression control have enabled fast, easy, and accurate strain development for establishe

  13. Engineering synergy in biotechnology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Fussenegger, Martin; Keasling, Jay;

    2014-01-01

    In this article, the author focuses on approaches in metabolic engineering and synthetic biology for the creation of efficient cell factories, which can be bused to convert biomass and other feedstocks for the generation of chemicals. Topics discussed include development of restriction enzymes, e...

  14. 物理化学方法在线清洗船舶柴油机涡轮增压器%Cleaning Online the Turbocharger in the Marine Diesel Engines with Physico-chemical Method

    Institute of Scientific and Technical Information of China (English)

    夏勇

    2015-01-01

    Considering the serious carbon deposition and difficultly in maintaining the turbocharger in the marine diesel en⁃gines, a new technique is initiated synthetically to clean the turbocharger online with a physico⁃chemical method. The bench scale test shows that it is effective to remove the carbon deposition of the turbocharger and exhaust gas turbine with this technique;the vacuum degree with the crankcase and the gear case is greatly reduced after cleaning, meanwhile the performance of the turbocharg⁃er recovers and the power of the internal⁃combustion engine is improved. The contact material is not corroded by the special clean⁃ing agent supporting. The cleaning agent has good adaptability, and safe and reliable. The diesel engine runs smoothly and normally during the laundering.%针对船舶柴油机涡轮增压器积碳严重、维修保养困难的问题,提出了新研涡轮增压器清洗装置和清洗剂,综合运用物理化学方法对涡轮增压器进行在线清洗的新技术。台架试验表明:运用该技术可有效清除涡轮增压器压气机、废气涡轮内部的积碳;清洗后曲轴箱和齿轮箱内的真空度大幅降低,涡轮增压器性能恢复,内燃机功率提高;配套专用清洗剂对接触部位材料无腐蚀,适应性好,安全可靠;清洗过程中柴油机运转平稳、正常。

  15. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    Science.gov (United States)

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  16. Neural Engineering

    Science.gov (United States)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  17. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  18. Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 microS/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data

  19. Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, D.B. [Idaho INEL Oversight Program, Boise, ID (United States); Johnson, G.S. [Univ. of Idaho, Moscow, ID (United States). Dept. of Geology and Geological Engineering

    1997-03-01

    In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 {micro}S/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data.

  20. World Congress on Engineering and Computer Science 2013

    CERN Document Server

    Ao, Sio-Iong; Amouzegar, Mahyar

    2014-01-01

    This volume contains fifty-six revised and extended research articles, written by prominent researchers participating in the congress. Topics covered include electrical engineering, chemical engineering, circuits, computer science, communications systems, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. This book offers theoretical advances in engineering technologies, and presents state of the art applications. It also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies.

  1. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  2. Environmental and Engineering Geophysics

    Science.gov (United States)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  3. Chemical Compatibility of Polymeric Materials.

    Science.gov (United States)

    Solen, Kenneth A.; Kuchar, Marvin C.

    1990-01-01

    Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)

  4. Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97

    Energy Technology Data Exchange (ETDEWEB)

    E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

    2000-05-30

    >From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

  5. Reform and Practice on the Graduation Design for the Specialty of Chemical Engineering and Technology%化学工程与工艺专业毕业设计环节的改革与实践

    Institute of Scientific and Technical Information of China (English)

    熊楚安; 张增凤; 邵景景; 丁慧贤

    2011-01-01

    毕业设计是本科人才培养方案中一个重要的实践教学环节。按照"提早介入,一人一题,双向选择,携问实习,节点管理,专题讲座,突出特色,注重实效"的思路,对化学工程与工艺专业的毕业设计进行改革和实践,取得了较好的效果。%The graduation design is an important part of practical teachings on the scheme of undergraduate talents.Reform and practice on the graduation design had fairly good effect for the Specialty of Chemical engineering and technology,according to the thinking-advance intervention,one topic one person,two-way selection,practice with questions,node management,special lecture,having own unique characteristics,effectiveness.

