WorldWideScience

Sample records for chemical effects of nuclear transformations

  1. Initiating nuclear-chemical transformations in native systems: Phenomenology

    Science.gov (United States)

    Timashev, S. F.

    2016-10-01

    A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell's cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor-acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino-antineutrino pairs that are harmless to living organisms.

  2. Effect of Chemical Corrosion on the Mechanical Characteristics of Parent Rocks for Nuclear Waste Storage

    Directory of Open Access Journals (Sweden)

    Tielin Han

    2016-01-01

    Full Text Available Long-term immersion was adopted to explore the damage deterioration and mechanical properties of granite under different chemical solutions. Here, granite was selected as the candidate of parent rocks for nuclear waste storage. The physical and mechanical properties of variation regularity immersed in various chemical solutions were analyzed. Meanwhile, the damage variable based on the variation in porosity was used in the quantitative analysis of chemical damage deterioration degree. Experimental results show that granite has a significant weakening tendency after chemical corrosion. The fracture toughness KIC, splitting tensile strength, and compressive strength all demonstrate the same deteriorating trend with chemical corrosion time. However, a difference exists in the deterioration degree of the mechanical parameters; that is, the deterioration degree of fracture toughness KIC is the greatest followed by those of splitting tensile strength and compressive strength, which are relatively smaller. Strong acid solutions may aggravate chemical damage deterioration in granite. By contrast, strong alkaline solutions have a certain inhibiting effect on chemical damage deterioration. The chemical solutions that feature various compositions may have different effects on chemical damage degree; that is, SO42- ions have a greater effect on the chemical damage in granite than HCO3- ions.

  3. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. EFFECT OF DESOXYRIBONUCLEASE ON THE BIOLOGICAL ACTIVITY OF THE TRANSFORMING SUBSTANCE.

    Science.gov (United States)

    McCarty, M; Avery, O T

    1946-01-31

    It has been shown that extremely minute amounts of purified preparations of desoxyribonuclease are capable of bringing about the complete and irreversible inactivation of the transforming substance of Pneumococcus Type III. The significance of the effect of the enzyme, and its bearing on the chemical nature of the transforming substance, together with certain considerations concerning the biological specificity of desoxyribonucleic acids in general, are discussed.

  4. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  5. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  6. Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni–Mn–Ga microwires

    Energy Technology Data Exchange (ETDEWEB)

    Qian, M.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Advanced Composites Centre for Innovation and Science (ACCIS), University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR (United Kingdom); Zhang, X.X., E-mail: xxzhang@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, L.S.; Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, H.X., E-mail: hxpengwork@zju.edu.cn [Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-10-05

    Highlights: • Chemical ordering annealing on Ni–Mn–Ga microwires was found to reduce the defect density and internal stress. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to increase the MT temperatures, Curie point and saturation magnetization. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to decrease the SIM stress and improve the superelastic reversibility. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to weaken the temperature dependences of the superelastic stresses. - Abstract: Polycrystalline Ni–Mn–Ga microwires of diameter 30–80 μm were prepared by melt-extraction technique on a large scale. The rapidly solidified microwires exhibit a fairly high ductility and excellent shape memory property. Here, with the aim to reduce the defect density, internal stress and compositional inhomogeneity in the as-extracted microwires, a stepwise chemical ordering annealing heat treatment was carried out and the effect of annealing on martensitic transformation, magnetic properties and superelastic behavior were investigated. The results indicate that annealing increase the transformation temperature and decrease the transformation hysteresis. These are related to composition homogenization, increase of atomic ordering and decrease in internal stress and defects. During mechanical tests, the stress-induced martensite (SIM) formation took place at a much lower stress after annealing treatment. The annealed microwires also demonstrate a lower superelastic hysteresis and a higher recovery rate compared to the as-extracted microwires. The temperature dependence of SIM stress is weaker after annealing, which is related to the enthalpy change (ΔH) and phase transformation temperature change according to the Clausius–Clapeyron relation.

  7. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A. [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Mendive-Tapia, David [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France)

    2015-03-07

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  8. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  9. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  10. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  11. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation.

    Science.gov (United States)

    Monteghirfo, Stefano; Tosetti, Francesca; Ambrosini, Claudia; Stigliani, Sara; Pozzi, Sarah; Frassoni, Francesco; Fassina, Gianfranco; Soverini, Simona; Albini, Adriana; Ferrari, Nicoletta

    2008-09-01

    The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl+ cells and clinical samples and retained its cytotoxicity when imatinib mesylate-resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl+ myeloid leukemia.

  12. Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by Fourier transformed infrared and 13C nuclear magnetic resonance spectroscopies.

    Science.gov (United States)

    Traboulsi, A; Dupuy, N; Rebufa, C; Sergent, M; Labed, V

    2012-03-02

    Radiation-induced decomposition of the anion exchange resin Amberlite IRA-400 in hydroxide form by gamma radiolysis has been studied under different irradiation doses and irradiation atmospheres. In this work, we focused on the degradation of the solid part of the resin by Fourier transformed infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectroscopies associated with chemometric treatments. FTIR and (13)C NMR techniques showed that only -CH(2)N(+)(CH(3))(3) groups were detached from the resin whereas the polystyrene divinylbenzene backbone remains intact. The quaternary ammonium groups were replaced by amine or carbonyl groups according to the irradiation atmosphere (with or without water or oxygen). Principal components analysis (PCA) was used to classify the degraded resins according to their irradiation conditions by separating the effect of the dose or the environment. The PCA loadings have shown spectral regions which discriminate the irradiated resins whereas SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) allows to identify families of component characterizing the chemical structure of resins and estimate their relative contributions according to the irradiation atmospheres.

  13. Effect of nuclear spin on chemical reactions and internal molecular rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of /sup 13/C and /sup 12/C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. /sup 13/C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride.

  14. Behavior, a Balanced Network of Chemical Transformations(Biokinetics)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.F.; Calvin, M.

    1954-01-13

    While the concept of a biological system as a balanced network of chemical transformations is not a new one, experimental definition of specific systems has been lacking. This paper defines theoretically and experimentally a number of such networks and their behavior and response to some limited environmental changes.

  15. Nuclear weapons and conflict transformation: the case of India-Pakistan. - Pbk ed.

    NARCIS (Netherlands)

    S. Khan

    2010-01-01

    Introduction Part 1: Theory 1. Studies on Conflict Transformation 2. Scholarship on Ramifications of Nuclear Weapons Acquisition 3. Elucidating Conflict Transformation with Nuclear Weapons Part 2: The India-Pakistan Protracted Conflict 4. Life of the Protracted Conflict 5. Introduction of Nuclear We

  16. Heterogeneous photocatalysis of moxifloxacin in water: chemical transformation and ecotoxicity.

    Science.gov (United States)

    Van Doorslaer, Xander; Haylamicheal, Israel Deneke; Dewulf, Jo; Van Langenhove, Herman; Janssen, Colin R; Demeestere, Kristof

    2015-01-01

    This work provides new insights on the impact of TiO2/UV catalyzed chemical transformation of moxifloxacin on ecotoxicity effects towards the green alga Pseudokirchneriella subcapitata. The moxifloxacin median effect concentration (EC-50=0.78 [0.56, 1.09] mg L(-1)), determined in accordance to the OECD 72-h growth inhibition test guideline, was 7 times lower than that of the older and widely used fluoroquinolone ciprofloxacin (EC-50=5.57 [4.86, 6.38] mg L(-1)). Applying heterogeneous photocatalysis as an advanced oxidation technique to degrade moxifloxacin in aqueous solution decreased the average growth inhibition from 72% to 14% after 150 min of treatment. No significant carbon mineralization was observed and liquid chromatography mass spectrometry analysis revealed the formation of 13 degradation products for which a chemical structure could be proposed based on accurate mass determination. Combined chemical and ecotoxicological analysis showed that as long as moxifloxacin is present in the reaction solution, it is the main compound affecting algal growth inhibition. However, also the contribution of the degradation products to the observed ecotoxicity cannot be neglected. Photocatalytically induced modifications of moxifloxacin mainly occur at the diazobicyclo-substituent as ring opening, oxidation into carbonyl groups, and hydroxylation. This results into the formation of more hydrophilic compounds with a decreased biological activity compared with moxifloxacin. The change in lipophilicity, and possibly a modified acid-base speciation, most probably also affect the cell membrane permeation of the degradation products, which might be another factor explaining the observed lower residual ecotoxicity of the photocatalytically treated reaction solutions.

  17. Increment of DNA topoisomerases in chemically and virally transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.D.; Mladovan, A.G.; Baldi, A. (Instituto de Biologia y Medicina Experimental, Buenos Aires (Argentina))

    1988-03-01

    The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo(a)pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between {sup 32}P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo(a)pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.

  18. Estimation of optical chemical shift in nuclear spin optical rotation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Guo-hua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); He, Tian-jing [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, Dong-ming, E-mail: dmchen@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Fan-chen, E-mail: fcliu@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-19

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.

  19. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2015-03-01

    Full Text Available Oxidation of unsymmetrical dimethylhydrazine (UDMH during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of chemical oxidants in respect to main metabolites of UDMH – 1-formyl-2,2-dimethylhydrazine, dimethylaminoacetontrile, N-nitrosodimethylamine and 1-methyl-1H-1,2,4-triazole. Experiments on chemical oxidation by Fenton's reagent, potassium permanganate and sodium nitrite were conducted. Quantitative determination was performed by HPLC. Oxidation products were identified by gas chromatography-mass spectrometry in combination with solid-phase microextraction. 1-Formyl-2,2-dimethylhydrazine was completely oxidized by Fenton's reagent with formation of formaldehyde N-formyl-N-methyl-hydrazone, 1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-one by the action of potassium permanganate and N-methyl-N-nitro-methanamine in the presence of sodium nitrite. Oxidation of 1-formyl-2,2-dimethylhydrazine also resulted in formation of N-nitrosodimethylamine. Oxidation of dimethylaminoacetontrile proceeded with formation of hydroxyacetonitrile, dimethylformamide and 1,2,5-trimethylpyrrole. After 30 days, dimethylaminoacetontrile was not detected in the presence of Fenton’s reagent and potassium permanganate, but it’s concentration in samples with sodium nitrite was 77.3 mg/L. In the presence of Fenton’s reagent, potassium permanganate and sodium nitrite after 30 days, N-nitrosodimethylamine concentration decreased by 85, 80 and 50%, respectively. In control sample, N-nitrosodimethylamine concentration decreased by 50%, indicating that sodium nitrite has no effect of on N-nitrosodimethylamine concentration. Only Fenton's reagent allowed to reduce the concentration of 1-methyl-1H-1,2,4-triazole to 50% in 30 days. In the presence of other oxidants, 1-methyl-1H-1,2,4-triazole

  20. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1964-02-01

    This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.

  1. Effect of cyclodextrin and transformer oil amendments on the chemical extractability of aged [14C]polychlorinated biphenyl and [14C]polycyclic aromatic hydrocarbon residues in soil.

    Science.gov (United States)

    Doick, Kieron J; Burauel, Peter; Jones, Kevin C; Semple, Kirk T

    2005-09-01

    Sequestration of hydrophobic organic contaminants (HOCs) in soils limits chemical and biological availability. Concerns exist regarding the long-term stability of sequestered contaminants in the environment, and stability needs to be demonstrated if bioavailability considerations are to be adopted into the risk assessment and remediation of contaminated land. The aim of the present study was to test the short-term influence of two organic amendments on the chemical extractability of HOC residues that had been present in soils for more than 12 years. The amendments investigated were cyclodextrin and transformer oil (a light, nonaqueous phase liquid [LNAPL]). The contaminants investigated were fluoranthene and benzo[a]pyrene in one soil and the polychlorinated biphenyls (PCBs) 28 and 52 in a second soil. The addition of cyclodextrin to the soils did not result in a significant increase in chemical extractability of the residues after a 36-d contact time. The addition of transformer oil resulted in an increase in chemical extractability of the PCBs after a 14-d soil-LNAPL contact time and a further increase after a 36-d contact time. The present study demonstrates that the chemical availability of aged HOCs in soil may be influenced by the presence of other chemicals and has implications for the long-term management of contaminated land.

  2. Gastroprotective effects of new diterpenoid derivatives from Azorella cuatrecasasii Mathias & Constance obtained using a β-cyclodextrin complex with microbial and chemical transformations.

    Science.gov (United States)

    Sepúlveda, Beatriz; Quispe, Cristina; Simirgiotis, Mario; García-Beltrán, Olimpo; Areche, Carlos

    2016-07-15

    Mulinane diterpenoids isolated from Azorella species have displayed gastroprotective effects in animal models. In this study we have transformed the main constituent, mulin-11,13-dien-20 oic acid from this plant using the filamentous fungus Mucor plumbeus and a β-cyclodextrin inclusion complex and we have obtained two main products with good yields (33% and 15% for compound 4 and 5, respectively) for further preparation of semisynthetic derivatives to evaluate their gastroprotective effects. In addition, one of the compounds isolated from Azorella cuatrecasasii was new (9-epi-13α-hydroxymulinene 1). Six new derivatives 4a-4c and 5a-5c were then prepared by simple chemical transformations. The structures of all compounds were elucidated by spectroscopic means based on 1D and 2D-NMR techniques. Some 8 diterpenes were evaluated for their gastroprotective effects in the ethanol/HCl-induced ulcer model in mice at 20mg/kg. The highest gastroprotective activity was shown by 7α,16-dihydroxymulin-11,13-dien-20-oic acid 5, which was higher than the reference drug lansoprazole, while 16-hydroxymulin-11,13-dien-20-oic acid 4 was as active as lansoprazole.

  3. About the safety of power transformers in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Petrovan Boiarciuc, M.; Muller, S.; Perigaud, G. [Research Department, SERGI Holding, 186, Avenue du General de Gaulle, 78260 Acheres (France)

    2010-07-01

    Oil-filled transformer explosions are due to electrical arcs occurring in transformer tanks. Within milliseconds, arcs vaporize the surrounding oil and the generated gas is quickly pressurized. The pressure difference between the gas bubble and the surrounding liquid oil generates one dynamic pressure peak which propagates and interacts with the tank. Then, the reflections of the pressure peak build up the static pressure, which rises and leads to the tank rupture since tanks are not designed to withstand such levels of static pressure. This results in dangerous explosions, expensive damages and possible environmental pollution. While protective walls surrounding transformers can contain the explosion and sprinklers can fight the induced fire, the current paper presents a strategy to prevent the transformer tank rupture. Once an electrical fault occurs, the fast depressurization of the tank is induced by quick oil evacuation to a reservoir in order to prevent the tank explosion. To evaluate the efficiency of this strategy, experiments and computer simulations are used. The experiments were performed on large scale transformers equipped with the protection. Besides, simulations of the consequences of an electrical arc occurring in a 200 MVA transformer geometry were run and the pressure maps obtained with and without protection were compared. (authors)

  4. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

  5. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1957-06-01

    This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.

  6. Microbial production and chemical transformation of poly-γ-glutamate.

    Science.gov (United States)

    Ashiuchi, Makoto

    2013-11-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of D-glutamate (D-PGA), a homo polymer of L-glutamate (L-PGA), and a random copolymer consisting of D- and L-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.

  7. Investigations on the optimum design of chemical addition system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Byong Hoon [Junior College of Inchon, Inchon (Korea, Republic of); Chung, Chang Kyu; Choi, Han Rim; Kim, Eun Kee; Ro, Tae Sun [Korea Power Engineering Company, Inc. Taejon (Korea, Republic of)

    1997-12-31

    Mixing characteristics of the chemical additives in the chemical injection tank of the chemical and volume control system(CVCS) were investigated for the Yonggwang Nuclear units 5 and 6. Numerical calculations were performed with a low-Reynolds number turbulence model. Studies were also conducted for the injection tank with a disk located at 1/4H, 2/4H, and 3/4H from the inlet in order to see the effect in the enhancement of chemical mixing. Results show that the optimum arrangement is to locate a disk close to the inlet. 10 refs., 4 figs. (Author)

  8. Effects of nuclear weapons. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, S.; Dolan, P.J.

    1977-01-01

    Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)

  9. The Effects of Nuclear Weapons. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, S; Dolan, P J

    1977-01-01

    Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)

  10. Beyond transition state theory: accurate description of nuclear quantum effects on the rate and equilibrium constants of chemical reactions using Feynman path integrals.

    Science.gov (United States)

    Vanícek, Jirí

    2011-01-01

    Nuclear tunneling and other nuclear quantum effects have been shown to play a significant role in molecules as large as enzymes even at physiological temperatures. I discuss how these quantum phenomena can be accounted for rigorously using Feynman path integrals in calculations of the equilibrium and kinetic isotope effects as well as of the temperature dependence of the rate constant. Because these calculations are extremely computationally demanding, special attention is devoted to increasing the computational efficiency by orders of magnitude by employing efficient path integral estimators.

  11. The Violation of Childhood: A Review of Possible Effects on Development of Toxic Chemical and Nuclear Waste.

    Science.gov (United States)

    Evans, Roy

    Emphasizing that for any known teratogen no safe dosage level exists, this case-illustrated review identifies the bases for current concern about the pollution of the environment, reflects on the promise and complexities of the emerging disciplines of behavioral toxicology and behavioral teratology, and describes existing evidence of teratogenic…

  12. First-principles simulations on bonding pathways of chemical transformations under hydrostatic compression

    Science.gov (United States)

    Hu, Anguang; Zhang, Fan

    2012-02-01

    High pressure as a thermodynamic parameter provides a strong structural constraint to lead chemical transformations with selective ways. Thus, chemical transformations under pressure can create novel materials which may not be accessible by covalent synthesis. However, bonding evolution toward high pressure chemical transformations can be a complex process and may happen over widely different pressures. To understand bonding evolution pathways of high pressure chemical transformations, first-principles simulations were performed following hydrostatic compression enthalpy minimization paths to obtain experimentally and theoretically established phase transitions of carbon. The results showed that the chemical transformations from hydrostatic compression carbon to single-bonded phases were characterized by a sudden decrease in principal stress components, indicating the onset of chemical transformation. On this basis, a number of hydrostatic compression chemical transformations from molecular precursors to novel materials were predicted, such as hydrocarbon graphane, a hydrogenated carbon nitride sheet, and carbon nitrides. All predicted hydrostatic compression transformations are featured as a sudden change in principal stress components, representing chemical bonding destruction and formation reactions with a cell volume collapse.

  13. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals.

    NARCIS (Netherlands)

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial distributio

  14. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  15. Application of wavelet transforms as a time-series analysis tool for nuclear thermalhydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, D.J.; Pascoe, J.; Popescu, A.I., E-mail: daniel.pohl@amec.com, E-mail: jason.pascoe@amec.com, E-mail: adrian.popescu@amec.com [AMEC NSS Limited, Toronto, Ontario (Canada)

    2011-07-01

    Wavelet transforms can be a valuable time-series analysis tool in the field of nuclear thermalhydraulics. As an example, the Morlet wavelet transform can be used to reduce the aleatory (random) uncertainty of a voiding transient in a large loss of coolant accident (LOCA). The wavelet transform is used to determine the cutoff frequency for a low pass Butterworth filter in order to remove the noisy part of the signal without infringing upon the characteristic frequencies of the phenomenon. This technique successfully reduced the standard random uncertainty by 42.4%. (author)

  16. Microbial transformation of highly persistent chlorinated pesticides and industrial chemicals.

    OpenAIRE

    Middeldorp, P.J.M.

    1997-01-01

    Organic pollutants can be transformed, both in unsaturated and saturated areas of the soil, by means of biologically mediated reactions. The potential of soil microorganisms to clean up polluted soils is enormous. However, soil systems are highly heterogeneous with respect to the spatial distribution of substrates, nutrients and microorganisms, and also with respect to various phases and interfaces (e.g. water, air, minerals, organic matter). To come to the development of appropriate soil bio...

  17. Effect of Stress on Transformer Insulation

    Directory of Open Access Journals (Sweden)

    Kapil Gandhi

    2012-06-01

    Full Text Available Power transformers use Kraft paper as insulation in the electrical windings present in the core, which is immersed in oil. In service, the temperature of the windings of core will go to 750C to 850C. If the transformer is over loaded, then the temperature can exceed upto 100°C causing the cellulose chains in the paper to cleave at an accelerated rate, which results in the degradation of mechanical strength and performance of the insulation. The Degree of Polymerization (DP will also decrease. If proper action will not take, this can lead to failure of the transformer and disruption to electricity supply and large economic losses to the operating utility. Transformer condition should be maintained because of its importance to electricity network. The life of transformer depends on the life of the oil impregnated paper insulation system to greater extent. Degradation of the cellulose insulation is an irreversible process. After thermal degradation of the paper winding, Furfuraldehyde (FFA is the chemical compound, which is released into the oil from paper. The concentration of FFA has been directly related to the condition of the paper insulation. In the present paper an experimental investigation has been made to evaluate the degradation of transformer oil contaminated by nano-particles of pine wood under accelerated thermal and electrical stress and results are correlated with breakdown strength, density & interfacial tension of the pure oil. The contaminated oil samples are tested at electric stress of 2.0 kV, 3.0 kV, 4.0 kV & 5.0 kV for 24, 48, 72 & 96 hours simultaneously.

  18. Effect of Transforming Growth Factor-

    Institute of Scientific and Technical Information of China (English)

    CAO; Yang(

    2001-01-01

    [1]Alvarado J Murphy C Juster R et al.Trabecular meshwork cellularity in primary open angle glaucoma and nonglaucomatous normals.Ophthalmology 1984 91:564[2]Grierson I Hogg P.The proliferative and migratory activitues of trabecular meshwork cells.Prog Retinal Eye Res 1995 15:33[3]Tripathi R C Li J Chan W F et al.Aqueous humor in glaucomatous eyes contains an increased level of TGF-β2.Exp Eye Res 1994 59:723[4]Wang Q Wei H Fan Z et al.Effect of norfloxacin and clonidine on human trabecular meshwork cells in vitro.Graefe's Arch Clin Exp Ophthalmol 1994 232:566[5]Sherwood M E Richardson T M.Phagocytosis by trabecular meshwork cells:sequence of events in cats and monkeys.Exp Eye Res 1988 46:881[6]Zhou L Fukuchi T Kawa J et al.Loss of cell-matrix cohesiveness after phagocytosis by trabecular meshwork cells.Invest Ophthalmol Vis Sci 1995 36:787[7]Zhou L Li Y Yue B Y.Alteration of phagocytosis chal&127;lenge in cells from an ocular tissue-the trabecular meshwork.In Vitro Cell Dev Biol Anim 1999 35:144[8]曹阳 魏厚仁 富名水等.体外培养牛眼小梁细胞表达转化生长因子β及其蛋白.眼科研究 2000 18:235[9]Li J Tripathi R C Tripathi B J.Modulation of pre-mRNA splicing and protein production of fibronectin by TGF-beta2 in porcine trabecular cells.Invest Ophthalmol Vis Sci 2000 41:3437[10]钟丽春 李美玉.转化生长因子-β1对培养的人眼小梁细胞微丝肌动蛋白的影响.中华眼科杂志 1999 35:186

  19. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)

    Science.gov (United States)

    Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

    Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

  20. The Effects of Nuclear Weapons

    Science.gov (United States)

    1977-01-01

    deposited con the ground. The extensive 9.141 The activity of strontium-90, atmospheric nuclear tesi programs con- as of radioactive materials in...main a reiult of radiation exposure and hem- disadvantage is that an appreciable de- ,rrhage, so that symptoms of anemia , crease in tne platelet count...such radiation. In Hiroshima ceiving combined injuries. The avail- 4 COMBINED INJURIES 589 able data do indicate, however, that some anemia and the body

  1. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    Science.gov (United States)

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10(6)CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10(3)CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10(3)CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10(2)CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10(2)CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10(4), 4.5×10(2), 2×10(1), and 0.5×10(1)CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell.

  2. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH23]8Si8Mg6O12(OH4, for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×10(2 transformants/µg DNA, second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.

  3. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation.

    Science.gov (United States)

    Zhang, Chunye; Hu, Hanhua

    2014-08-01

    We established a high-efficiency nuclear transformation method for the diatom Phaeodactylum tricornutum using an electroporation system. Based on a universal electroporation protocol, the conditions for the introduction of exogenous DNA including electric field strength and plasmid form were optimized. Following optimization, the diatom cells could be transformed with exogenous gene easily, the maximum transformation frequency obtained was 2.8×10(-5) cells. The cotransformation of P. tricornutum with a non-selective GUS gene together with the selectable resistance gene has also been achieved using our new method and found to be very efficient (up to 60%). The electroporation procedure described in this article offers a number of advantages, including simplicity, general utility, low-cost and high efficiency. The described method also provides some clue for developing electroporation transformation system in other eukaryotic microalgae.

  4. The environmental effects of nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M.C.

    1988-09-01

    Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.

