WorldWideScience

Sample records for chemical engineering combustion

  1. Automotive fuels and internal combustion engines: a chemical perspective.

    Science.gov (United States)

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  2. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  3. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, David [Alstom Power Inc., Windsor, CT (United States)

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  4. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  5. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  6. Heat regenerative external combustion engine

    Science.gov (United States)

    Duva, Anthony W.

    1993-10-01

    A heat regenerative external combustion engine is disclosed. The engine includes fuel inlet means which extends along the exhaust passage and/or combustion chamber in order to preheat the fuel, To provide for preheating by gases in both the combustion chamber and the exhaust passage, the combustion chamber is arranged annularly around the drive shaft and between the cylinders. This configuration also is advantageous in that it reduces the noise of combustion. The engine of the invention is particularly well-suited for use in a torpedo.

  7. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  8. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  9. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bireswar; Datta, Amitava, E-mail: amdatta_ju@yahoo.com [Jadavpur University, Department of Power Engineering (India); Datta, Aparna; Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre (India)

    2013-04-15

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm{sup -1} has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  10. Chemical Kinetic Models for HCCI and Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  11. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  12. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  13. Staged combustion with piston engine and turbine engine supercharger

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  14. ABB Combustion Engineering nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  15. Free Energy and Internal Combustion Engine Cycles

    CERN Document Server

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  16. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  17. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  18. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper;

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...... characteristics under high load condition in a marine diesel engine. Comparisons to the measurement show that the simulated pressure rise started 1.0 crank angle degree in advance and the calculated peak pressure is 1.7 % lower. The associated flame liftoff length is negligible, yielding high local equivalence...

  19. Internal combustion engineering: science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Weaving, J.H. (ERA Ltd., Dunstable (GB)) (ed.)

    1990-01-01

    This book describes the most advanced research and development in the field of combustion efficiency and pollution reduction in internal combustion engines, both diesel and gasoline, being conducted in Universities, Polytechnics and industry. Pollution is a function of combustion and all aspects of engine combustion are covered in depth. In addition add-on devices such as catalysts receive detailed attention. The whole of this field is covered for spark-ignition engines, diesel engines (two stroke and four stroke) and stratified charge engines. Considerable attention is also devoted to the high-compression lean-burn engine. (author).

  20. Cars applications in chemical reactors, combustion and heat transfer

    Science.gov (United States)

    Greenhalgh, D. A.; Porter, F. M.

    1986-08-01

    This paper illustrates the use of the CARS technique in the fields of Chemical Reactor engineering, combustion and Heat Transfer. Examples of recent results from a catalytic chemical reactor, an operating production petrol engine and an oil spray furnace are given. The experimentally determined accuracy of CARS nitrogen thermometry for both mean and single pulse measurements is presented.

  1. Chemical Kinetic Modeling of Biofuel Combustion

    Science.gov (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  2. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the T

  3. Diagnostics of combustion engines` fuel system

    OpenAIRE

    Kuchař, Jan

    2011-01-01

    Thesis " Diagnostics of combustion engines` fuel system " deals with diagnostics of fuel systems for internal combustion engines. In the chapter "Fuel system for internal combustion engines” are described injection devices of modern gasoline and diesel engines. The chapter "Diagnostic equipment for fuel systems" describes the equipment used in the service to diagnose the fuel system. It further describes diagnostic methods and procedures. Chapter "Analysis of the current condition of...

  4. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  5. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  6. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  7. Combustion calorimetry experimental chemical thermodynamics

    CERN Document Server

    Sunner, Stig

    1979-01-01

    Combustion Calorimetry deals with expertise knowledge concerning the calorimetry of combustion reactions of an element or compound. After defining the use of units and physical constants, the book discusses the basic principles of combustion calorimetry and the various instruments and calorimeters used in the experiments to measure operations concerning temperatures and its time variations. One paper discusses the theory and design criteria of combustion calorimeter calibration. Another paper discusses the results obtained from a combustion calorimeter after it has measured the energy or entha

  8. Chaotic Combustion in Spark Ignition Engines

    OpenAIRE

    Wendeker, M.; Czarnigowski, J.; Litak, G.; Szabelski, K.

    2002-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due...

  9. Combustion Limits and Efficiency of Turbojet Engines

    Science.gov (United States)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  10. Equilibrium Chemical Engines

    OpenAIRE

    Shibata, Tatsuo; Sasa, Shin-ichi

    1997-01-01

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  11. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  12. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  13. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  14. Analysis of nonequilibrium chemical processes in the plume of subsonic and supersonic aircraft with hydrogen and hydrocarbon combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Starik, A.M.; Lebedev, A.B.; Titova, N.S. [Central Inst. of Aviation Motors, Moscow (Russian Federation)

    1997-12-31

    On the basic of quasi one dimensional mixing model the numerical analysis of nonequilibrium chemical processes in the plume of subsonic and hypersonic aircraft is presented. It was found that species HNO, HNO{sub 3}, HNO{sub 4}, N{sub 2}O{sub 5}, ClO{sub 2}, CH{sub 3}NO{sub 2} could be formed as a result of nonequilibrium processes in the plume and their concentrations can essentially exceed both background values in free stream of atmosphere and their values at the nozzle exit plane. (author) 10 refs.

  15. Fatigue of internal combustion engines

    Science.gov (United States)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  16. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  17. Carburetor device, especially for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, F.

    1978-05-23

    A carburetor for an internal combustion engine is described that has a combustion air intake duct, a valve in the duct for controlling the air flow through the duct, a fuel flow regulator in the valve for controlling fuel flow through a downstream portion of the valve in dependence on the air flow, and a turbine associated with the fuel flow regulator. The regulator is driven by the exhaust gases of the engine, the turbine having a rotating tubular hub extending through the valve and surrounding the fuel flow regulator, the tubular hub being connected to the fuel outlet through the valve.

  18. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  19. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  20. Effect of Gas Mixture Composition on the Parameters of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Andrej Chríbik

    2012-01-01

    Full Text Available This paper deals with the use of the internal combustion piston engine, which is a drive unit for micro-cogeneration units. The introduction is a brief statement of the nature of gas mixture compositions that are useful for the purposes of combustion engines, together with the basic physical and chemical properties relevant to the burning of this gas mixture. Specifically, we will discuss low-energy gases (syngases and mixtures of natural gas with hydrogen. The second section describes the conversion of the Lombardini LGW 702 combustion engine that is necessary for these types of combustion gases. Before the experimental measurements, a simulation in the Lotus Engine simulation program was carried out to make a preliminary assessment of the impact on the performance of an internal combustion engine. The last section of the paper presents the experimental results of partial measurements of the performance and emission parameters of an internal combustion engine powered by alternative fuels.

  1. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  2. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  3. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  4. Model Based HCCI Engine Combustion Control

    OpenAIRE

    Lundström, Mikael

    2006-01-01

    An Homogenous Charge Compression Ignition engine is a hybrid between a Diesel and an Otto Engine. It has good fuel efficiency, close to a Diesel engine and also very low emissions of NOX and nearly no particulate soot. Other emissions are higher but can be after treated by a catalyst. The engine has not yet been fully developed so far and lacks among others a good automatic control of the combustion angle which should be held in a small window to achieve the best performance. The objective in...

  5. Wear aspects of internal combustion engine valves

    Science.gov (United States)

    Panţuru, M.; Chicet, D.; Paulin, C.; Alexandru, A.; Munteanu, C.

    2016-08-01

    Because the surface engineering is becoming an increasingly viable alternative to the constructive changes made to improve the efficiency of internal combustion engines, have been proposed and tested various types of coatings of some organs of internal combustion engines. One vital organ is the engine valves, which is subjected during operation to combined thermal, mechanical, corrosion and wear solicitations, which are leading to severe corrosion and complete breakdown. In this paper were analyzed aspects of valves wear and the active surfaces were coated using the atmospheric plasma spraying method (APS) with two commercial powders: Ni-Al and YSZ. Microstructural analyzes were made on these layers and also observations regarding the possibility of using them as thermal barrier and anti-oxidant coatings.

  6. Comparing maximum pressures in internal combustion engines

    Science.gov (United States)

    Sparrow, Stanwood W; Lee, Stephen M

    1922-01-01

    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

  7. ABB Combustion Engineering`s nuclear experience and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  9. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  10. Analysis of rocket engine injection combustion processes

    Science.gov (United States)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  11. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  12. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    Nureddin Dinler; Nuri Yucel

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  13. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  14. Potential of porous medium combustion technology as applied to internal combustion engines

    OpenAIRE

    Weclas, Miroslaw

    2009-01-01

    The paper describes application of a highly porous open cell structures to internal combustion engines for supporting mixture formation and combustion processes. Porous structures, materials and their properties for engine application are discussed in this paper. Especially application to a high temperature combustion processes are considered. Novel concepts for internal combustion engines based on the application of porous medium technology are presented and discussed. The main attention is ...

  15. Strategy for intelligent internal combustion engine with homogenous combustion in cylinder

    OpenAIRE

    Weclas, Miroslaw

    2009-01-01

    In this report the author proposes strategy for development of intelligent combustion systems with a goal to approach a near-zero emission internal combustion engine operating in a wide range of speeds and loads. Main requirement for future I.C. engine is to develop a system permitting homogeneous combustion process (minimum of engine emissions) under all operational conditions. The author suggests, that none existing individual combustion system may satisfy these conditions. However, combina...

  16. Chemical Looping Combustion of Rice Husk

    Directory of Open Access Journals (Sweden)

    Rashmeet Singh Monga

    2015-05-01

    Full Text Available A thermodynamic investigation of direct chemical looping combustion (CLC of rice husk is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200˚C and different amounts of oxygen carriers. Chemical equilibrium model was considered for the CLC fuel reactor. The trends in product compositions of the fuel reactor, were determined. Rice husk gasification using 3 moles H2O and 0 moles CO2 per mole carbon (in rice husk at 1 bar pressure and 900˚C was found to be the best operating point for hundred percent carbon conversion in the fuel reactor. Such detailed thermodynamic studies can be useful to design chemical looping combustion processes using different fuels.

  17. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  18. Comparison of combustion efficiencies for ramjet engines

    Science.gov (United States)

    Bergmann, J. W.

    1984-01-01

    Four different combustion efficiencies commonly used for assessing ramjet engines are compared. The mixture ratios cover a range from stoichiometric to an equivalence ratio of 0.2, and the polyethylene/air propellant system is used. The ratio of effective to ideal temperature rise is taken as reference efficiency. As might be expected, major differences can be observed near stoichiometric and down to equilvalence ratios of 0.5. These are quantitatively demonstrated.

  19. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  20. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum. PMID:24702299

  1. Tailoring next-generation biofuels and their combustion in next-generation engines.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O' Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  2. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    OpenAIRE

    Yan Zhang; Zhengxing Zuo; Jinxiang Liu

    2015-01-01

    The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine†, was used to illustrate the structure and principle of the engine. The aims are to (1) improve the understanding of combustion process, and (2) quantify the influence of rotational speed, excess air rat...

  3. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  4. ENVIRONMENTAL ASSESSMENT OF COMBUSTION MODIFICATION CONTROLS FOR STATIONARY INTERNAL COMBUSTION ENGINES

    Science.gov (United States)

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, an...

  5. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  6. Chemical Looping Combustion of Rice Husk

    OpenAIRE

    Rashmeet Singh Monga; Ganesh R. Kale

    2015-01-01

    A thermodynamic investigation of direct chemical looping combustion (CLC) of rice husk is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200˚C and different amounts of oxygen carriers. Chemical equilibrium model was considered for the CLC fuel reactor. The trends in product compositions of the fuel reactor, were determined. Rice husk gasification using 3 moles H2O and 0 moles CO2 per mole carbon (in rice husk) at 1 bar pr...

  7. Modeling of a bioethanol combustion engine under different operating conditions

    International Nuclear Information System (INIS)

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  8. Bulkhead chamber ignition for internal combustion engines. Schottkammerzuendung fuer Verbrennungsmotore

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.

    1990-12-06

    Bulkhead chamber ignition makes for reliable ignition of different fuels (e.g. petrol or diesel) in internal combustion engines (multifuel engine) that can be operated with an extremely lean fuel-air mixture. This is realized by an open chamber (referred to as bulkhead chamber in the following) inside the combustion chamber which diverts a fraction of the compressed fuel-air mixture from the combustion chamber. After this the pressure in the bulkhead chamber is increased until the mixture ignites spontaneously. The combustion pressure drives back the piston and opens the bulkhead chamber. Then the compressed fuel-air mixture in the combustion chamber is ignited by the released combustion gas.

  9. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  10. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    Science.gov (United States)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  11. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    OpenAIRE

    Ashok A Dhale; Gajanan K. Awari; Mahendra P Singh

    2010-01-01

    At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous c...

  12. Chemical equilibrium analysis of dry hydrogen combustion

    International Nuclear Information System (INIS)

    The present work is based on a thermo-chemical equilibrium model for studying the effect of combustion of hydrogen during postulated accident scenarios in nuclear reactor containments. This model is based on the method of element potentials which seeks to minimize the free energy of the system. The condition on internal energy balance is imposed as a constraint during the minimization process. Another simplified model purely based on the internal energy balance has also been implemented to investigate the isolated impact of free energy and the conditions under which it becomes dominant. The two models have been used to extract final pressures for a wide range of initial conditions and mixture compositions that are typically found during accident scenarios. In the absence of hydrogen combustion experimental data, such models will become important for laying down a first estimate on the possible outcomes. (author)

  13. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    OpenAIRE

    Miroslaw Weclas

    2010-01-01

    The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of...

  14. Standard technical specifications combustion engineering plants

    International Nuclear Information System (INIS)

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS) for Combustion Engineering Plants. The improved STS wee developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document, Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Sections 3.4--3.9 of the improved STS

  15. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  16. Chemical Looping Combustion of Methane: A Technology Development View

    Directory of Open Access Journals (Sweden)

    Rutuja Bhoje

    2013-01-01

    Full Text Available Methane is a reliable and an abundantly available energy source occurring in nature as natural gas, biogas, landfill gas, and so forth. Clean energy generation using methane can be accomplished by using chemical looping combustion. This theoretical study for chemical looping combustion of methane was done to consider some key technology development points to help the process engineer choose the right oxygen carrier and process conditions. Combined maximum product (H2O + CO2 generation, weight of the oxygen carrier, net enthalpy of CLC process, byproduct formation, CO2 emission from the air reactor, and net energy obtainable per unit weight (gram of oxygen carrier in chemical looping combustion can be important parameters for CLC operation. Carbon formed in the fuel reactor was oxidised in the air reactor and that increased the net energy obtainable from the CLC process but resulted in CO2 emission from the air reactor. Use of CaSO4 as oxygen carrier generated maximum energy (−5.3657 kJ, 800°C per gram of oxygen carrier used in the CLC process and was found to be the best oxygen carrier for methane CLC. Such a model study can be useful to identify the potential oxygen carriers for different fuel CLC systems.

  17. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  18. Statistics of indicated pressure in combustion engine.

    Science.gov (United States)

    Sitnik, L. J.; Andrych-Zalewska, M.

    2016-09-01

    The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.

  19. Chemical-looping combustion - status of development

    Energy Technology Data Exchange (ETDEWEB)

    Lyngfelt, Anders; Johansson, Marcus; Mattisson, Tobias

    2008-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last years with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. In 2002 the process was a paper concept, albeit with some important but limited laboratory work on oxygen carrier particles. Today more than 600 materials have been tested and the technique has been successfully demonstrated in chemical-looping combustors in the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. The total time of operational experience is more than a thousand hours. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Most work so far has been focused on gaseous fuels, but the direct application to solid fuels is also being studied. Moreover, the same principle of oxygen transfer is used in chemical-looping reforming (CLR), which involves technologies to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology

  20. Internal combustion engine using premixed combustion of stratified charges

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  2. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  3. Design a four-cylinder internal combustion engine

    OpenAIRE

    Plamenov Georgiev, Radoslav

    2011-01-01

    The aim of this thesis is to introduce to the interesting world of internal combustion engines and to describe what actually internal combustion engine is. What are its main components and structure. How the engine indeed operates. Also to design a real engine, having into account all necessary calculations concerning with kinematics, dynamics and strength calculation of basic details. Another purpose of the project is to define the proper materials for each part. Next to that I will make 2D ...

  4. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    OpenAIRE

    Armando Pérez; Rogelio Ramos; Gisela Montero; Marcos Coronado; Conrado García; Rubén Pérez

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, a...

  5. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  6. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  8. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  9. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2010-04-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  10. Combustion characterization of methylal in reciprocating engines

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L.; Naegeli, D. [Southwest Research Institute, San Antonio, TX (United States)

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  11. Combustion Processes in Hybrid Rocket Engines

    Science.gov (United States)

    Venkateswaran,S.; Merkle, C. L.

    1996-01-01

    In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or

  12. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  13. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  14. Modeling in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    Jaap van Brakel

    2000-10-01

    Full Text Available Models underlying the use of similarity considerations, dimensionless numbers, and dimensional analysis in chemical engineering are discussed. Special attention is given to the many levels at which models and ceteris paribus conditions play a role and to the modeling of initial and boundary conditions. It is shown that both the laws or dimensionless number correlations and the systems to which they apply are models. More generally, no matter which model or description one picks out, what is being modeled is itself a model of something else. Instead of saying that the artifact S models the given B, it is therefore better to say that S and B jointly make up B and S.

  15. Knock prediction for dual fuel engines by using a simplified combustion model

    Institute of Scientific and Technical Information of China (English)

    费少梅; 刘震涛; 严兆大

    2003-01-01

    The present work used a methane-air mixture chemical kinetics scheme consisting of 119 elementary reaction steps and 41 chemical species to develop a simplified combustion model for prediction of the knock in dual fuel engines. Calculated values by the model for natural gas operation showed good agreement with corresponding experimental values over a broad range of operating conditions.

  16. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    Science.gov (United States)

    Nguyen, H. L.; Ying, S.-J.

    1990-07-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  17. Progress of energy system with chemical-looping combustion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; HAN Tao

    2009-01-01

    Chemical-looping combustion with zero energy penalty of CO2 separation is a significant breakthrough in resolving energy and environment problems for power generation systems. This paper summarizes the research on energy systems with chemical-looping combustion conducted in recent years, discloses the underlying mechanism of energy release of chemical-looping combustion, describes the trends of the key technology development, and presents the proposed chemicaMooping combustion thermal cycles. This paper may provide a new direction to the synthesis of the next-generation energy system compatible with environment.

  18. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    Science.gov (United States)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  19. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air s

  20. Fundamentals of chemical reaction engineering

    CERN Document Server

    Davis, Mark E

    2012-01-01

    Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.Each chapter contains numerous worked-out problems and real-world vignettes involving commercia

  1. Artificial neural network based modelling of internal combustion engine performance

    OpenAIRE

    Boruah, Dibakor; Thakur, Pintu Kumar; Baruah, Dipal

    2016-01-01

    The present study aims to quantify the applicability of artificial neural network as a black-box model for internal combustion engine performance. In consequence, an artificial neural network (ANN) based model for a four cylinder, four stroke internal combustion diesel engine has been developed on the basis of specific input and output factors, which have been taken from experimental readings for different load and engine speed circumstances. The input parameters that have been used to create...

  2. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    OpenAIRE

    Salih ÖZER

    2014-01-01

    This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power ...

  3. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas

    2010-01-01

    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  4. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  5. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  6. Teaching Chemical Engineers about Teaching

    Science.gov (United States)

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  7. Job Prospects for Chemical Engineers.

    Science.gov (United States)

    Basta, Nicholas

    1985-01-01

    The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…

  8. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  9. Standard Technical Specifications, Combustion Engineering plants

    International Nuclear Information System (INIS)

    This NUREG contains improved Standard Technical Specifications (STS) for Combustion Engineering (CE) Plants and documents the positions of the Nuclear Regulatory Commission based on the CE Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved SM. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document Volume 3 contains the Bases for Sections 3.4--3.9 of the improved M

  10. THE ANALYSIS OF CAUSES OF LORRY PISTON COMBUSTION ENGINE DAMAGE

    Directory of Open Access Journals (Sweden)

    Mária Štefániková

    2012-02-01

    Full Text Available The article deals with analysis of causes of lorry piston combustion engine damage. For docummentation and analysis of causes was used macroscopical, microscopical and scanning electron microscopy. The analysis showed that the reason of fatal damage resides in production process of lorry combustion pistons which proved in implication of fatigue damage and subsequent burnout in two piston place.