  6. 浅谈《化工工艺学》课程教学中和谐课堂的构建%Build Harmonious Class in the Teaching of Chemical Engineering Technology

    Institute of Scientific and Technical Information of China (English)

    左广玲; 叶红勇

    2012-01-01

    With the teaching reform of "Chemical Engineering Technology" as the Carrier,the paper explored how to Create equal teacher-student relationship,build harmonious teaching classes and improve teaching effect.Practice shows that build equal,harmonious and democratic teacher-student relationship,motivate the interest of learning and let students acquire knowledge in easy-going learning atmosphere can build harmonious classes and pursue the most effective learning and teaching.%以《化工工艺学》课程教学为载体,探索如何营造平等师生关系,构建和谐教学课堂,提高授课时效。实践表明:营造平等、和谐、民主的新型师生关系,激发学生学习兴趣,使学生在轻松的学习中获得知识,可以构建和谐课堂追求学习与教学的最大有效性。

  7. Chemical kinetics of ignition timing of diesel engine fueled with water emulsion diesel%柴油机燃用水乳化柴油着火时刻的化学动力学特性

    Institute of Scientific and Technical Information of China (English)

    张韦; 舒歌群; 陈朝辉; 沈颖刚; 翁家庆

    2012-01-01

    以4100QBZL-2型增压直喷柴油机为研究对象,利用美国劳伦斯利弗莫尔国家实验室(LLNL)的正庚烷第三版详细模型进行化学动力学计算,对被测发动机上燃用纯柴油,体积分数为:10%.、20%、30%的水乳化柴油时缸内的着火时刻进行模拟研究,并将化学动力学计算结果与试验结果及计算流体力学与正庚烷简化模型(CFD-SKLE)的耦合计算结果进行对比分析.研究结果表明:水乳化柴油所引起的着火时刻延迟是由于乳化燃料中的水分在缸内的物理现象所引起.从化学动力学的角度来分析,乳化燃料内的水分可以促进H、O、OH、HO2等自由基在低温反应(冷焰)阶段的大量生成,为随后的高温(热焰)反应提供了条件,最终使着火时刻提前.通过对掺水后正庚烷氧化反应的敏感性分析可知,水分会在正庚烷氧化的低温反应时期对过氧烷基的异构化过程与过氧化氢酮的分解过程产生了促进作用,从而加速正庚烷氧化的链式反应的进行.%Based on the third edition of Lawrence Livermore National Laboratory (LLNL) n-heptane oxidation detail model, the chemical kinetics simulation was conducted using the parameters of a 4100QBZL-2 DI engine. The ignition delay time was investigated and simulated, with the engine fueled with pure diesel, 10%, 20% and 30%(by volume fraction) water-diesel emulsion. The chemical kinetics calculation results were compared with the experimental results and the computational fluid dynamics coupled with n-heptane reduced model (CFD-SKLE) calculation results. The results indicated that, the ignition time was delayed due to the physical phenomena of water in emulsified fuel. From a chemical view, the water in emulsion fuel can promote the formation of free radicals H, O, OH, HO2 in n-heptane's low temperature reaction regime (cool flame). Those free radicals can create advantageous conditions for n-heptane high temperature reaction (hot flame

  8. Remanufacturing strategy for chemical equipment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-cheng; XU Bin-shi; WANG Hai-dou; JIANG Yi; WU Yi-xiong; GONG Jian-ming; TU Shan-dong

    2005-01-01

    Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic losses. To assure the long-term and safety service, it is necessary to apply the remanufacturing technology on the chemical equipment containing cracks. The recent research advances on the remanufacturing, the failure modes and the life extension technology for chemical equipment were reviewed. The engineering strategy of the remanufacturing for the chemical equipment was proposed, which could provide a reasonable and reliable technical route for the remanufacturing operation of chemical equipment. In the strategy, the redesign was also been considered.