  5. Fourier transform-infrared studies on the effects of salt and drought stress on the chemical composition and pro-tein conformation changes in Arabidopsis leaves

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We examined the changes of chemical composition and protein conformation in Arabidopsis leaves by Fourier transform-infrared (FT-IR) spectrometry Arabidopsis under 50 mmol/L NaCl salt and -0.5 mPa polyethylene glycols 8000 (PEG 8000) drought stress during the early stages of growth.We primarily analyzed the absorption band areas in the 1,745 cm-1 (ester),1,600-1,700 cm-1 (amide I),and 1,100 cm-1 (carbohydrate) changes under salt stress and drought stress within 24 hours.The results showed that ester content declined at the beginning and then increased steadily during 24 hours of drought stress.But under salt stress,it de-clined steadily,and it was about 40 percent of the control after 24 hours.The protein synthesis increased by 25 percent after one hour of salt stress and then reached about 85 percent of the control after 24 hours.Under drought stress,the protein synthesis de-creased and reached aminimal level at the 4-hr time point;it then recovered to the control level at the 24-hr point.The patterns of the accumulation of carbohydrates in the 1,100 cm-1 band areas resembled that of amide I band changes under drought stress and salt stress.Analyzing the ratio A1,627cm-1/A1,658cm-1 under drought stress revealed that the leaves’ entire protein structure maintained a higher-level ordered form than did those under salt stress.Thus our results indicate the existence of different strategies of the Arabidopsis adaptation to salt stress and drought stress.

  6. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  7. Solution-phase synthesis of inorganic nanostructures by chemical transformation from reactive templates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The solution-phase synthesis by chemical transformation from reactive templates has proved to be very effective in morphology-controlled synthesis of inorganic nanostructures. This review paper summarizes the recent progress in solution-phase synthesis of one-dimensional and hollow inorganic nanostructures via reactive templates, focusing on the approaches developed in our lab. The formation mechanisms based on reactive templates are discussed in depth to show the general concepts for the preparation processes. An outlook on the future development in this area is also presented.

  8. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  9. Prospects for improved detection of chemical, biological, radiological, and nuclear threats

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Craig R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hart, Brad [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-07-31

    Acquisition and use of Chemical, Biological, Radiological, and Nuclear (CBRN) weapons continue to be a major focus of concern form the security apparatus of nation states because of their potential for mass casualties when used by a determined adversary.

  10. Health effects of the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.

    1987-02-01

    The paper on radiation health effects was presented to the United Kingdom (U.K.) Nuclear Electricity Information Group, 1986. The radiation risks to workers in the U.K. nuclear industry are discussed in terms of the results of mortality studies and allowable dose limits. The radiation doses to members of the public from the nuclear industry, i.e. from discharges of radioactive wastes to the environment, are also described, along with epidemiological studies. Finally risks to the public from radiation accidents are briefly outlined. (U.K.).

  11. Chemical and nuclear properties of Rutherfordium (Element 104)

    Energy Technology Data Exchange (ETDEWEB)

    Kacher, C.D.

    1995-10-30

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr{approx}Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d{sub 5/2} shell and a stabilization of the 7p{sub l/2} shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr{approx}Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr{approx}Hf>Ti. An attempt was made to produce {sup 263}Rf (a) via the {sup 248}Cm({sup 22}Ne, {alpha}3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the {sup 249}Bk({sup 18}O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to {sup 256}Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the {sup 248}Cm({sup 22}Ne, {alpha}3n){sup 263}Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A].

  12. Plant metabolites of the Siberian flora. Chemical transformations and the scope of practical application

    Science.gov (United States)

    Shults, Elvira E.; Raldugin, Victor A.; Volcho, Konstantin P.; Salakhutdinov, Nariman F.; Tolstikov, Genrikh A.

    2007-07-01

    The results of studies of some terpenoids, alkaloids and phenolic derivatives isolated from Siberian plants are summarised. The structures of the compounds studied are presented and the chemical transformations of the available terpenoids and alkaloids are considered. Examples of practical application of natural compounds and their derivatives are given.

  13. Plant metabolites of the Siberian flora. Chemical transformations and the scope of practical application

    Energy Technology Data Exchange (ETDEWEB)

    Shults, Elvira E; Raldugin, Victor A; Volcho, Konstantin P; Salakhutdinov, Nariman F; Tolstikov, Genrikh A [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    The results of studies of some terpenoids, alkaloids and phenolic derivatives isolated from Siberian plants are summarised. The structures of the compounds studied are presented and the chemical transformations of the available terpenoids and alkaloids are considered. Examples of practical application of natural compounds and their derivatives are given.

  14. Degradation of endocrine disrupting chemicals by genetic transformants with two lignin degrading enzymes in Phlebia tremellosa.

    Science.gov (United States)

    Kum, Hyunwoo; Lee, Sungsuk; Ryu, Sunhwa; Choi, Hyoung T

    2011-10-01

    A white rot fungus Phlebia tremellosa produced lignin degrading enzymes, which showed degrading activity against various recalcitrant compounds. However, manganese peroxidase (MnP) activity, one of lignin degrading enzymes, was very low in this fungus under various culture conditions. An expression vector that carried both the laccase and MnP genes was constructed using laccase genomic DNA of P. tremellosa and MnP cDNA from Polyporus brumalis. P. tremellosa was genetically transformed using the expression vector to obtain fungal transformants showing increased laccase and MnP activity. Many transformants showed highly increased laccase and MnP activity at the same time in liquid medium, and three of them were used to degrade endocrine disrupting chemicals. The transformant not only degraded bisphenol A and nonylphenol more rapidly but also removed the estrogenic activities of the chemicals faster than the wild type strain.

  15. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova

    2014-04-01

    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  16. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

    Science.gov (United States)

    Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.

  17. Effects of coupled homogeneous chemical reactions on the response of large-amplitude AC voltammetry: extraction of kinetic and mechanistic information by Fourier transform analysis of higher harmonic data.

    Science.gov (United States)

    Lee, Chong-Yong; Bullock, John P; Kennedy, Gareth F; Bond, Alan M

    2010-09-23

    Large-amplitude ac voltammograms contain a wealth of kinetic information concerning electrode processes and can provide unique mechanistic insights compared to other techniques. This paper describes the effects homogeneous chemical processes have on ac voltammetry in general and provides experimental examples using two well-known chemical systems: one simple and one complex. Oxidation of [Cp*Fe(CO)(2)](2) (Cp* = η(5)-pentamethylcyclopentadienyl) in noncoordinating media is a reversible one-electron process; in the presence of nucleophiles, however, the resulting ligand-induced disproportionation changes the process to a multiple step regeneration. The chemical kinetic parameters of the regeneration mechanism were discerned via analysis of the third and higher harmonics of Fourier-transformed ac voltammetry data. Comparison of experimental data to digital simulations provides clear evidence that the reaction proceeds via a rapid pre-equilibrium between the electrogenerated monocation and the coordinating ligand; simultaneous fitting of the first nine harmonics indicates that k(f) = 7500 M(-1) s(-1) and k(r) = 100 s(-1), and that the unimolecular decomposition of the corresponding intermediate occurs with a rate constant of 2.2 s(-1). The rapid cis(+) → trans(+) isomerization of the electrogenerated cis-[W(CO)(2)(dpe)(2)](+), where dpe = 1,2-diphenylphosphinoethane, was examined to illustrate the effects of a simpler EC mechanism on the higher harmonics; a rate constant of 280 s(-1) was determined. These results not only shed new light on the chemistry of these systems, but provide a clear demonstration that the higher harmonics of ac voltammetry provide mechanistic insights into coupled homogeneous processes far more detailed than those that are readily accessible with dc techniques.

  18. Chemical Approaches to Nuclear Receptors in Metabolism

    Science.gov (United States)

    Margolis, Ronald N.; Moore, David D.; Willson, Timothy M.; Guy, R. Kip

    2017-01-01

    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a workshop, “Chemical Approaches to Nuclear Receptors and Metabolism,” in April 2009 to explore how chemical and molecular biology and physiology can be exploited to further our understanding of nuclear receptor structure, function, and role in disease. Signaling cascades involving nuclear receptors are more complex and interrelated than once thought. Nuclear receptors continue to be attractive targets for drug discovery. The overall goal of this workshop was to identify gaps in our understanding of the complexity of ligand activities and begin to address them by (i) increasing the collaboration of investigators from different disciplines, (ii) developing a better understanding of chemical modulation of nuclear receptor action, and (iii) identifying opportunities and roadblocks in the path of translating basic research to discovery of new therapeutics. PMID:19654413

  19. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation be-tween the coefficient of performance (COP) and the rate of energy pumping of the generalized irre-versible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the iso-thermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential trans-formers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  20. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; CHEN LinGen; SUN FengRui

    2008-01-01

    A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation between the coefficient of performance (COP) and the rate of energy pumping of the generalized irreversible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the isothermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential transformers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

  1. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  2. Chemical transformations in the zone of spall damageability

    Science.gov (United States)

    Buravova, S. N.; Petrov, E. V.; Alymov, M. I.

    2016-07-01

    The results of experiments on studying the perlite-ferrite structure in steels under short-term negative pressures are described. It is shown that in the localized deformation bands formed in the zone of interference of unloading waves, where the tension stress is lower than the dynamic strength of the material, the cementite bands in perlite are crushed, their fragments are in part dissolved and enriched with carbon, and the cementite can pass into a steady spherical form on the boundary with ferrite. At relatively high shock-wave amplitudes, the perlite in its entirety acquires a spheroidal shape.

  3. Climatic Effects of Regional Nuclear War

    Science.gov (United States)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  4. Overview of chemical modeling of nuclear waste glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs.

  5. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Science.gov (United States)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  6. Effect of Exposure to Electrical Discharge on Transformer Oil Properties

    Institute of Scientific and Technical Information of China (English)

    J. S. N'Cho; I. Fofana; T. Aka-Ngnui; A. Beroual

    2011-01-01

    Petroleum based oils, the so-called mineral oils, are used for impregnating solid insulations or filling products of very large number of electric materials: transformers, reactors, cables, bushings, circuit breakers, tap changers, etc. In these equipments, oil is exposed to electrical stress and may experience electrical discharges under certain circumstances. Since the electrical stress is unavoidable in power equipments, the ability of oil to resist decomposition under electrical stress is of great importance for the safety of these devices. Electrical stress together with heat and moisture, in the presence of oxygen, oxidises the oil producing free radicals, acids and sludge that are deleterious to the transformer. In this paper, the effect of electrical discharges on oil properties is reported. The results indicate that quality of oil is considerably affected with increasing voltage stress. Comparing oil properties before and after voltage application allows assessing the outcome of random secondary chemical reactions between large oil born free radicals.

  7. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    Science.gov (United States)

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  8. QED theory of the nuclear recoil effect in atoms

    CERN Document Server

    Shabaev, V M

    1998-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  9. The Effect of Quantization Error on Display Color Gamut Transformation

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Tiefu Ding

    2003-01-01

    Researchers and designers who work with color displays often transform color gamut between two different display devices. This paper demonstrates the effect of quantization error on the transformation based on analyzing the color gamut deviation profoundly.

  10. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2......) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11...

  11. Polyfluorinated chemicals and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Knepper, Thomas P. [Univ. of Applied Sciences Fresenius, Idstein (Germany). Inst. for Analytical Research; Lange, Frank Thomas (eds.) [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany)

    2012-07-01

    Due to their unparalleled effectiveness and efficiency, polyfluorinated chemicals (PFC) have become essential in numerous technical applications. However, many PFCs brought to market show limited biodegradability, and their environmental persistence combined with toxic and bioaccumulative potential have become a matter of concern in some instances. This volume highlights the synthesis of PFCs, focusing on substances with improved application and environmental properties, which are a challenge for synthetic chemists. Further, modern mass spectrometric techniques for the detection and identification of biotransformation products of PFCs are described. The sorption and leaching behavior of PFC in soil is also addressed in order to predict their fate in the environment. Several contributions discuss the monitoring of PFCs in European surface, ground and drinking waters, treatment options for PFC removal from drinking water, occurrence in food, and the human biomonitoring of PFCs. (orig.)

  12. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens. [Rats, hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro.

  13. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.;

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  14. Radioactive decay as a forced nuclear chemical process: Phenomenology

    Science.gov (United States)

    Timashev, S. F.

    2015-11-01

    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  15. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    Science.gov (United States)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  16. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...

  17. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solution to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Determination of Uranium 7 Specific Gravity by Pycnometry 15-20 Free Acid by Oxalate Complexation 21-27 Determination of Thorium 28 Determination of Chromium 29 Determination of Molybdenum 30 Halogens Separation by Steam Distillation 31-35 Fluoride by Specific Ion Electrode 36-42 Halogen Distillate Analysis: Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 43 Determination of Chloride and Bromide 44 Determination of Sulfur by X-Ray Fluorescence 45 Sulfate Sulfur by (Photometric) Turbidimetry 46 Phosphorus by the Molybdenum Blue (Photometric) Method 54-61 Silicon by the Molybdenum Blue (Photometric) Method 62-69 Carbon by Persulfate Oxidation-Acid Titrimetry 70 Conversion to U3O8 71-74 Boron by ...

  18. Effect of Chemicals on Chemical Mechanical Polishing of Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; ZHANG Kai-Liang; SONG Zhi-Tang; FENG Song-Lin

    2007-01-01

    @@ We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25wt.% is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, vhile the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.

  19. Unanticipated Effects of Epoxy Impregnating Transformers

    Energy Technology Data Exchange (ETDEWEB)

    SANCHEZ,ROBERT O.; ARCHER,WENDEL E.

    2000-08-23

    Many Sandia components for military applications are designed for a 20-year life. In order to determine if magnetic components meet that requirement, the parts are subjected to selected destructive tests. This paper reviews the re-design of a power transformer and the tests required to prove-in the re-design. The re-design included replacing the Epon 828/Mica/methylenedianiline (curing agent Z) epoxy encapsulant with a recent Sandia National Laboratory (SNL) developed epoxy encapsulant. The new encapsulant reduces the Environmental Safety and Health (ES and H) hazards. Life testing of this re-designed transformer generated failures; an open secondary winding. An experimental program to determine the cause of the broken wires and an improved design to eliminate the problem was executed. This design weakness was corrected by reverting to the hazardous epoxy system.

  20. Nuclear and extranuclear effects of vitamin A.

    Science.gov (United States)

    Iskakova, Madina; Karbyshev, Mikhail; Piskunov, Aleksandr; Rochette-Egly, Cécile

    2015-12-01

    Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects.

  1. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene

    Science.gov (United States)

    Kharlamova, Marianna V.; Sauer, Markus; Saito, Takeshi; Sato, Yuta; Suenaga, Kazu; Pichler, Thomas; Shiozawa, Hidetsugu

    2015-01-01

    Controlled doping of carbon nanotubes is elemental for their electronic applications. Here we report an approach to tune the polarity and degree of doping of single-walled carbon nanotubes via filling with nickelocene followed by encapsulated reactions. Using Raman, photoemission spectroscopy and transmission electron microscopy, we show that nickelocene molecules transform into nickel carbides, nickel and inner carbon nanotubes with reaction temperatures as low as 250 °C. The doping efficiency is determined for each chemical component. Synchronous charge transfer among the molecular components allows bipolar doping of the carbon nanotubes to be achieved in a broad range of +/-0.0012 e- per carbon.

  2. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  3. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  4. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    Science.gov (United States)

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  5. Long-range transport of Saharan dust and chemical transformations over the Eastern Mediterranean

    Science.gov (United States)

    Athanasopoulou, E.; Protonotariou, A.; Papangelis, G.; Tombrou, M.; Mihalopoulos, N.; Gerasopoulos, E.

    2016-09-01

    Three recent Saharan dust outbreaks during different seasons (4-6 days in winter of 2009, late autumn of 2010 and summer of 2011) are selected in order to study the chemical footprint and aging processes of dust intrusions over the Eastern Mediterranean (EM). The applied model system (PMCAMx, WRF and GEOS-CHEM) and methodology are found competent to reproduce dust production, long-range transport and chemical transformations over the EM, with the synergistic use of synoptic patterns analysis, optical depth retrievals, back-trajectories, surface and satellite aerosol measurements. The dust loads were high during the cold period events and much lighter during summertime, when transport was mainly in the free troposphere. In all cases, dust originated from the northwest and/or west Saharan desert and reached the EM from the west/southwest. Sensitivity runs underlie the effect of dust transport on the chemical constituents of aerosols over the EM and show a large impact on calcium (70-90% of maximum daily values 2-5 μg m-3), with its gradient at surface level being around -10% per 100 km along the dust pathway. For the cold period cases, this value can also be considered analogous to the dust dissipation ratio, because the plume is vertically extended down to the surface layers. Interestingly, the surface particulate nitrate concentrations over the EM are reversely affected by the approaching dust loads, exhibiting the highest values (up to 6 μg m-3) and the largest dust fraction (ca. 70%) during summertime. This is attributed to the enhanced nitric acid formation under high atmospheric temperature and insolation, its uptake onto the carbonate dust particles, and their effective accumulation, due to low deposition rates over the sea and scarce precipitation. Sulfate formation onto dust particles is found insignificant (rapid reaction with ammonia and/or sea-salt), while the influence of dust and sea-salt on sodium, when spatio-temporal averages are calculated, is

  6. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    Science.gov (United States)

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  7. Chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The standard covers analytical procedures to determine compliance of nuclear-grade uranyl nitrate solution to specifications. The following methods are described in detail: uranium by ferrous sulfate reduction-potassium dichromate titrimetry and by ignition gravimetry; specific gravity by pycnometry; free acid by oxalate complexation; thorium by the Arsenazo(III) (photometric) method; chromium by the diphenylcarbazide (photometric) method; molybdenum by the thiocyanate (photometric) method; halogens separation by steam distillation; fluorine by specific ion electrode; halogen distillate analysis: chloride, bromide and iodide by amperometric microtitrimetry; bromine by the fluorescein (photometric) method; sulfate sulfur by (photometric) turbidimetry; phosphorus by the molybdenum blue (photometric) method; silicon by the molybdenum blue (photometric) method; carbon by persulfate oxidation-acid titrimetry; nonvolatile impurities by spectrography; volatile impurities by rotating-disk spark spectrography; boron by emission spectrography; impurity elements by spark source mass spectrography; isotopic composition by multiple filament surface-ionization mass spectrometry; uranium-232 by alpha spectrometry; total alpha activity by direct alpha counting; fission product activity by beta and gamma counting; entrained organic matter by infrared spectrophotometry. (JMT)

  8. Automated chemical monitoring in new projects of nuclear power plant units

    Science.gov (United States)

    Lobanok, O. I.; Fedoseev, M. V.

    2013-07-01

    The development of automated chemical monitoring systems in nuclear power plant units for the past 30 years is briefly described. The modern level of facilities used to support the operation of automated chemical monitoring systems in Russia and abroad is shown. Hardware solutions suggested by the All-Russia Institute for Nuclear Power Plant Operation (which is the General Designer of automated process control systems for power units used in the AES-2006 and VVER-TOI Projects) are presented, including the structure of additional equipment for monitoring water chemistry (taking the Novovoronezh 2 nuclear power plant as an example). It is shown that the solutions proposed with respect to receiving and processing of input measurement signals and subsequent construction of standard control loops are unified in nature. Simultaneous receipt of information from different sources for ensuring that water chemistry is monitored in sufficient scope and with required promptness is one of the problems that have been solved successfully. It is pointed out that improved quality of automated chemical monitoring can be supported by organizing full engineering follow-up of the automated chemical monitoring system's equipment throughout its entire service life.

  9. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2012-05-21

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory... Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources... Effectiveness of Maintenance at Nuclear Power Plants,'' Part 50, ``Domestic......

  10. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Science.gov (United States)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer.

  11. Chemical transformation of CO2 during its capture by waste biomass derived biochars.

    Science.gov (United States)

    Xu, Xiaoyun; Kan, Yue; Zhao, Ling; Cao, Xinde

    2016-06-01

    Biochar is a porous carbonaceous material with high alkalinity and rich minerals, making it possible for CO2 capture. In this study, biochars derived from pig manure, sewage sludge, and wheat straw were evaluated for their CO2 sorption behavior. All three biochars showed high sorption abilities for CO2, with the maximum capacities reaching 18.2-34.4 mg g(-1) at 25 °C. Elevating sorption temperature and moisture content promoted the transition of CO2 uptake from physical to chemical process. Mineral components such as Mg, Ca, Fe, K, etc. in biochar induced the chemical sorption of CO2 via the mineralogical reactions which occupied 17.7%-50.9% of the total sorption. FeOOH in sewage sludge biochar was transformed by sorbed CO2 into Fe(OH)2CO3, while the sorbed CO2 in pig manure biochar was precipitated as K2Ca(CO3)2 and CaMg(CO3)2, which resulted in a dominant increase of insoluble inorganic carbon in both biochars. For wheat straw biochar, sorbed CO2 induced CaCO3 transformed into soluble Ca(HCO3)2, which led to a dominant increase of soluble inorganic carbons. The results obtained from this study demonstrated that biochar as a unique carbonaceous material could distinctly be a promising sorbent for CO2 capture in which chemical sorption induced by mineralogical reactions played an important role.

  12. Study of Nuclear Effects in the Computation of the 0{\

    CERN Document Server

    Neacsu, Andrei

    2013-01-01

    We analyse the effects that different nuclear structure approximations associated with the short range correlations (SRC), finite nucleon size (FNS), higher order terms in the nucleon currents (HOC) and with some nuclear input parameters, have on the values of the nuclear matrix elements (NMEs) for the neutrinoless double beta (0{\

  13. The effects on the atmosphere of a major nuclear exchange

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Most of the earth's population would survive the immediate horrors of a nuclear holocaust, but what long-term climatological changes would affect their ability to secure food and shelter. This sobering report considers the effects of fine dust from ground-level detonations, of smoke from widespread fires, and of chemicals released into the atmosphere. The authors use mathematical models of atmospheric processes and data from natural situations - e.g., volcanic eruptions and arctic haze - to draw their conclusions.

  14. Influence of Chemical Composition on Phase Transformation Temperature and Thermal Expansion Coefficient of Hot Work Die Steel

    Institute of Scientific and Technical Information of China (English)

    XIE Hao-jie; WU Xiao-chun; MIN Yong-an

    2008-01-01

    On the basis of the uniform design method,six kinds of martensitie hot work die steels were designed.The phase transformation temperatures including Ac1,Ac3,and M,were measured by DIL805A quenching dilatometer.The influences of the main elements on phase transformation temperatures were analyzed by quadratic stepwise regression analysis,and three corresponding equations were obtained.These equations,in which the interactions of the elements were considered,showed more effectiveness than the traditional ones.In addition,the thermal expansion coefficients of these steels in annealed state and quenched state were also obtained during the tests.The influences of chemical composition and temperature on the thermal expansion coefficient were analyzed;the equations obtained Were verified by using several kinds of steels.The predicted values were in accordance with the results of the experiments.

  15. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  16. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  17. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    Directory of Open Access Journals (Sweden)

    M. Isabel Burguete

    2011-09-01

    Full Text Available This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs, to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  18. Cleaning chemical and mechanical of heat exchangers in french nuclear plants; Limpieza mecanica y quimica de intercambiadores de calor en centrales nucleares francesas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J. t.; Guerra, P.; Carreres, C.

    2013-03-01

    This project was carried out under the frame of the approval of LAINSA as a supplier of EDF in France. The inspection performed on systems called the moisture separator reheaters (GSS) of CPO series reactor of EDF nuclear power plants has shown evidence of significant clogging due to deposits of magnetite inside the tubes of tube bundle. The pressure drop between inlet and outlet of the heating was close to maximum design criterion. This effect could result in equipment damage and loss of plant productivity. The aim of the work was the design, development, approval and implementation of a procedure for un blocking the tubes of the GSS respecting the integrity of materials and ensuring the harmlessness of cleaning procedures. The procedure used was to completely remove magnetite deposits in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. The achieve these objectives we have developed a procedure that is basically a mechanical pre-cleaning of all tubes of the GSS in order to unblock tem, followed by a chemical cleaning where magnetite is dissolved and crawled out of the tube bundle. The main results were: -Corrosion less than 10 microns. 100-110 Kg of magnetite removed by heat exchanger. -Final pressure drop similar to that of new equipment. -Waste water: 70 m{sup 3} per exchanger, which were managed by an authorized waste management company. This procedure has been applied successfully in 14 GSS type heat exchangers in Fessenheim and Bugey nuclear power plants in France between 2009 and 2011. This project demonstrates that the long experience of LAINSA in the Spanish nuclear industry along with the knowledge and experience in chemical cleaning of SOLARCA, have served to successfully work demanding and mature markets such as the French nuclear market, solving the problem of deposits of magnetite with an effective and safe method for the treated

  19. Direct Evidence of Washing out of Nuclear Shell Effects

    CERN Document Server

    Chaudhuri, A; Banerjee, K; Bhattacharya, S; Sadhukhan, Jhilam; Bhattacharya, C; Kundu, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Roy, P; Roy, T; Srivastava, V; Bhattacharya, P

    2015-01-01

    Constraining excitation energy at which nuclear shell effect washes out has important implications on the production of super heavy elements and many other fields of nuclear physics research. We report the fission fragment mass distribution in alpha induced reaction on an actinide target for wide excitation range in close energy interval and show direct evidence that nuclear shell effect washes out at excitation energy ~40 MeV. Calculation shows that second peak of the ?fission barrier also vanishes around similar excitation energy.