  11. Combustion characteristics of turbo charged DISI-engines

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeyer, Henrik

    2012-07-01

    In spite of progress in the development of alternative powertrain systems and energy sources, the internal combustion and all its derivates still are and will be the main powertrain for automobiles. In SI-engines, several approaches compete with each other like the controlled auto ignition (CAI or HCCI), throttle-free load control using variable valvetrains, stratified mixture formation with lean engine operation or highly turbo charged downsizing concepts all combined with gasoline direct injection. The presented work makes a contribution for a deeper understanding of the combustion process of a turbo charged direct injection engine operating with external EGR as well as lean stratified mixture. Using detailed test bench investigations and introducing a new optical measurement tool, the combustion process is described in detail focusing on the occurrence of non-premixed combustion phenomena. The influence of engine parameters like global and local air-/fuel ratio, external EGR and fuel rail pressure as well as the influence of fuel parameters are discussed giving a characterization of the combustion process of stratified engine operation. Furthermore, the influences of non-inert exhaust gas components on engine knock tendency are investigated using external EGR with an EGR catalyst. Opposing the results to numerical analysis, combustion characteristics of turbo charged DISI-engines are presented. (orig.)

  12. Impact of the chemical description on direct numerical simulations and large eddy simulations of turbulent combustion in industrial aero-engines

    OpenAIRE

    Franzelli, Benedetta Giulia

    2011-01-01

    Le développement de nouvelles technologies pour le transport aérien moins polluant est de plus en plus basé sur la simulation numérique, qui nécessite alors une description fiable de la chimie. Pour la plupart des carburants, la description de la combustion nécessite des mécanismes détaillés mais leur utilisation dans une simulation numérique de combustion turbulente est limitée par le coût calcul. Des mécanismes cinétiques réduits et des méthodes de tabulation ont été proposés pour surmonter...

  13. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D. [Imperial College, London (United Kingdom); Greenhalgh, D. [Cranfield Univ. (United Kingdom); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N. [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  14. Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept

    Directory of Open Access Journals (Sweden)

    Yann Chamaillard

    2002-03-01

    Full Text Available Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency is quite low and the kinetic energy during a braking phase is lost. This work presents a new hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store energy in the form of compressed air. This energy can be issued from a braking phase or from a combustion phase at low power. The potential energy from the air tank can then be restored to start the engine, or charge the engine at full load. The regenerative breaking and the suppression of the idling phases could provide an improvement in terms of fuel economy as high as 15% or more if combined with engine downsizing.

  15. Surrogate fuel formulation for light naphtha combustion in advanced combustion engines

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-30

    Crude oil once recovered is further separated in to several distinct fractions to produce a range of energy and chemical products. One of the less processed fractions is light naphtha (LN), hence they are more economical to produce than their gasoline and diesel counterparts. Recent efforts have demonstrated usage of LN as transportation fuel for internal combustion engines with slight modifications. In this study, a multicomponent surrogate fuel has been developed for light naphtha fuel using a multi-variable nonlinear constrained optimization scheme. The surrogate, consisting of palette species n-pentane, 2-methylhexane, 2-methylbutane, n-heptane and toluene, was validated against the LN using ignition quality tester following ASTM D6890 methodology. Comparison of LN and the surrogate fuel demonstrated satisfactory agreement.

  16. Determination of combustion parameters using engine crankshaft speed

    Science.gov (United States)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  17. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  18. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore

  19. A numerical study of turbulent combustion characteristics in a combustion chamber of a scramjet engine

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    3D numerical simulation of flow fields in a combustion chamber of a scramjet engine using an SST turbulence model with an explicit compressibility correction was performed and the results were compared to the experimental results.The characteristics of the turbulent combustion flow fields were analyzed via the numerical results and presented.In order to identify the mechanisms of turbulent combustion in supersonic flows,the evolutions of governing dimensionless parameters in the flow fields were investigated based on the theory of combustion and the available numerical results.It was found that the supersonic combustion takes place in the region of fully developed turbulence and that the strongest effects of turbulence and combustion processes appear in the vicinity of the injector.The unsteady effects and the local flame extinction phenomenon induced by turbulent flows were found to be negligibly small,and the steady flamelet approximation will hold for practical applications.

  20. Ducted combustion chamber for direct injection engines and method

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  1. Study of Second Generation Biofuels in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Dhandapani

    2012-07-01

    fuel, vis-a-vis neat diesel fuel (DF). The CO, THC, smoke and TPM emissions were reduced significantly, while NOx emissions were somewhat higher with BD blended fuels compared to neat FT fuel. The reductions in CO, THC, smoke and TPM emissions with BD blends were mainly due to the oxygen content in the BD blended fuel, while the increases in NOx emissions with BD fuels were due to advances in injection timing, higher percentages of fatty acids with double bonds in the carbon chain and higher heat release in the pre-mixed combustion. Secondly, a four-stroke, single-cylinder, naturally-aspirated (NA), direct-injection (DI) diesel engine with 8 BHP at 1500 rpm coupled with water-cooled, eddy current dynamometer was used for the experiments. Ethanol (5% by volume) was injected into the intake manifold by the port injection method with the assistance of a mechanical fuel injection pump. Therefore, the volumetric blending percentages of ethanol, BD and diesel fuels (E:D:JME) are (0:100:0), (5:95:0), (5:75:20), (5:55:40), (5:35:60), (5:15:80) (5:0:95) and (0:0:100) respectively. Ethanol pre-mixed with intake air, assisted in improving combustion in both diesel and the JME blends. The addition of ethanol to high-viscosity Jatropha methyl ester (JME) through port injection is investigated in order to determine its effect on the fuels viscosity and thereby on the diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME was studied in particular. It was found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which in turn, alter the engines operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for up to 25% blending of diesel with biofuels, while

  2. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  3. Cleaner combustion developing detailed chemical kinetic models

    CERN Document Server

    Battin-Leclerc, Frédérique; Blurock, Edward

    2013-01-01

    This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the  formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of min

  4. Synthesis Gas from Pyrolysed Plastics for Combustion Engine

    OpenAIRE

    Chríbik Andrej; Polóni Marián; Lach Ján; Jančošek Ľubomír; Kunc Peter; Zbranek Josef

    2015-01-01

    The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by ...

  5. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  6. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  7. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2014-01-01

    Full Text Available Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  8. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  9. Edwards' reference cycle for internal and external combustion engines

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  10. Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1998-01-01

    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  11. Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion

    OpenAIRE

    Junfeng Yang; Valeri I. Golovitchev; Pau Redón Lurbe; J. Javier López Sánchez

    2012-01-01

    The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the chemical kinetics simulation tool: CHEMKIN-2 and the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semidetailed mechanisms for its combustion and the formation of emissions. Parametric ϕ-T maps and 3D engine simulations were used...

  12. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  13. Combustion mode switching with a turbocharged/supercharged engine

    Energy Technology Data Exchange (ETDEWEB)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  14. Engine combustion control at low loads via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  15. Optimization of SI and CI engine control strategies via integrated simulation of combustion and turbocharging

    OpenAIRE

    Criscuolo, Ivan

    2013-01-01

    2010 - 2011 Combustion engines have been for a long time the most important prime mover for transportation globally. A combustion engine is simple in its nature; a mix of fuel and air is combusted, and work is produced in the operating cycle. The amount of combusted air and fuel controls the amount of work the engine produces. The engine work has to overcome friction and pumping losses, and a smaller engine has smaller losses and is therefore more efficient. Increasing engin...

  16. Numerical simulation of fuel sprays and combustion in a premixed lean diesel engine; Kihaku yokongo diesel kikan ni okeru nenryo funmu to nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T.; Harada, A.; Sasaki, S.; Shimazaki, N.; Hashizume, T.; Akagawa, H.; Tsujimura, K.

    1997-10-01

    Fuel sprays and combustion in a direct injection Premixed lean Diesel Combustion (PREDIC) engine, which can make smokeless combustion with little NOx emission, is studied numerically. Numerical simulation was carried out by means of KIVA II based computer code with a combustion submodel. The combustion submodel describes the formation of combustible fuel vapor by turbulent mixing and four-step chemical reaction which includes low temperature oxidation. Comparison between computation and experiment shows qualitatively good agreement in terms of heat release rate and NO emission. Computational results indicate that the combustion is significantly influenced by fuel spray characteristics and injection timing to vary NO emission. 10 refs., 8 figs., 1 tab.

  17. Metrology for Chemical Engineers

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Hansen, Elo Harald

    2001-01-01

    The first full-semester course on Quality Assurance in Chemical Measurement was held at the Technical University of Denmark from September to December 1999. The course required sufficient knowledge of basic statistics to understand and apply the methods recommended in ISO 5725-1/6 Accuracy...... organizations in 1993. Chemists are notoriously reluctant to accept the BIPM philosophy, but the appearance of a new Draft Guide Quantifying Uncertainty in Analytical Measurement at the EURACHEM Workshop in Helsinki in June 1999 stimulated us to make an attempt to overcome such chemical prejudice. After...

  18. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  19. Simulations of compressible flows associatedwith internal combustion engines

    OpenAIRE

    Bodin, Olle

    2013-01-01

    Vehicles with internal combustion (IC) engines fueled by hydrocarbon compoundshave been used for more than 100 years for ground transportation.During these years and in particular the last decade, the environmental aspectsof IC engines have become a major political and research topic. Followingthis interest, the emissions of pollutants such as NOx, CO2 and unburnedhydrocarbons (UHC) from IC engines have been reduced considerably.Yet, there is still a clear need and possibility to improve engi...

  20. Introducing topics about combustion engine in tehnology education

    OpenAIRE

    Škrjanc, Sebastjan

    2013-01-01

    In the thesis we will briefly present internal combustion engines. We divided them into groups according to the number of cycles, according to the position of pistons, after cooling mode, etc.. We will also present advanced technology with which they are during the development of engines reduce their consumption. Everything will be linked to the primary school. Normaly, pupils, the engines meet in eighth grade. We will check how well these topics covered in elementary textbooks, and nat...

  1. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  2. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2009-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  3. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  4. CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine Using Non-Premixed Combustion Model

    Directory of Open Access Journals (Sweden)

    S Gavudhama Karunanidhi

    2014-07-01

    Full Text Available In this study the simulation process of non-premixed combustion in a direct injection single cylinder diesel engine has been described. Direct injection diesel engines are used both in heavy duty vehicles and light duty vehicles. The fuel is injected directly into the combustion chamber. The fuel mixes with the high pressure air in the combustion chamber and combustion occurs. Due to the non-premixed nature of the combustion occurring in such engines, non-premixed combustion model of ANSYS FLUENT 14.5 can be used to simulate the combustion process. A 4-stroke diesel engine corresponds to one fuel injector hole without considering valves was modeled and combustion simulation process was studied. Here two types of combustion chambers were compared. Combustion studies of both chambers:- shallow depth and hemispherical combustion chambers were carried out. Emission characteristics of both combustion chambers had also been carried out. The obtained results are compared. It has been found that hemispherical combustion chamber is more efficient as it produces higher pressure and temperature compared to that of shallow depth combustion chamber. As the temperature increases the formation of NOx emissions and soot formation also get increased.

  5. New controllable premixed combustion for dimethyl ether engine

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new concept of the controllable premixed combustion (CPC) system was proposed for dimethyl ether (DME) to explore a new approach to achieving ultra-low NOX emissions with the zero level of particulate matter exhaust emissions. The DME fuel was injected into the premix chamber by means of the electronically controlled low pressure injection system, then the mixture formation and combustion process were controlled with a control-valve set between the main chamber and the premix chamber. The test bench was constructed based on a single diesel engine. Preliminary studies demonstrated that ultra-low NOX emissions had been realized with zero particulate matter emissions under the optimum specifications of the DME engine, NOX emissions were less than 65 × 10-6. According to the engine combustion analysis, it was found that the control-valve played an important role in the pre-mixture formation and ignition timing.

  6. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  8. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  9. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  10. Advancements in Development of Chemical-Looping Combustion: A Review

    OpenAIRE

    He Fang; Li Haibin; Zhao Zengli

    2009-01-01

    Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of greenhouse CO2. Extensive research has been performed on CLC in the last decade with respect to oxygen carrier development, reaction kinetics, reactor design, system efficiencies, and prototype testing. Transition metal oxides, such as Ni, Fe, Cu, and Mn oxides, were reported as reactive species in the oxygen carrier particles. Ni-based oxygen carriers exhibited the best reactivity and stability dur...

  11. Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors (CE-STS) is a generic document prepared by the US NRC for use in the licensing process of current Combustion Engineering Pressurized Water Reactors. The CE-STS sets forth the limits, operating conditions, and other requirements applicable to nuclear reactor facility operation as set forth by Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public. The document is revised periodically to reflect current licensing requirements

  12. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  13. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Science.gov (United States)

    2010-10-01

    ... internal combustion engines. 176.905 Section 176.905 Transportation Other Regulations Relating to... engines. (a) A motor vehicle or any mechanized equipment powered by an internal combustion engine is... met: (1) The motor vehicle or mechanical equipment has an internal combustion engine using liquid...

  14. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  15. Maximum-efficiency architectures for steady-flow combustion engines, I: Attractor trajectory optimization approach

    International Nuclear Information System (INIS)

    In this paper, we present a new systematic optimization approach to identify maximum-efficiency architectures for steady-flow combustion engines. Engine architectures are modeled as trajectories in the thermodynamic state space, and the optimal engine architecture is deduced by minimization of total irreversibility over all permissible trajectories that satisfy device constraints. In the past, both parametric and functional minimizations of engine irreversibility have been studied extensively. Our approach combines the functional optimization aspect (i.e., optimization of the process sequence or engine cycle) and the parametric optimization aspect (i.e., optimization of process lengths or parameters in the engine cycle) to identify the maximum-efficiency architecture permitted by physics. The concept central to this approach is that of chemical-equilibrium attractor states in the thermodynamic state space. It enables semi-analytical optimization for reactive engines with no need to model the detailed combustion dynamics. In this study we present the motivation and theoretical details of this method. In Part II of this study, this approach is applied to optimize the class of simple-cycle gas turbine engines. It is shown that even with modest device technology (e.g., turbine inlet temperature of 1650 K), maximum efficiency above 50% can be achieved in simple-cycle engines. - Highlights: • New irreversibility-minimization approach to identify maximum-efficiency architecture for steady-flow combustion engines. • Establishes both the optimal process sequence (engine cycle) and optimal process-length parameters. • Includes minimization of combustion irreversibility

  16. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  17. Knocking in an Internal-combustion Engine

    Science.gov (United States)

    Sokolik, A; Voinov, A

    1940-01-01

    The question remains open of the relation between the phenomena of knocking in the engine and the explosion wave. The solution of this problem is the object of this paper. The tests were conducted on an aircraft engine with a pyrex glass window in the cylinder head. Photographs were then taken of various combinations of fuels and conditions.

  18. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  19. Synthesis Gas from Pyrolysed Plastics for Combustion Engine

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2015-12-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120%. In terms of burning, synthesis gas has similar properties as natural gas. More significant changes are observed in even burning of fuel in consecutive cycles.

  20. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  1. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    Science.gov (United States)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  2. EXPERIMENTAL INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE UNDER HCCI MODE WITH POROUS MEDIUM COMBUSTION

    Directory of Open Access Journals (Sweden)

    C KANNAN

    2010-08-01

    Full Text Available In recent times, homogeneous combustion has been a proven technology to attain high efficient and low emission engines. Homogenous Charge Compression Ignition (HCCI engines are able to have efficiencies as high as Compression Ignition, Direct Injection (CIDI engines, while producing ultra-low emissions of nitrogen oxides (NOx and particulate matter (PM.HCCI combustion is achieved by controlling the temperature, pressure and composition of the fuel-air mixture so that it spontaneously gets ignited in the combustion chamber. Numeroustechniques such as Variable Exhaust Gas Recirculation (VEGR, ariable Compression Ratio (VCR and Variable Valve Timing (VVT have been proposed to control the homogeneous combustion inside the engine cylinder. Even though these techniques are attractive and having good time response, they are too expensive to afford. This paper investigates the performance, combustion and emission characteristics of a Direct Injection (DI diesel engine under HCCI mode which is established through an effective and affordable technique called Porous Medium Combustion (PMC.

  3. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  4. A Simplified Model of the Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Christofer Neff

    2013-01-01

    Full Text Available This project further investigates a model of a simplified internal combustion engine considered by Kranc in 1977. Using Euler’s method for ordinary differential equations, we modeled the interaction between the engine’s flywheel and thermodynamic power cycle. Approximating with sufficiently small time intervals (0.001 seconds over a period of 12 seconds reproduced Kranc’s results with the engine having an average angular velocity of 72/sec.

  5. The purification of internal combustion engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Jorgensen, Norman; Carlow, J.S.; Raybone, David.

    1994-03-02

    In this patent, improved catalytic reduction of exhaust gas pollutants from internal combustion engines is described. During the warm-up phase of the cycle, a plasma discharge is initiated in the exhaust gases upstream of the catalytic converter. The plasma is controlled using sensors which detect the catalyst temperature and gas pressure and flow rate. (UK)

  6. Combustion of CNG in Charged Spark Ignition Engines

    Science.gov (United States)

    Mitianiec, Wladyslaw

    2009-12-01

    The paper describes mixing of injected CNG with air and combustion process in spark ignition internal combustion engine. Because of higher ignition temperature of CNG the SI engines have more effective ignition system than conventional engines. The gas motion, turbulence, charge temperature and obviously electrical energy of the ignition coil have a big influence on the ignition and burning process in the combustion chamber. The paper includes theoretical and experimental investigations of ignition process in the high charged SI engines with direct CNG injection by using LES technique in KIVA program. Simulation of CNG combustion in the caloric chamber was carried in the environment of OpenFOAM program with LES model and also the experimental test was carried out for comparison of results in the chamber with the same geometry. The influence of the "tumble" and "swirl" on the sparking is shown by modelling of this process in premixed charge by using LES technique. The charge motion and also considerably turbulence effect influence strongly on the ignition process.

  7. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  8. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  9. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  10. COMBUSTION STAGE NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The primary goal of engine design is to maximize each efficiency factor, in order to extract the most power from the least amount of fuel. In terms of fluid dynamics, the volumetric and combustion efficiency are dependent on the fluid dynamics in the engine manifolds and cylinders. Cold flow analysis involves modeling the airflow in the transient engine cycle without reactions. The goal is to capture the mixture formation process by accurately accounting for the interaction of moving geometry with the fluid dynamics of the induction process. The changing characteristics of the air flow jet that tumbles into the cylinder with swirl via intake valves and the exhaust jet through the exhaust valves as they open and close can be determined, along with the turbulence production from swirl and tumble due to compression and squish. The target of this paper was to show how, by using the reverse engineering techniques, one may replicate and simulate the functioning conditions and parameters of an existing marine engine. The departing information were rather scarce in terms of real processes taking place in the combustion stage, but at the end we managed to have a full picture of the main parameters evolution during the combustion phase inside this existing marine engine

  11. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NOx control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NOx removal mechanisms, and by product formation. Can non-thermal deNOx operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  12. Analysis of Internal Combustion Engine Thermodynamic Using the Second Law of Thermodynamics

    OpenAIRE

    JELIĆ, Maro; Ninić, Neven

    2008-01-01

    The paper presents the research work done by various authors who have done research in the application of the second law of thermodynamics in analysis of the internal combustion engine and in analysis of the thermodynamics of the combustion process in an engine cylinder in spark- and compression-ignition engines. For several decades now, various authors have been trying to optimize processes in the internal combustion engine, where energy degradations occurs during combustion. It is essent...

  13. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  14. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  15. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Internal combustion engines, self-propelled... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...) Applicability. An internal combustion engine, self-propelled vehicle, mechanized equipment containing...

  16. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  17. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  18. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  19. Fuel Injector Nozzle For An Internal Combustion Engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  20. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, Sander; Sint Annaland, van Martin; Kuipers, Hans

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical expressi

  1. Experimental validation of packed bed chemical-looping combustion

    NARCIS (Netherlands)

    Noorman, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Chemical-looping combustion has emerged as a promising alternative technology, intrinsically integrating CO2 capture in power production. A novel reactor concept based on dynamically operated packed beds has been proposed [Noorman, S., van Sint Annaland, M., Kuipers, J.A.M., 2007. Packed bed reactor

  2. Scale-up of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Geerdink, P.; Goetheer, E.L.V.

    2011-01-01

    Fixed-bed chemical looping combustion is currently being studied experimentally with the optimization of systems up to 1 kW. One of the key advantages for using the fixed-bed configuration over fluidized-beds is the flexibility in operating parameters that allows for application of CLC not only to p

  3. Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Junfeng Yang

    2012-01-01

    Full Text Available The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the chemical kinetics simulation tool: CHEMKIN-2 and the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semidetailed mechanisms for its combustion and the formation of emissions. Parametric ϕ-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O2 molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions.

  4. Multi-dimensional Modeling of the Application of Catalytic Combustion to Homogeneous Charge Compression Ignition Engine

    Institute of Scientific and Technical Information of China (English)

    Wen Zeng; MaoZhao Xie

    2006-01-01

    The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed.Comparisons between numerical simulation and experiments showed a basic agreement.The combustion process of homogeneous charge compression ignition (HCCI) engine whose piston surface has been coated with catalyst (rhodium and platinum) was numerically investigated.A multi-dimensional model with detailed chemical kinetics was built.The effects of catalytic combustion on the ignition timing,the temperature and CO concentration fields,and HC,CO and NOx emissions of the HCCI engine were discussed.The results showed the ignition timing of the HCCI engine was advanced and the emissions of HC and CO were decreased by the catalysis.