  9. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  10. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  11. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  12. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  13. Prosthetic Engineering

    Science.gov (United States)

    ... Overview CoE for Limb Loss Prevention and Prosthetic Engineering Menu Menu VA Center of Excellence for Limb ... ZIP code here Enter ZIP code here Prosthetic Engineering - Overview Our aim is to improve prosthetic prescription ...

  14. Computational problems in science and engineering

    CERN Document Server

    Bulucea, Aida; Tsekouras, George

    2015-01-01

    This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.

  15. Changing demographics and shrinking engineering enrollments

    International Nuclear Information System (INIS)

    This paper reports that changing U.S. population demographics, poor academic preparation, and a decreasing interest in engineering among college student indicate possible shortages ahead, particularly among chemical and petroleum engineers. If we are to ensure an adequate future supply for the U.S., the engineering talent pool must be enlarged to include women and minority men

  16. Engineering economy

    International Nuclear Information System (INIS)

    This book is written for engineer and manager who is working for analysis of propriety of project. It gives descriptions of basic of engineering economy, compare principle of engineering economy, application of compare principle, evaluation of capital project, value of time of funds and evaluation of investment, engineering economy analysis of an alternative idea, depreciation, determination and principle analysis of uncertain prospect, analysis of propriety of project, profitable plan in product progress, quality, cost and profit and analysis of complex investment project.

  17. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. PMID:27131325

  18. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests.

  19. Engineering Motion

    Science.gov (United States)

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  20. Plasma-chemical surface engineering of wood

    Directory of Open Access Journals (Sweden)

    A. Sokołowska

    2009-12-01

    Full Text Available Purpose: Wood infiltrated with nano-silica hydrosol forms a “weak”, irregular composite of components bound with hydrogen bonds only. The purpose of this study was to investigate the influence of low-energy ions bombardment on the structure and properties of the surface of this composite. The aim of these investigations was to produce a shallow “buried” layer of a dense wood-ceramic composite on a wood surface .Design/methodology/approach: D.c. glow-discharge in N2/H2 (9:11 atmosphere under a pressure of 4hPa was the source of ions. A beech plate was placed on the cathode. The temperature of wood was 200°C. The material collected from the wood-silica composite surface was investigated with FTIR spectroscopy and SEM observations. The surface energy was determined with the use of contact angle measurements.Findings: The ions influenced silica only. The nano-particles underwent sintering changing its medium size twice and a small I.R. peak of N2 trapped in SiO2 suggest the possibility of silica nitriding. A buried, continual surface layer of sintered silica did not form. The surface energy of the “wood-silica” plate was slightly decreased after plasma treatment.Research limitations/implications: The results proved the possibility of plasma treatment of wood even in a d.c. glow-discharge under low pressure. Silica sintering, a difficult process which in a thermal way has to be carried out at a temperature of 1000°C, taking place in a plasma at a temperature of 200°C showed the very special nature of an influence of ions.Originality/value: The plasma surface treatment of wood in the d.c. glow-discharge (GD under reduced pressure has not been investigated. There are only publications about glow-dielectric-barrier-discharge (GDBD at atmospheric pressure applications for wood surface modification. The energy of ions in GDBD is much smaller than that of ions in GD and therefore the application of glow discharge under reduced pressure to wood surface treatment can be more efficient.

  1. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  2. Computers & Chemical Engineering: Best paper of 2009

    DEFF Research Database (Denmark)

    Venkatasubramanian, Venkat; Gani, Rafiqul

    2011-01-01

    The Editorial Advisory Board of the Journal has assessed the papers published in Volume 33 by means of a three stage process of nomination and balloting. We are pleased to announce that the 2009 Best Paper of the Year Award goes to J.M. Harrold and R.S. Parker for their paper entitled “Clinically...