  20. Use of the Distance Transform for Integration of Local Measurements: Principle and Application in Chemical Engineering.

    Science.gov (United States)

    Sorbier, Loïc; Bazer-Bachi, Frédéric; Blouët, Yannick; Moreaud, Maxime; Moizan-Basle, Virginie

    2016-04-01

    We propose an original methodology to integrate local measurement for nontrivial object shape. The method employs the distance transform of the object and least-square fitting of numerically computed weighting functions extracted from it. The method is exemplified in the field of chemical engineering by calculating the global metal concentration in catalyst grains from uneven metal distribution profiles. Applying the methodology on synthetic profiles with the help of a very simple deposition model allows us to evaluate the accuracy of the method. For high symmetry objects such as an infinite cylinder, relative errors on global concentration are lower than 1% for well-resolved profiles. For a less symmetrical object, a tetralobe, the best estimator gives a relative error below 5% at the cost of increased measurement time. Applicability on a real case is demonstrated on an aged hydrodemetallation catalyst. Sampling of catalyst grains at the inlet and outlet of the reactor allowed conclusions concerning different reactivity for the trapped metals.

  1. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Neffer A.; Abonia, Rodrigo, E-mail: rodrigo.abonia@correounivalle.edu.co [Departamento de Quimica, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Cadavid, Hector [Grupo GRALTA, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Vargas, Ines H. [Area de Ingenieria de Distribucion, Empresas Publicas de Medellin (EPM), Medellin (Colombia)

    2011-09-15

    In this work, a complete UV-Vis, IR and (1H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3 vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3 oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no structural changes occurred to the oils by the use. Chemical transformations like catalytic hydrogenation (hardening) and hydrolysis were performed to the FR3 oil sample and the obtained products were analyzed by spectroscopic methods in order to collect further structural information about the FR3 oil. Accelerated aging tests in laboratory were also performed for three FR3 oil samples affording interesting information about the structure of the degradation products. These findings would be valuable to search for a spectroscopy-based technique for monitoring the lifetime and performance of this insulating vegetable oil. (author)

  2. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs: metoclopramide as an example.

    Science.gov (United States)

    Lin, Shan-Yang

    2015-02-01

    Here, I provide an overview of the solid-state characteristics, phase transformations and chemical reactions of metoclopramide hydrochloride monohydrate (MCP HCl H2O). Three unique techniques, including thermoanalytical methods, one-step simultaneous differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) microspectroscopy, and hot-stage microscopic (HSM) imaging, have been applied to study the solid-state phase transitions of MCP HCl H2O in continuous dehydration, amorphization and recrystallization processes. I also review the effects of grinding or heating on ion-exchange reactions, milling, compression or colyophilization on Maillard reactions, and γ-ray irradiation or electron beams on radiolysis in the solid state. I also report the exposure of MCP HCl H2O in solution to light, irradiation, oxidants or π-acceptors. This review will serve as a useful keynote for the evolving realm of solid-state chemistry research.

  3. Chemical and physical considerations of the use of nuclear fuel spikants for deterrence

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J. E.

    1978-10-01

    One proposed method of inhibiting the diversion of nuclear fuel for clandestine purposes is to add to the fuel a highly gamma-active material of such intensity that remote handling equipment is necessary in all stages of handling and reprocessing. This is called spiking for deterrence. The present work sought to identify candidate spikants and identify potential materials problems that might occur as the result of incorporation of these spikants with the fuel. Potential spikants were identified and thermodynamic analysis was performed to determine their chemical and physical states. Phase relationships between spikants (and their decay products) and the fuel constituents were surveyed. According to criteria defined in this report, /sup 60/Co, /sup 106/Ru, and /sup 144/Ce appear to have the greatest potential as spikants. Cerium should be present as the oxide, soluble in the fuel, while cobalt and ruthenium should be present in the metallic state with very low solubility in the fuel. Experimental work on the distribution of fission products and their interactions with cladding was also surveyed to provide information on the distribution of spikants in the fuel and describe the probable effects of spikants on the fuel. Cobalt, ruthenium, and cerium should not present any problems due to reaction with stainless steel cladding.

  4. Restriction of Civilian Nuclear Fuel Cycle and Effectiveness of Nuclear Nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, JaeSoo; Lee, HanMyung; Ko, HanSuk; Yang, MaengHo; Oh, KunBae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Many efforts have been made to prevent the spread of nuclear weapons since the nuclear era. Recent revelation such as Dr. A.Q. Khan Network showed that some states had acquired sensitive nuclear technologies including uranium enrichment which could be used for making nuclear weapons. In addition, with the advancement of industrial technology, it has become easier to have access to those technologies. In this context, proliferation risks are being increased more and more. As a result, various proposals to respond to proliferation risks by sensitive technologies have been made: Multilateral Nuclear Approaches (MNAs) by IAEA Director General El Baradei, non-transfer of sensitive nuclear technologies by the U.S. President George W. Bush, international center for nuclear fuel cycle service by Russian President Vladimir V. Putin, Global Nuclear Energy Partnership (GNEP) by Bush's administration and a concept for a multilateral mechanism for reliable access to nuclear fuel by 6 member states of the IAEA. Theses proposals all share the idea that the best way to reduce risk is to prevent certain states from having control over an indigenous civilian fuel cycle while still finding ways to confer the benefits of nuclear energy, and seem to imply that the current nonproliferation regime is fundamentally flawed and needs to be altered. However, these proposals are a center of controversy because they can restrict the inalienable right for the peaceful purposes of nuclear energy inscribed in Article IV of the NPT. Therefore, this paper analyzes the key challenges of these proposals and effectiveness of the goal of nuclear nonproliferation in practical term by restricting civilian nuclear fuel cycle.

  5. Health and environmental effects of complex chemical mixtures: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy supports a broad long-term research program on human health and environmental effects from potential exposure to energy-related complex chemical mixtures. The program seeks basic mechanistic data on the effects of complex mixtures at the cellular, molecular, and whole animal levels to aid in predicting human health effects and seeks ecological data on biological and physical transformations in the mixtures, concentrations of the mixtures in various compartments of the environment, and potential routes for human exposure to these mixtures (e.g., food chain). On June 17-18, 1985, OHER held its First Annual Technical Meeting on the Complex Chemical Mixtures Program in Chicago, IL. The primary purpose of the meeting was to enable principal investigators to report the research status and accomplishments of ongoing complex chemical mixture studies supported by OHER. To help focus future research directions round table discussions were conducted.

  6. Chemical characterization of the dentin/adhesive interface by Fourier transform infrared photoacoustic spectroscopy.

    Science.gov (United States)

    Spencer, P; Byerley, T J; Eick, J D; Witt, J D

    1992-01-01

    Irreversible bonding of composite materials to tooth structure depends on chemical as well as mechanical adhesion. The proposed bonding mechanism for several commercial dental adhesives is chemical adhesion to the dentin surface. The purpose of this in vitro investigation was to characterize the chemical nature of the surface interaction between dentin and two commercial adhesives by use of Fourier transform infrared photoacoustic spectroscopy (FTIR/PAS). The occlusal thirds of the crowns of freshly extracted, non-carious, unerupted human molars were sectioned perpendicular to the long axis. Dentin disks, 6 mm x 2 mm, were prepared from these sectioned teeth. The exposed dentin surface was treated with either Scotchbond 2, a BIS-GMA resin, or Dentin-Adhesit, a polyurethane resin. All spectra were recorded from 4000 to 400 cm-1 by use of an Analect RFX-65 FTIR spectrometer equipped with an MTEC Photoacoustics Model 200 photoacoustic cell. An initial spectrum of the dentin surface was collected. This surface was primed according to manufacturer's instructions and spectra recorded of the primed surface plus one to three layers of adhesive. By comparison of these spectra, it was possible for us to record changes in the phosphate and amide I and II bands due to surface interactions between the adhesive and the dentin. Although early results do not indicate covalent bonding between the dentin and these adhesives, this technique presents several advantages for spectroscopic evaluation of the dentin/adhesive interface.

  7. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-09-06

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to... Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that......

  8. Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component, crystalline solids

    CERN Document Server

    Rudraraju, Shiva; Garikipati, Krishna

    2015-01-01

    We present a new phenomenological treatment of phase transformations in multi-component crystalline solids driven by free energy density functions that are non-convex in mechanical and chemical variables. We identify the mechano-chemical spinodal as the region in strain-composition space where the free energy density function is non-convex. Our treatment describes diffusional phase transformations that are accompanied by symmetry breaking structural changes of the crystal unit cell due to mechanical instabilities in the mechano-chemical spinodal. This approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. Furthermore, for physical consistency and mathematical well-posedness, we regularize the free energy density functions by interf...

  9. Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2013-07-01

    Full Text Available Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC and the Branching SMILES (BraS, respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  10. Effect of albumin on brushite transformation to hydroxyapatite.

    Science.gov (United States)

    Xie, J; Riley, C; Chittur, K

    2001-12-05

    Brushite (CaHPO(4) x 2H(2)O) is a precursor to hydroxyapatite [HA, Ca(5)(PO(4))(3)OH]. It has been shown that a modified form of brushite, with potassium substituting for calcium at specific sites, demonstrated accelerated transformation to HA when exposed to nonproteinaceous Hanks' balanced aqueous salt solutions (HBSS). The biocompatibility of a transforming material is related to cellular response to the process, which is initiated by protein adsorption. The effect of adsorbed protein on the kinetics and chemistry of brushite transformation to HA, when exposed to HBSS containing bovine serum albumin (BSA), was examined using Fourier transform IR spectroscopy, X-ray diffraction, and energy dispersive spectrometry techniques. The effect of solution pH was also studied. Results show that, in the presence of a protein-free environment, transformation is faster in buffered medium than in nonbuffered medium. Moreover, curve fitting and second derivatives of the IR spectra show that some bands shift depending on whether the brushite transforms in a buffered or nonbuffered medium. Therefore, variation in pH affects both transformation rate and the associated chemistry. The presence of BSA in either buffered or nonbuffered medium retards the transformation in comparison to the corresponding BSA-free medium. The extent of this retardation increases with the increase in bulk concentration of BSA but does not alter the transformation chemistry. This suggests the retardation on the transformation rate is due to BSA adsorption coverage on the calcium phosphate ceramic. This may be due to the shielding of Ca(2+) and PO(4)(-3) sites, preventing their interaction with the HBSS.

  11. The chemically driven phase transformation in a memristive abacus capable of calculating decimal fractions.

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Yin, Kuibo; Lu, Jianxin; Yin, Qiaonan; Yin, Jiang; Sun, Litao; Liu, Zhiguo

    2013-01-01

    The accurate calculation of decimal fractions is still a challenge for the binary-coded computations that rely on von Neumann paradigm. Here, we report a kind of memristive abacus based on synaptic Ag-Ge-Se device, in which the memristive long-term potentiation and depression are caused by a chemically driven phase transformation. The growth and the rupture of conductive Ag₂Se dendrites are confirmed via in situ transmission electron microscopy. By detecting the change in memristive synaptic weight, the quantity of input signals applied onto the device can be "counted". This makes it possible to achieve the functions of abacus that is basically a counting frame. We demonstrate through experimental studies that this kind of memristive abacus can calculate decimal fractions in the light of the abacus algorithms. This approach opens up a new route to do decimal arithmetic in memristive devices without encoding binary-coded decimal.

  12. Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole

    Science.gov (United States)

    Hayat, Tasawar; Ijaz Khan, Muhammad; Imtiaz, Maria; Alsaedi, Ahmed; Waqas, Muhammad

    2016-10-01

    A simple model of chemical reactions for two dimensional ferrofluid flows is constructed. The impact of magnetic dipole and mixed convection is further analyzed. Flow is caused by linear stretching of the sheet. Similarity transformation is adopted to convert the partial differential equations into ordinary differential equations and then solved by Euler's explicit method. The characteristics of sundry parameters on the velocity, temperature, and concentration fields are graphically elaborated. It is noted that the impact of magneto-thermomechanical interaction is to slow down the fluid motion. The skin friction coefficient enhances and affects the rate of heat transfer. For higher values of ferrohydrodynamics, the interaction velocity shows decreasing behavior. Further the Prandtl number on temperature has opposite behavior when compared with thermal radiation and ferrohydrodynamics interaction.

  13. Divergent effects of transformational and passive leadership on employee safety.

    Science.gov (United States)

    Kelloway, E Kevin; Mullen, Jane; Francis, Lori

    2006-01-01

    The authors concurrently examined the impact of safety-specific transformational leadership and safety-specific passive leadership on safety outcomes. First, the authors demonstrated via confirmatory factor analysis that safety-specific transformational leadership and safety-specific passive leadership are empirically distinct constructs. Second, using hierarchical regression, the authors illustrated, contrary to a stated corollary of transformational leadership theory (B. M. Bass, 1997), that passive leadership contributes incrementally to the prediction of organizationally relevant outcomes, in this case safety-related variables, beyond transformational leadership alone. Third, further analyses via structural equation modeling showed that both transformational and passive leadership have opposite effects on safety climate and safety consciousness, and these variables, in turn, predict safety events and injuries. Implications for research and application are discussed.

  14. Nuclear medium effects in $\

    CERN Document Server

    Haider, H; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

  15. Comparative nuclear effects of biomedical interest. Civil effects study

    Energy Technology Data Exchange (ETDEWEB)

    White, C.S.; Bowen, I.G.; Richmond, D.R.; Corsbie, R.L.

    1961-01-12

    Selected physical and biological data bearing upon the environmental variations created by nuclear explosions are presented in simplified form. Emphasis is placed upon the ``early`` consequences of exposure to blast, thermal radiation, and ionizing radiation to elucidate the comparative ranges of the major effects as they vary with explosive yield and as they contribute to the total hazard to man. A section containing brief definitions of the terminology employed is followed by a section that utilizes text and tabular material to set forth events that follow nuclear explosions and the varied responses of exposed physical and biological materials. Finally, selected quantitative weapons-effects data in graphic and tabular form are presented over a wide range of explosive yields to show the relative distances from Ground Zero affected by significant levels of blast overpressures, thermal fluxes, and initial and residual penetrating ionizing radiations. However, only the ``early`` rather than the ``late`` effects of the latter are considered.

  16. The challenge of preparation for a chemical, biological, radiological or nuclear terrorist attack

    Directory of Open Access Journals (Sweden)

    Alexander David

    2006-01-01

    Full Text Available Terrorism is not a new phenomenon, but, in the contemporary scene, it has established itself in a manner which commands the most serious attention of the authorities. Until relatively recently, the major threat has been through the medium of conventional weaponry and explosives. Their obvious convenience of use and accessibility guarantees that such methods will continue to represent a serious threat. However, over the last few years, terrorists have displayed an enthusiasm for higher levels of carnage, destruction and publicity. This trend leads inexorably to the conclusion that chemical, biological, radiological and nuclear (CBRN methods will be pursued by terrorist organisations, particularly those which are well organised, are based on immutable ideological principles, and have significant financial backing. Whilst it is important that the authorities and the general public do not risk over-reacting to such a threat (otherwise, they will do the work of the terrorists for them, it would be equally ill-advised to seek comfort in denial. The reality of a CBRN event has to be accepted and, as a consequence, the authorities need to consider (and take seriously how individuals and the community are likely to react thereto and to identify (and rehearse in a realistic climate what steps would need to be taken to ameliorate the effects of such an event.

  17. APSTNG: neutron interrogation for detection of explosives, drugs, and nuclear and chemical warfare materials

    Science.gov (United States)

    Rhodes, Edgar A.; Peters, Charles W.

    1993-02-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.

  18. Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish.

    Science.gov (United States)

    Torres-Duarte, Cristina; Viana, María Teresa; Vazquez-Duhalt, Rafael

    2012-10-01

    Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.

  19. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  20. Chemical and physical transformations of mercury in the ocean: a review

    Directory of Open Access Journals (Sweden)

    N. Batrakova

    2014-12-01

    Full Text Available Mercury is well known as a dangerous neurotoxin enriched in the environment by human activities. It disperses over the globe, cycling between different environmental media. The ocean plays an important role in the global mercury cycle, acting both as a dispersion medium and as an exposure pathway. In this paper, we review the current knowledge on the major physical and chemical transformations of mercury in the ocean. This review describes the mechanisms and provides a compilation of available rate constants for the major processes in seawater, including oxidation and reduction reactions under light and dark conditions, biotic and abiotic methylation/demethylation, and adsorption by particles. These data could be useful for the development of transport models describing processes undergone by mercury in the ocean.

  1. Chemical and physical transformations of mercury in the ocean: a review

    Directory of Open Access Journals (Sweden)

    N. Batrakova

    2014-01-01

    Full Text Available Mercury is well known as a dangerous neurotoxin enriched in the environment by human activities. It disperses over the globe, cycling between different environmental media. The ocean plays an important role in the global mercury cycle, acting both as a dispersion medium and as an exposure pathway. In this paper, we review the current knowledge on the major physical and chemical transformations of mercury in the ocean. This review describes the mechanisms and provides a compilation of available rate constants for the major processes in seawater, including oxidation and reduction reactions under light and dark conditions, biotic and abiotic methylation/demethylation, and adsorption by particles. In perspective, these data could be useful for the development of transport models describing processes undergone by mercury in the ocean and in air–seawater exchange.

  2. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  3. Chemical and biochemical transformations during the industrial process of sherry vinegar aging.

    Science.gov (United States)

    Palacios, Victor; Valcárcel, Manuel; Caro, Ildefonso; Pérez, Luis

    2002-07-17

    The work described here concerns a study of the chemical and biochemical transformations in sherry vinegar during the different aging stages. The main factors that contribute to the nature and special characteristics of sherry vinegar are the raw sherry wine, the traditional process of acetic acid fermentation in butts (the solera system), and the physicochemical activity during the aging process in the solera system. A number of chemical and biochemical changes that occur during sherry vinegar aging are similar to those that take place in sherry wine during its biological activity process (where the wine types obtained are fino and manzanilla) or physicochemical activity process (to give oloroso wines). Significant increase in acetic acid levels was observed during the biological activity phase. In addition, the concentrations of tartaric, gluconic, succinic, and citric acids increased during the aging, as did levels of amino acids and acetoin. A color change was also produced during this stage. Glycerol was not consumed by acetic acid bacteria, and levels of higher alcohols decreased because of the synthesis of acetates. On the other hand, in the physicochemical phase the microbiological activity was lower. Concentrations of some cations increased because of evaporation of water through the wood. A color change was also produced in this stage. Concentrations of different amino acids decreased because of reaction with carbonyl compounds. A precipitation of potassium with tartaric acid was also observed.

  4. The Effects of Nuclear Terrorism Fizzles

    CERN Document Server

    Liolios, T E

    2002-01-01

    The September 11 terrorist attack against America has caused a lot of concern to the American public and the entire world, which is suspecting a new attack sooner or later. The most frightening scenario is the one involving the detonation of a nuclear device at the heart of a large metropolitan city. Unless the terrorists are in possession of a fully assembled modern nuclear weapons it is very likely that they will possess a crude nuclear device which has been assembled in a terrorist camp by people with relatively limited technological resources. It well known that the Oppenheimer team which designed and tested the first nuclear weapon (the gadget) had a lot of reservations as to whether the first test at Alamogordo would produce any yield at all. Therefore, the most likely scenario is that the terrorists will achieve either a nominal yield or no yield at all (Fizzle). In this study we will investigate all those parameters that play a decisive role in the number of casualties after such an attack so that we ...

  5. Physical and chemical transformations of cereal food during oral digestion in human subjects.

    Science.gov (United States)

    Hoebler, C; Karinthi, A; Devaux, M F; Guillon, F; Gallant, D J; Bouchet, B; Melegari, C; Barry, J L

    1998-11-01

    Chemical and physical transformations of solid food begin in the mouth, but the oral phase of digestion has rarely been studied. In the present study, twelve healthy volunteers masticated mouthfuls of either bread or spaghetti for a physiologically-determined time, and the levels of particle degradation and starch digestion before swallowing were compared for each food. The amounts of saliva moistening bread and spaghetti before swallowing were, respectively, 220 (SEM 12) v. 39 (SEM 6) g/kg fresh matter. Particle size reduction also differed since bread particles were highly degraded, showing a loss of structure, whereas spaghetti retained its physical structure, with rough and incomplete reduction of particle size. Starch hydrolysis was twice as high for bread as for spaghetti, mainly because of the release of high-molecular-mass alpha-glucans. The production of oligosaccharides was similar after mastication of the two foods, respectively 125 (SEM 8) and 92 (SEM 7) g/kg total starch. Starch hydrolysis, which clearly began in the mouth, depended on the initial structure of the food, as in the breakdown of solid food. These significant physical and chemical degradations of solid foods during oral digestion may influence the entire digestive process.

  6. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  7. The chemical transformation of calcium in Shenhua coal during combustion in a muffle furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sida [North China Electric Power Univ., Beijing (China). School of Energy, Power and Mechanical Engineering; Ministry of Education, Beijing (China). Key Lab. of Condition Monitoring and Control for Power Plant Equipment; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering; Shu, Xinqian [China Univ. of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2013-07-01

    The chemical reaction characteristics of calcium in three samples of Shenhua coal, i.e. raw sample, hydrochloric acid washed sample and hydrochloric acid washed light fraction, during combustion in a muffle furnace have been investigated in this paper. Ca is bound by calcite and organic matter in Shenhua coal. X ray diffraction (XRD) phase analysis has been conducted to these samples' combustion products obtained by heating at different temperatures. It has been found that the organically-bound calcium could easily react with clays and transform into gehlenite and anorthite partially if combusted under 815 C, whilst the excluded minerals promoted the conversion of gehlenite to anorthite. Calcite in Shenhua coal decomposed into calcium oxide and partially transformed into calcium sulfate under 815 C, and formed gehlenite and anorthite under 1,050 C. Calcite and other HCl-dissolved minerals in Shenhua coal were responsible mainly for the characteristic that the clay minerals in Shenhua coal hardly became mullite during combustion.

  8. Comparison of chemical and nuclear explosions: Numerical simulations of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, J.R.; Bos, R.J.

    1995-06-01

    In this paper the authors discuss numerical simulations of the Non-Proliferation Experiment (NPE), which was an underground explosion conducted in September 1993 in the volcanic tuff of the Nevada Test Site. The NPE source consisted of 1.29 {times} 10{sup 6} kg of ANFO-emulsion blasting agent, with the approximate energy of 1.1 kt, emplaced 389 m beneath the surface of Rainier Mesa. The authors compare detailed numerical simulations of the NPE with data collected from that experiment, and with calculations of an equally energetic nuclear explosion in identical geology. Calculated waveforms, at ranges out to approximately 1 km, agree moderately well in the time domain with free-field data, and are in qualitative agreement with free-surface records. Comparison of computed waveforms for equally energetic chemical and nuclear sources reveals relatively minor differences beyond the immediate near-source region, with the chemical source having an {approximately}25% greater seismic moment but otherwise indistinguishable (close-in) seismic source properties. 41 refs., 67 figs., 7 tabs.

  9. ASSESSING THE CHEMICAL PROPERTIES OF DAMMAR ASPHALT USING FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Ary Setyawan

    2016-03-01

    Full Text Available Dammar Asphalt (Daspal is expected to be used as a bio-asphalt renewable binder for road construction. It is made with a modification of the "Jabung", which is the dammar gum based material mixed with grounded red brick debris and low quality cooking oil at a certain ratio. Dammar gum is obtained from the Dipterocarpaceae family of trees in India and East Asia, most are produced by tapping trees. The gum varies in color from clear to pale yellow. Dammar gum is a triterpenoid resin, containing a large number of triterpenes and their oxidation products. Many of them are low molecular weight compounds. The objective of this research is to analyze the chemical properties of Daspal uses a Resonance Fourier Transform Infrared Spectroscopy (FTIR method to compare with conventional asphalt. The investigation using spectral data showed that all types of Daspal have similar functional groups of Saturate, Aromatic, Resins, and Asphalten as the 60/70 penetration conventional bitumen, so that based on its chemical properties Daspal can be considered as bioaspal.

  10. Physical and Chemical Transformation of Hydroxyapatite Nanoparticles in Aqueous Sol after Preparation and in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The co-precipitation method followed by ultrasound and heat treatment is a common way to prepare below 100 nm sized hydroxyapatite nanoparticles for biomedical studies and applications. The size and pH value of the obtained calcium phosphate nanoparticles in aqueous sol have a strong impact on the interactions with cells and tissue. The physical and chemical properties of material samples for in vitro and in vivo studies are often assumed to remain constant from the time after fabrication to the actual use. Only little attention is paid to eventual changes of the material over time or due to the different in vitro conditions. In this study, the physical and chemical transformation of calcium phosphate nanoparticles after preparation and in vitro was investigated. As the result showed, dispersed nano sized amorphous calcium phosphate precipitation as well as crystallized hydroxyapatite nanoparticles continue to crystallize even when kept at 4 ℃ leading to declining pH values and particle sizes.Due to the pH buffer in the medium the pH value of the cell culture remained stable after adding 20% nanoparticle sol in vitro. However, hydroxyapatite nanoparticles immediately became unstable in the presents of cell culture medium. The resulting loose agglomerations showed a size of above 500 nm.