  5. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  6. Fire Reterdant Chemicals Affecting Combustion Resistance of Wood

    OpenAIRE

    Yalçın ÖRS; Sönmez, Abdullah

    1998-01-01

    Wood is an important material used in construction elements. However since it can be affected by biotic and abiotic deteriorating agents, it should be treated with chemical impregnating materials prior to use. In this study, the effects of water-soluble impregnating chemicals on the combustion resistance of wood was investigated. For this purpose, panels were prepared with oriental beech wood (Fagus orientalis L.) and pine wood (Pinus silvestris L.), which are widely used in industry. These ...

  7. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  8. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  9. Chemical Engineering Students: A Distinct Group among Engineers

    Science.gov (United States)

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  10. Chemical kinetic simulation of kerosene combustion in an individual flame tube

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2014-05-01

    Full Text Available The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism.

  11. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    OpenAIRE

    Nidhi Arora; Swati Mehta

    2013-01-01

    A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed ...

  12. Chemical kinetic reaction mechanism for the combustion of propane

    Science.gov (United States)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  13. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  14. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  15. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  16. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  17. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...... on the basis of the very high Cetane number for DME. A spray model similar to that proposed by Hiroyasu et al. [11] has been used, with the assumption that rapid combustion occurs when the local mixture attains a stoichiometric air fuel ratio. The spray structure is based on steady-state spray theory, where...

  18. Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition engine

    Institute of Scientific and Technical Information of China (English)

    SONG Ruizhi; HU Tiegang; ZHOU Longbao; LIU Shenghua; LI Wei

    2007-01-01

    The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether.The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx)emission and smokeless combustion under the compression ratio of both 10.7 and 14.The combustion process has obvious two stage combustion characteristics at ε = 10.7(εrefers to compression ratio),and the combustion beginning point is decided by the compression temperature,which varies very little with the engine load;the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature,and it moves forward versus crank angle with the increase in the engine load at ε = 14;the combustion durations are shortened with the increase in the engine load under both compression ratios.

  19. Evaluation of the Migrating Combustion Chamber (MCC) engine

    Science.gov (United States)

    Miller, K. M.; Morar, Dorin

    1993-01-01

    The Belvoir Research, Development and Engineering Center (BRDEC) tested three Migrating Combustion Chamber (MCC) engines built by Engine Research Associates (ERA) for Natick RD and E Center. The MCC concept attempts to provide a lightweight, quiet engine having a cool exhaust gas stream. The cool exhaust is attained by capturing additional energy from expansion beyond that achievable in conventional engines by the use of gas porting to multiple expansion chambers; this provides a more efficient engine operation than is otherwise attainable for the configuration. The testing included determining the engine torque-speed-power characteristics and the Brake Specific Fuel Consumption (BSFC) under a variety of load conditions. Startability and operability were concerns; starting under normal ambient conditions was difficult. All testing was performed using a 10:1 fuel/oil mixture of low lead gasoline with AMZOIL synthetic lubricating oil for two-stroke engines. The maximum power achieved was 0.25 horsepower at 4,400 rpm. The peak torque observed was 69 oz.-in. at 3,200 rpm. It was not possible to make noise and vibration measurements during the testing cycle, but they appeared to be low. The MCC engines tested had relatively short lives, operating for less than 25 hours. Performance and durability improvements are necessary before this MCC design can be considered as a viable alternative to commercially available two-cycle engines.

  20. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    OpenAIRE

    Cole, Lord Kahil

    2012-01-01

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIM...

  1. Enhanced efficiency of internal combustion engines by employing spinning gas

    Science.gov (United States)

    Geyko, V. I.; Fisch, N. J.

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  2. Noise and Vibration Control of Combustion Engine Vehicles

    OpenAIRE

    Winberg, Mathias

    2005-01-01

    Noise and vibrations have over the last two decades been regarded as significant environmental health problems. Regulations regarding acoustic as well as vibration levels have therefore become more stringent. This thesis embraces two different techniques to reduce unwanted noise and vibrations, spectral subtraction and active noise and vibration control. The applications treated for noise and vibration problems are mainly means of transportation driven by combustion engines as for example, he...

  3. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  4. A comprehensive combustion model for biodiesel-fueled engine simulations

    Science.gov (United States)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  5. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency. PMID:25215720

  6. Surrogate Model Development for Fuels for Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  7. EXPERIMENTAL INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE UNDER HCCI MODE WITH POROUS MEDIUM COMBUSTION

    OpenAIRE

    Kannan, C.; P TAMILPORAI

    2010-01-01

    In recent times, homogeneous combustion has been a proven technology to attain high efficient and low emission engines. Homogenous Charge Compression Ignition (HCCI) engines are able to have efficiencies as high as Compression Ignition, Direct Injection (CIDI) engines, while producing ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM).HCCI combustion is achieved by controlling the temperature, pressure and composition of the fuel-air mixture so that it spontaneously gets...

  8. Onderzoek naar de verbranding in waterstofverbrandingsmotoren - A Study of the Combustion in Hydrogen-Fuelled Internal Combustion Engines

    OpenAIRE

    S. Verhelst

    2005-01-01

    Hydrogen is an attractive alternative energy carrier, which could make harmful emissions, global warming and the insecurity concerning oil supply a thing of the past. The current work examines the possibility of using hydrogen in internal combustion engines. Hydrogen engines can be introduced relatively easily, from a technological as well as from an economic point of view. This work aims to develop a model for the combustion of hydrogen in engines, which should lead to a simulation programme...

  9. Evaluation of a combustion model for the simulation of hydrogen spark-ignition engines using a CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Rakopoulos, C.D.; Kosmadakis, G.M. [Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zografou Campus, 15780 Athens (Greece); Pariotis, E.G. [Laboratory of Naval Propulsion Systems, Section of Naval Architecture and Marine Engineering, Department of Naval Sciences, Hellenic Naval Academy, End of Hatzikyriakou Ave., Hatzikyriakio, 18539 Piraeus (Greece)

    2010-11-15

    The present work deals with the evaluation of a combustion model that has been developed, in order to simulate the power cycle of hydrogen spark-ignition engines. The motivation for the development of such a model is to obtain a simple combustion model with few calibration constants, applicable to a wide range of engine configurations, incorporated in an in-house CFD code using the RNG k-{epsilon} turbulence model. The calculated cylinder pressure traces, gross heat release rate diagrams and exhaust nitric oxide (NO) emissions are compared with the corresponding measured ones at various engine loads. The engine used is a Cooperative Fuel Research (CFR) engine fueled with hydrogen, operating at a constant engine speed of 600 rpm. This model is composed of various sub-models used for the simulation of combustion of conventional fuels in SI engines; it has been adjusted in the current study specifically for hydrogen combustion. The basic sub-model incorporated for the calculation of the reaction rates is the characteristic conversion time-scale method, meaning that a time-scale is used depending on the laminar conversion time and the turbulent mixing time, which dictates to what extent the combustible gas has reached its chemical equilibrium during a predefined time step. Also, the laminar and turbulent combustion velocity is used to track the flame development within the combustion chamber, using two correlations for the laminar flame speed and the Zimont/Lipatnikov approach for the modeling of the turbulent flame speed, whereas the (NO) emissions are calculated according to the Zeldovich mechanism. From the evaluation conducted, it is revealed that by using the developed hydrogen combustion model and after adjustment of the unique model calibration constant, there is an adequate agreement with measured data (regarding performance and emissions) for the investigated conditions. However, there are a few more issues to be resolved dealing mainly with the ignition

  10. Combustion quasi-two zone predictive model for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd Rabbo, M.F. [Department of Mechanical Engineering, Shoubra Faculty of Engineering, Zagazig University, 108, Shoubra Street, Cairo (Egypt)

    2001-08-01

    A quasi-two zone predictive model is developed in the present work for prediction of the combustion processes in dual fuel engines and some of their performance features. Methane is used as the main fuel while employing a small quantity of liquid fuel (pilot) injected through the conventional Diesel fuel system. This model emphasizes the effects of chemical kinetics activity of the premixed gaseous fuel on the combustion performance, while the role of the pilot fuel in the ignition and heat release processes is considered. A detailed chemical kinetic scheme consists of 178 elementary reaction steps, and 41 chemical species are employed to describe the oxidation of the gaseous fuel from the start of compression to the end of the expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, rates of energy release and composition. Predicted values for methane operation show good agreement with corresponding previous experimental values over a range of operating conditions mainly associated with high load operation. (Author)

  11. Characterising Combustion in Diesel Engines: using parameterised finite stage cylinder process models

    NARCIS (Netherlands)

    Ding, Y.

    2011-01-01

    Characterising combustion of diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. An effective way to achieve this goal is to parameterize the combusti

  12. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  13. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  14. Flexible fuel engine based on multi-combustion control technologies

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolu; HUANG Zhen; QIAO Xinqi; SONG Jun; FANG Junhua; XIA Huimin

    2005-01-01

    A combustion control strategy is proposed for diesel engine to reduce PM and NOx emissions significantly, which adopts some technologies including internal exhaust gas recirculation (EGR), split spray, adjustable fuel delivery advance angle and the application of alternative fuels. Based on this strategy, a flexible fuel engine has been developed. The experimental results show that this engine can be fueled with diesel fuel, alcohol, dimethyl carbonate (DMC), etc. It works with extremely low levels of particulate matter (PM) and NOx, 2~3% higher effective thermal efficiency on moderate and high loads when alternative fuels are used. This engine not only has lower exhaust emissions, but also can be fueled with those alternative fuels, which are difficult to be ignited by compression.

  15. Physicochemical and optical properties of combustion-generated particles from Ship Diesel Engines

    Science.gov (United States)

    Kim, H.; Jeong, S.; Jin, H. C.; Kim, J. Y.

    2015-12-01

    Shipping contributes significantly to the anthropogenic burden of particulate matter (PM), and is among the world's highest polluting combustion sources per fuel consumed. Moreover, ships are a highly concentrated source of pollutants which are emitted into clean marine environments (e.g., Artic region). Shipping utilizes heavy fuel oil (HFO) which is less distilled compared to fuels used on land and few investigations on shipping related PM properties are available. BC is one of the dominant combustion products of ship diesel engines and its chemical and microphysical properties have a significant impact on climate by influencing the amount of albedo reduction on bright surfaces such as in polar regions. We have carried out a campaign to characterize the PM emissions from medium-sized marine engines in Gunsan, Jeonbuk Institute of Automotive Technology. The properties of ship-diesel PM have characterized depending on (1) fuel sulfur content (HFO vs. ULSD) and (2) engine conditions (Running state vs. Idling state). Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) equipped with HRTEM and Raman spectroscopy were used for physicochemical analysis. Optical properties, which are ultimately linked to the snow/ice albedo decrease impacting climate, were assessed as well. PM generated under high engine temperature conditions had typical features of soot, e.g., concentric circles comprised of closely packed graphene layers, however PM generated by the idling state at low combustion temperature was characterized by amorphous and droplet-like carbonaceous particles with no crystalline structure. Significant differences in optical properties depending on the combustion conditions were also observed. Particles from running conditions showed wavelength-independent absorbing properties, whereas the particles from idling conditions showed enhanced absorption at shorter wavelengths, which is

  16. Efficiency characteristics of a new quasi-constant volume combustion spark ignition engine

    OpenAIRE

    Dorić Jovan Ž.; Klinar Ivan J.

    2013-01-01

    A zero dimensional model has been used to investigate the combustion performance of a four cylinder petrol engine with unconventional piston motion. The main feature of this new spark ignition (SI) engine concept is the realization of quasi-constant volume (QCV) during combustion process. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of internal combustion (IC) engines. These advantages over standard engine are achieved through sy...

  17. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    Science.gov (United States)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  18. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  19. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  20. Development and Validation of a Reduced DME Mechanism Applicable to Various Combustion Modes in Internal Combustion Engines

    OpenAIRE

    Chin, Gregory T.; J.-Y. Chen; Rapp, Vi H.; R. W. Dibble

    2011-01-01

    A 28-species reduced chemistry mechanism for Dimethyl Ether (DME) combustion is developed on the basis of a recent detailed mechanism by Zhao et al. (2008). The construction of reduced chemistry was carried out with automatic algorithms incorporating newly developed strategies. The performance of the reduced mechanism is assessed over a wide range of combustion conditions anticipated to occur in future advanced piston internal combustion engines, such as HCCI, SAHCCI, and PCCI. Overall, the r...

  1. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  2. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Armando Pérez

    2016-01-01

    Full Text Available The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM, and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  3. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  4. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  5. GASEOUS EMISSIONS AND COMBUSTION EFFICIENCY ANALYSIS OF HYDROGEN-DIESEL DUAL FUEL ENGINE UNDER FUEL-LEAN CONDITION

    Directory of Open Access Journals (Sweden)

    Prateep Chaisermtawan

    2012-01-01

    Full Text Available Exhaust gas emissions from diesel engine combustion using alternative fuel may change in their quantities that can affect exhaust gas after-treatment devices and environmental ambient. This study presents theoretical analysis of combustion generated emissions and efficiency of hydrogen-diesel duel fuel in fuel-lean condition. A chemical equilibrium method by minimizing Gibbs free energy is employed to estimate exhaust gas products from diesel and hydrogen-diesel mode combustion. The combustion products, e.g., unburned hydrocarbons (CH4, hydrogen (H2, carbon dioxide (CO2, carbon monoxide (CO are comparatively investigated, based upon similar specific energy input. Subsequently, the obtained combustible products (CH4, H2 and CO are used to calculate combustion efficiency, based upon chemical energy left in waste exhaust gases. The main findings are associated with the reduction in CO2 corresponding to the increase in combustion efficiency in hydrogen-diesel combustion mode, depending on relative air-to-fuel ratios. Meanwhile, the CH4, H2 and CO contents in the flue gas increase in the operating conditions used

  6. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  7. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  8. Heat storage for a bus petrol internal-combustion engine

    Science.gov (United States)

    Vasiliev, Leonard L.; Burak, Victor S.; Kulakov, Andry G.; Mishkinis, Donatas A.; Bohan, Pavel V.

    The heat storage (HS) system for pre-heating a bus petrol internal combustion engine to starting was mathematically modelled and experimentally investigated. The development of such devices is an extremely urgent problem especially for regions with a cold climate. We discuss how HS works on the effect of absorption and rejection of heat energy at a solid-liquid phase change of a HS substance. In the first part of the paper a numerical method to calculate the HS mass-dimensional parameters and their characteristics are described. In the experimental part of the paper results are given of experiments on the pre-heating device aiding to start a carburettor engine under operational conditions and analysis of data received. Practical confirmation of the theoretical development of HS devices for a bus engine for starting by pre-heating is given.

  9. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  10. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  11. Advancements in Development of Chemical-Looping Combustion: A Review

    Directory of Open Access Journals (Sweden)

    He Fang

    2009-01-01

    Full Text Available Chemical-looping combustion (CLC is a novel combustion technology with inherent separation of greenhouse CO2. Extensive research has been performed on CLC in the last decade with respect to oxygen carrier development, reaction kinetics, reactor design, system efficiencies, and prototype testing. Transition metal oxides, such as Ni, Fe, Cu, and Mn oxides, were reported as reactive species in the oxygen carrier particles. Ni-based oxygen carriers exhibited the best reactivity and stability during multiredox cycles. The performance of the oxygen carriers can be improved by changing preparation method or by making mixedoxides. The CLC has been demonstrated successfully in continuously operated prototype reactors based on interconnected fluidized-bed system in the size range of 0.3–50 kW. High fuel conversion rates and almost 100%  CO2 capture efficiencies were obtained. The CLC system with two interconnected fluidized-bed reactors was considered the most suitable reactor design. Development of oxygen carriers with excellent reactivity and stability is still one of the challenges for CLC in the near future. Experiences of building and operating the large-scale CLC systems are needed before this technology is used commercially. Chemical-looping reforming (CLR and chemical-looping hydrogen (CLH are novel chemical-looping techniques to produce synthesis gas and hydrogen deserving more attention and research.

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  13. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  14. A multipurpose reduced chemical-kinetic mechanism for methanol combustion

    Science.gov (United States)

    Fernández-Tarrazo, Eduardo; Sánchez-Sanz, Mario; Sánchez, Antonio L.; Williams, Forman A.

    2016-07-01

    A multipurpose reduced chemical-kinetic mechanism for methanol combustion comprising 8 overall reactions and 11 reacting chemical species is presented. The development starts by investigating the minimum set of elementary reactions needed to describe methanol combustion with reasonable accuracy over a range of conditions of temperature, pressure, and composition of interest in combustion. Starting from a 27-step mechanism that has been previously tested and found to give accurate predictions of ignition processes for these conditions, it is determined that the addition of 11 elementary reactions taken from its basis (San Diego) mechanism extends the validity of the description to premixed-flame propagation, strain-induced extinction of non-premixed flames, and equilibrium composition and temperatures, giving results that compare favourably with experimental measurements and also with computations using the 247-step detailed San Diego mechanism involving 50 reactive species. Specifically, premixed-flame propagation velocities and extinction strain rates for non-premixed counterflow flames calculated with the 38-step mechanism show departures from experimental measurements and detailed-chemistry computations that are roughly on the order of 10%, comparable with expected experimental uncertainties. Similar accuracy is found in comparisons of autoignition times over the range considered, except at very high temperatures, under which conditions the computations tend to overpredict induction times for all of the chemistry descriptions tested. From this 38-step mechanism, the simplification is continued by introducing steady-state approximations for the intermediate species CH3, CH4, HCO, CH3O, CH2OH, and O, leading to an 8-step reduced mechanism that provides satisfactory accuracy for all conditions tested. The flame computations indicate that thermal diffusion has a negligible influence on methanol combustion in all cases considered and that a mixture-average species

  15. Prediction of Carbon Monoxide and Hydrocarbon Emissions in Isooctane HCCI Engine Combustion Using Multi-Zone Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Dibble, R

    2002-05-02

    Homogeneous Charge Compression Ignitions (HCCI) engines show promise as an alternative to Diesel engines, yet research remains: development of practical HCCI engines will be aided greatly by accurate modeling tools. A novel detailed chemical kinetic model that incorporates information from a computational fluid mechanics code has been developed to simulate HCCI combustion. This model very accurately predicts many aspects of the HCCI combustion process. High-resolution computational grids can be used for the fluid mechanics portion of the simulation, but the chemical kinetics portion of the simulation can be reduced to a handful of computational zones (for all previous work 10 zones have been used). While overall this model has demonstrated a very good predictive capability for HCCI combustion, previous simulations using this model have tended to underpredict carbon monoxide emissions by an order of magnitude. A factor in the underprediction of carbon monoxide may be that all previous simulations have been conducted with 10 chemical kinetic zones. The chemistry that results in carbon monoxide emissions is very sensitive to small changes in temperature within the engine. The resolution in temperature is determined directly by the number of zones. This paper investigates how the number of zones (i.e. temperature resolution) affects the model's prediction of hydrocarbon and carbon monoxide emissions in an HCCI engine. Simulations with 10, 20, and 40 chemical kinetic zones have been conducted using a detailed chemical kinetic mechanism (859 species, 3606 reactions) to simulate an isooctane fueled HCCI engine. The results show that 10-zones are adequate to resolve the hydrocarbon emissions, but a greater numbers of zones are required to resolve carbon monoxide emissions. Results are also presented that explore spatial sources of the exhaust emissions within the HCCI engine combustion chamber.

  16. Correlations for wiebe function parameters for combustion simulation in two-stroke small engines

    OpenAIRE

    Galindo Lucas, José; Climent Puchades, Héctor; Pla Moreno, Benjamín; JIMENEZ MACEDO, VICTOR DANIEL

    2011-01-01

    Abstract Combustion simulation in two-stroke engines becomes necessary not only for engine performance prediction but also for scavenge evaluation, since in-cylinder pressure and temperature are highly influenced by combustion process evolution. Combustion simulation by using a Wiebe function is appropriate to be included in a 1D engine code for providing design criteria with fast and accurate calculations; the main drawback is the determination of the four Wiebe parameters needed ...

  17. Enhancement of emission characteristics of a direct injection diesel engine through porous medium combustion technique

    OpenAIRE

    C. Kannan, P. Tamilporai

    2011-01-01

    In this research work, a direct injection diesel engine with the implementation of porous medium combustion technique has been investigated for performance and emission characteristics. The porous medium combustion technique has been established in the present work by the introduction of porous ceramic material into the combustion chamber. The nitrogen oxide and soot emission of porous medium engine are found to be lower to that of conventional engine. However the soot emissions are higher in...