  3. 微生物木糖代谢途径改造制备生物基化学品%Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals

    Institute of Scientific and Technical Information of China (English)

    刘维喜; 付晶; 章博; 陈涛

    2013-01-01

    当前,全球经济的高速发展与日益减少的石油资源储备进一步加剧了能源供需矛盾.人类对开发利用可再生的纤维素生物质资源寄予厚望.木糖是木质纤维素水解产物中含量仅次于葡萄糖的一种单糖,因此对木糖高效率生物转化的研究成为影响其工业化前景的关键因素之一.针对近几年的研究,文中综述了生物转化木糖方面的进展,包括木糖代谢途径的鉴定和设计、木糖运输途径的改造、生物基化学品制备.为了解决当前全球面临的能源危机与环境问题,运用合成生物学技术发展新一代生物燃料技术,特别是开发能够代谢木糖高产乙醇的微生物工程菌株是实现可持续发展的重要方式.%As the rapid development of economy necessitates a large number of oil,the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource.Therefore,the research of the renewable cellulosic biomass resources is gaining unprecedented momentum.Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes,high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application.According to the research progresses in recent years,this review summarized the advances in bioconversion of xylose,which included identification and redesign of the xylose metabolic pathway,engineering the xylose transport pathway and bio-based chemicals production.In order to solve the energy crisis and environmental pollution issues,the development of advanced bio-fuel technology,especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology,is environmentally benign and sustainable.

  4. Advancing cardiovascular tissue engineering

    Science.gov (United States)

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  5. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  6. Leap-forward development strategy of China's biomethane industry based on new developments of chemical engineering%化工新视野下中国生物甲烷跨越式发展策略

    Institute of Scientific and Technical Information of China (English)

    刘畅; 陆小华; 杨祝红; 朱育丹; 冯新

    2013-01-01

    生物甲烷作为战略资源和可再生能源已在德国和瑞典等发达国家得到快速发展,我国尚处于起步阶段.目前,对生物甲烷物质高效转化和能量有效利用机制缺乏深入了解仍然是制约其大规模应用的瓶颈.本文从化学工程前沿理论出发,分析生物甲烷高效转化存在的关键科学问题,认为基于中国国情的生物甲烷工业,可以在化工界面传递新理论、纳微尺度新材料和系统优化方法介入下,获得物质转化和能量利用方面的突破,实现生物甲烷产业的跨越式发展.%Biomethane has developed rapidly in western countries, such as Germany and Sweden, but it is still in its infancy in China though biomethane is an important renewable energy made from organic sources. At present, the bottleneck limiting its large-scale application is unclear mechanisms of high efficiency conversion and effective energy utilization in biomethane process. In this work, the key problems in biomethane process were discussed based on new theory of chemical engineering. It was concluded that that rapid progress can be made in biomethane industry in China with the help of new theory of interface transport, new micro and nano materials and system optimization methods.

  7. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  8. C语言在化工原理离心泵特性曲线测定中的应用%Application of C language on chemical engineering experiment “Characteristic Curve Measurement of Centrifugal Pump”

    Institute of Scientific and Technical Information of China (English)

    伍绍贵; 刘国君; 徐成刚; 廖杰; 赁敦敏

    2011-01-01

    离心泵特性曲线的测定是化工原理的重要内容,涉及到伯努利方程和连续性方程在流体流动中的实际应用,公式复杂,计算量大.本文利用C语言的强大结构化编程和计算功能,处理了“离心泵特性曲线的测定”实验数据,给出了程序设计的思路和方法,得到了离心泵的特性曲线.从曲线可以看出,随着流量的增大,离心泵的压头减少,轴功率升高,和教材完全一致.而离心泵的效率随流量增大而增大,并未出现先增大后减小的情况,可能是由于流量较小所导致.通过分析曲线可以得到离心泵操作相关的知识,离心泵必须在流量较小的区域工作才能获得较大的压头,大流量的离心泵需要配置大功率的电机,离心泵启动之前应关闭出口阀等.此外还发现压力表和真空表的读数随流量的增大而变小,解释了此现象.该程序结构简单,维护方便,通过简单修改可用于处理其它化工原理实验的数据,充分发挥了C语言的特长来解决化工原理计算复杂的特点.%The characteristic curve measurement of centrifugal pump is a very important content in chemical engineering principle, which involves the practical application of the Bernoulli's equation and the continuity equation in fluid flow. These formulas are very complex with a large amount of calculation. In mis paper, C language is used to process the experiment data of this experiment by virtue of its powerful structured programming and computing function. The detailed idea and method for programming are given and the typical characteristic curves for centrifugal pump are obtained. A analyzing of these curves indicates that as the increasing of the flow rate, the press head decreases while the shaft power increases, which is in agreement with those described in the teaching material. On the other hand, the phenomenon that the operational efficiency increases initially and decreases afterwards as the flow rate