  11. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  12. The Effect of Windings on ADSL Transformer Insertion Losses

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiao-na; LAN Zhong-wen; CHEN Sheng-ming; ZHANG Huai-wu; SU Hua

    2007-01-01

    Insertion loss (IL) is one of the important parameters of asymmetrical digital subscriber loop (ADSL) transformers. In different frequency bands, the factors that affect insertion loss are different. Windings mainly affect insertion loss in mid and high frequency bands.The effects of winding ways, winding wire diameter and winding turns on insertion loss were discussed. The presented experiment shows that the insertion loss of an ADSL transformer could be under 0.4 dB in mid frequency band when the winding is 30 turns, in which the ADSL transformer satisfies the requirement of total harmonic distortion (THD). Our experiments also show that the sandwich winding structure is better than the side by side winding structure and the twisted-pair winding structure, and the increase of winding diameter is one means to reduce insertion losses of an ADSL transformer in mid frequency band.

  13. The Department of Defense Chemical, Biological, Nuclear and High Yield Explosive Response Enterprise: Have We Learned the Lessons to Ensure an Effective Response?

    Science.gov (United States)

    2011-06-10

    falling unconscious, and muscle spasms (Burke 2007, 126). There were a total of eleven deaths, fifty-four seriously injured, and over three-thousand...these are 27 also limited in number. One exercise called Operation Vibrant Response tested the DoD capability to respond to a radiological device in...support of FEMA and local and state agencies. Vibrant Response is a culminating exercise for Defense Support to Civil Authority operations conducted

  14. Effects of A NBC (Nuclear, Biological, and Chemical) Nutrient Solution on Physiological and Psychological Status during Sustained Activity in the Heat

    Science.gov (United States)

    1987-07-17

    The inadvertent omission of artificial sweetening from the control solution made it readily apparent to the subjects that they were consuming...1971. 4. Permutt MA. Postprandial hypoglycemia. Diabetes 1976;25:719-733. 5. Munro I, Rauch TM, Tharion W, Banderet LZ, Lussier AR, Shukitt B. Factors...7,1; p<O.001), with the fructose- sweetened NBC Nutrient solution being judged much sweeter than the unsweetened but flavored control solution. Neither

  15. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-05-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the

  16. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-05-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling

  17. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Kamila Lewicka; Przemysław Siemion; Piotr Kurcok

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  18. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    Science.gov (United States)

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  19. Effect of chemical peeling on photocarcinogenesis.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photo-aged skin. We assessed the photo-chemopreventive effect of several clinically used chemical peeling agents on the ultraviolet-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, and 10% or 35% trichloroacetic acid in distilled water at the right back of ultraviolet-irradiated hairless mice every 2 weeks for glycolic acid, salicylic acid and 10% trichloroacetic acid, and every 4 weeks for 35% trichloroacetic acid for a total of 18 weeks after the establishment of photo-aged mice by irradiation with ultraviolet B range light three times a week for 14 weeks at a total dose of 6.66 J/cm(2) . Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of p53 expression and mRNA expression of cyclooxygenase-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also in the non-treated area. Peeling suppressed retention of p53-positive abnormal cells and reduced mRNA expression of cyclooxygenase-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid and trichloroacetic acid could serve tumor prevention by removing photo-damaged cells.

  20. A New Effect in the QCD Fusion of Nuclear Partons

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-Hong; ZHU Wei; LI Guang-Lie

    2001-01-01

    The parton fusion in nucleus at the leading order of recombination is investigated based on perturbative QCD. We compute various cut diagrams including the nuclear parton fusion, and find that the parton-fusion effects depend on the nuclear QCD structure.``

  1. Effects of different nuclear recipients on developmental potential of mouse somatic nuclear transfer embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate the effects of different kinds of nuclear recipients from Kunming (KM) mouse on developmental potential of somatic nuclear transfer em- bryos, the enucleated MⅡ oocytes, enucleated zygotes and 2-cell blastomere were used to produce cloned mouse embryos. Using fibroblast deriving from C57/BL6 ear tissue as nuclear donor, we produced cloned embryos by transferring the fibroblast nuclei into enucleated KM mouse oocytes (single nuclear transfer, SNT), transferring pronuclei from the SNT embryos into enucleated KM zygotes (nuclear into zygote, NZ), and 2-cell blastomere nuclei from SNT embryos into enucleated KM mouse oocytes (nuclear into oocytes, NO); tetraploid embryos (tetraploid embryos, TE) were obtained by fusing two blastomeres, one is from the SNT cloned embryos, and the other from normal 2-cell KM mouse embryos. In group SNT, the cloned embryos could not develop beyond 8-cell stage and the rate of 8-cell stage is only 0.3%; in group NO, the reconstructed embryos could develop to morula stage, the rate of 8-cell stage was significantly greater than that of SNT group (P < 0.05); in group NZ, the development rate was further improved, and the reconstructed embryos could develop into blastocyst stage, the rate of blastocyst was 1.9%; in group TE, as high as 62.3% of the reconstructed embryos could develop into blastocyst. Results suggested that different nuclear recipients could significantly affect the developmental potential of cloned mouse embryos; KM MⅡ oocyte cytoplasm was not so effective as zygotes to reprogram the mouse somatic cell nuclei; serial nuclear transfer could improve the developmental potential of cloned mouse embryos.

  2. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  3. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    CERN Document Server

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  4. 某化纤厂KTC环境空调机组改造效果分析%Transformation effect analysis of KTC environment air-conditioning unit of one chemical fibre plant

    Institute of Scientific and Technical Information of China (English)

    卢贤生; 秦德科

    2012-01-01

    对某化纤厂KTC环境空调机组进行改造,取消原有的回风系统,采用全新风,利用气楼将回风全部排至室外.对改造前后的经济性和室内环境进行比较得知,初投资没有增加,每年的运行费用减少209万元,室内环境有很大的改善.%KTC environment air-conditioning unit of one chemical fibre plant is transformed,the primary air return system is dismantled,all fresh air is adopted and the clerestory to exhaust the returned air to outdoor is used. The consume and indoor environment is compared,the result shows that not only the investing is not increased, but also operation cost is decreasing 2. 09 million annual and indoor environment is improved.

  5. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  6. The impact of conventional and nuclear industries on the population A comparative study of the radioactive and chemical aspects

    CERN Document Server

    Coulon, R; Anguenot, F

    1988-01-01

    This study was carried out to make it possible to assess and localize in an objective manner the extent of the hazards and associated detrimental effects which are inherent in nuclear and non-nuclear industrial activities, among all the hazards to which the population of a given region is exposed. Rather than carry out a purely theoretical and speculative study a region was chosen as a basis to carry out a full- scale exercise, taking into account the existing real situation. The region chosen is situated in the south-east of France (Greater Rhone Delta) where almost all industrial activities can be found: electricity generating industries (thermal and nuclear power stations), the activities associated with them (extraction, processing, storage of waste, etc.) and industrial activities which are sources of pollution (refineries, chemical industries, etc.). To put the risks of all these activities (to workers, the public and the environment) in perspective, the case of other sources of risk, such as certain ag...

  7. Analysis of grain size effects on transformation-induced plasticity based on a discrete dislocation-transformation model

    NARCIS (Netherlands)

    Shi, J.; Turteltaub, S.; Van der Giessen, E.

    2010-01-01

    There is much interest recently in the possibility of combining two strengthening effects, namely the reduction of grain size (Hall-Fetch effect) and the transformation-induced plasticity effect (strengthening due to a martensitic transformation). The present work is concerned with the analysis of t

  8. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  9. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    Science.gov (United States)

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization.

  10. Medical response to effects of ionising radiation. [Nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).

  11. Ultrasonic transformation of micelle structures: effect of frequency and power.

    Science.gov (United States)

    Yusof, Nor Saadah Mohd; Ashokkumar, Muthupandian

    2015-05-01

    A comprehensive investigation on the effect of ultrasonic frequency and power on the structural transformation of CTABr/NaSal micelles has been carried out. Sonication of this micelle system at various ultrasonic frequencies and power resulted in the formation and separation of two types of micelles. High viscoelastic threadlike micelles of ∼ 2 nm in diameter and several μm in length and tubular micelles possessing a viscosity slightly above that of water with ∼ 30-50 nm diameter and few hundred nm length. The structural transformation of micelles was induced by the shear forces generated during acoustic cavitation. At a fixed acoustic power of 40 W, the structural transformation was found to decrease from 211 to 647 kHz frequency due to the decreasing shear forces generated, as evidenced by rheological measurements and cryo-TEM images. At 355 kHz, an increase in the structural transformation was observed with an increase in acoustic power. These findings provide a knowledge base that could be useful for the manipulation of viscosity of micelles that may have applications in oil industry.

  12. Monitoring systems online of oil for transformers of nuclear power plants; Sistemas de monitorizacion online del aceite para transformadores de potencia de Centrales

    Energy Technology Data Exchange (ETDEWEB)

    Sarandeses, S.

    2014-07-01

    The nuclear power plants are showing their concern due to the existence of recent failures related to the bulky transformers of power. These transformers are not security, but are important for the production of power as its failure can cause transient on the floor, reactor scram or shooting, that can cause interruptions in the production of energy or might force us to reduce the power of production The analysis of gases dissolved in transformer oil is recognized as a trial key to identify a submerged transformer failure in oil. With this analysis it is not possible to ensure that there is no damage in the transformer, but the probability of risk of this type of failure can be reduced. The industry recommended to equip the new large power transformers with oil online monitoring systems and in some cases also be It recommended its use in existing transformers. (Author)

  13. Aliphatic nitro alcohols. Synthesis, chemical transformations and applications

    Energy Technology Data Exchange (ETDEWEB)

    Shvekhgeimer, Mai-Genrikh A [A.N. Kosygin Moscow State Textile Academy, Moscow (Russian Federation)

    1998-01-31

    The data on the synthesis, chemical transformations and practical use of aliphatic nitro alcohols published over the last 25 years are described systematically and analysed. The bibliography includes 316 references.

  14. Parameter-free determination of actual temperature at chemical freeze-out in nuclear interactions

    Science.gov (United States)

    Panagiotou, A. D.; Mavromanolakis, G.; Tzoulis, J.

    1995-07-01

    We propose a method to determine the actual temperature at chemical freeze-out in relativistic nucleus-nucleus collisions, using the experimental μq/T and μs/T values, obtained from strange particle ratios. We employ the Hadron Gas formalism, assuming only local thermal equilibration, to relate the quarkchemical potential and temperature. This relation constrains the allowed values of μq/T, μs/T and T, enabling the determination of the actual temperature. Comparison of the inverse slope parameter of the mT-distributions with the actual temperature determines the transverse flow velocity of the fireball matter. Knowledge of these quantities is essential in determining the EoS of nuclear matter and in evaluating interactions with regard to a possible phase transition to QGP.

  15. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  16. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    Science.gov (United States)

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  17. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    Science.gov (United States)

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.

  18. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  19. The health effects of nuclear facilities under the microscope; Los efectos de las instalaciones nucleares sobre la salud a examen

    Energy Technology Data Exchange (ETDEWEB)

    Catalan, J. M.

    2009-07-01

    The health effects of nuclear facilities under the microscope. The forthcoming months will see the conclusion of the epidemiological study that the Nuclear Safety Council (CSN) and the Carlos III Institute of Health (ISCIII) are carrying out to investigate the possible effects on the population of the ionising radiations produced by the operation of nuclear facilities. (Author)

  20. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III.

    Science.gov (United States)

    Avery, O T; Macleod, C M; McCarty, M

    1944-02-01

    1. From Type III pneumococci a biologically active fraction has been isolated in highly purified form which in exceedingly minute amounts is capable under appropriate cultural conditions of inducing the transformation of unencapsulated R variants of Pneumococcus Type II into fully encapsulated cells of the same specific type as that of the heat-killed microorganisms from which the inducing material was recovered. 2. Methods for the isolation and purification of the active transforming material are described. 3. The data obtained by chemical, enzymatic, and serological analyses together with the results of preliminary studies by electrophoresis, ultracentrifugation, and ultraviolet spectroscopy indicate that, within the limits of the methods, the active fraction contains no demonstrable protein, unbound lipid, or serologically reactive polysaccharide and consists principally, if not solely, of a highly polymerized, viscous form of desoxyribonucleic acid. 4. Evidence is presented that the chemically induced alterations in cellular structure and function are predictable, type-specific, and transmissible in series. The various hypotheses that have been advanced concerning the nature of these changes are reviewed.

  1. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces.

    Science.gov (United States)

    Papageorgiou, Anthoula C; Fischer, Sybille; Reichert, Joachim; Diller, Katharina; Blobner, Florian; Klappenberger, Florian; Allegretti, Francesco; Seitsonen, Ari P; Barth, Johannes V

    2012-03-27

    We address the interplay of adsorption, chemical nature, and self-assembly of uracil on the Ag(111) and Cu(111) surfaces as a function of molecular coverage (0.3 to 1 monolayer) and temperature. We find that both metal surfaces act as templates and the Cu(111) surface acts additionally as a catalyst for the resulting self-assembled structures. With a combination of STM, synchrotron XPS, and NEXAFS studies, we unravel a distinct polymorphism on Cu(111), in stark contrast to what is observed for the case of uracil on the more inert Ag(111) surface. On Ag(111) uracil adsorbs flat and intact and forms close-packed two-dimensional islands. The self-assembly is driven by stable hydrogen-bonded dimers with poor two-dimensional order. On Cu(111) complex structures are observed exhibiting, in addition, a strong annealing temperature dependence. We determine the corresponding structural transformations to be driven by gradual deprotonation of the uracil molecules. Our XPS study reveals unambiguously the tautomeric signature of uracil in the contact layer and on Cu(111) the molecule's deprotonation sites. The metal-mediated deprotonation of uracil and the subsequent electron localization in the molecule determine important biological reactions. Our data show a dependence between molecular coverage and molecule-metal interaction on Cu(111), as the molecules tilt at higher coverages in order to accommodate a higher packing density. After deprotonation of both uracil N atoms, we observe an adsorption geometry that can be understood as coordinative anchoring with a significant charge redistribution in the molecule. DFT calculations are employed to analyze the surface bonding and accurately describe the pertaining electronic structure.

  2. Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, R., E-mail: future990@gmail.com [Computational Fluid Dynamics, FSSW, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johore (Malaysia); Hayat, T. [Department of Mathematics, Quaid-i-Azam University Islamabad (Pakistan); Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 1451 (Saudi Arabia); Obaidat, S. [Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 1451 (Saudi Arabia)

    2011-06-15

    Highlights: > The group theoretic method is of wide applicability. > Concentration boundary layer is significantly suppressed by the thermophoretic force. > Impact of Soret and Dufour effects in the presence of thermophoresis particle deposition with chemical reaction plays an important role on the flow field. - Abstract: The group theoretic method is applied for solving the problem of combined effect of thermal diffusion and diffusion thermo on free convective heat and mass transfer over a porous stretching surface in the presence of thermophoresis particle deposition with variable stream conditions. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The equations along with the boundary conditions are solved numerically by using Runge Kutta Gill integration scheme with shooting technique. Impact of Soret and Dufour effects in the presence of thermophoresis particle deposition with chemical reaction plays an important role on the flow field. The results thus obtained are presented graphically and discussed.

  3. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  4. Mo- and V-catalyzed transformation of biomass into high-value chemicals

    DEFF Research Database (Denmark)

    Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter; Lupp, Daniel;

    2014-01-01

    The possibility of converting biomass into higher-value chemicals has received increased attention over the last few years. If biomass could be converted into biofules or platform chemicals, then it could constitute a large source of renewable energy and economy for society.......The possibility of converting biomass into higher-value chemicals has received increased attention over the last few years. If biomass could be converted into biofules or platform chemicals, then it could constitute a large source of renewable energy and economy for society....

  5. Pollution of the Marine Environment by Dumping: Legal Framework Applicable to Dumped Chemical Weapons and Nuclear Waste in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Lott, Alexander

    2016-06-01

    Full Text Available The Arctic seas are the world’s biggest dumping ground for sea-disposed nuclear waste and have served among the primary disposal sites for chemical warfare agents. Despite of scientific uncertainty, the Arctic Council has noted that this hazardous waste still affects adversely the Arctic marine environment and may have implications to the health of the Arctic people. The purpose of this manuscript is to establish the rights and obligations of the Arctic States in connection with sea-dumped chemical weapons and nuclear material under international law of the sea, international environmental law and disarmament law. Such mapping is important for considering options to tackle the pollution to the Arctic ecosystems and because there seems to be yet no such analysis across the legal fields carried out. This paper aims first at identifying the scale and approximate locations of sea-disposed nuclear waste and chemical weapons in the Arctic Ocean. The analysis will further focus on ascertaining the possibilities to minimize their adverse effects on the Arctic marine environment under the applicable legal framework. It will be argued in this manuscript that due to the corrosion of the chemical weapons and nuclear material containers, recovering, rather than confining this hazardous waste might be counterproductive as it might cause a sudden and widespread release of chemical agents or radionuclides when surfacing. In this regard, carrying out an environmental impact assessment prior to each such remediation operation would be necessary to determine the most suitable technique for minimizing or eliminating pollution.

  6. Pollution of the Marine Environment by Dumping: Legal Framework Applicable to Dumped Chemical Weapons and Nuclear Waste in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Lott, Alexander

    2015-06-01

    Full Text Available The Arctic seas are the world’s biggest dumping ground for sea-disposed nuclear waste and have served among the primary disposal sites for chemical warfare agents. Despite of scientific uncertainty, the Arctic Council has noted that this hazardous waste still affects adversely the Arctic marine environment and may have implications to the health of the Arctic people. The purpose of this manuscript is to establish the rights and obligations of the Arctic States in connection with sea-dumped chemical weapons and nuclear material under international law of the sea, international environmental law and disarmament law. Such mapping is important for considering options to tackle the pollution to the Arctic ecosystems and because there seems to be yet no such analysis across the legal fields carried out. This paper aims first at identifying the scale and approximate locations of sea-disposed nuclear waste and chemical weapons in the Arctic Ocean. The analysis will further focus on ascertaining the possibilities to minimize their adverse effects on the Arctic marine environment under the applicable legal framework. It will be argued in this manuscript that due to the corrosion of the chemical weapons and nuclear material containers, recovering, rather than confining this hazardous waste might be counterproductive as it might cause a sudden and widespread release of chemical agents or radionuclides when surfacing. In this regard, carrying out an environmental impact assessment prior to each such remediation operation would be necessary to determine the most suitable technique for minimizing or eliminating pollution.

  7. Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang

    Science.gov (United States)

    Liu, Mandy M.; Huang, Kevin M.; Yeung, Steven; Chang, Andy; Zhang, Suhui; Mei, Nan; Parsa, Cyrus; Orlando, Robert; Huang, Ying

    2017-01-01

    Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF)-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR) mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA), and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB. PMID:28335476

  8. Influence of various parameters on effectiveness of seismic base isolation of nuclear equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K. [Japan Atomic Research Inst., Ibaraki-ken (Japan); Kameoka, H. [CRC Research Inst., Chiba-chi (Japan); Takenouchi, I.; Kajiki, S. [Oiles Corp. (Japan)

    1995-12-31

    Authors developed a methodology and EBISA code for evaluating the applicability and the effectiveness of seismic base isolation of nuclear equipment. In order to investigate the influence of various parameters on the effectiveness of seismic base isolation, a sensitivity analysis was carried out for an emergency transformer with the base isolation devices. It was proved that seismic base isolation of equipment is very effective. This effectiveness can be influenced by the differences of the base isolation devices and the direction of the input seismic wave. (author). 7 refs., 3 figs., 3 tabs.

  9. Effect of topological defects on "nuclear pasta" observables

    CERN Document Server

    Schneider, A S; Caplan, M E; Horowitz, C J; Lin, Z

    2016-01-01

    [Background] The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. [Purpose] To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter $Q_{\\text{imp}}$. [Methods] Contrast molecular dynamics simulations of up to 409\\,600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter $Q_{\\text{imp}}$ due to the presence of defects. [Results] Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are aniso...

  10. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion

    Directory of Open Access Journals (Sweden)

    Ravindra G. Heendeniya

    2017-03-01

    Full Text Available Alfalfa (Medicago sativa L. genotypes transformed with Lc-bHLH and Lc transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in alfalfa plants when co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT and AC Grazeland (ACGL genotypes. The results showed that compared to NT genotype, the presence of double genes (Lc and C1 increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed alfalfa genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm−1 compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of Lc and C1 genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT alfalfa genotype. The current study provided molecular structural information on the transgenic alfalfa plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure’s changes.

  11. Lectures notes on phase transformations in nuclear matter

    CERN Document Server

    López, Jorge A

    2000-01-01

    The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The

  12. Speciation of organic phosphorus in a sediment profile of Lake Taihu I:Chemical forms and their transformation

    Institute of Scientific and Technical Information of China (English)

    Di Xu; Shiming Ding; Bin Li; Xiuling Bai; Chengxin Fan; Chaosheng Zhang

    2013-01-01

    Organic phosphorus (nonreactive P,NRP) is a major component of P in sediments,but information about its chemical forms and dynamic transformation is limited.The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu,a freshwater and eutrophic lake in China,were investigated.Five forms of NRP in the sediments were extracted based on a chemical fractionation technique,including easily labile NRP (NaHCO3-NRP),reactive metal oxide-bound NRP (HCl-NRP),humic acid-associated NRP (NaOH-NRPHA),fulvic acid-associated NRP (NaOH-NRPFA) and residual NRP (Res-TP).There were notable transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools,which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded.Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP.The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.

  13. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    Science.gov (United States)

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-07-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.

  14. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    Science.gov (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  15. The influence of chemical disorder enhancement on the martensitic transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy

    Energy Technology Data Exchange (ETDEWEB)

    Passamani, E.C., E-mail: edson@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Nascimento, V.P.; Larica, C.; Takeuchi, A.Y. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Alves, A.L.; Proveti, J.R. [Departamento de Ciencias Matematicas e Naturais, Universidade Federal do Espirito Santo, 29932-540, Sao Mateus, ES (Brazil); Pereira, M.C. [Instituto de Ciencia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39803-371 Teofilo Otoni, Minas Gerais (Brazil); Fabris, J.D. [Departamento de Quimica, UFVJM, 39100-000 Diamantina, Minas Gerais (Brazil)

    2011-07-28

    Highlights: > Chemical disorder affects martensitic transformation in Ni-Mn-Sn Heusler alloys. > Martensitic transition temperature depends on the L21-ferromagnetic fraction. > Grain boundaries induce drastic reduction of magnetization in milled Heusler alloys. > Magnetic properties of the milled Ni50Mn36Sn14 alloy get better after annealing. - Abstract: The effect of chemical disorder over the martensitic phase transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy was systematically investigated by performing X-ray diffractometry (DRX), DC magnetization and {sup 57}Fe-doping and {sup 119}Sn-Moessbauer spectroscopy measurements. DRX patterns are characteristics of a L2{sub 1}-type chemically disordered structure, where the presence of this disorder was first evaluated by analyzing the relative intensity of the (1 1 1) DRX reflection, which varies in the case of Fe-doped and practically disappears for the milled samples. In consequence, the magnetic properties of Fe-doped well-milled samples related to the martensitic phase transformation change substantially. 300 K {sup 57}Fe-Moessbauer spectroscopy data suggest that the changes in the magnetic properties related to the martensitic transformation are intrinsically correlated to the ferromagnetic and paramagnetic fractions, which are respectively associated with Fe atoms replacing Mn- and Sn-sites. In the case of milled samples, the drastic reduction of alloy magnetization was explained by the increase of the number of Mn atoms in the shell regions, which have a reduced magnetic moment comparatively to those in the grain cores. The magnetization change and the temperature transition in the martensitic transformation are governed by the grain core. The initial magnetic properties and martensitic transformation can be recovered by a subsequent annealing on the milled sample.

  16. Health effects of the nuclear accident at Three Mile Island

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1980-05-01

    Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.

  17. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    Directory of Open Access Journals (Sweden)

    Astrid Vieler

    Full Text Available Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis

  18. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.

    Science.gov (United States)

    Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B

    2012-02-01

    The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.

  19. Coordination chemistry of the sup 212 Pb/ sup 212 Bi nuclear transformation: Alpha-emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  20. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation

    Science.gov (United States)

    DU, JIANPING

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation. PMID:26835010

  1. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation.

    Science.gov (United States)

    DU, Jianping

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.

  2. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  3. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    Science.gov (United States)

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  4. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review.

    Science.gov (United States)

    Steenackers, Bart; De Cooman, Luc; De Vos, Dirk

    2015-04-01

    The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops.