  18. Development and Validation of a Reduced DME Mechanism Applicable to Various Combustion Modes in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Gregory T. Chin

    2011-01-01

    Full Text Available A 28-species reduced chemistry mechanism for Dimethyl Ether (DME combustion is developed on the basis of a recent detailed mechanism by Zhao et al. (2008. The construction of reduced chemistry was carried out with automatic algorithms incorporating newly developed strategies. The performance of the reduced mechanism is assessed over a wide range of combustion conditions anticipated to occur in future advanced piston internal combustion engines, such as HCCI, SAHCCI, and PCCI. Overall, the reduced chemistry gives results in good agreement with those from the detailed mechanism for all the combustion modes tested. While the detailed mechanism by Zhao et al. (2008 shows reasonable agreement with the shock tube autoignition delay data, the detailed mechanism requires further improvement in order to better predict HCCI combustion under engine conditions.

  19. Use of the graphical analytic methods of studying the combustion processes in the internal combustion engine combustion chamber on the basis of similarity criterion

    Directory of Open Access Journals (Sweden)

    S. V. Krasheninnikov

    2014-10-01

    Full Text Available The task of improving the economic and ecological parameters of the internal combustion engines remains topical within the frameworks of the modern engine-building technology. Since a combustion engine is a complex system combining such units as an intake manifold, combustion chamber, exhaust manifold, one of directions of the engine development is adjustment of the joint operation of its units. The specified adjustment should better be performed with the use of the so-called integral characteristics. The author means under an integral characteristic the rating plate of a unit (engine containing information about all the possible modes and conditions of its use, specifies the optimal operating range and indicates all the basic values of efficiency – reliability – environmental friendliness at each point of its field. As a rule, integral characteristics are multi-parametric. It is common practice to coordinate the field of such characteristic by similarity criteria determining the unit or engine behavior in whole.

  20. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture

    OpenAIRE

    Mukherjee, S.; Kumar, P.; Yang, A.; P. Fennell

    2015-01-01

    Abstract Carbon dioxide (CO2) emitted from conventional coal-based power plants is a growing concern for the environment. Chemical looping combustion (CLC), pre-combustion and oxy-fuel combustion are promising CO2 capture technologies which allow clean electricity generation from coal in an integrated gasification combined cycle (IGCC) power plant. This work compares the characteristics of the above three capture technologies to those of a conventional IGCC plant without CO2 capture. CLC tech...

  1. Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion

    International Nuclear Information System (INIS)

    Carbon capture from conventional power cycles is accompanied by a significant loss of efficiency. One process concept with a potential for better performance is chemical-looping combustion (CLC). CLC uses a metal oxide to oxidize the fuel, and the reduced metal is then re-oxidized in a second reactor with air. The combustion products CO2 and water remain unmixed with nitrogen, thereby avoiding the need for energy intensive air separation. In this paper, the performance of various configurations of CLC used in integrated gasification combined cycle power plants (CLC-IGCC) are analyzed and compared to a conventional IGCC design with pre-combustion carbon capture by physical absorption. The analysis is based on process simulation using Aspen Plus and GateCycle. Key design parameters are varied, and the results are interpreted using exergy analysis. The CLC-IGCC offers the advantages of higher plant efficiency and more complete carbon capture. The efficiency is very sensitive to changes in the gas turbine inlet temperature for both the CLC and the conventional IGCC designs. The development of oxygen carrier particles with a high thermal stability is therefore crucial for capitalizing on the potential efficiency advantage of CLC.

  2. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Paul C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  3. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  4. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  5. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  6. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  7. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  8. Modeling Ignition and Combustion in Direct Injection Compression Ignition Engines Employing Very Early Injection Timing

    Science.gov (United States)

    Miyamoto, Takeshi; Tsurushima, Tadashi; Shimazaki, Naoki; Harada, Akira; Sasaki, Satoru; Hayashi, Koichi; Asaumi, Yasuo; Aoyagi, Yuzo

    An ignition and combustion model has been developed to predict the heat release rate in direct injection compression ignition engines employing very early injection timing. The model describes the chemical reactions, including low-temperature oxidation. The KIVA II computer code was modified with the present ignition and combustion model. The numerical results indicate that the model developed in this work reproduces major features of two-stage autoignition, as well as experimentally observed trends in NOx and unburned fuel emissions. The computational results show that fuel injection timing significantly influences NOx emissions. Results also indicate that fuel droplets that enter the squish region possibly become unburned fuel emissions. Some graphical results demonstrate the relationships among the in-cylinder fuel spray distributions, fuel-air equivalence ratio, temperature, and mass fractions of NO and unburned fuel.

  9. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions

    Science.gov (United States)

    Khalili, Nasrin R.; Scheff, Peter A.; Holsen, Thomas M.

    To evaluate the chemical composition (source fingerprint) of the major sources of polyaromatic hydrocarbons (PAHs) in the Chicago metropolitan area, a study of major PAH sources was conducted during 1990-1992. In this study, a modified high-volume sampling method (PS-1 sampler) was employed to collect airborne PAHs in both the particulate and gas phases. Hewlett Packard 5890 gas chromatographs equipped with the flame ionization and mass spectrometer detectors (GC/FID and GC/MS) were used to analyze the samples. The sources sampled were: coke ovens, highway vehicles, heavy-duty diesel engines, gasoline engines and wood combustion. Results of this study showed that two and three ring PAHs were responsible for 98, 76, 92, 73 and 80% of the total concentration of measured 20 PAHs for coke ovens, diesel engines, highway tunnels, gasoline engines and wood combustion samples, respectively. Six ring PAHs such as indeno(1,2,3- cd)pyrene and benzo( ghi)perylene were mostly below the detection limit of this study and only detected in the highway tunnel, diesel and gasoline engine samples. The source fingerprints were obtained by averaging the ratios of individual PAH concentrations to the total concentration of categorical pollutants including: (a) total measured mass of PAHs with retention times between naphthalene and coronene, (b) the mass of the 20 PAHs measured in this study, (c) total VOCs, and (d) total PM10. Since concentrations of the above categorical pollutants were different for individual samples and different sources, the chemical composition patterns obtained for each categorical pollutant were different. The source fingerprints have been developed for use in chemical mass balance receptor modeling calculations.

  10. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  11. Recurrence plot for parameters analysing of internal combustion engine

    Science.gov (United States)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  12. An overview of NASA intermittent combustion engine research

    Science.gov (United States)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583

  13. Carbon Capture via Chemical-Looping Combustion and Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus; Mattisson, Tobias; Ryden, Magnus; Lyngfelt, Anders

    2006-10-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Further, two different types of chemical-looping reforming (CLR) have been presented in recent years. CLR is a technology to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology.

  14. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  15. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... the individual to become more assertive and understanding of personal assets. These teaching elements included in Chemical Product Engineering represent a series of general issues in Chemical Engineering Education, which must be discussed as the education is going to adapt to the changes of the surrounding world......Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...

  16. Ecological optimization of endoreversible chemical engines

    Directory of Open Access Journals (Sweden)

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-09-01

    Full Text Available Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological function versus the efficiency characteristic of the cycles. The results can provide some theoretical guidelines for the design of practical chemical engines.

  17. OPTIMUM PLANNING OF EXPERIMENTS AT MODELING FUEL CONSUMPTION IN INTERNAL COMBUSTION ENGINES

    Directory of Open Access Journals (Sweden)

    N. Koshevoy

    2009-01-01

    Full Text Available The efficiency of optimum experiments planning by cost expenses at studying the processes of fuel consumption internal combustion engines is shown. The mathematical models of these processes in different state of engine working are synthesized.

  18. OPTIMUM PLANNING OF EXPERIMENTS AT MODELING FUEL CONSUMPTION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    N. Koshevoy; O. Kostenko; V. Siroklyn

    2009-01-01

    The efficiency of optimum experiments planning by cost expenses at studying the processes of fuel consumption internal combustion engines is shown. The mathematical models of these processes in different state of engine working are synthesized.

  19. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  20. Ecological optimization of endoreversible chemical engines

    OpenAIRE

    Dan Xia, Lingen Chen, Fengrui Sun

    2011-01-01

    Optimal ecological performances of endoreversible chemical engine cycles with both linear and diffusive mass transfer laws are derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power output and entropy production rate of the chemical engines. Numerical examples are given to show the effects of mass-reservoir chemical potential ratio and mass-transfer coefficient ratio on the ecological ...

  1. HCCI Heat Release Data for Combustion Simulation, based on Results from a Turbocharged Multi Cylinder Engine

    OpenAIRE

    Johansson, Thomas; Borgqvist, Patrick; Johansson, Bengt; Tunestål, Per; Aulin, Hans

    2010-01-01

    When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wid...

  2. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    OpenAIRE

    Fukang Ma; Changlu Zhao; Fujun Zhang; Zhenfeng Zhao; Zhenyu Zhang; Zhaoyi Xie; Hao Wang

    2015-01-01

    In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release p...

  3. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  4. Nonlinear theory of combustion stability in liquid rocket engine based on chemistry dynamics

    Institute of Scientific and Technical Information of China (English)

    黄玉辉; 王振国; 周进

    2002-01-01

    Detailed models of combustion instability based on chemistry dynamics are developed. The results show that large activation energy goes against the combustion stability. The heat transfer coefficient between the wall and the combust gas is an important bifurcation parameter for the combustion instability. The acoustics modes of the chamber are in competition and cooperation with each other for limited vibration energy. Thermodynamics criterion of combustion stability can be deduced from the nonlinear thermodynamics. Correlations of the theoretical results and historical experiments indicate that chemical kinetics play a critical role in the combustion instability.

  5. Spectral Separation of the Turbofan Engine Coherent Combustion Noise Component

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine (Honeywell TECH977) were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. While adjusting the time delay to maximize the coherence and minimize the cross spectrum phase angle variation with frequency, the discovery was made that for the 130 microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Since the 0 to 200 Hz band signal took more time to travel the same distance, it is slower than the 200 to 400 Hz band signal. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to hot spots interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise.

  6. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Science.gov (United States)

    Wilson, Trevor S.; Xu, Hongming; Richardson, Steve; Wyszynski, Miroslaw L.; Megaritis, Thanos

    2006-07-01

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  7. Combustion process evaluation in Diesel engines using the Second law analysis; Avaliacao do processo de combustao em motores diesel usando analise de segunda lei

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, Jose Velasquez; Milanez, Luiz Fernando [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1990-12-31

    Exergy balance equations are applied to a thermodynamic model in order to evaluate the combustion process for diesel engines. Thermomechanical and chemical availabilities are determined as well as the irreversibility produced. Finally the model is used to analyze experimental data obtained for a single cylinder diesel engine, at full load condition. (author) 14 refs., 6 figs., 2 tabs.

  8. Standard technical specifications for combustion engineering pressurized water reactors

    International Nuclear Information System (INIS)

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Combustion Engineering plants currently being reviewed for an Operating License. Two separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  9. Study of combustion and emission characteristics of turbocharged diesel engine fuelled with dimethylether

    Institute of Scientific and Technical Information of China (English)

    Junhua WU; Zhen HUANG; Xinqi QIAO; Jun LU; Junjun ZHANG; Liang ZHANG

    2008-01-01

    An experimental study of a turbocharged diesel engine operating on dimethyl ether (DME) was conducted. The combustion and emission characteristics of the DME engine were investigated. The results show that the maximum torque and power of DME are greater than those of diesel, particularly at low speeds; the brake specific fuel consum-ption of DME is lower than that of diesel at low and middle engine speeds, and the injection delay of DME is longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, NOx emission of the DME engine is reduced by 41.6% on ESC data. In addition, the DME engine is smoke free at any operating condition.

  10. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    Science.gov (United States)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  11. An alternative methodology for combustion speed determination in reciprocating engines; Uma metodologia alternativa para determinacao da velocidade de combustao em motores alternativos

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Pedro Barbosa; Andrade, Giovani Souza de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica (PROMEC)]. E-mails: mello@mecanica.ufrgs.br; govanirs@terra.com.br

    2008-07-01

    In this paper it is developed and evaluated a methodology for determination the combustion duration of some liquid fuels obtained from petroleum and ethanol. In each test group it was used known chemical composition fuel for six air-fuel relationships and compression relationships as follows: ethanol, methanol, tertiary methyl butyl ether and aromatic compounds such as toluen, ethylbenzene and xilens. The fuel combustion time was determined in a standard ASTM-CFR engine as function of variation of compression relation and air-fuel moisture. The obtained results show the methodology validity for determination the combustion speed on the spark plug engines.

  12. Availability analysis of n-heptane/iso-octane blends during low-temperature engine combustion using a single-zone combustion model

    International Nuclear Information System (INIS)

    Highlights: • A zero-dimensional single-zone combustion model is developed for LTC engines. • The effects of intermediates and fuel compositions are examined. • Chemical availability of reactants, intermediates and products differ greatly. • Octane content shows profound effects on availability variation. - Abstract: A zero-dimensional single-zone combustion and an availability balance model for low temperature combustion (LTC) engines have been developed combined with skeleton mechanism of primary reference fuel and the first and second law of thermodynamics. The variation of system availability is analyzed, and the effects of nine major species (OH, CH2O, H2O2, C3H6, C8H18, C7H16, CO, CO2, H2O) on availability conversion are studied. The influences of fuel octane number on the availability of LTC process are studied to investigate the effects of fuel characteristics on availability destruction of HCCI combustion process. The irreversibility increases and heat transfer availability decreases with the rise of iso-octane volume fraction in primary reference fuels (PRFs)

  13. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  14. AN ANALYSIS OF PETROL - COMPRESSED AIR POWERED INTERNAL COMBUSTION ENGINE: A HYBRID ENGINE CONCEPT

    OpenAIRE

    Lalit Kumar*, Dharmendra Patel, Vinod Sehrawat, Tarun Gupta

    2016-01-01

    Nowadays environment pollution becomes a much serious issue in the world. Vehicles’ exhaust product is one of the major source of environmental pollution. The engine combustion products are causing the greenhouse effect, acid rains, ozone layer depletion and some other pollution. On the other hand, many study research on fossil fuel in the previous years, observed that if the oil is consumed at this rates, 81% of the entire available resource will be consumed very soon. So now we begin ...

  15. Multidimensional modeling of Dimethyl Ether(DME) spray combustion in DI diesel engine

    Institute of Scientific and Technical Information of China (English)

    WEN Hua; LIU Yong-chang; WEI Ming-rui; ZHANG Yu-sheng

    2005-01-01

    In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in nozzle hole, jet atomization, droplet second breakup and spray wall interaction. Otherwise, a reduced DME reaction mechanism is implemented in the combustion model, and a new turbulent combustion model-Partial Stirred Reactor (PaSR) model is selected to simulate the spray combustion process, the effects of turbulent mixing on the reaction rate are considered. The results of engine modeling based on those models agreed well with the experimental measurements. Study of temperature fields variation and particle traces in the combustion chamber revealed that the engine combustion system originally used for diesel fuel must be optimized for DME.

  16. Analysis of Ignition and Combustion in Otto Lean-Burn Engines with Prechambers

    OpenAIRE

    Norum, Viggo Lauritz

    2008-01-01

    Otto-engines in which the combustion chamber has richer fuel/air mix close to the ignition source and leaner charge further away from the ignition source are often called "stratified charge engines". Stratified charge can be used to increase the combustion speed in an internal combustion engine and thereby enable the engine to run on a fuel/air mix that would normally burn too slowly or not burn at all. The use of prechambers is one way to obtain stratified charge.This thesis presents and use...

  17. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  18. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  19. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  20. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  1. A new theory of chemical method to prevent spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    LU Wei

    2009-01-01

    In order to prevent spontaneous combustion of coal from the source, based on the study on the mechanism of spontaneous combustion of coal, especially the process of coal to self-ignite and different activate structures have different activation for oxidization, the new theory and mechanism with chemical inhibition that can change the tendency of spontaneous combustion of coal and let the activate structures deactivate were brought forward. Therefore, coal was not self-ignited under a certain temperature when being chemically inhibited.

  2. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  3. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into separate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and fuel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a variant of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapour. The thermodynamic potential and feasibility of CLC has been studied by means of process simulations and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most important process parameters in CLC. A promising thermodynamic potential of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiAl) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmospheric pressure and temperatures above 600 deg C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yielding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long-term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidation. The results for Ni

  4. Lean-burn stratified combustion at gasoline engines; Magere Schichtverbrennung beim Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Breitbach, Hermann [Daimler AG, Stuttgart (Germany). Entwicklung Einspritzung und Betriebsstoffe; Waltner, Anton [Daimler AG, Stuttgart (Germany). Verbrennungsentwicklung Pkw-Ottomotoren; Landenfeld, Tilo [Robert Bosch GmbH, Schwieberdingen (Germany). Hochdruckeinspritzung Piezo; Porten, Guido [Robert Bosch GmbH, Schwieberdingen (Germany). Systementwicklung Benzindirekteinspritzung

    2013-05-01

    Spray-guided lean-burn combustion is an integral part of the Mercedes-Benz technology strategy for highly efficient and clean gasoline engines. With regard to the excellent fuel efficiency combined with outstanding specific power, a good combustion system robustness and the low particulate emissions, the concept offers a very good cost/benefit ratio especially for the Euro 6 emission legislation. Thus, Mercedes-Benz believes, that the sprayguided lean-burn combustion offers the by far highest future viability of gasoline engine combustion systems.

  5. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response

  6. Development of a self-ignition and combustion model for diesel engines; Modelisation de l`auto-inflammation et de la combustion pour les moteurs diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pires Da Cruz, A.

    1997-12-09

    The work concerns self-ignition and combustion modelling in Diesel engines. Special attention is given to turbulence induced effects. Only gas fuel injection is taken into account. Turbulent mixing is identified as one of the main parameters controlling self-ignition in Diesel engines. However, turbulence effects are often neglected by models currently used in engine calculation codes. A new model based on results obtained by direct numerical simulation (DNS) is proposed. It includes turbulence effects by means of the scalar dissipation rate and presumed pdf of the mixture fraction and a chemical reaction progress variable. The model is validated through several steps. First, its results are compared to DNS in simple mixing and self-ignition cases. Then, its averaged version is integrated into the KIVA2-MB calculation code, where its behavior is tested in a one dimensional version and compared to other formulations. Finally, the model is validated with comparisons to experimental results of methane injection into a high pressure combustion chamber filled with hot air. The combustion chamber allows large optical access and therefore, optical diagnostics can be made. (author) 101 refs.

  7. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines

    OpenAIRE

    Torregrosa, A. J.; Broatch Jacobi, Jaime Alberto; García Martínez, Antonio; Monico Muñoz, Luisa Fernanda

    2013-01-01

    Diesel engines are the most commonly used internal combustion engines nowadays, especially in European transportation. This preference is due to their low consumption and acceptable driveability and comfort. However, the main disadvantages of traditional direct injection Diesel engines are their high levels of noise, nitrogen oxides (NO x) and soot emissions, and the usage of fossil fuels. In order to tackle the problem of high emission levels, new combustion concepts have been recen...

  8. Mini-projects in Chemical Engineering Laboratory

    OpenAIRE

    Angeles Cancela; Angel Sanchez; Rocio Maceiras

    2013-01-01

    Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of ...

  9. Modeling of NO sensitization of IC engines surrogate fuels auto-ignition and combustion

    CERN Document Server

    Anderlohr, Jörg; Bounaceur, Roda; Battin-Leclerc, Frédérique

    2009-01-01

    This paper presents a new chemical kinetic model developed for the simulation of auto-ignition and combustion of engine surrogate fuel mixtures sensitized by the presence of NOx. The chemical mechanism is based on the PRF auto-ignition model (n-heptane/iso-octane) of Buda et al. [1] and the NO/n-butane/n-pentane model of Glaude et al. [2]. The later mechanism has been taken as a reference for the reactions of NOx with larger alcanes (n-heptane, iso-octane). A coherent two components engine fuel surrogate mechanism has been generated which accounts for the influence of NOx on auto-ignition. The mechanism has been validated for temperatures between 700 K and 1100 K and pressures between 1 and 10 atm covering the temperature and pressure ranges characteristic of engine post-oxidation thermodynamic conditions. Experiments used for validation include jet stirred reactor conditions for species evolution as a function of temperature, as well as diesel HCCI engine experiments for auto-ignition delay time measurements...

  10. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    OpenAIRE

    Cypris, Jochen; Weclas, Miroslaw; Greil, Peter; Schlier, Lorenz M.; Travitzky, Nahum; Zhang, W

    2012-01-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in l...

  11. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    Science.gov (United States)

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-01

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed. PMID:24279690

  12. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    Science.gov (United States)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  13. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  14. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  15. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    material, energy usage and waste generation without compromising the economic value of the enterprise. Responding to these challenges requires a new insight into the characteristics of a sustainable system, for example, how to incorporate the product, the process and the related supply chain within...... the system boundary under investigation? A fundamental rethinking of how to identify the needed chemicals based products and how to design, build and operate the corresponding production units, is necessary. Indeed, the chemical industry today is changed from the chemical industry of forty years ago. Clear...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...