  9. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  10. 10. colloquium on aspects of chemical and physical safety engineering. Current trends in safety engineering - research findings and legal boundary conditions - new options for large-scale experiments; 10. Kolloquium zu Fragen der chemischen und physikalischen Sicherheitstechnik. Aktuelle Entwicklungen in der Sicherheitstechnik - Forschungsergebnisse und gesetzliches Umfeld - neue Moeglichkeiten fuer Grossversuche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Since 1981, BAM and PTB have been hosting of this series of colloquia, at which attendants were informed on current news and trends in chemical and physical safety engineering. This volume informs on explosion protection to prevent formation of explosive solvent/vapour/air mixtures in dryers, ignition source safety of ga/air, dust/air, and dust layers, sudden ignition processes in hydrogen/air mixtures, test methods, influencing parameters of the hazardous properties of ammonium nitrate and materials containing it, fire behaviour and fire hazards of bulk goods and specific materials, problems in the application of new technical rules and directives on a national and European level, and new approaches to probabilistic risk assessment for safe design of gas stores. At this anniversary meeting, the attendants were also given the opportunity to visit the BAM test facilities at Horstwalde, about 50 km south of Berlin. This test site, with an area of 12 km{sup 2}, has an explosion test area with a diameter of 400 m for fire and explosion tests up to 150 kg TNT. (orig.)

  11. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  12. Engineering mechanics

    CERN Document Server

    Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal

    Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...

  13. Computational problems in engineering

    CERN Document Server

    Mladenov, Valeri

    2014-01-01

    This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.   • Features contributions from distinguished researchers on significant aspects of current numerical methods and computational mathematics; • Presents actual results and innovative methods that provide numerical solutions, while minimizing computing times; • Includes new and advanced methods and modern variations of known techniques that can solve difficult scientific problems efficiently.  

  14. Information engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  15. Engineering Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se Yun

    2009-01-15

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  16. Cognitive Engineering

    OpenAIRE

    Wilson, Kyle M.; Helton, William S; Wiggins, Mark W.

    2013-01-01

    Cognitive engineering is the application of cognitive psychology and related disciplines to the design and operation of human–machine systems. Cognitive engineering combines both detailed and close study of the human worker in the actual work context and the study of the worker in more controlled environments. Cognitive engineering combines multiple methods and perspectives to achieve the goal of improved system performance. Given the origins of experimental psychology itself in issues regard...

  17. Reverse Engineering

    International Nuclear Information System (INIS)

    This book gives descriptions of reverse engineering with principle and structure of it, including what reverse engineering is, prospect and concerned laws, basic knowledge for reverse engineering like manual and back to user mode, using tool such as IDA installation, dependency walker and dump bin, network monitoring and universal extractor. It indicates analysis of malignant code, giving explanations of file virus, spy ware, an infection way of malignant code, anti debugging like Find window.

  18. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  19. Engineering Ethics

    OpenAIRE

    Didier, Christelle

    2010-01-01

    In this chapter, the author presents the research field called "engineering ethics" and analyses some ethical issues related to the engineering profession. Ce chapitre dresse un état des lieux du champ de recherche intitulé depuis les années 1980 "engineering ethics"en anglais. Il présente quelques enjeux éthiques que soulève le métier d'ingénieur.

  20. Rehabilitation Engineering: What is Rehabilitation Engineering?

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Rehabilitation Engineering What is rehabilitation engineering? What types of assistive ... the area of rehabilitation engineering? What is rehabilitation engineering? Source: Michael Goldfarb, Vanderbilt University Rehabilitation engineering is ...