  5. Cytologic Effects of Air Force Chemicals

    Science.gov (United States)

    1980-11-01

    amounts of methylated guanine residues in the DNA. The DNA samples were hydrolyzed and chromatographed using high pressure liquid chromatography ( HPLC ...induced in freshly isolated lymphocytes by four chemicals, 4NQO, MMS, HN2 and mitomycin C (MMC). The differences in DRS are probably due to the chemical

  6. Influence of temperature and chemical composition on phase transformations of selected oxide melts

    Directory of Open Access Journals (Sweden)

    J. Dobrovská

    2013-07-01

    Full Text Available The paper deals with structural changes of solid phase of selected oxide systems during their transition into liquid state. Analyses concerned poly-component systems forming basis of casting powders for CCM mould. Industrially used oxide system with prevailing contents of CaO–Al2O3–SiO2 components and with numerous accompanying admixtures was tested. Investigation was focused on temperatures, during which individual phases disappear and precipitate, as well as on influence of CaO content on phase composition at selected temperatures. The experiments were realised with use of original methodology consisting of shock cooling of the tested melt in liquid nitrogen. Thus obtained samples were further investigated by X-ray diffraction phase analyses at ambient temperatures. The obtained results provide additional data on physical-chemical properties of oxide systems, such as surface tension, viscosity, sintering intervals, etc., which can be used in technological practice for appropriate lubrication effect of casting powders in the mould.

  7. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations.

    Science.gov (United States)

    Chen, Dai; Liu, Shao-Quan

    2016-04-01

    This work examined for the first time the impact of malolactic fermentation (MLF) on the chemical constituents of lychee wine. Oenococcus oeni Viniflora Oenos (MLF inducer) and Saccharomyces cerevisiae MERIT.ferm were co-inoculated into lychee juice to induce simultaneous alcoholic fermentation (AF) and MLF. MLF did not affect sugar utilisation and ethanol production statistically (8.54% v/v for MLF and 9.27% v/v for AF). However, MLF resulted in dramatic degradation of malic and citric acids with concomitant increases of lactic acid, ethyl lactate and pH. The final concentrations of acetic and succinic acids between AF and MLF wines had no significant difference. The MLF wine contained significantly higher amounts of amino acids than the AF wine. More importantly, MLF significantly elevated the levels of potent aroma-active compounds including isoamyl acetate, linalool, geraniol and cis-rose oxide (to levels above or near respective detection thresholds), suggesting that MLF is an effective way of retaining the original lychee flavour.

  8. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-10-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North

  9. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  10. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    OpenAIRE

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and compo...

  11. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  12. Development and Validation of a Tokamak Skin Effect Transformer model

    CERN Document Server

    Romero, J A; Coda, S; Felici, F; Garrido, I

    2012-01-01

    A control oriented, lumped parameter model for the tokamak transformer including the slow flux penetration in the plasma (skin effect transformer model) is presented. The model does not require detailed or explicit information about plasma profiles or geometry. Instead, this information is lumped in system variables, parameters and inputs. The model has an exact mathematical structure built from energy and flux conservation theorems, predicting the evolution and non linear interaction of the plasma current and internal inductance as functions of the primary coil currents, plasma resistance, non-inductive current drive and the loop voltage at a specific location inside the plasma (equilibrium loop voltage). Loop voltage profile in the plasma is substituted by a three-point discretization, and ordinary differential equations are used to predict the equilibrium loop voltage as function of the boundary and resistive loop voltages. This provides a model for equilibrium loop voltage evolution, which is reminiscent ...

  13. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  14. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  15. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  16. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity.

    Science.gov (United States)

    Karci, Akin

    2014-03-01

    Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity?

  17. Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals.

    Science.gov (United States)

    Le Guével, Rémy; Oger, Frédérik; Martinez-Jimenez, Celia P; Bizot, Maud; Gheeraert, Céline; Firmin, François; Ploton, Maheul; Kretova, Miroslava; Palierne, Gaëlle; Staels, Bart; Barath, Peter; Talianidis, Iannis; Lefebvre, Philippe; Eeckhoute, Jérôme; Salbert, Gilles

    2017-01-13

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan member of the nuclear receptor family of transcription factors whose activities are modulated upon binding of small molecules into an hydrophobic ligand-binding pocket (LBP). Although the LBP of COUP-TFII is filled with aromatic amino-acid side chains, alternative modes of ligand binding could potentially lead to regulation of the orphan receptor. Here, we screened a synthetic and natural compound library in a yeast one-hybrid assay and identified 4-methoxynaphthol as an inhibitor of COUP-TFII. This synthetic inhibitor was able to counteract processes either positively or negatively regulated by COUP-TFII in different mammalian cell systems. Hence, we demonstrate that the true orphan receptor COUP-TFII can be targeted by small chemicals which could be used to study the physiological functions of COUP-TFII or to counteract detrimental COUP-TFII activities in various pathological conditions.

  18. Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China.

    Science.gov (United States)

    Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K; Bi, Jun; Liu, Yang

    2013-12-03

    We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public's attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies.

  19. Nuclear research center transformation experience; Experiencia de transformacion de un centro de investigacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J. L.; Jimenez, J. M.

    2001-07-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  20. Chemical Effects during Storage of Frozen Foods.

    Science.gov (United States)

    Powrie, W. D.

    1984-01-01

    Discusses (1) characteristics, interrelationships, and distribution of food constituents (including water) in unfrozen food systems; (2) the freezing process; and (3) chemical changes in food during frozen storage. Protein alterations and lipid oxidation are emphasized. (JN)

  1. Nuclear effects in atomic transitions

    OpenAIRE

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...

  2. The transforming effect of handheld computers on nursing practice.

    Science.gov (United States)

    Thompson, Brent W

    2005-01-01

    Handheld computers have the power to transform nursing care. The roots of this power are the shift to decentralization of communication, electronic health records, and nurses' greater need for information at the point of care. This article discusses the effects of handheld resources, calculators, databases, electronic health records, and communication devices on nursing practice. The US government has articulated the necessity of implementing the use of handheld computers in healthcare. Nurse administrators need to encourage and promote the diffusion of this technology, which can reduce costs and improve care.

  3. Thermal Bogoliubov transformation in nuclear structure theory

    CERN Document Server

    Vdovin, A I

    2010-01-01

    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.

  4. Increased expression of transforming growth factor-β and receptors in primary human airway fibroblasts from chemical inhalation patients.

    Directory of Open Access Journals (Sweden)

    Monireh Sadat Mirzamani

    2013-06-01

    Full Text Available The widespread use of sulfur mustard  (SM as a chemical warfare agent in the  past century has proved its long-lasting toxic effects. Despite a lot of research over the past decades on Iranian veterans, there are still major gaps in the SM literature. Transforming growth  factor  (TGF-β,  a  cytokine  that  affects  many  different  cell processes,  has  an important role in the lungs of patients with some of chronic airway diseases, especially with respect to airway remodeling in mustard lung.Primary airway fibroblasts from epibronchial biopsies were cultured, and gene expression of TGF-β1, TGF-β2, TbR-I and TbR-II in fibroblasts of SM injured patients and controls were investigated. Expression of TGF-βs and receptors was measured by RT-PCR. Protein level of TGF-β1was surveyed by western blot.Our  findings revealed that expression levels of TGF-β1,  TGF-β2,  TbR-I and TbR-II were upregulated in the  airway fibroblasts of  SM exposed patients  in comparison  with control samples. TGF-β1 expression was shown to be markedly increased in primary lung fibroblasts of chemically injured patients.Our  novel data, suggested that  over-expression of TGF-β  molecule and receptors  in primary airway fibroblasts of mustard gas injured patients may be involved in progression of airway remodeling of these patients.

  5. Synthesis and the Structural Transformation of fcc to hcp in Ni-Graphene Nanocomposite by Simple Chemical Route via Sonication

    Directory of Open Access Journals (Sweden)

    N. K. Mahale

    2014-01-01

    Full Text Available We report the synthesis and structural transformation of fcc to hcp in Ni-graphene (Ni-Gr composite by simple chemical route via sonication. The syntheses of Ni-Gr composite by simultaneous reduction method, and the effect of different composition ratio on morphology and crystal structure were examined in our present study. The results indicated that the graphene ratio played an important role in crystal structure and d-spacing in nickel crystals. Different compositions have shown different behavior. The nanonickel clusters of various shapes with coated graphene and decorated as nickel on graphene sheets are observed. The synthesized composites were characterized using X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and transmission electron microscope (TEM. The XRD patterns indicated crystal lattice modifications in some composites while composites with a higher graphene ratio produced very small crystals with uniform lattice parameter and d-spacing. FE-SEM images indicated the growth of Datura fruit like shapes of nickel clusters in higher composition of nickel while the composites with least concentration of nickel were composed of cubical nanoparticles grown on graphene sheets. TEM analysis revealed many Ni nanoparticles surrounding the smooth petals like surface of graphene, with average diameters of spiky nickel nanoparticles being about 50 nm and 124 nm, respectively, on 200 nm of scale.

  6. Chemical evolution of saline waters in the Jordan-Dead Sea transform and in adjoining areas

    Science.gov (United States)

    Möller, Peter; Rosenthal, Eliyahu; Geyer, Stefan; Flexer, Akiva

    2007-06-01

    Groups aquifers facilitating the inter-aquifer flow of the confined Kurnub paleowater into the karstic formations of the Judea Group. Two periods of Neogene brine formation are considered: the post-Messinan inland lagoon resulting in drying up of the Sdom Sea and the evaporation of the Pleistocene Samra Lake, which went further through the stage of Lake Lisan to the present Dead Sea. For the first period, major element hydrochemistry suggests that the saline waters and brines in the Jordan-Dead Sea Arava Valley transform evolved from the gradual evaporation of an accumulating mixture of sea-, ground-, and surface water. Due to the precipitation of carbonates, gypsum, and halite, such an evaporating primary water body was strongly enriched in Mg, Br, and B and shows high molar ratios of Br/Cl, B/Cl, and Mg/Ca but low Na/Cl ratios. The development of the Br/Cl ratio is chemically modelled, showing that indeed brine development is explicable that way. Along with the evaporation brine, evaporites formed which are leached by infiltrating fresh water yielding secondary brines with Na/Cl ratios of 1. When primary brines infiltrated the sub-surface, they were subjected to Mg Ca exchange in limestones (dolomitization) and to chloritization and albitization in basic igneous rocks turning them into Ca-Cl brines. These tertiary brines are omnipresent in the Rift. The brines of the late Lisan and Dead Sea were generated by evaporating drainage waters, which leached halite, gypsum, and carbonates from the soil and from the sub-surface. All these brines are still being flushed out by meteoric water, resulting in saline groundwaters. This flushing is regionally enhanced by intensive groundwater exploitation. In variable proportions, the Neogene and late Lisan Lake and Recent Dead Sea brines have to be considered as the most serious sources of salinization of groundwaters in the Rift. Deep-seated pre-Sdom brines cannot strictly be excluded, but if active they play a negligible role only.

  7. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  8. 76 FR 65753 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-10-24

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' in the Federal Register for a 60 day... (NUMARC) 93-01, ``Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear......

  9. Chemical Composition and Antibacterial Effects of

    Directory of Open Access Journals (Sweden)

    SS Saei Dehkordi

    2009-10-01

    Full Text Available Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis L. was purchased from a local grocery store at Shahrekord and was identified by the Institute of Medicinal Plants, ACECR. The air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus to obtain essential oil and yielded oil was analyzed by GC/MS. Antibacterial activity (on basis of Minimum Inhibitory Concentration (MIC of REO was studied separately and in combination with unheated lysozyme (L and heat-treated lysozyme (HTL on Listeria monocytogenes at different pH (5, 6 and 7 by a micro-broth dilution assay. The collected data were analyzed by SPSS software. Results: In the current study, 98.05% of constituents of the essential oil were identified. The major components were α-pinene (14.06%, 1,8-cineole (13.62%, verbenone (11.2%, camphor (10.51%, borneol (7.3%, 3-octanone (7.02%, camphene (5.46% and linalool (5.07%. The inhibitory action of REO was stronger at lower pH especially 5 (MIC=225 μg/mL. Inhibition by L at pH 5 was 640 μg/mL but no inhibition was seen at pH 7. HTL resulted in more effective inhibition than L, especially at pH 5 and heat-treatment 80˚C (MIC: 160 μg/mL. Conclusion: Combination of L + REO and particularly HTL + REO was led to enhancement of bacterial inhibition. It was concluded that REO by the identified chemical composition was effective alone or in combination with L or HTL on Listeria monocytogenes as a food-borne pathogen.

  10. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    -treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 degrees C-150 degrees C). Results showed that thermo-chemical pretreatment has high effect...

  11. Design and Use of Nanostructured Single-Site Heterogeneous Catalysts for the Selective Transformation of Fine Chemicals

    Directory of Open Access Journals (Sweden)

    Vladimiro Dal Santo

    2010-05-01

    Full Text Available Nanostructured single-site heterogeneous catalysts possess the advantages of classical solid catalysts, in terms of easy recovery and recycling, together with a defined tailored chemical and steric environment around the catalytically active metal site. The use of inorganic oxide supports with selected shape and porosity at a nanometric level may have a relevant impact on the regio- and stereochemistry of the catalytic reaction. Analogously, by choosing the optimal preparation techniques to obtain spatially isolated and well-characterised active sites, it is possible to achieve performances that are comparable to (or, in the most favourable cases, better than those obtained with homogeneous systems. Such catalysts are therefore particularly suitable for the transformation of highly-functionalised fine chemicals and some relevant examples where high chemo-, regio- and stereoselectivity are crucial will be described.

  12. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics.

    Science.gov (United States)

    Vanparys, Philippe; Corvi, Raffaella; Aardema, Marilyn J; Gribaldo, Laura; Hayashi, Makoto; Hoffmann, Sebastian; Schechtman, Leonard

    2012-04-11

    Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.

  13. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    OpenAIRE

    Sadtler, Bryce F

    2010-01-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions of a nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size an...

  14. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, H.; Wada, H. [Tsukuba Labs., Ibaraki (Japan). Nat. Res. Inst. for Metals; Ghosh, G. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    2000-07-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  15. Nuclear response and phase transformation of melt grown, SbI/sub 3/-doped HgI/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, J.; Shilo, I.; Burger, A.; Levi, A. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology); Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology; EG and G, Inc., Santa Barbara, CA (USA)); Keller, L.; Wagner, C.N.J. (California Univ., Los Angeles (USA). Dept. of Material Science and Engineering)

    1983-07-15

    Slow solidification of 1.5 wt.% SbI/sub 3/-doped HgI/sub 2/ yielded a large-grained polycrystalline boule which in thin section exhibited transparent areas. When these areas were contacted with aquadag, a nuclear radiation counter was produced which showed severe polarization effects. Slow solidification of undoped HgI/sub 2/ had no transparent areas. Detector fabricated from sliced sections of that boule gave no response nuclear radiation. In a crystallographic and a thermodynamic study of SbI/sub 3/-doped HgI/sub 2/, it was found that an orange-colored high-temperature phase, which is crystallographically identical to the known yellow phase, appeared in all SbI/sub 3/-doped HgI/sub 2/ samples.

  16. Cutaneous reactions in nuclear, biological and chemical warfare

    Directory of Open Access Journals (Sweden)

    Arora Sandeep

    2005-03-01

    Full Text Available Nuclear, biological and chemical warfare have in recent times been responsible for an increasing number of otherwise rare dermatoses. Many nations are now maintaining overt and clandestine stockpiles of such arsenal. With increasing terrorist threats, these agents of mass destruction pose a risk to the civilian population. Nuclear and chemical attacks manifest immediately while biological attacks manifest later. Chemical and biological attacks pose a significant risk to the attending medical personnel. The large scale of anticipated casualties in the event of such an occurrence would need the expertise of all physicians, including dermatologists, both military and civilian. Dermatologists are uniquely qualified in this respect. This article aims at presenting a review of the cutaneous manifestations in nuclear, chemical and biological warfare and their management.

  17. Effect of topological defects on "nuclear pasta" observables

    Science.gov (United States)

    Schneider, A. S.; Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Lin, Z.

    2016-06-01

    Background: The "pasta" phase of nuclear matter may play an important role in the structure and evolution of neutron stars. Recent works suggest nuclear pasta has a high resistivity which could be explained by the presence of long-lived topological defects. The defects act as impurities that decrease thermal and electrical conductivity of the pasta. Purpose: To quantify how topological defects affect transport properties of nuclear pasta and estimate this effect using an impurity parameter Qimp. Methods: Contrast molecular dynamics simulations of up to 409 600 nucleons arranged in parallel nuclear pasta slabs (perfect pasta) with simulations of pasta slabs connected by topological defects (impure pasta). From these simulations we compare the viscosity and heat conductivity of perfect and impure pasta to obtain an effective impurity parameter Qimp due to the presence of defects. Results: Both the viscosity and thermal conductivity calculated for both perfect and impure pasta are anisotropic, peaking along directions perpendicular to the slabs and reaching a minimum close to zero parallel to them. In our 409 600 nucleon simulation topological defects connecting slabs of pasta reduce both the thermal conductivity and viscosity on average by about 37%. We estimate an effective impurity parameter due to the defects of order Qimp˜30 . Conclusions: Topological defects in the pasta phase of nuclear matter have an effect similar to impurities in a crystal lattice. The irregularities introduced by the defects reduce the thermal and electrical conductivities and the viscosity of the system. This effect can be parametrized by a large impurity parameter Qimp˜30 .

  18. Effects of scalp dermatitis on chemical property of hair keratin

    Science.gov (United States)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  19. The EMC effect of Nuclear Matter with Coulomb Corrections

    Science.gov (United States)

    Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave

    2016-09-01

    Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.

  20. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    Science.gov (United States)

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C. Y.; Silva, Steven R.; Campbell, D. H.

    2001-05-01

    An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1129-1130.Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (15N and 18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the 15N and Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months. Published in 2001 by John Wiley & Sons, Ltd.

  1. Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; Nimlos, Mark; Liu, Haichao

    2016-07-01

    The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.

  2. Standard test methods for chemical and mass spectrometric analysis of nuclear-grade gadolinium oxide (Gd2O3) powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 These test methods cover procedures for the chemical and mass spectrometric analysis of nuclear-grade gadolinium oxide powders to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Carbon by Direct CombustionThermal Conductivity C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Total Chlorine and Fluorine by Pyrohydrolysis Ion Selective Electrode C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Loss of Weight on Ignition 7-13 Sulfur by CombustionIodometric Titration Impurity Elements by a Spark-Source Mass Spectrographic C761 Test Methods for Chemical, Mass Spectrometric, Spectrochemical,Nuclear, and Radiochemical Analysis of Uranium Hexafluoride C1287 Test Method for Determination of Impurities In Uranium Dioxide By Inductively Coupled Plasma Mass Spectrometry Gadolinium Content in Gadolinium Oxid...

  3. An Investigation into the Physico-chemical Properties of Transformer Oil Blends with Antioxidants extracted from Turmeric Powder

    Science.gov (United States)

    Dukhi, Veresha; Bissessur, Ajay; Ngila, Catherine Jane; Ijumba, Nelson Mutatina

    2013-07-01

    The blending of transformer oil (used mainly as an insulating oil) with appropriate synthetic antioxidants, such as BHT (2,6-di-tert-butyl-4-methylphenol) and DBP (2,6-di-tert-butylphenol) have been previously reported. This article is focused on the use of antioxidant extracts from turmeric (Curcuma longa), a natural source. Turmeric is well known for its antimicrobial, antioxidant and anticarcinogenic properties owing to the active nature of its components. Extracts from powdered turmeric were subsequently blended into naphthenic-based uninhibited virgin transformer oil, hereinafter referred to as extract-oil blends (E-OB). Thin-layer chromatography (TLC) of the oil blends revealed that five components extracted from turmeric powder were successfully blended into the oil. Subsequent gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of the compounds: curcumene, sesquiphellandrene, ar-turmerone, turmerone and curlone. Thermogravimetric analysis (TGA) of the extract-oil blends, containing various levels of extracts, revealed an average temperature shift of ˜8.21°C in the initial onset of degradation in comparison to virgin non-blended oil. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that an increase in the mass aliquot of turmeric extracts in the transformer oil increased the free radical scavenging activity of the oil. Electrical properties of the oil investigated showed that the dissipation factor in the blended oil was found to be lower than that of virgin transformer oil. Evidently, a lower dissipation value renders the oil blend as a superior insulator over normal virgin non-blended oil. This investigation elucidated improved physico-chemical properties of transformer oil blended with turmeric antioxidant extracts.

  4. Pathogenic effects of the human chemical biofield.

    Science.gov (United States)

    Rumyantsev, S N; Grzeszczuk, J

    1995-07-01

    Organisms release their antigens into the environment. Some antigens are volatile and may pass into the blood of other organisms during respiration. Fetal antigens enter the mother's bloodstream through the placenta. Foreign antigens in the blood can cause various chemical changes and may initiate an immune reaction.

  5. Review of Four Years of Literature (1985, 1986, 1987 and 1988) for the Physiological and Psychological Effects of the Nuclear/Biological/Chemical and Extended Operations on Soldier Performance Program

    Science.gov (United States)

    1988-12-30

    REGENERATING BRAIN CHOLINESTEPASE. FIGURES AND BIBLIOGRAPHY ARE WORTHWHILE. THE DOCUMENT PROVIDES A GOOD SUMIMARY OF CURRENT KNOWLEDGE. TITLE: ANALYSIS OF...AIR BASE COMPUTER MODEL WAS USED TO SIMULATE AIR BASE OPERATIONS. TITLE: CHEMICAL DEFENSE PLANNING DOCUMENT ( COPD ), VOLUME V: APPENDICES ORIGINATING...I DEALT WITH REGENERATING FILTERS FOR CHEMICAL AGENT APPLICATIONS. IT WAS INITIALLY THOUGHT THAT VEHICLE ENGINE HIEAT WOULD PROVIDE THE DRIVING FORCE

  6. Measurements of Sea Salt Aerosols in the Marine Boundary Layer and Free Troposphere: Vertical Transport and Chemical Transformation

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.

    2002-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission (Monterey, CA, spring 2002) nearly 400,000 positive and negative mass spectra of single atmospheric aerosols were acquired using the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The primary focus of the mission was to investigate the composition of air masses along the western coast of the United States. Of particular interest to the mission was to study the influence of anthropogenic emissions from Asia on aerosol composition. To accomplish these goals, the WP-3 aircraft, equipped with a suite of instruments including PALMS, covered a large spatial area flying from 0 - 8000 m altitude covering most of the western coastline from Canada to southern California including flights over the San Francisco and Los Angeles metropolitan areas. The in situ measurements of single particle aerosol mass spectra by PALMS allow for good spatial and vertical resolution of the aerosol composition. By observing the changes in aerosol composition as a function of altitude, the vertical transport of sea salt aerosols over marine and urban environments is examined. Using measurements of other chemical tracers along with the aerosol composition, the chemical processing of these aerosols during transport both vertically and inland can be discerned. These results add insight into the transport and chemical evolution of sea salt aerosol.

  7. Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi-Ming; Liu Wen-qing; Gao Ming-Guang; Tong Jing-Jing; Zhang Wian-Shu; Xu Liang; Wei Xiuai

    2008-01-01

    Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology.It takes an important part in many fields for the detection of released gases.The principle of concentration measurement is based on the Beer-Lambert law.Unlike the active measurement,for the passive remote sensing,in most cases,the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins.The gas cloud emission is almost equal to the background emission,thereby the emission of the gas cloud cannot be ignored.The concentration retrieval algorithm is quite different from the active measurement.In this paper,the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail,which involves radiative transfer model,radiometric calibration,absorption coefficient calculation,et al.The background spectrum has a broad feature,which is a slowly varying function of frequency.In this paper,the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm.No background spectra are required.Thus,this method allows mobile,real-time and fast measurements of gas clouds.

  8. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    Science.gov (United States)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  9. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    Directory of Open Access Journals (Sweden)

    Charles W. Ross

    2016-06-01

    Full Text Available Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI, sheath flow electrospray ionization (ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS and high-field nuclear magnetic resonance (NMR analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  10. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    Science.gov (United States)

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-06-28

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  11. Effect of Coulomb Screening Length on Nuclear Pasta Simulations

    CERN Document Server

    Alcain, P N; Nichols, J I; Dorso, C O

    2013-01-01

    We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...

  12. Classification of Chemical Substances and Adverse Effects of Chemical Substances on Human Health

    OpenAIRE

    Söyleriz, Yüksel

    2015-01-01

    In this study, classification of chemical substances and adverse effects of chemical substances on human health in European Union and Turkey are assessed. Method In this study, national and international legislation and practices in the countries of the European Union are reviewed.