  16. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    design, investigations, engineering practice and transferable skills) and a set guidelines (core curriculum, teaching and learning, industrial experience, review of the education process and student assessment) to achieve them, with special emphasis to the ability to solve problems. They also propose...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...... a diversity of individual, academic and labour-market needs. Within Europe, two types of higher education in chemical engineering can be found: more research-oriented or more application-oriented first cycle programmes. Both types of studies cover a period of 3-4 academic years and 60 credits per year. After...

  17. Optical investigations of combustion process in SI and CI engines fuelled with butanol blends

    Energy Technology Data Exchange (ETDEWEB)

    Marchitto, L.; Mazzei, A.; Merola, S.S.; Tornatore, C. [CNR Napoli, Naples (Italy). Istituto Motori; Valentino, G.

    2013-06-01

    The use of alternative fuels, as biodiesel and ethanol, for light duty engines to approach the target of low exhaust emissions without fuel economy and performance penalty has been widely investigated. Recently it is growing the interest in the butanol and bio-butanol as viable alternatives either single or blended with conventional based fuels. In this paper, butanol effects on combustion processes were investigated through conventional methods and optical diagnostics applied in the combustion chamber of a compression ignition engine and of a spark ignition engine. Blends of diesel and n-butanol were used in a common rail DI diesel engine running at different operating conditions. Fuel injection timing and oxygen at the intake were changed in a single cylinder compression ignition engine equipped with common rail multi-jets injection system. Spray combustion and pollutant formation were investigated though UV-visible digital imaging and natural emission spectroscopy. Flame emissions and spectroscopy were applied in an optically accessible cylinder of a port fuel-injection, spark-ignition engine with an external boosting device. The engine worked with a stoichiometric mixture at medium speed and boosting in wide open throttle condition. Normal and knocking combustion was tested. Experiments in both the engines demonstrated that butanol allowed to reduce carbonaceous compounds formation and soot emission and to decrease unpleasant effects related to the combustion process such as the fuel deposition burning. Moreover some emission bands of OH radicals could be used as feature of different phenomena related to the combustion process. (orig.)

  18. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    OpenAIRE

    Hybl R.; Betak V.; Kubata J.; Tuma J.

    2013-01-01

    New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary ...

  19. Experimental Investigation of Oxygen Enriched air intake on Combustion Parameters of a Single Cylinder Diesel Engine

    OpenAIRE

    Rajkumar, K; Govindarajan, P

    2010-01-01

    In the present experimental work a computerized Single cylinder Diesel engine with data acquisition system was used to study the effects of oxygen enriched air intake on combustion parameters. Increasing the oxygen content with the air leads to faster burn rates and the ability to burn more fuel at the same stoichiometery. Addedoxygen in the combustion air leads to shorter ignition delays and offers more potential for burning diesel. Oxy-fuel combustion reduces the volume of flue gases and re...

  20. Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (REFUEL) - Final report

    OpenAIRE

    Aakko-Saksa, Päivi; Brink, Anders; Happonen, Matti; Heikkilä, Juha; Hulkkonen, Tuomo; Imperato, Matteo; Kaario, Ossi; Koponen, Päivi; Larmi, Martti; Lehto, Kalle; Murtonen, Timo; Sarjovaara, Teemu; Tilli, Aki; Väisänen, Esa

    2012-01-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task "Future Combustion Technology for Synthetic and Renewable Fuels in Transport" of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) project was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT)...

  1. Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas

    OpenAIRE

    Álvarez Flórez, Jesús Andrés; Egusquiza Estévez, Eduard

    2015-01-01

    Failures in reciprocating internal combustion engines operating with landfill gas are not uncommon. In general, damage is located in the combustion chamber surfaces and in the ring grooves, where a layer of non-volatile combustion products is deposited. These deposits attached to the surfaces reduce heat transfer and increase inner temperature, which produces a knocking phenomena damaging the crank bearings and fusing of the piston head material. Lubrication problems also appear due to ...

  2. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  3. Experimental Investigation of Oxygen Enriched air intake on Combustion Parameters of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    K.RAJKUMAR

    2010-08-01

    Full Text Available In the present experimental work a computerized Single cylinder Diesel engine with data acquisition system was used to study the effects of oxygen enriched air intake on combustion parameters. Increasing the oxygen content with the air leads to faster burn rates and the ability to burn more fuel at the same stoichiometery. Addedoxygen in the combustion air leads to shorter ignition delays and offers more potential for burning diesel. Oxy-fuel combustion reduces the volume of flue gases and reduces the effects of green house effect also. Engine test has been carried out in the above said engine for different loads and the following combustion parameters like Ignition delay, Combustion duration, Heat release and Cylinder pressure was discussed.

  4. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  5. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  6. Research status of key techniques for shock-induced combustion ramjet(shcramjet) engine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As one of the most promising propulsion systems in the future,shock-induced combustion ramjet engine can remedy the disadvantages in the integrated design of scramjet engine and airframe.It can shorten the length of the combustor,lighten the structure weight of the engine and keep better performance in a broad range of flight Mach number.The elementary principle of shock-induced combustion ramjet engine is introduced.The key technologies of this kind of propulsion system are described,while their research status is presented in detail.Suggestion on the development of shcramjet engine in China is put forward.

  7. Combustion noise from gas turbine aircraft engines measurement of far-field levels

    Science.gov (United States)

    Krejsa, Eugene A.

    1987-01-01

    Combustion noise can be a significant contributor to total aircraft noise. Measurement of combustion noise is made difficult by the fact that both jet noise and combustion noise exhibit broadband spectra and peak in the same frequency range. Since in-flight reduction of jet noise is greater than that of combustion noise, the latter can be a major contributor to the in-flight noise of an aircraft but will be less evident, and more difficult to measure, under static conditions. Several methods for measuring the far-field combustion noise of aircraft engines are discussed in this paper. These methods make it possible to measure combustion noise levels even in situations where other noise sources, such as jet noise, dominate. Measured far-field combustion noise levels for several turbofan engines are presented. These levels were obtained using a method referred to as three-signal coherence, requiring that fluctuating pressures be measured at two locations within the engine core in addition to the far-field noise measurement. Cross-spectra are used to separate the far-field combustion noise from far-field noise due to other sources. Spectra and directivities are presented. Comparisons with existing combustion noise predictions are made.

  8. The rise and realization of molecular chemical engineering

    OpenAIRE

    Davis, Mark E.

    2009-01-01

    Modern chemical engineering involves the integration of physical and chemical phenomena over length scales ranging from the atomic/molecular to the macroscopic. The ability to delve into the molecular world and to learn how to engineer it has opened broad sectors of new technology. How has chemical engineering reached this point? How is chemical engineering taking advantage of this position? How will chemical engineering move forward based on its ability to engineer at the molecular/atomic le...

  9. The railplug: A new ignitor for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Faidley, R.W.; Darden, M.H.; Weldon, W.F.

    1995-01-01

    A miniaturized railgun, termed the {open_quotes}railplug,{close_quotes} has been developed for use as an ignitor of combustible mixtures in engines. The device drives a plasma armature in a multishot mode with the aim of creating a line-source for ignition rather than the point source provided by traditional spark plugs. Railplugs have been fabricated in both parallel rail and co-axial rail geometries. The railplug differs from most plasma armature railguns in two striking ways: (1) no fuse or pellet is used to initially establish the plasma (the armature is simply the arc created by a high-voltage pulse), and (2) it operates over a range of elevated pressures (up to 500 psi). Consequently, the railplug power supply must provide a high voltage spike to breakdown the gap between the rails followed by a sustaining voltage that supplies current to drive the arc down the rails. Conceptually, this is the equivalent of combining the electrostatic problem of a sparkplug with the electrodynamic one of a railgun. Two power supply options that do this are outlined, as well as details of railplug geometries. Successes to date have demonstrated the firing of plugs for over 10{sup 4} shots at delivered arc energies of 1 J per shot. Rep rates have been demonstrated up to 50 Hz.

  10. An experiment study of homogeneous charge compression ignition combustion and emission in a gasoline engine

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong

    2014-01-01

    Full Text Available Homogenous charge compression ignition (HCCI technology has exhibited high potential to reduce fuel consumption and NOx emissions over normal spark ignition engines significantly. Optimized kinetic process (OKP technology is implemented to realize HCCI combustion in a port fuel injection gasoline engine. The combustion and emission characteristics are investigated with variation of intake air temperature, exhaust gas recirculation (EGR rate and intake air pressure. The results show that intake air temperature has great influence on HCCI combustion characteristic. Increased intake air temperature results in advance combustion phase, shorten combustion duration, and lower indicated mean effective pressure (IMEP. Increased EGR rate retards combustion start phase and prolongs combustion duration, while maximum pressure rising rate and NOx emission are reduced with increase of EGR rate. In the condition with constant fuel flow quantity, increased air pressure leads to retarded combustion phase and lower pressure rising rate, which will reduce the engine knocking tendency. In the condition with constant air fuel ratio condition, fuel injection quantity increases as intake air pressure increases, which lead to high heat release rate and high emission level. The optimal intake air temperature varies in different operating area, which can be tuned from ambient temperature to 220℃ by heat management system. The combination of EGR and air boost technology could expand operating area of HCCI engine, which improve indicated mean effective pressure from maximum 510kPa to 720kPa.

  11. Numerical study of heat transfer and combustion in IC engine with a porous media piston region

    International Nuclear Information System (INIS)

    Based on superadiabatic combustion in porous medium (PM), the porous medium engine as a new combustion concept is proposed to achieve high combustion efficiency and low emissions. In this paper, an axisymmetric model with detailed chemistry and two-temperature treatment is implemented into a variant of the KIVA-3V code to simulate the working process of the PM engine. Comparisons with the same engine but without PM are conducted. Temperature evolution of the PM and its effects are discussed in detail. Key factors affecting heat transfer, combustion and emissions of the PM engine, such as porosity, the initial PM temperature and equivalence ratio, are analyzed. The results show that the characteristics of heat transfer, emissions and combustion of the PM engine are superior to the engine without PM, providing valuable support for the PM engine concept. In particular, the PM engine is shown to sustain ultra lean combustion. - Graphical abstract: In the PM engine, a PM reactor is mounted on the piston head as shown in Fig. 1 which shows the schematic diagram of the computational domain. The heat exchange process between PM material and compressed air increases with upward motion of piston at compression stroke. At the TDC, almost all the air is compressed and closed to PM volume, meanwhile, the fuel is injected into PM chamber to achieve homogenization combustion. - Highlights: •Two-temperature treatment studies the working process of the PM engine. •Self-balancing temperature of the PM determines the continued and stable work. •Stronger heat exchange occurs between gas and PM with smaller porosity. •The PM engine can have lower levels of NOx, unburnt HC and CO emissions

  12. Internal combustion engines performance simulation; Simulacao de desempenho de motores de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose F.C.; Barbosa, Joao R. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mail: monteiro@asap.iae.cta.br; barbosa@mec.ita.cta.br

    2000-07-01

    A study of numerical methods for the simulation of internal combustion engines is presented. Functional blocks, representing each component of the engine, can be combined to simulate the engine. A model was selected for each component. The engine simulation is carried out connecting the functional blocks. The inviscid conservation equations coupled with loss models where solved using a C++ computer program. Engine performance simulation is shown and results compared with published data. (author)

  13. Combustion Analysis and Knock Detection in Single Cylinder DI-Diesel Engine Using Vibration Signature Analysis

    OpenAIRE

    Y.V.V.SatyanarayanaMurthy

    2011-01-01

    The purpose of this paper is to detect the “knock” in Diesel engines which deteriorate the engine performance adversely. The methodology introduced in the present work suggests a newly developed approach towards analyzing the vibration analysis of diesel engines. The method is based on fundamental relationship between the engine vibration pattern and the relative characteristics of the combustion process in each or different cylinders. Knock in diesel engine is detected by measuring the vibra...

  14. Influences of Catalytic Combustion on the Ignition Timing and Emissions of HCCI Engines

    Institute of Scientific and Technical Information of China (English)

    ZENG Wen; XIE Mao-zhao

    2008-01-01

    The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A single-zone model and a multi-zone model were developed. The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model. The results showed that the ignition timing of the HCCI engine was advanced by the catalysis. The effects of catalytic combustion on HC, CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model. The results showed that the emissions of HC and CO (using platinum (Pt) as catalyst) were decreased, while the emissions of NOx were elevated by catalytic combustion. Compared with catalyst Pt, the HC emissions were lower with catalyst rhodium(Rh) on the piston surface, but the emissions of NOx and CO were higher.

  15. Development on a dynamic pressure test system of internal combustion engines

    Science.gov (United States)

    Yuan, Dongmei; Zou, Xihong; Xu, Yun

    2006-11-01

    The performance of a piston internal-combustion engines is reflected by indicator diagram and indicator parameters. It is of great significance to evaluate performance, inspect quality, redesign and maintain internal-combustion engine by computing parameter and analyzing combustion according to tested indicator diagram. Aimed at two-stroke piston engines, a dynamic pressure test system of internal-combustion engines is developed with high speed acquisition devices, angle signal generators and pulse shapers. After a further research on the measurement of dynamic top dead center (TDC), the computer algorithm based on the p-ψ indicator diagram of TDC and the average indicator pressure is putted forward. With the application of the multithreading technique, dynamic link library technique and multi-document template technique, a testing software, which is credible and multi-purpose, is programmed. The experiment indicates that the indicator diagram and indicator parameters can be under accurate measurement with the testing system.

  16. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    OpenAIRE

    Gennady G. Kuvshinov; Maksim V. Popov; Evgeny A. Soloviev; Armen I. Arzumanyan; Georgy A. Peshkov

    2012-01-01

    The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  17. Knock characteristics of dual-fuel combustion in diesel engines using natural gas as primary fuel

    Indian Academy of Sciences (India)

    O M I Nwafor

    2002-06-01

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we have the ignition stage followed by the combustion stage. There are three types of knock: diesel knock, spark knock and knock due to secondary ignition delay of the primary fuel (erratic knock). Several factors have been noted to feature in defining knock characteristics of dual-fuel engines that include ignition delay, pilot quantity, engine load and speed, turbulence and gas flow rate.

  18. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  19. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA50) and the crank angle for peak pressure (CApp) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA50 and CApp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA50 and CApp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA50 and CApp. For the conventional engine, for the conditions examined, the optimum CA50 varied between about 5 and 11°aTDC, and the optimum CApp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA50 was 2.5°aTDC, and the optimum CApp was 7.8°aTDC. These more advanced values for the optimum CA50 and CApp for the high efficiency engine were largely due to lower

  20. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  1. Fuel reactor modelling in chemical-looping combustion of coal: 2. simulation and optimization

    OpenAIRE

    García Labiano, Francisco; Diego Poza, Luis F. de; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan

    2013-01-01

    Chemical-Looping Combustion of coal (CLCC) is a promising process to carry out coal combustion with carbon capture. The process should be optimized in order to maximize the carbon capture and the combustion efficiency in the fuel reactor, which will depend on the reactor design and the operational conditions. In this work, a mathematical model of the fuel reactor is used to make predictions about the performance of the CLCC process and simulate the behaviour of the system ...

  2. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  3. Experimental Studies of Hydrogen as a Fuel Additive in Internal Combustion Engines

    OpenAIRE

    Saanum, Inge

    2008-01-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NOx, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO2 are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emis...

  4. Engine Output Increase of Two-stroke Combustion with Exhaust System Optimization

    OpenAIRE

    Bigoš, Petar; Puškár, Michal

    2008-01-01

    In principle, an exhaust system influences the maximum output and characteristic of a two-stroke combustion engine. The first part of the contribution deals with the possibility of transformation in a maximum output and a range of exploitable speed values by means of the change of exhaust manifold length in exhaust pipe section. This knowledge covers an output curve variability of an engine operating speed range. The second part of this contribution deals with the combustion product's tempera...

  5. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Science.gov (United States)

    2010-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... engines as specified in 40 CFR part 94. (c) Stationary CI internal combustion engine manufacturers must... part 1068 for engines that are certified to the emission standards in 40 CFR part 1039. Stationary...

  6. Engineering microbes for efficient production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  7. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  8. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  9. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  10. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.

    2016-04-05

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  11. CFD Simulation of Stratified Combustion Process in a Direct Injection Spark Ignition Engine

    Science.gov (United States)

    Miyagawa, Hiroshi; Nomura, Yoshihiro; Koike, Makoto; Tomoda, Terutoshi

    A three-dimensional simulation technique for the stratified combustion process in direct injection gasoline engines is developed. The effects of a widely distributed mixture equivalence ratio and a large amount of EGR on laminar flame speed are briefly modeled taking into account only the temperature of the unburned mixture and the flame temperature. The suggested laminar flame speed model is incorporated into a CFD code in combination with the coherent flame model. In burned gas, chemical equilibrium depending on the local equivalence ratio is assumed so that the post flame reaction upon mixing rich burned gas and lean burned gas or fresh air can be simply modeled as a change of the equilibrium. The calculated flame propagation process, heat release rate and exhaust emissions are confirmed by the results of measurements including the LIF technique. The good agreements obtained under various conditions indicate the applicability of this method.

  12. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  13. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    Science.gov (United States)

    Daw, C. Stuart; Finney, Charles E. A.

    2011-04-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR.

  14. Milestones of Chemical Engineering Development in Croatia

    Directory of Open Access Journals (Sweden)

    Hraste, M.

    2007-10-01

    Full Text Available Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the unit operations was broadened by molecular explanations of macroscopic phenomena. It was not long before chemical engineering extended the operation approach to chemical reaction engineering. At the same time, process optimization prompted the system approach. Instead of looking for details, higher levels of organization were recognized by synthesis. The use of computers has become the key element in process modeling and control. The methods of chemical engineering have extended to other fields, while the discipline keeps the same basis and characteristics.The changes on the global market stimulate new trends in research and education. Product development has become an important segment of the discipline, which presumes an integrated approach to the phenomena and processes at different time and length levels following the possible transfer from molecule to product at process level.This paper mainly deals with the development of this discipline in Croatia, with a preview of the persons that contributed to the acceptance and propagation of the new concepts.

  15. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  16. Compression ignition engine having fuel system for non-sooting combustion and method

    Energy Technology Data Exchange (ETDEWEB)

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  17. An assessment of combustion products of spark ignition engines supplied by ethanol - gasoline blends

    Science.gov (United States)

    Uzuneanu, K.; Golgotiu, E.

    2016-08-01

    The causes of environmental pollution by internal combustion engines arise from the use of fuels containing bounded carbon, from the fact that combustion takes place on a cyclic basis and at high temperature. The first and the last causes are directly related to the fuel and therefore there is in principle a possibility to reduce pollution by acting upon the fuel used. The present paper deals with the comparison of the level of combustion products of a spark ignition engine supplied by gasoline and by a mixture of 10 % ethanol - 90% gasoline.

  18. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song;

    2014-01-01

    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. N...

  19. Mechanism and optimization of fuel injection parameters on combustion noise of DI diesel engine

    Institute of Scientific and Technical Information of China (English)

    张庆辉; 郝志勇; 郑旭; 杨文英; 毛杰

    2016-01-01

    Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 dB(A) generally. Meanwhile, the power, emission and economy performances are ensured.

  20. Milestones of Chemical Engineering Development in Croatia

    OpenAIRE

    Hraste, M.

    2007-01-01

    Solving important problems of chemical and process industries stimulated the creation of a new scientific discipline, chemical engineering, which apart from other disciplines includes firm theoretical foundations, core subjects taught to entering students, widely adopted textbooks and journals. The new discipline, at the beginning of the 20th century, provided a way of analyzing the wide variety of processes in terms of small "unit operations". Later, the largely empirical approach of the uni...

  1. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  2. Boris Loutzky – Creator of the world's first motorized bicycle classic layout with a combustion engine

    Directory of Open Access Journals (Sweden)

    Alexander Firsov

    2012-12-01

    Full Text Available The article is dedicated to creation of the first motor vehicles with internal combustion engines. The purpose of article is to establish the name of the designer who was the first to create the world's motorized bicycle classic layout with a combustion engine. This article describes the construction of the first motorized vehicles Gottlieb Daimler, Edward Butler, Felix Millet, Giuseppe Murniotti, Edward Pennington, Alois Wolfmüller and Hans Geisenhof. based on the analysis of structures of motor vehicles. It’s stated that none of the vehicles can be called a «prototype» of modern mopeds and motorcycles. Based on the research it was found that in Germany Russian engineer B. Loutzky was engaged in creation of motorized vehicles with internal combustion engines even before Hildebrand and Pennington. These motorized vehicles were exhibited in Palermo, Erfurt, Vienna, Prague, Lamberg, Stuttgart and other cities in Europe, and were acknowledged and rewarded with gold medals. The paper describes the design of the first motorized bicycle with a classic layout by B. Loutzky and design of the unique internal combustion engines, which B. Loutzky used in his first vehicles. Overall, based on the analysis of patents for inventions, literary and archival sources, the priority of the Russian engineer B. Loutzky in creation of the motorized bicycle classic layout with a combustion engine is established.