  13. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    Science.gov (United States)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source ( 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave energy and the pP phase reflected from the Earth's surface. A similar effect was observed before at ISN stations for the Pakistan explosion (28.05.98) at a different frequency 1.7 Hz indicating the source- and not site-effect. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of

  14. Thermodynamic Modeling of the Chemical Composition of Calcine at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Frazee; J. D. Christian

    2004-02-01

    Mountain Project level of concern is 0.1 wt % of individual cations in the waste package. Chemical composition of the individual calcine components was calculated down to 0.02 mol % and 0.09 wt % of metal components of the calcine. The results reproduce closely existing experimental information on calcine chemical and phase composition. This paper discusses specific conditions accepted for the final calculations. The major calcine components, exceeding 0.15 mol % and 0.65 wt %, are: amorphous Al2O3 (85.30 mol %, 81.20 wt %); amorphous NaNO3 (8.23 mol %, 6.53 wt %); dolomite – CaMg 0.9235 (CO3)1.9235 (1.66 mol %, 2.75 wt %); amorphous HgO (0.99 mol %, 2.00 wt %); CaSO4 (0.64 mol %, 0.82 wt %); amorphous KNO3 (0.63 mol %, 0.59 wt %); amorphous Al4B2O9 (0.54 mol %, 1.37 wt %); and amorphous Al18B4O33 (0.16 mol %, 1.57 wt %). Na is present 99.8 % as NaNO3, 99.9 % of K is present as KNO3, and 53 % NOx is NO2(g), showing that the kinetics limiting effects have been empirically accounted for in the modeling. Approximately 87 % of the mercury is in calcine.

  15. Threshold of Toxicological Concern (TTC) and Mixture Effects of Chemicals

    OpenAIRE

    Wennermark, Henrik

    2014-01-01

    The threshold of toxicological concern (TTC) has been proposed as a novel tool in the risk assessment of chemicals, which based on knowledge of chemical structure, can set safe-levels without the necessity of performing expensive and time consuming animal toxicity experiments. However, questions have been raised whether the TTC approach, in a sufficient manner, are capable of setting safe thresholds in the context of chemicals mixture effects. This is the subject for this project. The current...

  16. A comparative study on the effective safety of nuclear technology in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Young Jin [Daegu University, Daegu (Korea); Kim, Young Pyoung [Korea University, Seoul (Korea); Jung, Yoon Soo [Myoungji University, Seoul (Korea); Chung, Ik Jae; Choi, Byung Sun [Seoul National University, Seoul (Korea)

    2001-12-01

    The main purpose of this research is to analyze Korean perception of nuclear risk in comparison with other technological risks. In order to understand the characteristics of risk perception, the concept of 'effective safety' is clarified and defined. This research also covers such issues as relative riskiness of major risks, risk attitude, risk attribution, behavioral pattern for risky situation, and risk knowledge. A nation-wide survey was conducted for this study with a sample size of 1870. It was based on the purposive quota sampling to compare nuclear risk and other technological risks selected are 6 groups of risk; nuclear risk, environmental risk, traffic risk, chemical materials, industrial safety, and other recent risks. Accross these groups, a total of 25 risks are examined. 52 refs., 14 figs., 125 tabs. (Author)

  17. Effectiveness of Land Use Structure Evolution to Industrial Structure Transformation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Scarcity of land resources and transformation of industrial structure is a pair of contradictory elements.We derive the characteristics of land use structure and industrial structure transformation in Xining City using Transformation Coefficient(TC):first,in the period 1999-2000,the land use structure coefficient(θ1) declined by 79.55%,but the overall evolution trend is gentle;second,the transformation coefficient of industrial structure(θ2) tended to decline ceaselessly on the whole,a decrease of 36.09%(overall,the transformation coefficient of industrial structure is slightly greater than the land use structure coefficient);third,the inter-annual variation of the two experienced ups and downs(in the period 1999-2007,the inter-annual variation was great and in the period 2008-2010,the inter-annual variation tended to be gentle).On the basis of autocorrelation and co-integration model,we draw the following conclusions through analysis:first,the land use structure in Xining City plays a role in promoting industrial structure transformation;second,there is a long-term equilibrium relationship between the two.Finally,relevant policy recommendations are put forward for the industrial development in Xining City.

  18. Modeling mechanical effects on promotion and retardation of martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Maalekian, Mehran, E-mail: mehran.maalekian@ubc.ca [Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, B.C. V61Z4 (Canada); Kozeschnik, Ernst [Christian Doppler Laboratory for ' Early Stages of Precipitation' , Institute of Materials Science and Technology, Vienna University of Technology (Austria)

    2011-01-25

    Research highlights: {yields} Compressive elastic stresses up to 250 MPa are applied in continuous cooling. {yields} Using the thermodynamic data and maximum value of the mechanical driving force the predicted increase in M{sub s} ({approx}0.1 K/MPa) is in agreement with experiment {yields} Austenite was deformed plastically at different temperatures (800 deg. C-1100 deg. C). {yields} High deformation temperature (i.e. 1100 deg. C) as well as low plastic strain (i.e. {epsilon}{sub ave} {approx} 30%) do not affect martensite transformation noticeably, whereas lower deformation temperature (e.g. 900 deg. C) and large plastic strain (i.e. {epsilon}{sub ave} {approx} 70%) retards martensite transformation. {yields} The theory of mechanical stabilization predicts the depression of M{sub s}. - Abstract: The influence of compressive stress and prior plastic deformation of austenite on the martensite transformation in a eutectoid steel is studied both experimentally and theoretically. It is demonstrated that martensite formation is assisted by stress but it is retarded when transformation occurs from deformed austenite. With the quantitative modeling of the problem based on the theory of displacive shear transformation, the explanation of the two opposite roles of mechanical treatment prior to or simultaneously to martensite transformation is presented.

  19. Negotiated identities of chemical instrumentation: the case of nuclear magnetic resonance spectroscopy, 1956-1969.

    Science.gov (United States)

    Roberts, Jody A

    2003-05-01

    What is an NMR spectrometer? Beginning with this seemingly simple question, I will explore the development of nuclear magnetic resonance spectroscopy between the years 1956 and 1969 from two vantage points: the organic chemists who used the new instrument, and Varian Associates-the makers of the first NMR spectrometers-. Through an examination of the articles and advertisements published in the Journal of Organic Chemistry, I will draw two conclusions. First, organic chemists and Varian Associates (along with other actors) are co-responsible for the development of nuclear magnetic resonance spectroscopy (i.e., NMR spectroscopy was not created by a single actor). Second, by changing the way NMR spectrometers are used, organic chemists attempted to change to the identity of the instrument. Similarly, when Varian Associates advertised their NMR spectrometers in a different way, they, too, attempted to change the identity of the instrument.

  20. Development and validation of a tokamak skin effect transformer model

    Science.gov (United States)

    Romero, J. A.; Moret, J.-M.; Coda, S.; Felici, F.; Garrido, I.

    2012-02-01

    A lumped parameter, state space model for a tokamak transformer including the slow flux penetration in the plasma (skin effect transformer model) is presented. The model does not require detailed or explicit information about plasma profiles or geometry. Instead, this information is lumped in system variables, parameters and inputs. The model has an exact mathematical structure built from energy and flux conservation theorems, predicting the evolution and non-linear interaction of plasma current and internal inductance as functions of the primary coil currents, plasma resistance, non-inductive current drive and the loop voltage at a specific location inside the plasma (equilibrium loop voltage). Loop voltage profile in the plasma is substituted by a three-point discretization, and ordinary differential equations are used to predict the equilibrium loop voltage as a function of the boundary and resistive loop voltages. This provides a model for equilibrium loop voltage evolution, which is reminiscent of the skin effect. The order and parameters of this differential equation are determined empirically using system identification techniques. Fast plasma current modulation experiments with random binary signals have been conducted in the TCV tokamak to generate the required data for the analysis. Plasma current was modulated under ohmic conditions between 200 and 300 kA with 30 ms rise time, several times faster than its time constant L/R ≈ 200 ms. A second-order linear differential equation for equilibrium loop voltage is sufficient to describe the plasma current and internal inductance modulation with 70% and 38% fit parameters, respectively. The model explains the most salient features of the plasma current transients, such as the inverse correlation between plasma current ramp rates and internal inductance changes, without requiring detailed or explicit information about resistivity profiles. This proves that a lumped parameter modelling approach can be used to

  1. Nuclear medium effects in $\

    CERN Document Server

    Haider, H; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    Nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ have been studied for deep inelastic neutrino/antineutrino reactions in iron nucleus by taking into account Fermi motion, binding, pion and rho meson cloud contributions, target mass correction, shadowing and anti-shadowing corrections. The calculations have been performed in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. Using these structure functions we have obtained the ratio $R_{F2,F3}^A(x,Q^2)= \\frac{2F_{2,3}^A(x,Q^2)}{AF_{2,3}^D(x,Q^2)}$, the differential scattering cross section $\\frac{1}{E}\\frac{d^2\\sigma}{dxdy}$ and the total scattering cross section $\\sigma$. The results of our numerical calculations in $^{56}Fe$ are compared with the experimental results of NuTeV and CDHSW collaborations.

  2. Temperature dependence of the nuclear binding energy: effects on the EOS for hot nuclear matter using different models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)

    1997-05-01

    Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).

  3. Chemical leasing business models: a contribution to the effective risk management of chemical substances.

    Science.gov (United States)

    Ohl, Cornelia; Moser, Frank

    2007-08-01

    Chemicals indisputably contribute greatly to the well-being of modern societies. Apart from such benefits, however, chemicals often pose serious threats to human health and the environment when improperly handled. Therefore, the European Commission has proposed a regulatory framework for the Registration, Evaluation and Authorization of Chemicals (REACH) that requires companies using chemicals to gather pertinent information on the properties of these substances. In this article, we argue that the crucial aspect of this information management may be the honesty and accuracy of the transfer of relevant knowledge from the producer of a chemical to its user. This may be particularly true if the application of potentially hazardous chemicals is not part of the user's core competency. Against this background, we maintain that the traditional sales concept provides no incentives for transferring this knowledge. The reason is that increased user knowledge of a chemical's properties may raise the efficiency of its application. That is, excessive and unnecessary usage will be eliminated. This, in turn, would lower the amount of chemicals sold and in competitive markets directly decrease profits of the producer. Through the introduction of chemical leasing business models, we attempt to present a strategy to overcome the incentive structure of classical sales models, which is counterproductive for the transfer of knowledge. By introducing two models (a Model A that differs least and a Model B that differs most from traditional sales concepts), we demonstrate that chemical leasing business models are capable of accomplishing the goal of Registration, Evaluation and Authorization of Chemicals: to effectively manage the risk of chemicals by reducing the total quantity of chemicals used, either by a transfer of applicable knowledge from the lessor to the lessee (Model A) or by efficient application of the chemical by the lessor him/herself (Model B).

  4. Effects due to temperature-dependent nuclear binding energies on the equation of state for hot nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomica y Geofisicas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)); Civitarese, O.; Reboiro, M. (Departamento de Fisica, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina))

    1993-05-01

    The influence of finite temperature nuclear effects upon the adiabatic index, for a system of nuclei, nucleons, and leptons, is discussed. It is found that the inclusion of temperature-dependent nuclear binding energies affects the behavior of the adiabats and of the adiabatic index, particularly, at low entropies.

  5. Study of effect of chromium on titanium dioxide phase transformation

    Indian Academy of Sciences (India)

    A Bellifa; L Pirault-Roy; C Kappenstein; A Choukchou-Braham

    2014-05-01

    MTi samples with different atomic chromium percentages were synthesized by sol–gel method and calcined at 400 °C under air. The effects of Cr and temperature on titanium dioxide phase transition were studied. In situ measurement showed the presence of anatase phase for all samples at temperature < 500 °C. Without Cr content, the anatase–rutile transition takes place at 600 °C and the rutile fraction increases with increase of temperature. In the presence of Cr content, rutile phase appeared at 700 °C. Cr2O3 phase was shown only in the case of CrTi20 content at 800 °C which indicates that the segregation remains modest. We have also studied the anatase–rutile transition kinetics by using in situ X-ray measurements. It was found that the anatase phase stability increases as the chromium content increases. Results confirm that the transformation of anatase–rutile is of first order.

  6. Study on the establishment of effective nuclear export system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo; So, Dong Sup; Baik, Dae Hyun; Kwack, Eun Ho; Shin, Jang Soo; Yoon, Wan Ki; Park, Wan Soo; Kim, Hyun Tae

    1997-02-01

    To improve Korean nuclear export control system, the modification of the present export license procedure for the nuclear equipment and materials and the classification of control items and their related technologies are required. And it is also necessary to make a database of the original countries who have the right of prior consent. For the efficient export control of LWR items to DPRK, it is desirable to manage the export license scheme of nuclear reactor facility as a total package, and to prepare a control regime for the retransfer of nuclear reactor component such as reactor coolant pump and nuclear fuel whose technologies are not self-reliant. It is especially essential to prepare a systematic procedure for the supply of nuclear equipment and materials to DPRK in order to meet international guidelines of NSG and others through an accord on the nuclear cooperation between Republic of Korea (ROK) and DPRK. The principal elements to be included in the accord are the range of cooperation, the restriction within the peaceful uses, prior consent right in case of retransfer of important nuclear reactor components and of storage, transfer and changes of nuclear fuels, application of safeguards to the supplied Trigger list items, physical protection of nuclear material, requirement of the return of nuclear equipment and materials, and restriction right for the suspension or termination of the agreement. (author). 40 refs., 5 tabs., 8 figs.

  7. Interactions and chemical transformations of coronene inside and outside carbon nanotubes.

    Science.gov (United States)

    Botka, Bea; Füstös, Melinda E; Tóháti, Hajnalka M; Németh, Katalin; Klupp, Gyöngyi; Szekrényes, Zsolt; Kocsis, Dorina; Utczás, Margita; Székely, Edit; Váczi, Tamás; Tarczay, György; Hackl, Rudi; Chamberlain, Thomas W; Khlobystov, Andrei N; Kamarás, Katalin

    2014-04-09

    By exposing flat and curved carbon surfaces to coronene, a variety of van der Waals hybrid heterostructures are prepared, including coronene encapsulated in carbon nanotubes, and coronene and dicoronylene adsorbed on nanotubes or graphite via π-π interactions. The structure of the final product is determined by the temperature of the experiment and the curvature of the carbon surface. While at temperatures below and close to the sublimation point of coronene, nanotubes with suitable diameters are filled with single coronene molecules, at higher temperatures additional dimerization and oligomerization of coronene occurs on the surface of carbon nanotubes. The fact that dicoronylene and possible higher oligomers are formed at lower temperatures than expected for vapor-phase polymerization indicates the active role of the carbon surface used primarily as template. Removal of adsorbed species from the nanotube surface is of utmost importance for reliable characterization of encapsulated molecules: it is demonstrated that the green fluorescence attributed previously to encapsulated coronene is instead caused by dicoronylene adsorbed on the surface which can be solubilized and removed using surfactants. After removing most of the adsorbed layer, a combination of Raman spectroscopy and transmission electron microscopy was employed to follow the transformation dynamics of coronene molecules inside nanotubes.

  8. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    Science.gov (United States)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  9. Performance comparisons of nuclear thermal rocket and chemical propulsion systems for piloted missions to Phobos/Mars

    Science.gov (United States)

    Borowski, S. K.; Mulac, M. W.; Spurlock, O. F.

    1989-01-01

    Performance capability of nuclear thermal rocket (NTR) and chemical propulsion systems, operating with and without aerobraking, are compared for a selected set of Mars mission opportunities in the 2000 to 2020 timeframe. Both high- and low-energy mission opportunities are investigated. Results are presented as the required initial mass in low earth orbit (IMLEO) to perform the missions. Missions exclusively using chemical propulsion systems have the greatest initial masses. Significant mass reductions are realized by utilizing either aerobrake or NTR technology or both. As mission energy requirements increase, the benefit of implementing aerobrake or NTR technology increases, resulting in IMLEO mass reductions on the order of 60 to 75 percent when compared with all-propulsive chemical missions. By combining both advanced technologies, still greater mass reductions are possible.

  10. Quantum chemical computations and Fourier transform infrared spectral studies of a nonlinear food dye E110.

    Science.gov (United States)

    Snehalatha, M; Sekar, N; Jayakumar, V S; Joe, I Hubert

    2008-01-01

    Fourier transform infrared (FTIR) spectrum of a well-known food dye sunset yellow FCF (E110) has been recorded and analysed. Assignments of the vibrational spectrum has been facilitated by density functional theory (DFT) calculations. The results of the optimized molecular structure obtained on the basis of B3LYP with 6-31G(d) along with the 'LANL2DZ' basis sets give clear evidence for the intramolecular charge transfer (ICT) and strong hydrogen bonding enhancing the optical nonlinearity of the molecule. The first hyperpolarizability of the acidic monoazo dye 'E110' is computed. Azo stretching frequencies have been lowered due to conjugation and pi-electron delocalization. Hydroxyl vibrations with intramolecular H-bonding are analyzed, supported by the computed results. The natural bond orbitals (NBO) analysis confirms this strong hydrogen bond between the hydrogen of the hydroxyl group and nitrogen of the azo group of the molecule. Assignments of benzene and naphthalene ring vibrations are found to agree well with the theoretical wave numbers.

  11. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Christian P. Deck

    2013-01-01

    Full Text Available Silicon carbide fiber/silicon carbide matrix (SiC-SiC composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI, where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.

  12. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.

    2013-07-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  13. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power......

  14. Organic beryllium compounds and their chemical transformations. 11. Synthesis of diacetyl derivatives of hydrobenzoin series

    Energy Technology Data Exchange (ETDEWEB)

    Lapkin, I.I.; Sinani, S.V.

    1987-02-01

    Interaction mechanism of halogenberylliumacyl with aromatic aldehydes is considered. It is shown that the reaction proceeds through the stage of radical complex formation and results in the formation of two products - hydrobenzoin diacetyl derivatives and stilbenes. The structure of the reaction products depends on the solvent, electronic and steric effects.

  15. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  16. Effect of Deformation on Order-Disorder Phase Transformation in Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Ruijun; Xu Liang; Liu Jianhua

    2007-01-01

    The phase transformation temperature of ordered β' to disordered β in the Cu-Zn alloy was tested by DSC. The transformation activation energy was calculated and the effect of deformation of the phase transformation was discussed. The results show that the phase transformation temperature and activation energy of ordered β' to disordered β in the Cu-Zn alloy can be decreased going through deformation, and the phase transformation time can be also decreased. As a result, the order-disorder phase transformation occurs more easily.

  17. Effect of chemical degradation on fluxes of reactive compounds

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2011-12-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the emission at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a~major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  18. Study of seed layer effect in nuclear battery with P-N diode junction

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)

    2014-10-15

    A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.

  19. Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions

    Institute of Scientific and Technical Information of China (English)

    FANG De-Qing; MA Yu-Gang; CAI Xiang-Zhou; TIAN Wen-Dong; WANG Hong-Wei

    2011-01-01

    Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA) model. The reaction cross section, neutron (proton) removal cross section, one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied. It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei. The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness. Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.%Effects of neutron skin thickness in peripheral nuclear collisions are investigated using the statistical abrasion ablation (SAA ) model.The reaction cross section,neutron (proton) removal cross section,one-neutron (proton) removal cross section as well as their ratios for nuclei with different neutron skin thickness are studied.It is demonstrated that there are good linear correlations between these observables and the neutron skin thickness for neutron-rich nuclei.The ratio between the (one-)neutron and proton removal cross section is found to be the most sensitive observable of neutron skin thickness.Analysis shows that the relative increase of this ratio could be used to determine the neutron skin size in neutron-rich nuclei.Determining the size and shape of a nucleus is one of the most important subjects since the discovery of atomic nuclei.The rms radii of the neutron (rn) and proton (rp) density distributions are among the most prominent observables for this purpose.Studies for stable nuclei have shown that the nuclear radii are proportional to A1/3,with A being the nuclear mass number.Meanwhile,the density distributions of neutrons and protons in stable nuclei are very similar.

  20. Versatile chemical transformations of benzoxazole based ligands on complexation with 3d-metal ions.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Tommasino, Jean Bernard; Roques, Nans; Luneau, Dominique

    2012-02-20

    Two benzoxazoles derivative ligands were synthesized from the condensation of 3,5-di-tert-butyl-o-benzoquinone (DTBBQ) with ethanolamine or 1,3-diamino-2-hydroxypropane in methanol. Condensation of DTBBQ with ethanolamine gives the expected 5,7-di-tert-butyl-2-methylenhydroxylbenzoxazole (HL1) while with 1,3-diamino-2-hydroxypropane it gives (2-hydroxyethyl-2-{2,4-bis(1,1-dimethylethyl)-1-phenol-6 amino}-2{5,7-di-tert-butyl-benzoxazole}) (H(2)L2) with only one benzoxazole ring instead of the symmetric bis-benzoxazole derivative. The structure of HL1 and H(2)L2 were confirmed by NMR-spectroscopy and X-ray diffraction on a single crystal for HL1. The reaction of HL1 with CuCl(2) gives a mononuclear [Cu(II)(HL1)(2)Cl(2)] (1) complex for which the crystal structure shows that HL1 is preserved. In contrast, upon reaction with nickel(II), cobalt(II), and manganese(II) H(2)L2 is further oxidized and transformed in new ligands HL3 in mononuclear complexes [M(II)(L3)(2)] (M = Ni(II) (2); M = Co(II) (3)) and H(2)L4 in tetranuclear complex [Mn(II)(4)(HL4)(4)Cl(4)] (4) as found from the crystal structures of complexes 2-4. Electrochemical studies for complexes 2 and 3 evidence complicated redox properties. [Mn(II)(4)(HL4)(4)Cl(4)] (4) has a cubane-like structure with a "4 + 2" fashion The magnetic susceptibility of 4 is well fitted considering one Mn---Mn interaction J(a)(Mn(II)-Mn(II)) = -0.50(1) cm(-1) with g = 2.00(7).

  1. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    Science.gov (United States)

    2012-11-15

    Euglena [76]. The putative type I fatty acid synthase is possibly the source of the short-chain saturated fatty acids (C14:0) as proposed for the...synthases in both prokaryotes and eukaryotes. Science 293: 290–293. 76. Goldberg I, Bloch K (1972) Fatty acid synthetases in Euglena gracilis. J Biol

  2. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M. [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  3. Experimental and theoretical analysis of vacuum circuit breaker prestrike effect on a transformer

    NARCIS (Netherlands)

    Popov, M.; Smeets, R.P.P.; Van der Sluis, L.; De Herdt, H.; Declerq, J.

    2009-01-01

    The work presented in this paper deals with the investigation of circuit breaker prestrike effect that occurs during energizing a distribution transformer. An experimental test setup that consists of a supply transformer, a vacuum circuit breaker (VCB), a cable and a test transformer is built, and t

  4. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    Science.gov (United States)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D.

    2016-02-01

    Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH)4·nH2O with a very low surface-energy molecule-1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {sbnd (CH2)2(CF2)9CF3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6-18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH)4·nH2O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to sbnd CF2sbnd CF2sbnd crystalline order (10-20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH)4·nH2O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The Csbnd F stretching bands at 1150 and 1210 cm-1 grow in intensity relative to that of Osbnd H stretching at 3460 cm-1 in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the surface-protrusions explains the water/organic liquid repellency.

  5. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    Directory of Open Access Journals (Sweden)

    O. B. Toon

    2006-11-01

    Full Text Available We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal. We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006 show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic

  6. The Effects of Integrated Transformational Leadership on Achievement

    Science.gov (United States)

    Boberg, John Eric; Bourgeois, Steven J.

    2016-01-01

    Purpose: Greater understanding about how variables mediate the relationship between leadership and achievement is essential to the success of reform efforts that hold leaders accountable for student learning. The purpose of this paper is to test a model of integrated transformational leadership including three important school mediators.…

  7. Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)

    1995-01-01

    According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.

  8. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z. [and others

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  9. Risk perception of nuclear energy and the effect of information

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caroline

    2000-08-01

    Results from 4 studies are reported. A mixture of survey, experimental and quasi-experimental designs and a variety of samples (undergraduates, postgraduates and graduates of Nottingham University, visitors to Sellafield and a random national UK sample) were used to examine risk perceptions of nuclear energy. The roles of risk, benefit, preference, knowledge, control, trust, attitudes, intentions to act and personality, in relation to nuclear energy, were examined. A survey study examined and explored the above-mentioned variables. Then experimental and quasi-experimental studies were devised using a BNFL video advert, a BNFL written newspaper advert and BNFL's Sellafield Visitors' Centre (SVC), to test the effectiveness of information on these variables. Through pre-post experimental and quasi-experimental studies, it was shown that levels of knowledge could be increased through information. This increase was also seen to be sustained over time, especially when people engaged in their learning environment (reading a newspaper or going to Sellafield). Regarding levels of knowledge, passively watching a video had a significant but very small effect. Changes in attitudes were also recorded, although these were only sustained over time for the Visitors' Centre. Concerning the other variables in question, changes in perceived risk, perceived benefit and preference were also recorded for the samples, although these results either could not be attributed to the different types of information, were not sustained or were no different to observations in the control groups. Some changes were recorded for aspects of control in the advert study although none were seen in the SVC study. No changes were found in trust for any of the different types of information. The main, consistent finding, was that sustained changes were recorded for knowledge and attitudes. These were both found to be linked to many of the variables under investigation, including risk

  10. Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction.

    Science.gov (United States)

    Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi

    2015-03-24

    Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure.

  11. Competing Effects Of Electronic And Nuclear Energy Loss On Microstructural Evolution In Ionic-covalent Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Varga, Tamas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ishimaru, Manabu [Department of Materials Science and Engineering, Kyushu Inst. of Technology, Fukuoka (Japan); Edmondson, P. D. [Univ. of Oxford, (United Kingdom). Dept. of Materials; Xue, H. [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Shandong Univ., Jinan (China); Moll, Sandra [TN International/AREVA, Montigny Le Bretonneux (France); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States); Hardiman, Christopher M. [North Carolina State Univ. (United States). Dept. of Nuclear Engineering; Shannon, Steven [North Carolina State Univ. (United States). Dept. of Nuclear Engineering; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab., Oak Ridge, TN (United States)

    2014-05-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence

  12. Nuclear radiation as a probe of chemical bonding: the current interplay between theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M D

    1978-01-01

    After a survey of appropriate theoretical formalisms, recent confrontations of theory and experiment in the areas of neutron scattering, Moessbauer spectroscopy, and positron chemistry are discussed, with major emphasis on the degree to which simple concepts of chemical bonding can be refined by complementary use of the above experimental probes and the powerful techniques of computational quantum chemistry.

  13. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D., E-mail: dhirenb@iitb.ac.in

    2016-02-15

    Graphical abstract: - Highlights: • Hydrophilic Zr(OH){sub 4}·nH{sub 2}O → hydro/superhydro/oleo-phobic nanostructured material. • Fluoroalkyl functionalization changes surface energy and asperities of Zr(OH){sub 4}·nH{sub 2}O. • Only 3.6 wt% fluoroalkyl-content is enough to get a good amphiphobic nanostructure. • 18.7 wt% fluoroalkyl-content leads to superhydrophobic and oleophobic behavior. • Optimal distance between surface-protrusions supports the amphiphobic behavior. - Abstract: Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH){sub 4}·nH{sub 2}O with a very low surface-energy molecule—1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {−(CH_2)_2(CF_2)_9CF_3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6–18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH){sub 4}·nH{sub 2}O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to −CF{sub 2}−CF{sub 2}− crystalline order (10–20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH){sub 4}·nH{sub 2}O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The C−F stretching bands at 1150 and 1210 cm{sup −1} grow in intensity relative to that of O−H stretching at 3460 cm{sup −1} in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle <4°), together with CA = 132° for glycerol, CA = 130° for diethylene glycol, and CA = 113° for n-hexadecane, supporting good superhydrophobicity and oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the

  14. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  15. Chemical warfare in freshwater. Allelpathic effects of macrophytes on phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field expe

  16. Effects of incomplete mixing on chemical reactions under flow heterogeneities.

    Science.gov (United States)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  17. Effects of Manure Fertilizer and Chemical Fertilizer on Nitrogen Transformation Bacteria and Soil Enzyme in Black Soil%农肥和化肥对黑土氮素转化功能菌和土壤酶的影响

    Institute of Scientific and Technical Information of China (English)

    于佳; 王宏燕; 赵伟; 宋立娟

    2011-01-01

    Various trends of soil function bacteria and its activity was Analyzed under different ratios of the manure and chemical fertilizers,in on the black soil field under maize. The results showed that the high manure fertilizer ratio scenario leads to an increase in ammonification bacteria and nitrobacteria, which were 2. 22 times and 4. 09 times of standard sample (CK) respectively. Meanwhile, the high chemical fertilizer ratio also contributed to a significant raise in the amount of denitrifying bacteria, which was 8.49 times of CK.Furthermore, Manure fertilizer scenario had a positive influence on soil microbial biomass carbon, nitrogen, soil urease and catalase as the analyzed data of activities of these factors were much higher than that of CK. Specifically speaking, the positive correlations existed in the following groups: soil microbial biomass C and soil urease activity, microbial biomass N and catalyse activity and microbial biomass and soil ammonification bacteria as well At the same time, soil microbial biomass C and soil ammonification bacteria had significant negative correlation ship.%实验以玉米田黑土为研究对象,主要研究土壤氮素转化功能菌及其活性在不同施入量农肥和化肥处理下的变化.结果表明:农肥高量处理使土壤氨化细菌和硝化细菌数量升高,分别是对照的2.22倍和4.09倍,而化肥高量处理使反硝化细菌数量明显增加,是对照的8.49倍;农肥处理对土壤微生物量碳、微生物量氮、土壤脲酶和土壤过氧化氢酶有促进作用,其活性明显高于对照.相关分析表明,土壤微生物量碳与土壤脲酶,土壤微生物量氮与过氧化氢酶和土壤氨化细菌之间均存在着极显著的正相关关系,而土壤微生物量碳与土壤氨化细菌之间存在着极显著的负相关关系.图8,表1,参14.

  18. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  19. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  20. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  1. Pairing effects on spinodal decomposition of asymmetric nuclear matter

    Directory of Open Access Journals (Sweden)

    Burrello S.

    2015-01-01

    Full Text Available We present an analysis framed in the general context of two-component fermionic systems subjected to pairing correlations. The study is conducted for unstable asymmetric nuclear matter at low temperature, along the clusterization process driven by spinodal instabilities. It is shown that, especially around the transition temperature from the superfluid to the normal phase, pairing correlations may have non-negligible effects on the isotopic features of the clusterized low-density matter, which could be of interest also in the astrophysical context.

  2. THE EFFECT OF DRAINAGE ON CHEMICAL ELEMENTS CONTENT OF MARSH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper takes marsh in the Sanjiang Plain as an example in order to research the effect of draining on the chemical elements in marsh. The Sanjiang Ecological Test Station of Mire and Uetland serves as the resarch base. The authors selected soil samples in the Sanjiang Plain (the top and the end of the drain, marsh soil and degeneration marsh soil), mainly analyzed contents of main ions (HCO3-, Cl-, SO42-and NO3-), main heavy metals (Fe, Mn, Znand Cu), nutritive elements (N, P,K), organic matter and pH value. By testing these samples as above, the paper initially researches the effect on chemical elements content by draining by the means of the contrast of chemical elements contents between marsh soil and degenerative marsh soil and different characteristics of marsh soil elements. Results show that a lot of chemical elements had been lost because of draining.

  3. Centrifugal microfluidic platform for radiochemistry: potentialities for the chemical analysis of nuclear spent fuels.

    Science.gov (United States)

    Bruchet, Anthony; Taniga, Vélan; Descroix, Stéphanie; Malaquin, Laurent; Goutelard, Florence; Mariet, Clarisse

    2013-11-15

    The use of a centrifugal microfluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the microfluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ≈97%), the use of the centrifugal microfluidic platform allowed to reduce the volume of liquid needed by a factor of ≈250. Thanks to their unique "easy-to-use" features, centrifugal microfluidic platforms are potential successful candidates for the downscaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance).

  4. Feasibility and effectiveness of chemical bile duct embolization for chemical hepatectomy:a preliminary study

    Institute of Scientific and Technical Information of China (English)

    Fu-Yu Li; Ning Li; Li-Sheng Jiang; Jing-Qiu Cheng; Nan-Sheng Cheng; Xing-Wu Wu; Sheng He

    2006-01-01

    BACKGROUND: The high operative risk of hepatectomy for specially located intrahepatic stones is still a problem to be solved. This study was undertaken to investigate the feasibility and effectiveness of chemical bile duct embolization for chemical hepatectomy. METHODS: Oxybenzene or absolute ethanol plus N-butyl-cyanoacrylate was employed for embolization. The feasibility, effectiveness and mechanism of chemical hepatectomy were preliminarily analyzed histologically or by Fas, TIMP-1, TGF-β1, and collagenⅠ. RESULTS:Oxybenzene plus cyanonacrylate can preferably destroy and embolize the intrahepatic biliary duct, leading to the disappearance of hepatocytes in the periphery of embolized lobe and the achievement of effective chemical hepatectomy. The expressions of Fas, TIMP-1 and TGF-β1 in oxybenzene embolism group (88.90±38.10, 619.43± 183.42, 185.22±70.39) and ethanol embolism group (72.39± 29.51, 407.55±134.74, 163.56±51.75) were higher than those of biliary duct-ligated group (26.31±12.07, 195.31±107.67, 74.84±40.73) (P CONCLUSION: The effect of chemical hepatectomy may be achieved by chemical bile duct embolization.

  5. Risk communication and the transformations in the meta narrative of the nuclear field in the 20{sup th} and 21{sup st} centuries

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tariana B., E-mail: tariana@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Comunicacoes e Artes. Programa de Pos-Graduacao em Ciencias da Comunicacao

    2015-07-01

    The meta narrative of the nuclear field was influenced in the beginning by the perspectives of economic prosperity and the possibility of diversifying to alternative sources of power. However, it has been transformed throughout the 20{sup th} and the early 21{sup st} centuries by the collective memory and micro narratives of the nuclear bombs during the II World War and the nuclear or radiologic incidents of Three Mile Island, in 1979, Chernobyl, 1986, Goiania, 1987, and Fukushima, 2011. The most recent occurrence made countries like France and Germany, which depend a great deal on nuclear power supply, to suspend their nuclear programs, although having to retake them afterwards due to the impossibility of getting new sources of energy in a short period of time. All that attracted negative attention to the field and severely impacted the perception of risk by the society. This paper observes the future of the meta narrative in such area will be based in the influence of other national and supranational risk communication narratives around security, pollution, environment and economy. The discussion is based on theories by researchers such as Andreas Huyssen, Carlo Ginzburg, Lorenzo Negri, Maurice Halbwachs, Max Weber, Pedro Fernando Bendassolli, Peter Sandman, Roland Barthes, Ulrick Beck and Walter Benjamin. (author)

  6. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  7. The Study of Magnetic Flux Shunts Effects on the Leakage Reactance of Transformers via FEM

    Directory of Open Access Journals (Sweden)

    Karim Abbaszadeh

    2010-09-01

    Full Text Available The influence of arrangement, dimensions, and magnetic permeability of the magnetic flux shunts on the flux distribution and leakage reactance of the power transformers is studied in this paper by using a finite elements method and a simple modeling approach. By using magneto-static analysis and finite element method, first the flux distribution in the 2D model of a core-type three phase power transformer and then using the magnetic stored energy method the leakage reactance of the transformer windings is calculated. By studying the different models including magnetic flux shunts, the effect of the arrangement, geometric dimensions as well as the magnetic permeability of the magnetic flux shunt on the leakage reactance of the transformer are studied and some interesting results are obtained. It is shown that the variation of these parameters in the transformer model has significant effects on the leakage reactance of the transformer.

  8. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  9. Nuclear Families and Nuclear Risks: The Effects of Gender, Geography, and Progeny on Attitudes toward a Nuclear Waste Facility

    Science.gov (United States)

    Freudenburg, William R.; Davidson, Debra J.

    2007-01-01

    Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…

  10. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: semisynthesis of salvinicins A and B and other chemical transformations of salvinorin A.

    Science.gov (United States)

    Harding, Wayne W; Schmidt, Matthew; Tidgewell, Kevin; Kannan, Pavitra; Holden, Kenneth G; Gilmour, Brian; Navarro, Hernan; Rothman, Richard B; Prisinzano, Thomas E

    2006-01-01

    Salvinorin A (1) is a hallucinogenic neoclerodane diterpene isolated from the widely available psychoactive plant Salvia divinorum and is the first example of a non-nitrogenous opioid receptor ligand. At present, there is little information available as to why this compound is selective for kappa opioid receptors. One approach to better understanding the mode of binding of 1 at kappa receptors is to systematically alter the structure of 1 and examine the effects on opioid receptor affinity and activity. Currently, there is a paucity of methods described for the preparation of analogues derived from 1. Here, we report the investigation of several chemical transformations of 1 isolated from S. divinorum. In particular, this work provides a semisynthesis of salvinicins A (2) and B (3) and has identified 10a as the first neoclerodane diterpene with delta opioid antagonist activity.

  11. Fieldable Fourier Transform Spectrometer: System Construction, Background Variability Measurements, and Chemical Attack Warning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, Brian K.; Harper, Warren W.; Batishko, Charles R.; Johnson, Timothy J.; Sheen, David M.; Stewart, Timothy L.; Schultz, John F.

    2002-10-01

    The infrared sensors task at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. Missions to be addressed by remote chemical sensor development will include detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology relevant to these primary missions is also likely to be useful for battlefield chemical weapons defense, air operations support, monitoring emissions from chemical weapons destruction facilities or industrial chemical plants, and law enforcement applications. PNNL will seek to serve organizations with direct interest in these missions through collaborative research and development efforts approved by NA-22. During FY02, PNNL began assembling a remote IR detection capability that would allow field experiments to be conducted. The capability consists of a commercially available FTIR (Fourier Transform Infrared) emission spectrometer and a frequency-modulation differential-absorption LIDAR (FM-DIAL) system being developed at PNNL. To provide environmental protection for these systems, a large, well insulated, temperature controlled trailer was specified and procured. While the FTIR system was field-ready, the FM-DIAL system required many modifications to prepare for field deployment. This document provides an overview of the FTIR system, summarizes the modifications made to the FM-DIAL system, and describes the salient features of the remote systems trailer.

  12. Nuclear effects in F_3 structure function of nucleon

    CERN Document Server

    Athar, M Sajjad; Vacas, M J Vicente

    2007-01-01

    We study nuclear effects in the $F^A_3(x)$ structure function in the deep inelastic neutrino reactions on iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The results for the ratio $R(x,Q^2)=\\frac{F^A_3(x,Q^2)}{AF^N_3(x, Q^2)}$ and the Gross-Llewellyn Smith(GLS) integral $G(x,Q^2)=\\int_x^1 dx F^A_3(x,Q^2)$ in nuclei are discussed and compared with the recent results available in literature from theoretical and phenomenological analyses of experimental data.

  13. Direct extraction of nuclear effects in quasielastic scattering on carbon

    CERN Document Server

    Wilkinson, Callum

    2016-01-01

    The differences between neutrino and antineutrino CCQE cross sections measured on hydrocarbon targets are due to fundamental differences in the cross section, different neutrino and antineutrino fluxes from the same beamline, and the additional interactions on hydrogen for antineutrinos that are absent for neutrinos. In this analysis we correct for the former two differences to extract a constraint on the ratio of the CCQE cross section for free and bound protons from MINERvA and MiniBooNE data. This measures nuclear effects in carbon, and we compare this measurement to models.

  14. Development and application of ozone chemical decontamination for nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Enda, Masami; Yaita, Yumi; Inami, Ichiro; Sakai, Hitoshi [Toshiba Corp. (Japan). Power systems and Services Company; Nakagami, Motoyori; Kani, Kazuhiro [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2003-03-01

    By focusing to use gaseous ozone for an oxidant under aiming to further reduce amounts of the secondary wastes, ozone chemical decontamination technique was developed. Here were described results of investigation on a process applying ozone to oxidation process for chemical decontamination and of application to decontamination of contaminated machine. As a result carrying out the contaminated machine, it was found that , 1) temperature of ozone water processing at solution test of chromium oxide using ozone water was selected to 80 centigrade, 2) ozone concentration of ozone water using for decontamination test of metal test pieces polluted by radioactive materials was more than 1 ppm, and 3) ion-exchange resins consumed by decontamination agents could be regenerated by using a third of amounts of permanganic acid. (G.K.)

  15. Effect of Multipoint Heterogeneity on Nonlinear Transformations for Geological Modeling: Porosity-Permeability Relations Revisited

    Institute of Scientific and Technical Information of China (English)

    J A Vargas-Guzmán

    2008-01-01

    An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equationswithin those transformations need corrections via residual cumulants. A generalization of this result isthat transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.

  16. 75 FR 4877 - In the Matter of Beta Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective...

    Science.gov (United States)

    2010-01-29

    ... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the...

  17. The deleterious effects of the nuclear crisis in Japan; Os deleterios impactos da crise nuclear no Japao

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Paulo, E-mail: pmarx@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    This work reports the severe nuclear incident occurred in Japan on March 11, 2011, due a earthquake followed by tsunami, where three of six existing reactors in Daiichi-Fukushima were damaged. The explosions with releasing of radioactive materials to environment have been discussed. It has shown the harmful effects of radiations to the exposed human being. Besides, the existence of the main impediment of the nuclear electric generation represented by production of non-disposable atomic waste has been discussed. (author)

  18. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2011-08-25

    Highlights: {yields} New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. {yields} The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. {yields} The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. {yields} The effect laws of annealing on transformation temperature and hysteresis of the alloy. {yields} The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A {yields} R/R {yields} A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A {yields} R {yields} M/M {yields} R {yields} A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A {yields} R {yields} M/M {yields} A type transformation occurs in 550 deg. C annealed alloy, and A {yields} M/M {yields} A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A {yields} R/R {yields} A, and that of 500 deg. C aged alloy is A {yields} R {yields} M/M {yields} A, while that of 400 deg. C aged alloy changes from A {yields} R/R {yields} A to A {yields} R {yields} M/M {yields} R {yields} A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  19. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  20. Separation of electron-transfer and coupled chemical reaction components of biocatalytic processes using Fourier transform ac voltammetry.

    Science.gov (United States)

    Fleming, Barry D; Zhang, Jie; Bond, Alan M; Bell, Stephen G; Wong, Luet-Lok

    2005-06-01

    The underlying electron-transfer and coupled chemical processes associated with biologically important catalytic reactions can be resolved using a combination of Fourier transform ac voltammetry with an analysis of the separated dc and ac components. This outcome can be achieved because the response associated with generation of the catalytic current is essentially confined to the steady-state dc component, whereas the electron-transfer step is dominant in the fundamental and higher harmonics. For the mediated oxidation of glucose with glucose oxidase, it was found that the underlying reversible redox chemistry of the mediator, ferrocenemonocarboxylic acid, as detected in the third and higher harmonics, was totally unaffected by introduction of the catalytic process. In contrast, for the catalytic reduction of molecular oxygen by cytochrome P450, slight changes in the P450 redox process were detected when the catalytic reaction was present. Simulations of a simple catalytic reaction scheme support the fidelity of this novel FT ac voltammetric approach for examining mechanistic nuances of catalytic forms of electrochemical reaction schemes.

  1. Direct measurement of Lorentz transformation with Doppler effects

    Science.gov (United States)

    Chen, Shao-Guang

    , r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.

  2. Effects of chemical treatments on hemp fibre structure

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.M., E-mail: kabirm@usq.edu.au [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Wang, H. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Lau, K.T. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Cardona, F. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2013-07-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  3. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  4. Effect of conjugated linoleic acid on fungal delta6-desaturase activity in a transformed yeast system.

    Science.gov (United States)

    Chuang, L T; Thurmond, J M; Liu, J W; Kirchner, S J; Mukerji, P; Bray, T M; Huang, Y S

    2001-02-01

    Conjugated linoleic acid (CLA; 18:2), a group of positional and geometric isomers of linoleic acid (LA; 18:2n-6), has been shown to modulate immune function through its effect on eicosanoid synthesis. This effect has been attributed to a reduced production of n-6 polyunsaturated fatty acid (PUFA), the precursor of eicosanoids. Since delta6-desaturase is the rate-limiting enzyme of the n-6 PUFA production, it is our hypothesis that CLA, which has similar chemical structure to LA, interacts directly with delta6-desaturase. A unique and simple model, i.e., baker's yeast (Saccharomyces cerevisiae) transformed with fungal delta6-desaturase gene, previously established, was used to investigate the direct effect of CLA on delta6-desaturase. This model allows LA to be converted to y-linolenic acid (GLA; 18:3n-6) but not GLA to its metabolite(s). No metabolites of CLA were found in the lipids of the yeast transformed with delta6-desaturase. The inability to convert CLA to conjugated GLA was not due to the failure of yeast cells to take up the CLA isomers. CLA mixture and individual isomers significantly inhibited the activity of delta6-desaturase of the transformed yeast in vivo. Even though its uptake by the yeast was low, CLA c9,t11 isomer was found to be the most potent inhibitor of the four isomers tested, owing to its high inhibitory effect on delta6-desaturase. Since CLA did not cause significant changes in the level of delta6-desaturase mRNA, the inhibition of GLA production could not be attributed to suppression of delta6-desaturase gene expression at the transcriptional level.

  5. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it therefore has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.

  6. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected.

    Science.gov (United States)

    Piskunov, Aleksandr; Al Tanoury, Ziad; Rochette-Egly, Cécile

    2014-01-01

    The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.

  7. Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt

    Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content and part......Fast pyrolysis of wheat straw and rice husks was carried out in an entrained-flow reactor (EFR) and compared with the results from the wire-mesh reactor (WMR) in terms of the char yield at high-temperatures (1000-1500°C) to study the effect of heating rate, final temperature, ash content...... and particle size on the char yield. X-ray diffractometry (XRD), N-adsorption (BET), scanning electron microscopy (SEM), particle size analysis (CAMSIZER XT), nuclear magnetic resonance spectroscopy (29Si NMR; 13C NMR) and electron spinning resonance spectroscopy (ESR) were conducted to investigate the effect...... of organic and inorganic matter on the char structural transformations. The results indicate no influence of the free radicals on char reactivity and burnout. The formation of free radicals in fast pyrolysis is related to the differences in the ash composition, namely presence of K+ ions in the wheat straw...

  8. Inventory of chemical releases of nuclear installations in the North-Cotentin; Inventaire des rejets chimiques des installations nucleaires du Nord-Cotentin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-15

    The nuclear installations concerned by this study are Cogema La Hague, the Flamanville nuclear power plant, the Manche plant and the National Navy of Cherbourg.The objective followed by the ' source term ' work group has consisted in counting and examining the whole of existing measures relative to the releases of chemical substances in the liquid and gaseous effluents. Then because of the lack of measures for the operation first years of installations, the work group has estimated the order of magnitude of these chemical releases (essentially for Cogema La Hague). This report presents a review of the literature looking at the background levels of chemicals in different environmental compartments: air, soil, plants and animals products. these values have been summarized here to be available for comparisons with concentrations input by the North Cotentin nuclear installations, calculated by the G.R.N.C. (radioecology group of Nord Cotentin)

  9. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    Science.gov (United States)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  10. Systematic approach for assessment of accident risks in chemical and nuclear processing; Abordagem sistematica para avaliacao de riscos de acidentes em instalacoes de processamento quimico e nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Senne Junior, Murillo

    2003-07-15

    The industrial accidents which occurred in the last years, particularly in the 80's, contributed a significant way to draw the attention of the government, industry and the society as a whole to the mechanisms for preventing events that could affect people's safety and the environment quality. Techniques and methods extensively used the nuclear, aeronautic and war industries so far were adapted to performing analysis and evaluation of the risks associated to other industrial activities, especially in the petroleum, chemistry and petrochemical areas. The risk analysis in industrial facilities is carried out through the evaluation of the probability or frequency of the accidents and their consequences. However, no systematized methodology that could supply the tools for identifying possible accidents likely to take place in an installation is available in the literature. Neither existing are methodologies for the identification of the models for evaluation of the accidents' consequences nor for the selection of the available techniques for qualitative or quantitative analysis of the possibility of occurrence of the accident being focused. The objective of this work is to develop and implement a methodology for identification of the risks of accidents in chemical and nuclear processing facilities as well as for the evaluation of their consequences on persons. For the development of the methodology, the main possible accidents that could occur in such installations were identified and the qualitative and quantitative techniques available for the identification of the risks and for the evaluation of the consequences of each identified accidents were selected. The use of the methodology was illustrated by applying it in two case examples adapted from the literature, involving accidents with inflammable, explosives, and radioactive materials. The computer code MRA - Methodology for Risk Assessment was developed using DELPHI, version 5.0, with the purpose of

  11. Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs

    Science.gov (United States)

    Blue, C. R.; Giuffre, A.; Mergelsberg, S.; Han, N.; De Yoreo, J. J.; Dove, P. M.

    2017-01-01

    Calcite and other crystalline polymorphs of CaCO3 can form by pathways involving amorphous calcium carbonate (ACC). Apparent inconsistencies in the literature indicate the relationships between ACC composition, local conditions, and the subsequent crystalline polymorphs are not yet established. This experimental study quantifies the control of solution composition on the transformation of ACC into crystalline polymorphs in the presence of magnesium. Using a mixed flow reactor to control solution chemistry, ACC was synthesized with variable Mg contents by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within the output suspension under stirred or quiescent conditions while characterizing the evolving solutions and solids. As the ACC transforms into a crystalline phase, the solutions record a polymorph-specific evolution of pH and Mg/Ca. The data provide a quantitative framework for predicting the initial polymorph that forms from ACC based upon the solution aMg2+/aCa2+ and aCO32-/aCa2+ and stirring versus quiescent conditions. This model reconciles discrepancies among previous studies that report on the nature of the polymorphs produced from ACC and supports the previous claim that monohydrocalcite may be an important, but overlooked, transient phase on the way to forming some aragonite and calcite deposits. By this construct, organic additives and extreme pH are not required to tune the composition and nature of the polymorph that forms. Our measurements show that the Mg content of ACC is recorded in the resulting calcite with a ≈1:1 dependence. By correlating composition of these calcite products with the Mgtot/Catot of the initial solutions, we find a ≈3:1 dependence that is approximately linear and general to whether calcite is formed via an ACC pathway or by the classical step-propagation process. Comparisons to calcite grown in synthetic seawater show a ≈1:1 dependence. The relationships suggest that the

  12. Preparedness for terrorism: managing nuclear, biological and chemical threats.

    Science.gov (United States)

    Koenig, Kristi L

    2009-12-01

    The management of nuclear, biological and chemical (NBC) terrorism events is critical to reducing morbidity and mortality in the next decade; however, initial patient care considerations and protective actions for staff are unfamiliar to most front-line clinicians. High explosive events (bomb and blast) remain the most common type of terrorism and are easy to detect. Conversely, some types of terrorist attacks are more likely to be unsuspected or covert. This paper explains the current threat of terrorism and describes clues for detection that an event has occurred. Specific criteria that should lead to a high suspicion for terrorism are illustrated. The manuscript outlines initial actions and clinical priorities for management and treatment of patients exposed to nuclear/radiological, biological, chemical and combined agents (for example an explosion involving a chemical agent). Examples of terrorist events include: a nuclear explosion, an aerosolised release of anthrax (biological), dissemination of sarin in a subway (chemical), and the detonation of a radiologic dispersion device or "dirty bomb" (combined explosive and radiological). Basic principles of decontamination include potential risks to healthcare providers from secondary exposure and contamination. Unique issues may hinder clinical actions. These include coordination with law enforcement for a crime scene, public health entities for surveillance and monitoring, hazardous materials teams for decontamination, and the media for risk communications. Finally, the importance of personal preparedness is discussed.