  3. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  4. Modeling of Transient Heat Flux in Spark Ignition Engine During Combustion and Comparisons with Experiment

    Directory of Open Access Journals (Sweden)

    T. F. Yusaf

    2005-01-01

    Full Text Available A quasi-one dimensional engine cycle simulation program was developed to predict the transient heat flux during combustion in a spark ignition engine. A two-zone heat release model was utilized to model the combustion process inside the combustion chamber. The fuel, air and burned gas properties throughout the engine cycle were calculated using variable specific heats. The transient heat flux inside the combustion chamber due to the change in the in-cylinder gas temperature and pressure during combustion was determined using the Woschni heat transfer model. The program was written in MATLAB together with the Graphical User Interface (GUI. Numerical results were compared with the experimental measurements and good agreement was obtained. Four thermocouples were used and positioned equi-spaced at 5mm intervals along a ray from the spark plug location on the engine head. These thermocouples were able to capture the heat flux release by the burned gas to the wall during the combustion process including the cycle-to-cycle variations. Pressure sensor was installed at the engine head to capture the pressure change throughout the cycle.

  5. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime

  6. Experimental study of combustion noise radiation during transient turbocharged diesel engine operation

    International Nuclear Information System (INIS)

    Diesel engine noise radiation has drawn increased attention in recent years since it is associated with the passengers' and pedestrians' discomfort, a fact that has been acknowledged by the manufacturers and the legislation in many countries. In the current study, experimental tests were conducted on a truck, turbocharged diesel engine in order to investigate the mechanism of combustion noise emission under various transient schedules experienced during daily driving conditions, namely acceleration and load increase. To this aim, a fully instrumented test bed was set up in order to capture the development of key engine and turbocharger variables during the transient events. Analytical diagrams are provided to explain the behavior of combustion noise radiation in conjunction with cylinder pressure (spectrum), turbocharger and governor/fuel pump response. Turbocharger lag was found to be the main cause for the noise spikes during all test cases examined, with the engine injection timing calibration and the slow adjustment of cylinder wall temperature to the new fueling conditions playing a vital role. The analysis was extended with a quasi-steady approximation of transient combustion noise using steady-state maps, in order to better highlight the effect of dynamic engine operation on combustion noise emissions. -- Highlights: → Studying the effects of acceleration and load increase on the combustion noise radiation from a turbocharged diesel engine. → Turbocharger lag was the most notable contributor for the behavior of combustion noise radiation. → Turbocharged diesel engine behaves noisier at acceleration compared with the steady-state operation. → Fuel limiter, governing and engine injection timing calibration play a decisive role on the emission of combustion noise. → Transient noise radiation was smoothed the slower the acceleration and the smaller the demanded speed increase.

  7. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  8. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    OpenAIRE

    Dorić Jovan Ž.; Klinar Ivan J.

    2011-01-01

    This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the ...

  9. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  10. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    Science.gov (United States)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  11. Hydrogen as an ignition-controlling agent for HCCI combustion engine by suppressing the low-temperature oxidation

    OpenAIRE

    Shudo, Toshio; Yamada, Hiroyuki

    2007-01-01

    Homogeneous charge compression ignition (HCCI) combustion enables internal combustion engines to achieve higher thermal efficiency and lower NOx emission than with conventional combustion systems. Controlling the ignition timing in accordance with the operating conditions is crucial for utilizing HCCI combustion engines. Adding hydrogen-containing gas is known to retard the autoignition of dimethyl ether (DME) considerably. The effective ignition control by hydrogen can expand the operation r...

  12. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    Directory of Open Access Journals (Sweden)

    Amir Azimi, Javad Aminian

    2015-01-01

    Full Text Available Computational Fluid Dynamics (CFD study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results using the Eddy Dissipation Concept (EDC combustion model as well as the experimental data available in the literature. Results show that global chemical mechanisms provide acceptable predictions of temperature and major species fields in flameless mode with much lower computational costs comparing with the detailed chemical mechanisms. However, incorporation of detailed chemical mechanisms with proper combustion models is crucial to account for finite-rate chemistry effects and accurately predict net production of minor species.

  13. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  14. Conceptests for a Chemical Engineering Thermodynamics Course

    Science.gov (United States)

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  15. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  16. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  17. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  18. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy. PMID:20047295

  19. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  20. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    Directory of Open Access Journals (Sweden)

    Nidhi Arora

    2013-07-01

    Full Text Available A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed in this paper to alleviate combustion process. The method involves recording the time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful gases and about 12 fuels are used for testing the network’s performance. The network then adaptively determines the additional/subtractive amount of air required for proper combustion. Mean square error calculation ensures the effectiveness of the network’s performance.

  1. Incorporating advanced combustion models to study power density in diesel engines

    Science.gov (United States)

    Lee, Daniel Michael

    A new combustion model is presented that can be used to simulate the diesel combustion process. This combustion process is broken into three phases: low temperature ignition kinetics, premixed burn and high temperature diffusion burn. The low temperature ignition kinetics are modeled using the Shell model. For combustion limited by diffusion, a probability density function (PDF) combustion model is utilized. In this model, the turbulent reacting flow is assumed to be an ensemble of locally laminar flamelets. With this methodology, species mass fractions obtained from the solution of laminar flamelet equations can be conditioned to generate a flamelet library. For kinetically limited (premixed) combustion, an Arrhenius rate is used. To transition between the premixed and diffusion burning modes, a transport equation for premixed fuel was implemented. The ratio of fuel in a computational cell that is premixed is used to determine the contribution of each combustion mode. Results show that this combustion model accurately simulates the diesel combustion process. Furthermore, the simulated results are in agreement with the recent conceptual picture of diesel combustion based upon experimental observations. Large eddy simulation (LES) models for momentum exchange and scalar flux were incorporated into the KIVA solver. In this formulation, the turbulent viscosity, μt, is determined as a function of the sub- grid turbulent kinetic energy, which is in turn determined from a one equation model. The formulation for the scalar transfer coefficient, μs, is similar to that of the turbulent viscosity, yet is made to be consistent with scalar transport. Test cases were run verifying that both momentum and scalar flux can be accurately predicted using LES. Once verified, these LES models were used to simulate the diesel combustion process for a Caterpillar 3400 series engine. Results for the engine simulations were in good agreement with experimental data.

  2. Cycle-to-cycle fluctuation of combustion in a spark-ignition engine; Hibana tenka engine no nensho hendo

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Y.; Yoshiyama, S.; Tomita, E.; Hamagami, T. [Okayama University, Okayama (Japan); Otsubo, H. [Yammer Diesel Engine Co. Ltd. Tokyo (Japan)

    1997-10-01

    In a homogeneous charge spark-ignition engine, the duration of early stage of combustion is a dominant factor for determining the fluctuation of mean effective pressure. And the early stage of combustion varies with the equivalence ratio and turbulence characteristics of the mixture. In this study, the fluctuations of 1% combustion duration and indicated mean effective pressure Pmi were computed as the function of fluctuations both in the equivalence ratio {phi} of the mixture and in the turbulence characteristics of the cylinder charge. And effects of the spark timing {theta}ig and {phi} on the cycle-to-cycle fluctuation in Pmi were investigated. 16 refs., 6 figs.

  3. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  4. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION...-IGNITION ENGINES General Pt. 89, Subpt. A, App. A Appendix A to Subpart A of Part 89—State Regulation...

  5. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  6. IDEALIZED ENGINE EMISSIONS RESULTING FROM THE COMBUSTION OF GASOLINE SUPPLEMENTED WITH LPG

    Directory of Open Access Journals (Sweden)

    Cenk SAYIN

    2006-02-01

    Full Text Available In the internal combustion engines, the studies to reduce brake specific fuel consumption and exhaust emissions to the lowest level are the start of the investigations on the dual fuel engines. In this study, the changes in the exhaust emissions of the dual fuel (gasoline + LPG at different ratios have been calculated using a computer program and the results are discussed.

  7. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Witze, P.O. (ed.)

    1981-10-01

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  8. A RESEARCH PLAN TO STUDY EMISSIONS FROM SMALL INTERNAL COMBUSTION ENGINES

    Science.gov (United States)

    The report examines some of the requirements for investigating the environmental status of small internal combustion (IC) engines. These engines range in size from 1.5 to 15 hp and power a variety of equipment operated by homeowners and industry. With EPA's general growing concer...

  9. EFFICIENCY OF INTERNAL COMBUSTION ENGINE OF AUTOMOBILE AS MEANS OF PRIORITY ITS OPERATIONS

    OpenAIRE

    Shapko, V.; Shapko, S.

    2007-01-01

    Exceeded is the analysis of distribution automobile internal combustion engine modes operations on rate crankshaft and on loading with priority of conditions considers engines efficiency. Presented is a methods of analytical determination to optimal conditions use of multi-purpose performance.

  10. Determining size of drops in fuel mixture of internal combustion engines

    Science.gov (United States)

    Sauter, J

    1926-01-01

    In compressorless Diesel engines and in explosion engines using fuels with high boiling points it is difficult to effect a good combustion of the fuel mixture. This report presents different methods for calculating the size and uniformity of fuel droplets and mixtures.

  11. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  12. The Simulation of the Charge Cycle in a Cylinder of a Combustion Engine

    OpenAIRE

    Stark, H.-G.; Trinkaus, H.; Jansson, Ch.

    1988-01-01

    The performance of a combustion engine is essentially determined by the charge cycle, i.e. by the inflow of fresh air through the inlet pipe into the cylinder after a combustion cycle. The amount of air, exchanged during this process, depends on many factors, e.g. the number of revolutions per minute, the temperature, the engine and valve geometry. In order to have a tool in designing the engine one is interested in calculating this amount. The proper calculation would involve the solution of...

  13. Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  14. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    Science.gov (United States)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  15. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  16. CFD Studies of Split Injection on the Combustion and Emission Characteristics in DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    S Gavudhama karunanidhi

    2014-07-01

    Full Text Available In this study, the effect of split injection on the combustion and emissions in DI diesel engine is investigated using CFD tool .One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. Split injection is defined as splitting the main single injection profile in two or more injection pulses with definite delay dwell between the injections. A four-stroke, single cylinder, diesel engine was taken into consideration at constant speed conditions . A model was developed for comprehensive predictions and assessments for variations in combustion phenomenon for DI diesel engines . By using the finite volume method the design and analysis of combustion chamber,emission characteristics were studied. The results of the split injection were compared with single injection and the optimum case of split injection was observed.

  17. EFFECT OF ETHANOL ADDITION WITH CASHEW NUT SHELL LIQUID ON ENGINE COMBUSTION AND EXHAUST EMISSION IN A DI DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    A.VELMURUGAN

    2012-07-01

    Full Text Available In this study, biofuel, diesel and ethanol blends (BDEB were tested in a single cylinder direct-injection diesel engine to investigate the engine combustion, performance and emission characteristics of the engine under five engine loads at the speed of 1500 rpm. Here the ethanol is used as an additive to enhance the engine combustion. The mixture of Commercial diesel fuel, biofuel from Cashew Nut Shell Liquid (CNSL and ethanol mixture called BDEB is used to run the direct injection diesel engine. The different combination of BDEB asBDEB 5 (Diesel75%,Cnsl 20% and Ethanol 5% , BDEB 10 (Diesel70%,Cnsl 20% and Ethanol 10% and BDEB 15(Diesel65%,Cnsl 20% and Ethanol 15%, were tested in the engine. The results are compared with neat diesel fuel. The results showed that the addition of ethanol with bio-fuel and diesel enhance the engine combustion. The engine performance and emission is improved with 15% ethanol in biofuel (BDEB15. Theexperimental results showed that the CO, HC emission is decreased and NOx emission is increased. The brake thermal efficiency, exhaust gas temperature, brakes specific fuel consumption increased for BDEB15 compared to other combination of fuel.

  18. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model

    Institute of Scientific and Technical Information of China (English)

    Haozhong HUANG; Wanhua SU

    2008-01-01

    The micro-genetic algorithm (μGA) as a highly effective optimization method, is applied to calibrate to a newly developed reduced chemical kinetic model (40 species and 62 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane to improve its autoignition predictions for different engine operating conditions. The seven kinetic parameters of the calibrated model are determined using a combination of the Micro-Genetic Algorithm and the SENKIN program of CHEMKIN chemical kinetics software package. Simulation results show that the autoignition predictions of the calibrated model agree better with those of the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model over the range of equivalence ratios from 0.1-1.3 and temperature from 300-3 000 K. The results of this study have demonstrated that the μGA is an effective tool to facilitate the calibration of a large number of kinetic parameters in a reduced kinetic model.

  19. Chemical reduction of complex kinetic models of combustion; Reduction chimique des modeles cinetiques complexes de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fournet, R.; Glaude, P.A.; Warth, V.; Battin-Leclerc, F.; Scacchi, G.; Come, G.M. [Institut National Polytechnique de Lorraine, Ecole Nationale Superieure des Industries Chimiques, CNRS UMR 7630, INPL ENSIC, Dept. de Chimie Physique des Reacteurs, 54 - Nancy (France)

    2001-07-01

    This paper presents an automatized method allowing to notably reduce the size of the primary mechanism of alkane combustion. The free radicals having the same raw formulation and the same functional groups are presented in a global way as a unique species. In this way, the number of radicals can be divided by a factor of 16 in the case of n-heptane combustion. The kinetic parameters linked with the global mechanism are obtained from a weighted average of the kinetic constants of the detailed mechanism, and this without any adjustment.The simulations performed for the combustion mechanisms of the n-heptane and of a mixture of n-heptane and 2,2,3 trimethyl butane are presented in order to show the validity of the proposed method. (J.S.)

  20. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  1. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  2. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  3. Wear Debris Analysis of Internal Combustion Engine by Ferrography Technique

    OpenAIRE

    Ashesh Tiwari; , Suraj kumar sharma2

    2014-01-01

    IC engines are typically used for the auto vehicles. These engines are necessary for the auto as just like the heart for soul. Because the heart of soul is fail whole system of body additionally fail. Same issue is additionally applicable in automobile because the engine of the vehicle did not develop power, driver cannot run the vehicle. Maintenance is the most vital side for increasing Engine life that successively increases the life time of vehicle. Engine performances are ...

  4. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  5. Efficiency characteristics of a new quasi-constant volume combustion spark ignition engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2013-01-01

    Full Text Available A zero dimensional model has been used to investigate the combustion performance of a four cylinder petrol engine with unconventional piston motion. The main feature of this new spark ignition (SI engine concept is the realization of quasi-constant volume (QCV during combustion process. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of internal combustion (IC engines. These advantages over standard engine are achieved through synthesis of unconventional piston mechanism. The numerical calculation was performed for several cases of different piston mechanism parameters, compression ratio and engine speed. Calculated efficiency and power diagrams are plotted and compared with performance of ordinary SI engine. The results show that combustion during quasi-constant volume has significant impact on improvement of efficiency. The main aim of this paper is to find a proper kinematics parameter of unconventional piston mechanism for most efficient heat addition in SI engines.[Acknowledgment. This research was done as a part of project TR31046 "Improvement of the quality of tractors and mobile systems with the aim of increasing competitiveness and preserving soil and environment", supported by Serbian Ministry of Science and Technological Development.

  6. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  7. Emission and Combustion Characteristics of Si Engine Working Under Gasoline Blended with Ethanol Oxygenated Organic Compounds

    Directory of Open Access Journals (Sweden)

    Dhanapal Balaji

    2010-01-01

    Full Text Available Problem statement: The objective of this study is to investigate the effect of using unleaded gasoline and additives blends on Spark Ignition engine (SI engine combustion and exhaust emission. Approach: A four stroke, single cylinder SI engine was used for conducting this study. Exhaust emissions were analysed for Carbon Monoxide (CO, Hydrocarbon (HC and Oxides of Nitrogen (NOx and carbon dioxide (CO2 using unleaded gasoline and additives blends with different percentages of fuel at varying engine torque condition and constant engine speed. Results: The result showed that the blending of unleaded gasoline increases the octane number and power output this may leads to increase the brake thermal efficiency. The CO, HC and NOx emissions concentrations in the engine exhaust decreases while the CO2 concentration increases. Conclusion: Using ethanol as a fuel additive to unleaded gasoline causes an improvement in combustion characteristics and significant reduction in exhaust emissions.

  8. Fuel injection for internal combustion engines. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems` variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Selection of a Suitable Combustion System for a Small Gas Turbine Engine

    OpenAIRE

    P. Arunachalam

    1988-01-01

    Experimental studies on a straight and a reverse flow annular combustion chamber to select a suitable combustion  system for a small gas turbine engine are presented. One straight flow annular combustor with simplex fuel injector and three sector models of the reverse flow annular combustor with simplex, airblast and vapouriser type of fuel injectors were fabricated and tested, retaining the same maximum outer casing diameter. The paper presents the basic design procedure, the three types of ...

  10. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson KWAUK

    2007-01-01

    Around the turn of the present century, scholars began to recognize chemical engineering as a complex system, and have been searching for a convenient point of entry for refreshing its knowledge base. From our study of the dynamic structures of dispersed particles in fluidization and the resulting multi-scale method, we have been attempting to extend our findings to structures prevailing in other multiphase systems as well as in the burgeoning industries producing functional materials. Chemical engineering itself is hierarchically structured. Besides structures based on space and time, such hierarchy could be built from ChE history scaled according to science content, or from ChE operation according to the expenditure of manpower and capital investment.

  11. Engineering electrical properties of graphene: chemical approaches

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  12. Staged Combustion Cycle Rocket Engine Design Trade-Offs for Future Advanced Passenger Transport

    OpenAIRE

    Sippel, Martin; Yamashiro, Ryoma

    2012-01-01

    Staged combustion cycle rocket engines with a moderate nominal 16 MPa chamber pressure have been selected as the baseline propulsion system for the visionary intercontinental passenger transport SpaceLiner. Several technical engine design trade-offs are run by numerical simulations and results are pre-sented including: • Fuel rich vs. Full-flow cycle • Useful operational domain in MR • Regenerative cooling options of thrust chamber The engine operational domain is evaluated on ...

  13. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Neat n-butanol fuelled HCCI combustion on a high compression ratio diesel engine. • Ultra-low NOx and soot emissions with minimum intake dilution (EGR) at low-mid loads. • High efficiency at higher loads with optimum combustion phasing and moderate EGR. • Overcomes diesel HCCI limitations of pre-TDC phasing, high pressure rise rate. • Improved load range, efficiency and emissions compared to diesel HCCI. - Abstract: Highly-diluted diesel homogeneous charge compression ignition (HCCI) combustion can achieve ultra-low NOx and soot emissions but its implementation is impeded by the lack of control on the ignition timing and excessively early combustion phasing (before TDC) that limit the achievable engine load and result in a reduced energy efficiency. The low volatility and high reactivity of common diesel fuels make it non-conducive for HCCI combustion; hence in this work, n-butanol that has a low reactivity and high volatility is studied for HCCI combustion on a single-cylinder high compression ratio (18.2:1) diesel engine without any modifications to the air-path system. The results indicate that n-butanol-fuelled HCCI combustion offers the benefit of ultra-low NOx and smoke emissions with minimal requirements for intake dilution through exhaust gas recirculation (EGR). The low reactivity helps in realizing an optimal combustion phasing, and thermal efficiency levels comparable to that of conventional diesel combustion are consistently achieved. At low-to-mid engine loads (4–7 bar IMEP), the emissions are largely insensitive to the boost pressure, and the boost selection is primarily governed by the trade-off between the combustion instability and the thermal efficiency. At higher engine loads, both boost and EGR are required to limit the high pressure rise rates and to modulate the combustion phasing for high thermal efficiency. The load range is extended up to 10 bar IMEP in n-butanol HCCI mode while maintaining ultra-low NOx and soot

  14. A New Strategy to Achieve Radical Combustion Through Exhaust Port Throttling for Two Stroke Engine

    Directory of Open Access Journals (Sweden)

    Saqaff Ahmed Alkaff, Mohamed A. Khan

    2010-06-01

    Full Text Available Radical combustion is a critical condition behind control. In two stroke engine, acondition of radical combustion could be achieved through control of the trappedexhaust gases at a certain condition, might include, the engine load, speed,concentration of the unburned hydrocarbons, their temperature and otheroperational parameters.An earlier work was conducted towards the achievement of the radicalcombustion. The mechanism was made to throttle the opening of the exhaustport at a range of 1% to 8 % [1]. However, several difficulties were faced, mainlywith the control mechanism of throttling. In addition there is a complexity inidentifying the critical conditions at which the radical combustion could beachieved.In this paper, a new strategy was used to control the exhaust port throttling in away to manage the amount of exhaust gases trapped and avoiding thedrawbacks of the throttling mechanism in the earlier work. Three trial plateswere used, one-sixth closed, one-third closed and half closed to throttle theexhaust gases leaving the combustion chamber.Results reveal the possibility of achieving radical combustion, when using theone-sixth closed plate under relatively higher load. Therefore, partial trapping ofthe exhaust gases should be carried, through the restriction of the opening of theexhaust port not to exceed 15% of the port exit area. However, it is moreinteresting, that throttling of the exhaust gases of the two stroke engine haveclear influence on the quality and stability of the combustion and hence its directeffect on the fuel consumption and the rate of pollutants expelled to theenvironment.

  15. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    Directory of Open Access Journals (Sweden)

    Hai-Wen Ge

    2010-01-01

    Full Text Available An efficient multigrid (MG model was implemented for spark-ignited (SI engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.

  16. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL

    2016-01-01

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8 CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.

  17. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    Science.gov (United States)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  18. Combustible radioactive waste treatment by incineration and chemical digestion

    International Nuclear Information System (INIS)

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste

  19. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel...

  20. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  1. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  2. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  3. Compilation of contract research for the Chemical Engineering Branch, Division of Engineering Technology. Annual report for FY 1985

    International Nuclear Information System (INIS)

    This compilation of annual research reports by the contractors to the Chemical Engineering Branch, DET, is published to disseminate information from ongoing programs and covers research conducted during fiscal year 1985. The programs covered in this document include research on: (1) engineered safety feature (ESF) system effectiveness in terms of fission product retention under severe accident conditions; (2) effectiveness and safety aspects of selected decontamination methods; (3) decontamination impacts on solidification and waste disposal; (4) evaluation of nuclear facility decommissioning projects and concepts, and (5) operational schemes to prevent or mitigate the effects of hydrogen combustion during LWR accidents

  4. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The performance of fluid film bearings in a combustion engine affects key functions such as durability, noise and vibration. Therefore, this work evaluates different control strategies for applying active radial oil injection in the main bearings of internal combustion engines with the aim...... of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...... surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...

  5. INFLUENCE OF SWIRL ON SPRAY CHARACTERISTICS AND COMBUSTION, A NUMERICAL INVESTIGATION OF A CATERPILLER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    M. SREENIVASULU

    2012-10-01

    Full Text Available The purpose of this study is to find the appropriate swirl ratio at which a DI diesel engine should be operated. In the process of identifying an appropriate swirl, the combustion behaviour was analysed by considering Pressure variations and Heat Release Rate variations against crank angle. The spray characteristics were also analysed by considering Penetration lengths, Sauter mean diameters, Spray cone angles against crank angle. Final conclusions were derived by considering NOx emission levels. A turbo charged DI diesel engine geometry was considered for the analysis. Proper care was taken inidentifying the range of Swirl Ratios. A 3-dimensional CFD code (RECARDO VECTIS, which is capable of solving 3-dimensional unsteady, turbulent flows, sprays and combustion of IC engines was used. In the first step CFD code was validated by comparing the obtained results with the experimental results. In the next step an attempt was made to study the influence of swirl on the spray characteristics and combustion.

  6. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  7. NUMERICAL STUDIES ON HYDROGEN COMBUSTION IN A FILM COOLED CRYOGENIC ROCKET ENGINE

    Directory of Open Access Journals (Sweden)

    ARSHAD A.

    2012-07-01

    Full Text Available Liquid rocket engines have variety of propellant combinations which produces very high specific impulses. It is due to this fact; very high heat fluxes are incident on the combustion chamber and the nozzle walls. In order to deal with these heat fluxes, a wide range of cooling techniques have been employed, out of which a combination of film cooling and regenerative cooling promises to be the most effective one. The present study involves the numerical analysis of combustion in a typical film cooled cryogenic rocket engine thrust chamber considering the combustion of the fuel, heat transfer through the chamber walls and the fluid flow simultaneously. Analysis was done for a typical rocket engine thrust chamber with a single coaxial injector which uses gaseous hydrogen as the fuel and liquid oxygen as the oxidizer.

  8. Diagnostics of automatic compensators of valve clearance in combustion engine with the use of vibration signal

    Science.gov (United States)

    Szymański, Grzegorz M.; Tomaszewski, Franciszek

    2016-02-01

    Dynamic development of internal combustion engines creates a need to adopt a strategy concerning operational use of these driving units based on the knowledge of their technical condition. The assessment of technical condition belongs to tasks of technical diagnostics. This article presents an analysis of issues concerning vibration diagnostics of automatic compensators of clearances in piston valves of combustion engine. Scientific experiments focused on delivering information necessary to create (and also to validate) diagnostic models enabling assessment of technical condition of those elements of combustion engine that are essential taking into account effectiveness and durability that were carried out and described here. On the basis of the worked out diagnostic model, the algorithm for assessment of the technical condition of automatic compensators of valve clearance was created.

  9. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    Science.gov (United States)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  10. Genetic Algorithm-Based Design Optimization of Electromagnetic Valve Actuators in Combustion Engines

    Directory of Open Access Journals (Sweden)

    Seung Hwan Lee

    2015-11-01

    Full Text Available In this research, the design of a new electromagnetic engine valve in the limited space of combustion engine is optimized by multidisciplinary simulation using MATLAB and Maxwell. An electromagnetic engine valve actuator using a permanent magnet is a new actuator concept for overcoming the inherent drawbacks of the conventional solenoid-driven electromagnetic engine valve actuator, such as high power consumption and so on. This study aims to maximize the vibration frequency of the armature to reduce the transition time of the engine valve. The higher performance of the new actuator is demonstrated by dynamic finite element analysis.

  11. Fluid motion within the cylinder of internal combustion engines - The 1986 Freeman Scholar Lecture

    Science.gov (United States)

    Heywood, John B.

    1987-03-01

    Aspects of gas motion into, within, and out of the engine cylinder which govern the combustion characteristics and capabilities of spark-ignition engines and compression-ignition or diesel engines are considered. Flow characteristics through inlet and exhaust valves in four-stroke cycle engines, and through ports in the cylinder liner in two-stroke cycle engines, are discussed. Features and turbulence characteristics of common in-cylinder flows including the large scale rotating flows precipitated by the conical intake jet and two-stroke scavenger flows are reviewed. The flow phenomenon near walls are then discussed, with application to heat transfer and hydrocarbon emissions phenomena.

  12. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    严兆大; 周重光; 苏石川; 刘震涛; 王希珍

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  13. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    严兆大; 周重光; 苏石川; 刘震涛; 王希珍

    2003-01-01

    In order to predict and improve the performance of matural gas/diesel dual fuel engine(DFE),a combustion rate model based on forward meural network was built to study the combustion process of the DFE.The effect of the operating parameters on combustion rate was also studied by means of this model.The study showed that the predicted results were good agreement with the experimental data.It was proved that the de-veloped combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  14. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  15. Reactor choices for chemical looping combustion (CLC) dependencies on materials characteristics

    NARCIS (Netherlands)

    Kimball, E.; Lambert, A.; Fossdal, A.; Leenman, R.N.; Comte, E.; Bos, W.A.P. van den; Blom, R.

    2013-01-01

    The physio-chemical stability of the oxygen carrier material during chemical looping combustion (CLC) operation is crucial. In the present paper we discuss the challenges connected to operating a metal oxide base material in a cyclic manner between oxidizing and reducing atmospheres. Especially, foc

  16. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    Science.gov (United States)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  17. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    OpenAIRE

    Amir Azimi, Javad Aminian

    2015-01-01

    Computational Fluid Dynamics (CFD) study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS) equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR) combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results usi...

  18. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  19. Combustion, performance and emissions characteristics of a newly developed CRDI single cylinder diesel engine

    Indian Academy of Sciences (India)

    Avinash Kumar Agarwal; Paras Gupta; Atul Dhar

    2015-09-01

    For improving engine performance, combustion and controlling emissions from compression ignition (CI) engines, common rail direct injection (CRDI) technology offers limitless possibilities by controlling fuel injection parameters such as fuel injection pressure, start of injection (SOI) timing, rate of fuel injection and injection duration. CRDI systems available commercially are quite complex and use a large number of sensors, hardware and analytical circuits, which make them very expensive and unfeasible for cheaper single cylinder engines, typically used in agricultural sector and decentralized power sector. This paper covers experimental investigations of a simpler version of CRDI system developed for a constant-speed, single-cylinder engine. Modifications in the cylinder head for accommodating solenoid injector, designing injector driver circuit and development of high pressure stage controls were some of the engine modification and development tasks undertaken. SOI timing is an important parameter for improving engine's combustion characteristics. SOI timings were varied between 25° and 40° BTDC for investigating engine's performance, emissions and combustion characteristics. Advanced fuel injections showed higher heat release rate (HRR), cylinder pressure and rate of pressure rise (RoPR) because of relatively longer ignition delay experienced. Lowest brake specific fuel consumption (BSFC) was obtained for 34° CA BTDC SOI. Reduction in engine out emissions except NOx was observed for advanced fuel injection timings for this newly developed CRDI system.

  20. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  1. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§...

  2. Large Eddy Simulation of Turbulent Combustion with Chemical Kinetics

    OpenAIRE

    Panjwani, Balram

    2011-01-01

    The present doctoral thesis studies and develops methodologies for turbulent combustion with the Large Eddy Simulation (LES). Three main objectives for present doctoral thesis were.First, development of LES methodology in curvilinear coordinates. LES formulation in curvilinear coordinates can be achieved in two ways, (1) conventional approach, where filtering is performed prior to the transformation, and (2) alternate approach, where filtering is performed after the transformation. In present...

  3. Chemical Kinetics in Support of Syngas Turbine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We

  4. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, Wayne [Cummins, Inc., Columbus, IN (United States); Rutland, Chris [Univ. of Wisconsin, Madison, WI (United States); Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Singh, Gurpreet [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; McIlroy, Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  5. Combustion Analysis and Knock Detection in Single Cylinder DI-Diesel Engine Using Vibration Signature Analysis

    Directory of Open Access Journals (Sweden)

    Y.V.V.SatyanarayanaMurthy

    2011-01-01

    Full Text Available The purpose of this paper is to detect the “knock” in Diesel engines which deteriorate the engine performance adversely. The methodology introduced in the present work suggests a newly developed approach towards analyzing the vibration analysis of diesel engines. The method is based on fundamental relationship between the engine vibration pattern and the relative characteristics of the combustion process in each or different cylinders. Knock in diesel engine is detected by measuring the vibration generated by the engine using The DC-11 FFT analyzer with accelerometer. Knock in diesel engine is mainly due to the engine miss .A diesel engine miss results from one or more cylinders when the fuel is not burning properly. Improper fuel burning is caused by Injection system problems which include, Faulty injectors, clogged fuel filters, incorrect Injection timing, Low engine compression, injection system leaks, Air leaks, faulty injection pump etc. Engine miss causes rapid combustion with very high pressures generating a rumble or dull clattering sound. Abnormally loud sound with violent vibration is called “knocking or detonation”. Engine cylinder vibration in FFT form is monitored at each load the cylinder excitation frequencies are compared with the base line frequencies using diesel oil. Time wave forms on the cylinder head are also recorded to analyze the combustion. Since the very combustion in the cylinder is the basic exciter, the vibration study of the engine cylinder through the measured FFT and time waveforms are the representatives of combustion propensity. Vibration accelerometer is mounted on the cylinder head, preferably on the bolt connecting the head and the cylinder to record the engine vibrations using DC-11 data logger which directly gives the spectral data in the form of FFT, the overall vibration levels. This FFT data recorded is collected by On-Time window based software designed by e-predict Inc., Argentina. The Time

  6. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  7. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  8. COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    A. Rashid A. Aziz

    2010-12-01

    Full Text Available An experimental study was carried out on a dedicated compressed natural gas direct injection (CNG-DI engine with a compression ratio (CR of 14 and a central injection system. Several injection timing parameters from early injection timing (300 BTDC to partial direct injection (180 BTDC to full direct injection (120 BTDC were investigated. The 300 BTDC injection timing experiment was carried out to simulate the performance of a port injection engine and the result is used as a benchmark for engine performance. The full DI resulted in a 20% higher performance than the early injection timing for low engine speeds up to 2750 rpm. 180 BTDC injection timing shows the highest performance over an extensive range of engine speed because it has a similar volumetric efficiency to full DI. However, the earlier injection timing allowed for a better air–fuel mixing and gives superior performance for engine speeds above 4500 rpm. The engine performance could be explained by analysis of the heat release rate that shows that at low and intermediate engine speeds of 2000 and 3000, the full DI and partial DI resulted in the fastest heat release rate whereas at a high engine speed of 5000 rpm, the simulated port injection operation resulted in the fastest heat release rate.

  9. Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction

    International Nuclear Information System (INIS)

    The present two zone model of a direct injection (DI) Diesel engine divides the cylinder contents into a non-burning zone of air and another homogeneous zone in which fuel is continuously supplied from the injector and burned with entrained air from the air zone. The growth of the fuel spray zone, which comprises a number of fuel-air conical jets equal to the injector nozzle holes, is carefully modelled by incorporating jet mixing, thus determining the amount of oxygen available for combustion. The mass, energy and state equations are applied in each of the two zones to yield local temperatures and cylinder pressure histories. The concentration of the various constituents in the exhaust gases are calculated by adopting a chemical equilibrium scheme for the C-H-O system of the 11 species considered, together with chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of the soot formation and oxidation rates is included. The theoretical results from the relevant computer program are compared very favourably with the measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI Diesel engine installed at the authors' laboratory. In-cylinder pressure and temperature histories, nitric oxide concentration and soot density are among the interesting quantities tested for various loads and injection timings. As revealed, the model is sensitive to the selection of the constants of the fuel preparation and reaction sub-models, so that a relevant sensitivity analysis is undertaken. This leads to a better understanding of the physical mechanisms governed by these constants and also paves the way for construction of a reliable and relatively simple multi-zone model, which incorporates in each zone (packet) the philosophy of the present two zone model

  10. The railplug: Development of a new ignitor for internal combustion engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

    1994-11-29

    A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

  11. Cycle-by-cycle combustion variations in spark-ignited engines

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S. [Oak Ridge National Lab., TN (United States); Finney, C.E.A. [Univ. of Tennessee, Knoxville, TN (United States). College of Engineering; Connolly, F.T. [Ford Motor Company, Dearborn, MI (United States)] [and others

    1997-09-01

    Under constant nominal operating conditions, internal combustion engines can exhibit substantial variation in combustion efficiency from one cycle to the next. Previous researchers have attempted to explain these variations as resulting from stochastic, linear, or chaotic physical processes. Our investigations indicate that cyclic combustion variations can be explained as the result of interactions between a global low-dimensional nonlinearity and small-scale, high-dimensional processes that perturb the nonlinearity. Using this approach, we have proposed a simple model that accurately simulates experimentally observed patterns in cyclic combustion variations. Our model also explains the apparent discrepancies among previous investigators regarding the basic nature of cyclic variations. Further, it appears that symbol dynamics are useful for characterizing the observed model and experimental behavior.

  12. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    Science.gov (United States)

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process. PMID:17969702

  13. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  14. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  15. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  16. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  17. Effect of Fuel Types on Combustion Characteristics and Performance of a Four Stroke IC Engine

    Directory of Open Access Journals (Sweden)

    Mrs. Rana Ali Hussein,

    2014-04-01

    Full Text Available In this study, the effect of Gasoline, Ethanol, Gasohol E10, and Kerosene on the performance and combustion characteristics of a spark ignition (SI engine were investigated. In the experiment, the internal combustion (IC engine includes one cylinder, two valves, and four stroke spark ignition. Performance tests were carried out for specific fuel consumption, brake specific fuel consumption, power developed, corrosion rate, and carbon dioxide (CO2 and carbon monoxide (CO emissions. The measurements were conducted under various engine speeds ranging from 1500 to 4500 rpm. The experimental results showed that the performance of engine was improved with the use of gasoline and gasohol E10 in comparison with the Ethanol and Kerosene. The concentrations of CO2 and CO were presented and compared for all type of fuel examined.

  18. Efficiency of a new internal combustion engine concept with variable piston motion

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2014-01-01

    Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.

  19. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  20. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Directory of Open Access Journals (Sweden)

    P. K. Bose, Rahul Banerjee, Madhujit Deb

    2013-01-01

    Full Text Available Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg in the engine.

  1. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  2. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  3. INFLUENCE OF THE MIXTURE PREPARATION ON THE COMBUSTION IN DIRECT INJECTION ENGINES

    OpenAIRE

    GASTALDI, PATRICK

    2015-01-01

    During the last two centuries, the development of the internal combustion engine has followed the evolution of the customer expectations. From the race for pure performances, high power, and fun to drive, perfectly well illustrated by the fabulous Mercedes 300 SL, the focus moved towards fuel efficient engines under the pressure of the still increasing oil prices. The well-known Diesel powertrain, up to this period limited to industrial vehicles, suddenly became the object of m...

  4. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  5. Recent advances in catalytic combustion for ground power gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.L.; Karim, H.; Castaldi, M.; Etemad, S.; Pfefferle, W.C.; Newburry, D.; Bachovchin, D.

    1999-07-01

    Catalytic combustion is one means of meeting increasingly strict emissions requirements for ground-based gas turbine engines for power generation. In conventional homogeneous combustion, high flame temperatures and incomplete combustion lead to emissions of oxides of nitrogen (NO{sub x}) and carbon monoxide (CO), and in lean premixed systems unburned hydrocarbons (UHC). However, catalytic reaction upstream of a lean premixed homogeneous combustion zone can increase the fuel/air mixture reactivity sufficiently to allow low CO/UHC emissions at adiabatic flame temperatures below 1,500 C, with concurrent low NO{sub x} emissions. As a result, catalytic combustion technologies have demonstrated single-digit emissions, and meet DOE-ATS goals (NO{sub x} {lt} 10 ppm, and CO/UHC {lt} 20 ppm) by a wide margin. Precision Combustion, Inc. (PCI) is currently developing catalytic combustion systems for Siemens Westinghouse Power Corporation. For natural gas fuel operation, PCI has demonstrated NO{sub x} {lt} 5 ppm, CO {lt} 1 ppm, and UHC {lt} 1 ppm (all corrected to 15% O2) in a sub-scale atmospheric rig, using a catalytic pre-reactor upstream of the combustion zone. For these tests, gas-phase combustion was stabilized in an 8-inch diameter convection-cooled metal liner at adiabatic flame temperatures from 1,250 C to 1,550 C. In parallel, extensive high pressure reactor component development and testing have been conducted at sub-scale, in preparation for high pressure testing of a full-scale catalytic combustor.

  6. Computation of the combustion chamber pressure curve from the crankshaft angular velocity of internal combustion engines. Berechnung des Brennraumdruckverlaufes aus der Kurbelwellen-Winkelgeschwindigkeit von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H.

    1991-01-01

    The combustion chamber pressure curve is one of the most important engine parameters for assessing the operating state of internal combustion engines. In general it can only be registered in the test stand since the required pressure transducers are not robust enough for continuous operation. Experiments on a one-cylinder gasoline engine showed that the combustion chamber pressure curve can be computed when one measures the angular velocity of the crankshaft. Angular velocity can be measured in contrast to the combustion chamber pressure with an economical synchro-generator arrangement. The computation of the combustion chamber pressure curve is based on a physical/mathematical model for the engine mechanics. The accuracy which can be achieved is checked for different model variants. Comparisons of characteristic values of measured and calculated combustion chamber pressure curves have shown that the accuracies achieved in the one-cylinder engine are in the same range as those achievable with uncooled pressure transducers. (orig.) With 49 figs., 9 tabs.

  7. Auto-Ignition and Heat Release Correlations for Controlled Auto-Ignition Combustion in Gasoline Engines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Auto-ignition and heat release correlations for controlled auto-ignition (CAI) combustion were derived from extensive in-cylinder pressure data of a four-stroke gasoline engine operating in CAI combustion mode. Abundant experiments were carried out under a wide range of air/fuel ratio,speed and residual gas fraction to ensure that the combustion correlations can be used in the entire CAI engine operation range. Furthermore, a more accurate method to compute the residual gas fraction was proposed by calculating the working fluid temperature at the exhaust valve close timing in the experiments. The heat release correlation was described in two parts, one is for the first slower heat release process at low temperature, and the other is for the second faster heat release process at high temperature. Finally the heat release correlation was evaluated on the single cylinder gasoline engine running with CAI combustion by comparing the experimental data with the 1-D engine simulation results obtained with the aid of the GT-Power simulation program. The results show that the predicted loads and ignition timings match closely with the measurements.

  8. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  9. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  10. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper;

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...

  11. Effects of nozzle geometry on direct injection diesel engine combustion process

    OpenAIRE

    Payri, R.; Salvador, F.J.; Gimeno, J.; De La Morena, J.

    2010-01-01

    Effects of nozzle geometry on direct injection diesel engine combustion process correspondance: Corresponding author. Tel.: +34 963879658; fax: +34 963877659. (Payri, R.) (Payri, R.) CMT-Motores Termicos--> , Universidad Politecnica de Valencia Camino de Vera s/n--> , E-46022 Spain--> - SPAIN (Payri, R.) CMT-Motores Termicos--> , Universidad Politecnica de Valencia Camino de Vera s/n-->...

  12. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  13. Ionization in the Knock Zone of an Internal-combustion Engine

    Science.gov (United States)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  14. An algorithm for testing of gas distribution phases in the internal combustion engines

    OpenAIRE

    T. Nicu

    1999-01-01

    A method and algorithm for testing the gas distribution phases of internal combustion engines are proposed. This method allows a way of testing the gas distribution phases, based on direct and continuous measurements of pressure in cylinders and negative pressure in the intake manifold for using in the real time.

  15. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  16. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  17. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  18. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  19. System and method for conditioning intake air to an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  20. Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2009-03-01

    Full Text Available Rate-controlled constrained-equilibrium method, firmly based on the second law of thermodynamics, is applied to the expansion of combustion products of methane during the power stroke of an internal combustion engine. The constraints used in this study are the elemental oxygen, hydrogen, carbon and nitrogen together with other four dynamic constraints of total number of moles, moles of DCO (CO+HCO, moles of free valence and moles of free oxygen. Since at chemical equilibrium, the mixture composition is dominated by H/O, CO/CO2, and a few other carbon-containing species, almost independent of the fuel molecule, the set results in accurate predictions of the kinetic effects observed in all H/O and CO/CO2 compounds and temperature history. It is shown that the constrained-equilibrium predictions of all the species composed of the specified atomic elements can be obtained independent of a kinetic path, provided their Gibbs free energies are known.

  1. EXTENDING THE KNOWLEDGE BASE OF CHEMICAL ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Mooson Kwauk

    2005-01-01

    The obvious current reversion to micro-scale investigations in basic chemical engineering, combined with the need, of a quite different nature, in the rapid growth of high added-value and small-lot functional materials, have been pointing to an area not yet sufficiently covered by the unit operations, transport phenomena and chemical reaction engineering. Although it is difficult to define accurately this area, a cursory scan of the activities already in progress has revealed a few common attributes: multi-phased (structured), multi-scaled, multi-disciplined, nonlinear, needs for resolution to reductionism-solvable subsystems, and pervasive in the process industry. From these activities, the present paper drafts a tentative scheme for studying the related problems: first to dissect a problem into various scales - spatial, temporal or otherwise as best suits the case in hand- in order to identify pertinent parameters which are then organized into model formulations. Together with inter-scale model formulations, a zoom-in/zoom-out process is carried out between the scales, by trial-and-error and through reasoning, to arrive at a global formulation of a quantitative solution, in order to derive, eventually, the general from the particular.

  2. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

    2011-01-15

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  3. ABC - alcohol based combustion engines. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, K.; Nordin, H.; Koenigstein, A. [GM Powertrain Europe (Austria); Marriott, C.D.; Wiles, M.A. [GM Powertrain North America (United States)

    2007-07-01

    Ethanol as a fuel for individual transportation represents one answer to the future challenges regarding energy availability, energy accessibility and environmental compatibility. In the first generation of flex-fuel engines (an engine capable of operating with different ethanol blends) the challenge was to modify existing hardware in order to make the engines durable in a more aggressive environment (corrosion, wear) of ethanol, and to have controls available to run w/ different ethanol blends. Besides the significant improvement in CO{sub 2}-emissions, especially if considered on a well-to-wheels basis, quite significant improvements in regard to full-load performance were achieved. With the next generation of flex-fuel engines, based on state-of-the-art SIDI turbo technology, full-load efficiency (i.e. fuel consumption) can be further improved, since these engines are already designed for higher in-cylinder peak pressures. Full potential will be gained if there will be a dedicated design for flex-fuel engines, enabling peak pressures of about 120 bar. With this capability the full-load fuel consumption can be reduced by an additional 10%, without being penalized by fuel enrichment demands for component protection purposes. As an alternative, maximum peak pressure and full-load fuel consumption can be kept constant while increasing the compression ratio to CR=11-12 in order to address part-load fuel consumption. Such a compression ratio has never been seen before on a turbo charged engine. Before this becomes a standard technology further efforts have to be spent in order to provide sufficient infrastructure/fuelling stations on a European basis. Sweden represents a good example of how this technology can be implemented - but Sweden alone is not sufficient to make this a success story. Promotion by the European government and the regional governments is required as well. (orig.)

  4. Experimental Investigation on Space-dispersed Double-wall Jet Combustion System for DI Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    郭鹏江; 高希彦

    2012-01-01

    A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.

  5. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  6. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song;

    2014-01-01

    In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events....... Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined...... chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes...

  7. 2010 University Exemplary Department Award honors chemical engineering, entomology, and mechanical engineering

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Virginia Tech's Department of Entomology in the College of Agriculture and Life Sciences and the Department of Chemical Engineering and the Department of Mechanical Engineering in the College of Engineering have been recognized with the 2010 University Exemplary Department Award.

  8. Experimental Investigation of Piston Rings for Internal Combustion Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2008-01-01

    conditions, but this is not the case in real life operation. These problems forms the basis for the experimental investigation. In large two-stroke engines the cylinder oil is supplied to the bearing at discrete locations on the cylinder liner at a specific rate at a certain time. The shifting in lubrication...... assembly. The aim of this paper is to investigate the tribological condition between a piston ring and cylinder. A test apparatus is used to study the interaction between a piston ring and a cylinder liner. In large two stroke engines with cross head bearings the piston height is small compared to smaller...... four stroke engines where the skirt transfers the guide forces to the cylinder liner. The power loss due to piston skirt friction is estimated by comparing two different piston designs. The piston ring experiences hydrodynamic, mixed and boundary lubrication and the squeeze effect of the piston ring...

  9. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed natural gas (CNG has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Engine conversion technology is well established and suitable conversion equipment is readily available. For spark ignition engines there are two options, a bi-fuel conversion and use a dedicated to CNG engine. For compression ignition engines converted to run on natural gas, there are two main options discussed, there are dual-fuel engines and normal ignition can be initiated. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the CNG engines research and development fueled using CNG are highlighted to keep the output power, torque and emissions of natural gas engines comparable to their gasoline or diesel counterparts. The high activities for future CNG engines research and development to meet future CNG engines is recorded in the paper.

  10. Design of a single cylinder optical access to the combustion engine Scania D12

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Juergen

    2000-11-01

    In this work a maximum optical access to a diesel engine is developed. The combustion-process in the engine should be representative to the one in a standard engine, so the geometry of the combustion chamber is modified as little as possible. A Scania single cylinder, 2-litre engine was subjected to modifications allowing the optical access. Solutions to these problems are obtained by using the method of Product-Development, mainly based on the literature by Prof Dr.-Ing. Birkhofer at the Technical University of Darmstadt, Germany. An optical engine design of the Bowditch type was the chosen main working principle. This engine contains an extended cylinder, partly made of glass, a glass piston-crown and a mirror placed inside the extended piston. The laser sheet is led into the combustion chamber through the glass part of the cylinder, then gets reflected inside the combustion chamber and is led through the glass piston crown and via the mirror out of the engine. A redesign of the valve-train, using extended push-rods, is necessary. The demand to examine the combustion at Top-Dead-Centre (TDC) and the necessity of supporting the glass, give the reasons to do work on the cylinder head. This in return brings sealing problems, which have been solved. Another problem that occurs with that type of engine is that is has to run without oil-lubrication. Piston rings made of Rylon are used to solve this problem. A special feature of the engine that has been constructed here is that the inner surface of the glass may be cleaned without removing the cylinder head. This is obtained by a construction with a movable cylinder. In cleaning-state the cylinder is driven up and down together with the piston, while the head is supported by an outer structure. When running the engine, the cylinder is fixed to the structure. Furthermore this report contains the necessary calculations and integrity assessments on the critical parts of the construction. All calculations, except the

  11. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  12. Combustion, Performance and Emission Analysis of an Oxygen-Controlling Downsized SI Engine

    Directory of Open Access Journals (Sweden)

    Zhou J.X.

    2016-07-01

    Full Text Available In the present study, experiments were carried out in a single-cylinder downsized SI engine with different rates of oxygen (15% to 27% by volume in the total mixture of intake gases except fuel and equivalence ratios (from 0.45 to 1. Therefore, the oxygen volume fraction is due to oxygen enrichment or nitrogen dilution. The study of the impact of controlling the oxygen concentration on the combustion characteristics and emissions was performed at 1 400 rpm, at several loads (Indicated Mean Effective Pressure (IMEP from 400 to 1 000 kPa. For each operation point, the spark advance and the intake pressure were adjusted simultaneously in order to maintain the load and obtain a minimum value of the indicated Specific Fuel Consumption (SFC. The effect of the oxygen concentration on the engine combustion characteristics was simulated by using the commercial software AMESim, with the combustion model developed by IFP Energies nouvelles, and an adapted algorithm was used to avoid residual gas calibration. By implementing a correlation for the laminar burning velocity, the in-cylinder pressures were perfectly predicted with a maximum pressure relative error of less than 2% for almost all the operating points. The classification of engine combustion according to the Peters-Borghi diagram, gives a deeper insight into the interaction between turbulence and the flame front.

  13. Performance Evaluation of an Ultra-Lean Combustion Studies in IC Engines

    Directory of Open Access Journals (Sweden)

    Puli Ravi Kumar

    2016-01-01

    Full Text Available An investigation was made to determine the effects of ethanol at ultra-lean effective systems utilizing an experimental study. The present study is planned to develop and evaluate the performance, emission and combustion characteristics of the ultra-lean burn Internal Combustion engine was modified to operate on ethanol blends fuels. The study looked at part throttle, constant speed operation of 0%, 10%, and 15% ethanol blends with gasoline mixtures operating in ultra-lean operating systems. In experiment practice the use of homogeneous lean mixtures in engine has been handicapped by several difficulties. The most serious one is that the flame propagation through mixtures becomes gradually slower as the mixture becomes leaner. The mixture distribution in a multi-cylinder engine is a problem because even small variation in mixture ratio on the linear side will strongly effect power output. Enhancement of lean combustion of homogeneous mixtures can be achieved by (i using ethanol blends with gasoline (ii using high-ignition energy (iii providing high compression ratios (iv creating high swirl in the combustion chamber.

  14. Study on Premixed Combustion in a Diesel Engine with Ultra-multihole Nozzle

    Directory of Open Access Journals (Sweden)

    Xuelong Miao

    2011-01-01

    Full Text Available This study proposed a new low-temperature premixed combustion mode to achieve the simultaneous reduction of NOx and soot emissions in a volume production diesel engine of CA6DF by reconstructing key systems. Some developments of this diesel engine are as follows. A straight port and large diameter combustion chamber of a low compression ratio was developed. Inlet ports of a high induction swirl ratio were developed. A cooled EGR was developed. Especially, an ultra-multihole (UMH nozzle was developed. It has two layers of injection holes and a large flow area. Two sprays of the upper and under layers meet in the space of the combustion chamber. The results showed that the operation range of this diesel engine to achieve the better low-temperature premixed combustion is as follows. The speed can cover from the idle speed to the rated speed. The load can reach to 50% of the full load of the corresponding external characteristics speed. The NOx and soot emissions of this operation range are simultaneously largely reduced, even by 80%–90% at most test cases, while keeping the brake-specific fuel consumption (BSFC from being significantly deteriorated.

  15. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  16. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  17. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  18. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  19. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends

    International Nuclear Information System (INIS)

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) diesel engine is applied for the interesting case of its operation with ethanol-diesel fuel blends, the ethanol (bio-fuel) being considered recently as a promising extender to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using bio-fuels. This is a two dimensional, multi-zone model with the issuing fuel jets divided into several discrete volumes, called 'zones', formed along and across the direction of the fuel injection. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to provide local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of eleven species considered, together with chemical rate equations for calculation of nitric oxide (NO) and a model for net soot formation. The results from the computer program, implementing the analysis, for the in cylinder pressure, exhaust NO concentration and soot density compare well with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI diesel engine located at the authors' laboratory, which is operated with ethanol-diesel fuel blends containing 5%, 10% and 15% (by vol.) ethanol. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the cylinder at various instants of time, when using these ethanol-diesel fuel blends against the diesel fuel (baseline fuel), shed light on the mechanisms

  20. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  1. HEAT RECOVERY FROM A NATURAL GAS POWERED INTERNAL COMBUSTION ENGINE BY CO2 TRANSCRITICAL POWER CYCLE

    Directory of Open Access Journals (Sweden)

    Mahmood Farzaneh-Gord

    2010-01-01

    Full Text Available The present work provides details of energy accounting of a natural gas powered internal combustion engine and achievable work of a utilized CO2 power cycle. Based on experimental performance analysis of a new designed IKCO (Iran Khodro Company 1.7 litre natural gas powered engine, full energy accounting of the engine were carried out on various engine speeds and loads. Further, various CO2 transcritical power cycle configurations have been appointed to take advantages of exhaust and coolant water heat lost. Based on thermodynamic analysis, the amount of recoverable work obtainable by CO2 transcritical power cycles have been calculated on various engine conditions. The results show that as much as 18 kW power could be generated by the power cycle. This would be considerable amount of power especially if compared with the engine brake power.

  2. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  3. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2013-01-01

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed ope

  4. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  5. Ecological efficiency in internal combustion engines: a gasoline, alcohol, Diesel and biodiesel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, Christian Rodriguez; Carvalho Junior, Joao Andrade de; Silveira, Jose Luz [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia]. E-mails: christian@feg.unesp.br; joao@feg.unesp.br; joseluz@feg.unesp.br

    2008-07-01

    This paper evaluates and quantifies the environmental impact of the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with alcohol, conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. The ecological efficiency concept depends on the environmental impact caused by CO{sub 2}, SO{sub 2}, NO{sub x} and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment for their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO{sub 2}, SO{sub 2}, NO{sub x} and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines, which are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines are better than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) of 87.6 %; for biodiesel blended with conventional diesel fuel (20% biodiesel and 80% diesel (B20)), it is 78.9 %. Finally, ecological efficiency for conventional diesel, when used in engines, is 78.7 %; for gasoline, it is 82.4 %, and for natural gas, it is 91.3 %. All these figures considered a thermal efficiency of 30% for the internal combustion engine. (author)

  6. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    Science.gov (United States)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  7. Research on Measurements for Temperature and Stress of Pistons in Internal Combustion Engine

    Institute of Scientific and Technical Information of China (English)

    DONG Xiao-rui; TAN Jian-song

    2008-01-01

    In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.

  8. A transient tribodynamic approach for the calculation of internal combustion engine piston slap noise

    Science.gov (United States)

    Dolatabadi, N.; Littlefair, B.; De la Cruz, M.; Theodossiades, S.; Rothberg, S. J.; Rahnejat, H.

    2015-09-01

    An analytical/numerical methodology is presented to calculate the radiated noise due to internal combustion engine piston impacts on the cylinder liner through a film of lubricant. Both quasi-static and transient dynamic analyses coupled with impact elasto-hydrodynamics are reported. The local impact impedance is calculated, as well as the transferred energy onto the cylinder liner. The simulations are verified against experimental results for different engine operating conditions and for noise levels calculated in the vicinity of the engine block. Continuous wavelet signal processing is performed to identify the occurrence of piston slap noise events and their spectral content, showing good conformance between the predictions and experimentally acquired signals.

  9. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  10. Simulating Combustion

    Science.gov (United States)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  11. The hierarchical structure of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Mooson; KWAUK

    2007-01-01

    Around the turn of the present century,scholars began to recognize chemical engineering as a com-plex system,and have been searching for a convenient point of entry for refreshing its knowledge base.From our study of the dynamic structures of dispersed particles in fluidization and the resultingmulti-scale method,we have been attempting to extend our findings to structures prevailing in othermultiphase systems as well as in the burgeoning industries producing functional materials.Chemicalengineering itself is hierarchically structured.Besides structures based on space and time,such hier-archy could be built from ChE history scaled according to science content,or from ChE operation ac-cording to the expenditure of manpower and capital investment.

  12. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  13. Energy and environmental challenges to chemical engineers

    International Nuclear Information System (INIS)

    The National Research Council's report, Frontiers in Chemical Engineering, was written four years ago. Three high-priority research areas concerned with energy and the environment were identified in the report: in situ processing, liquid fuels for the future, and responsible management of hazardous wastes. As outlined in the recently released National Energy Strategy, in situ processing is viewed by the Department of Energy (DOE) primarily through its use in enhanced oil recovery, and some research is still funded. Industry, driven by the economics of low oil prices, is doing little research on in situ processing but much more on reservoir characterization, a prerequisite to processing. Research on liquid fuels for the future is driven more by environmental concerns now than by energy security concerns. It appears to be wise policy for the future to try to solve the alternative fuel problem as quickly and simply as possible. Otherwise, the nation will find itself with a costly and complex fuel and vehicle system that may have to be changed again in a generation. For the interim, we should look closely at reformulated gasoline followed by compressed natural gas, if necessary. In the long run, vehicle systems based on electricity seem most promising for the middle of the next century. To deliver this technology we need to capitalize on three new high-priority research areas: batteries, fuel cells, and nuclear power. For chemical engineers, future challenges of a different sort will be added to the technical challenges, among them are explaining to a skeptical public the wisdom of proceeding to design the interim system of alternative fuel(s) and to move expeditiously to a final solution

  14. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  15. In-Cylinder Flow Through An Internal Combustion (IC) Engine

    Science.gov (United States)

    Khan, Samira; Gibson, Kendrick; Puzinauskas, Paulius; Qi, Yongli

    2008-11-01

    IC engine performance is strongly influenced by large-scale in-cylinder motion developed during the intake process. This work was part of a larger effort to characterize and augment in-cylinder flow structures to improve lean limit and exhaust gas recirculation tolerance. Ultimately the flow structures are to be characterized with unsteady computational fluid dynamics (CFD) calculations. This study provided digital particle image velocimetry (DPIV) flow visualization data under steady conditions to improve the calibration of the CFD work. An engine cylinder head was mounted on a transparent cylinder with a fixed piston. Air was drawn through using a steady flow bench, and DPIV images were obtained from the cylinder. Measurements were made at four suction pressures and four valve lift to diameter ratios for a total of sixteen cases. After initial measurements, intake port modifications were made to enhance tumble. The modifications created more definitive tumble flow.

  16. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  17. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  18. Optimizing Spray and Combustion in Diesel Engine by Multidimensional Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lei; ZHAO Chang-lu; ZHANG Fu-jun

    2005-01-01

    The calculation of spray and combustion in diesel engines is described by using the softwares FIRE and BOOST. The application of the resulting computational method to the simulation of fuel spray and breakup, mixture formation and combustion in a heavy duty diesel is presented. According to detailed insight into the governing processes provided by the simulation results, various aspects of the dependence of the spray propagation and combustion on the chamber geometry and spray angle are discussed. Then, global cylinderaveraged pressure traces are extracted from the space and time resolved field quantities and compared to incylinder pressure measurements. Finally, an optimized configuration of the chamber geometry and spray angle with a new injection rate of higher injection pressure is proposed.

  19. A Preliminary Motion-picture Study of Combustion in a Compression-ignition Engine

    Science.gov (United States)

    Buckley, E C; Waldron, C D

    1934-01-01

    Motion pictures were taken at 1,850 frames per second of the spray penetration and combustion occurring in the N.A.C.A. combustion apparatus arranged to operate as a compression-ignition engine. Indicator cards were taken simultaneously with the motion pictures by means of the N.A.C.A. optical indicator. The motion pictures showed that when ignition occurred during injection it started in the spray envelope. If ignition occurred after injection cut-off, however, and after considerable mixing had taken place, it was impossible to predict where the ignition would start. The pictures also showed that ignition usually started at several points in the combustion chamber. With this apparatus, as the injection advance angle increased from 0 degrees to 40 degrees before top center, the rate of flame spread increased and the duration of the burning decreased.

  20. The research and development of in situ non intrusive optical and temperature diagnostics in an internal combustion engine

    CERN Document Server

    Wilson, T S

    2002-01-01

    Novel instrumentation has been developed and evaluated in a low-cost, purpose built, single-cylinder internal combustion engine test facility designed to simulate many of the combustion features that are common between an internal combustion engine, a gas turbine combustor and a steel rolling furnace. High bandwidth in-cylinder surface temperature measurements are demonstrated with a new application of platinum thin film resistance thermometers. These gauges are exposed to the combustion gases and are mounted to both the cylinder head and piston. It is shown that calculation of flame speed, determination of heat flux levels and flame structure observation are possible. Fibre optic probes capable of high frequency spectral measurements of the combustion emission are presented. The spectral measurements are shown to complement the temperature measurement by being able to differentiate the flame front from the general combustion emission and hot by-products. Beyond this, other optical techniques have been explor...