  13. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  14. The effect of gender and leisure preference on transformational leadership behaviour of high school students

    Directory of Open Access Journals (Sweden)

    Ekinci Nurullah Emir

    2016-01-01

    Full Text Available This paper aimed to investigate transformational leadership behaviors of high school students according to their leisure preference and gender. Randomly chosen 391 high school students from Kutahya voluntarily took part in the study. In the study Transformational Leadership Scale was used as data gathering tool and after evaluation of dispersion of the data Two-way Analysis of Variance was used as a hypothesis test. As a result, this study showed that transformational leadership behavior differs according to gender and also both leisure preference and gender have an effect on transformational leadership behavior of high school students.

  15. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [ORNL; Varga, Tamas [Pacific Northwest National Laboratory (PNNL); Ishimaru, Dr. Manabu [Osaka University; Edmondson, Dr. Philip [University of Oxford; Xue, Haizhou [University of Tennessee, Knoxville (UTK); Liu, Peng [University of Tennessee, Knoxville (UTK); Moll, Sandra [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Namavar, Fereydoon [University of Nebraska Medical Center; Hardiman, Chris [North Carolina State University; Shannon, Prof. Steven [North Carolina State University; Weber, William J [ORNL

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is

  16. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

  17. Subspaces of FMmlet transform

    Institute of Scientific and Technical Information of China (English)

    邹红星; 戴琼海; 赵克; 陈桂明; 李衍达

    2002-01-01

    The subspaces of FMmlet transform are investigated.It is shown that some of the existing transforms like the Fourier transform,short-time Fourier transform,Gabor transform,wavelet transform,chirplet transform,the mean of signal,and the FM-1let transform,and the butterfly subspace are all special cases of FMmlet transform.Therefore the FMmlet transform is more flexible for delineating both the linear and nonlinear time-varying structures of a signal.

  18. Cell-mediated mutagenesis and cell transformation by chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Langenbach, R.

    1977-01-01

    Results are reported from studies that showed that mutagenesis of mammalian cells can be achieved by carcinogenic polycyclic hydrocarbons, nitrosamines, and aflatoxins when tested in the presence of fibroblasts and hepatocytes which are able to metabolize these carcinogens. Further, we have found that there is a relationship between the degree of mutant induction and the degree of carcinogenicity of the different chemicals tested. By simultaneously measuring the frequency of cell transformation and the frequency of mutation at one locus (ouabain resistance) in the same cell system, it was possible to estimate the genetic target site for cell transformation. The results indicated that the target site for transformation is approximately 20 times larger than that determined for ouabain resistance. The results suggest that cell transformation may be due to a mutational event and the mutation can occur in one out of a small number of the same or different genes, and that the cell-mediated mutagenesis approach may be a valuable means of detecting tissue-specific carcinogens.

  19. Transformation of current limiting effect into varistor effect in tin dioxide based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bondarchuk, A N; Glot, A B [Universidad Tecnologica de la Mixteca, Huajuapan de Leon, Oaxaca, C.P. 69000 (Mexico)], E-mail: alexbond@mixteco.utm.mx

    2008-09-07

    The current limiting effect and its transformation into the varistor effect were found in SnO{sub 2}-Co{sub 3}O{sub 4}-Nb{sub 2}O{sub 5}-Cr{sub 2}O{sub 3} ceramics sintered at relatively low temperatures 1100-1200 {sup 0}C. Results of electrical measurements in oxidizing and inert atmosphere are explained in terms of the modified barrier model.

  20. Effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy

    Indian Academy of Sciences (India)

    S Haddad

    2013-05-01

    The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect increases with the increasing neutron number in the nucleus.

  1. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    Science.gov (United States)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  2. 磁暴对沿海核电站变压器安全影响的研究%Study on the Impact of Magnetic Storm on Security of Transformers in Coastal Nuclear Plants

    Institute of Scientific and Technical Information of China (English)

    刘连光; 原丽; 王智冬; 郑宽; 冯学尚

    2011-01-01

    The geomagnetically induced current (CIC) caused by magnetic storm would damage transformers directly and disturb relay protections or some other equipments indirectly, and strong magnetic storm could threaten the security of power system. For verifying the magnetic storm impact on the transformers in coastal nuclear plants, a mass of GIC data was collected and statistically analyzed, which included the measured GIC data in Guangdong Lingao nuclear power plant and Jiangsu Shanghe substation and the calculated GIC data in Northwest 750 kV power grid ( all the data above happened at the peak of 23rd solar cycle during the strong magnetic storm). The differences of the transformer's GIC between coastal nuclear power plant and inland substation and their reasons were mainly studied. The result indicates that the transformers in coastal nuclear power plants are more vulnerable to the magnetic storm impact due to the influence of the coastal effect. On this basis, the possible impacts and risks of extreme magnetic storm on the large-scale power system are assessed preliminarily, and it is suggested that the impact of magnetic storm should be assessed while selecting nuclear power plants location and transformers type.%磁暴产生的地磁感应电流(GIC)直接损伤变压器和间接干扰继电保护等设备,强磁暴可能威胁到电网的安全运行.为探明磁暴对沿海核电站变压器的影响,对第23太阳周峰年强磁暴侵害广东岭澳核电站、江苏上河变电站的GIC测量数据,以及西北陕甘青宁750 kV电网计算数据进行统计分析,研究沿海核电站与内陆变电站变压器GIC大小及其差异原因.结果表明,由于受海岸效应现象的影响,沿海核电站的变压器更容易遭受磁暴的侵害.在此基础上,对极端磁暴的可能危害、灾害风险以及沿海核电站的磁暴灾害进行评估,并建议核电站选址和变压器选型时应评估磁暴的影响.

  3. Effect of Chromosome Tethering on Nuclear Organization in Yeast

    OpenAIRE

    Barış Avşaroğlu; Gabriel Bronk; Susannah Gordon-Messer; Jungoh Ham; Debra A Bressan; Haber, James E; Jane Kondev

    2014-01-01

    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the sil...

  4. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development. In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment. Field dye staining experiments were conducted at different soils with various irrigation amount. Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency. Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage efficiency, and uniformity. Under the same irrigation condition, soil chemical distributions were more heterogeneous than soil water distributions. The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount. Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount. Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uniformity, which resulted in high environmental risks of groundwater pollution.

  5. Effect of donor cell type on nuclear remodelling in rabbit somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Tian, J; Song, J; Li, H; Yang, D; Li, X; Ouyang, H; Lai, L

    2012-08-01

    Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.

  6. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Danieli, E; Perlo, J; Duchateau, A L L; Verzijl, G K M; Litvinov, V M; Blümich, B; Casanova, F

    2014-10-06

    Real-time nuclear magnetic resonance (NMR) spectroscopy measurements carried out with a bench-top system installed next to the reactor inside the fume hood of the chemistry laboratory are presented. To test the system for on-line monitoring, a transfer hydrogenation reaction was studied by continuously pumping the reaction mixture from the reactor to the magnet and back in a closed loop. In addition to improving the time resolution provided by standard sampling methods, the use of such a flow setup eliminates the need for sample preparation. Owing to the progress in terms of field homogeneity and sensitivity now available with compact NMR spectrometers, small molecules dissolved at concentrations on the order of 1 mmol L(-1) can be characterized in single-scan measurements with 1 Hz resolution. Owing to the reduced field strength of compact low-field systems compared to that of conventional high-field magnets, the overlap in the spectrum of different NMR signals is a typical situation. The data processing required to obtain concentrations in the presence of signal overlap are discussed in detail, methods such as plain integration and line-fitting approaches are compared, and the accuracy of each method is determined. The kinetic rates measured for different catalytic concentrations show good agreement with those obtained with gas chromatography as a reference analytical method. Finally, as the measurements are performed under continuous flow conditions, the experimental setup and the flow parameters are optimized to maximize time resolution and signal-to-noise ratio.

  7. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.

    Science.gov (United States)

    Chen, Jonathan L; Bellaousov, Stanislav; Tubbs, Jason D; Kennedy, Scott D; Lopez, Michael J; Mathews, David H; Turner, Douglas H

    2015-11-17

    Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.

  8. Effect of various irradiation treatments of plant protoplasts on the transformation rates after direct gene transfer.

    Science.gov (United States)

    Köhler, F; Benediktsson, I; Cardon, G; Andreo, C S; Schieder, O

    1990-05-01

    In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8-12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%-10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.

  9. Shear mixing in stellar radiative zones I. Effect of thermal diffusion and chemical stratification

    CERN Document Server

    Prat, Vincent

    2014-01-01

    Turbulent transport of chemical elements in radiative zones of stars is taken into account in current stellar evolution codes thanks to phenomenologically derived diffusion coefficients. Recent local numerical simulations (Prat & Ligni\\`eres 2013, A&A, 551, L3) suggest that the coefficient for radial turbulent diffusion due to radial differential rotation satisfies $D_{\\rm t}\\simeq0.058\\kappa/Ri$, in qualitative agreement with Zahn's model. However, this model does not apply when differential rotation is strong with respect to stable thermal stratification or when chemical stratification has a significant dynamical effect, a situation encountered at the outer boundary of nuclear burning convective cores. We extend our numerical study to consider the effects of chemical stratification and of strong shear, and compare with prescriptions used in stellar evolution codes. We perform local, direct numerical simulations of stably stratified, homogeneous, sheared turbulence in the Boussinesq approximation. Th...

  10. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIDE AS ENCOUNTERED IN THE NUCLEAR WASTE CLEANING PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.

    2011-10-20

    Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 16 years of gamma irradiation and several months of exposures to caustic solution, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, PPS is remarkably stable to the new solvent.

  11. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  12. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y;

    1992-01-01

    Recently, we described the establishment of a computerized database of rat liver epithelial (RLE) cellular polypeptides (Wirth et al., Electrophoresis, 1991, 12, 931-954). This database has now been expanded to include the analysis of cellular polypeptide alterations during chemically (aflatoxin B1...

  13. Effect of proteins and their conformation change during brushite transformation to hydroxyapatite

    Science.gov (United States)

    Xie, Jing

    2000-10-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) coatings on metallic orthopedic implant are being used to achieve implant integration. However, HA is stable in physiological solutions, other more reactive calcium phosphate ceramics (CPC) such as brushite (CaHPO4·2H 2O) have been found to release calcium and phosphate ions during their transformation to HA. The release of these ions may induce faster bone growth and enhance implant integration. This work examines the biocompatibility of the CPC phases that form during the transformation process. Since biocompatibility is associated with cellular response, which in turn is initiated by protein adsorption, this work focuses on the mutual effect between protein adsorption and CPC transformation. The first part of the study is focused on the influence of protein adsorption on transformation kinetics and chemistry. Brushite coated samples immersed in protein free and proteinaceous physiological solutions were retrieved after different exposures times. These were examined using XRD, EDS and FTIR/reflectance. Results show that the presence of Bovine Serum Albumin (BSA) in physiological solution retards the transformation, but the presence of Fibronectin (FN) accelerates the transformation to HA. Interestingly, neither BSA nor FN alters the transformation chemistry. Due to the limitations of the techniques used, this part of the work does not monitor the effect of transformation on adsorbed proteins but only the effect of adsorbed protein on the transforming calcium phosphate coating. The second part of the work examines in situ conformational changes of adsorbed proteins during the CPC transformation using FTIR/ATR. Protein adsorbed on different surfaces such as germanium, CPC, zinc selenide and titanium shows different conformation indicated by the Amide I and II absorption bands in the infrared spectra. During the transformation of brushite to HA, both BSA and FN show a continuous change in conformation, which suggests that the

  14. Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots.

    Science.gov (United States)

    Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai

    2016-04-21

    The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.

  15. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    Mohsen Kazeminezhad

    2012-06-01

    In this research, an algorithm based on the -state Potts model is presented for modeling the austenite to ferrite transformation. In the algorithm, it is possible to exactly track boundary migration of the phase formed during transformation. In the algorithm, effects of changes in chemical free energy, strain free energy and interfacial energies of austenite–austenite, ferrite–ferrite and austenite–ferrite during transformation are considered. From the algorithm, the kinetics of transformation and mean ferrite grain size for different cooling rates are calculated. It is found that there is a good agreement between the calculated and experimental results.

  16. Progress in spin dynamics solid-state nuclear magnetic resonance with the application of Floquet-Magnus expansion to chemical shift anisotropy.

    Science.gov (United States)

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.

  17. Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

    Science.gov (United States)

    Haghgouyan, Behrouz; Shafaghi, Nima; Aydıner, C. Can; Anlas, Gunay

    2016-07-01

    A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K max from the DIC data. Samples have also been tested at T = 100 °C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio-Taylor-Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K max of the transforming material is higher than that of the transformation-suppressed material tested at 100 °C, suggesting transformation toughening. At 100 °C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress-strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.

  18. Use of Ionic Liquid as Green Catalyst, Reagent as Well as Reaction Medium in Chemical Transformations

    Institute of Scientific and Technical Information of China (English)

    Brindaban C. Ranu

    2005-01-01

    @@ 1Introduction The toxic and volatile nature of many organic solvents, particularly chlorinated hydrocarbons that are widely used in organic synthesis have posed a serious threat to the environment. Thus, design of organic solvent - free reaction and use of alternative green solvents like water, supercritical fluids, and ionic liquids have received tremendous attention in recent times in the area of green synthesis. The ionic liquids have been the subject of considerable current interest as environmentally benign reaction media in organic synthesis because of their unique properties of nonvolatility, noninf1ammability, and recyclability among others and during last few years ionic liquids have been successfully employed as green solvents for a variety of important reactions.However, the ability of ionic liquid as a clean catalyst and reagent has not been explored to any great extent although it is of much importance in the context of green synthesis.

  19. Sex pheromone of European grapevine moth (Lobesia botrana) its chemical transformations in sunlight and heat.

    Science.gov (United States)

    Ideses, R; Shani, A; Klug, J T

    1982-06-01

    Photo- and radical isomerization of (E, Z)-7,9-dodecadien-1-yl acetate (DDA) leads to an equilibrium mixture of all four possible geometric isomers of 7,9-DDA in the ratio ofE,E, 69-76%;Z,E, 11-13%;E, Z, 12-15%; andZ, Z, 1-3%. Iodine catalysis of the isomerization takes place even in dark at room temperature and is probably a radical reaction.

  20. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  1. 核电工程变压器过励磁能力研究%Study on Over-excitation Capability of Nuclear Power Plant Transformer

    Institute of Scientific and Technical Information of China (English)

    岳新亮; 贾鸿斌; 李英; 邹宇星

    2015-01-01

    由于出口核电工程用变压器运行环境的特殊性(低频率、电压不稳定),目前国家标准中的过励磁曲线无法满足发电机变压器组保护整定值计算的需要,对发电机、变压器乃至核电厂的安全运行都有极大的隐患.文章进行变压器过励磁能力的计算分析,开展了硅钢片材料在频率变化时的性能测试,对比了过电压、降频率两种方式或两种条件同时变化的过励磁,得出了设计此类变压器和二次整定保护的一些建议.%Due to the particularity of the operation environment (low frequency, voltage instability) of export nuclear power plant transformer, the current national standard of the over-excitation curve cannot meet the requirement of protection setting value calculation, which has hidden risk for the safe operation of generator, transformer and even the whole nuclear power plant. In this regard, calculation and analysis are carried out for the transformer over-excitation ability. Performance tests are carried out for the silicon steel sheet material in frequency changes. The over-excitation is compared for two ways of over-pressure and frequency reduction or two conditions change at the same time. Some suggestions are given for the design of such transformer, and protection of the secondary setting.

  2. Tox21Challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs

    Directory of Open Access Journals (Sweden)

    Ruili eHuang

    2016-01-01

    Full Text Available Tens of thousands of chemicals with poorly understood biological properties are released into the environment each day. High-throughput screening (HTS is potentially a more efficient and cost-effective alternative to traditional toxicity tests. Using HTS, one can profile chemicals for potential adverse effects and prioritize a manageable number for more in-depth testing. Importantly, it can provide clues to mechanism of toxicity. The Tox21 program has generated >50 million quantitative high-throughput screening (qHTS data points. A library of several thousands of compounds, including environmental chemicals and drugs, is screened against a panel of nuclear receptor and stress response pathway assays. The National Center for Advancing Translational Sciences (NCATS has organized an International data challenge in order to crowd-source data and build predictive toxicity models. This Challenge asks a crowd of researchers to use these data to elucidate the extent to which the interference of biochemical and cellular pathways by compounds can be inferred from chemical structure data. The data generated against the Tox21 library served as the training set for this modeling Challenge. The competition attracted participants from 18 different countries to develop computational models aimed at better predicting chemical toxicity. The winning models from nearly 400 model submissions all achieved >80% accuracy. Several models exceeded 90% accuracy, which was measured by area under the receiver operating characteristic curve (AUC-ROC. Combining the winning models with the knowledge already gained from Tox21 screening data are expected to improve the community’s ability to prioritize novel chemicals with respect to potential human health concern.

  3. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  4. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  5. Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    Lin LI; B.C. De Cooman; P. Wollants; Yanlin HE; Xiaodong ZHOU

    2004-01-01

    With the sublattice model, equilibrium compositions of ferrite (α) and austenite (γ) phases, as well as the volume percent of austenite (γ) at 780℃ in different TRIP steels were calculated. Concentration profiles of carbon, Mn, Al and Si in the steels were also estimated under the lattice fixed frame of reference so as to understand the complex mechanical behavior of TRIP steels after different isothermal bainitic transformation treatments. The effect of Si and Mn on transformation induced plasticity (TRIP) was discussed according to thermodynamic and kinetic analyses. It is recognized that Al also induces phase transformation in the steels but its TRIP effect is not as strong as that of Si.

  6. Microbial and chemical transformations of some 12,13-epoxytrichothec-9,10-enes.

    Science.gov (United States)

    Claridge, C A; Schmitz, H

    1978-07-01

    Resting cells of Streptomyces griseus, Mucor mucedo, and a growing culture of Acinetobacter calcoaceticus when mixed with compounds related to 12,13-epoxytrichothec-9-ene-4beta,15-diacetoxy-3alpha-ol(anguidine) produced a series of derivatives that were either partially hydrolyzed or selectively acylated. These derivatives showed marked differences in activities as assayed by antifungal and tissue culture cytotoxicity tests.

  7. Effect of Copper and Nickel on the Transformation Kinetics of Austempered Ductile Iron

    Science.gov (United States)

    Górny, Marcin; Tyrała, Edward; Lopez, Hugo

    2014-10-01

    The kinetics of reaction occurring during the austempering treatment of ductile iron (DI) containing different additions of Cu and Ni was investigated in this work. DI bars were heat treated in an instrumented dilatometer in order to follow the exhibited transformation kinetics. The dilatometric results indicated that the addition of Cu alone did not have a significant effect on the incubation times for the austempering transformation. Also, the addition of both, Cu and Ni resulted in a significant effect on reducing the transformation rates. It was found that the austempering process is characterized by two clearly distinguished transformation stages. In the initial stage, the addition of Cu, and to a greater extent, additions of both Cu and Ni led to reductions in the transformation rates shifting the maximum transformation rate values toward longer times. The outcome of this work indicates that during the first stage of austempering, nucleation of the ferrite plates occurs via a diffusionless mechanism while their growth is diffusion controlled. Moreover, after the maximum in the transformation rate has been reached, the growth of ferrite plates becomes dominant with the rate-limiting step becoming the diffusion of C into the surrounding austenite. A qualitative model for the austempering transformation is proposed in this work to account for the experimental observations.

  8. Chemical transformations of glucose to value added products using Cu-based catalytic systems.

    Science.gov (United States)

    Yepez, Alfonso; Pineda, Antonio; Garcia, Angel; Romero, Antonio A; Luque, Rafael

    2013-08-07

    Cu nanoparticles have been supported by two types of aluminosilicate materials with and without Zn in their composition in view of their application in the microwave-assisted conversion of glucose to valuable products via tandem formic acid-promoted dehydration (to 5-hydroxymethylfurfural--HMF) and further selective hydrogenation to 5-methylfurfuryl alcohol (MFA). Results show that interesting selectivities (up to 60% to MFA or HMF) could be achieved after short times of reaction (typically 2-30 min) using Cu-containing nanomaterials. Zn was found to play an interesting role in the selectivity to reduced products, even if present in very small quantities (0.2 wt%).

  9. Development and Evaluation of Model Algorithms to Account for Chemical Transformation in the Nearroad Environment

    Science.gov (United States)

    We describe the development and evaluation of two new model algorithms for NOx chemistry in the R-LINE near-road dispersion model for traffic sources. With increased urbanization, there is increased mobility leading to higher amount of traffic related activity on a global scale. ...

  10. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Yan; CHEN Yan; LIU Yu-Wen; LI Fei; LIU Jian-Hua; PENG Gui-Rong; WANG Wen-Kui

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze.

  11. Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304

    Institute of Scientific and Technical Information of China (English)

    Fang PENG; Xiang-huai DONG; Kai LIU; Huan-yang XIE

    2015-01-01

    The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones.

  12. Martensitic transformations in nanostructured nitinol: Finite element modeling of grain size and distribution effects

    DEFF Research Database (Denmark)

    Liu, Hong-Sheng; Mishnaevsky, Leon

    2013-01-01

    A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation, it was demonstra......A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation......, it was demonstrated that the energy barrier for martensitic phase transformation in nanocrystalline nitinol increase drastically with decreasing the grain size. Finite element simulations of phase transformations and structure evolution in nanocrystalline nitinol under mechanical (tensile) loading are carried out...... transformation are totally suppressed. Graded and localized distributions of grain sizes of nitinol were compared with nitinol samples with homogeneous grain size distribution. In the materials with localized region of small grains, it was observed that the martensite rich regions form first on the border...

  13. Health effects assessment of chemical exposures: ARIES methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-07-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs.

  14. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  15. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-02-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  16. Radiation chemical effects of X-rays on liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, R.A.; Preses, J.M.

    1998-11-01

    This review describes some of the chemical changes induced by photoelectrons which are released in liquids when X-rays are absorbed. Both experimental studies and theory are discussed. In part 1, the basic processes occurring upon absorption of X-rays are described. Parts 2 and 3 deal with hydrocarbon liquids; in part 2 the ion yields, including effects at K-edges, and in part 3, the yields of excited states. Part 4 discusses chemical effects of X-rays in aqueous solutions. The authors end with a summary of future needs and directions.

  17. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Sablayrolles C.

    2013-07-01

    Full Text Available This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite and cations (calcium, potassium, ammonium and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  18. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade plutonium dioxide powders and pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade plutonium dioxide powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium Sample Handling 8 to 10 Plutonium by Controlled-Potential Coulometry Plutonium by Ceric Sulfate Titration Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 11 to 18 Carbon (Total) by Direct Combustion–Thermal Conductivity 19 to 30 Total Chlorine and Fluorine by Pyrohydrolysis 31 to 38 Sulfur by Distillation Spectrophotometry 39 to 47 Plutonium Isotopic Analysis by Mass Spectrometry Rare Earth Elements by Spectroscopy 48 to 55 Trace Elements by Carrier–Distillation Spectroscopy 56 to 63 Impurities by ICP-AES Impurity Elements by Spark-Source Mass Spectrography 64 to 70 Moisture by the Coulomet...

  19. Effect of Niobium on Isothermal Transformation of Austenite to Ferrite in HSLA Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    CAO Jian-chun; LIU Qing-you; YONG Qi-long; SUN Xin-jun

    2007-01-01

    Using thermomechanical simulation experiment, the kinetics of the isothermal transformation of austenite to ferrite in two HSLA low-carbon steels containing different amounts of niobium was investigated under the conditions of both deformation and undeformation. The results of optical microstructure observation and quantitative metallography analysis showed that the kinetics of the isothermal transformation of austenite to ferrite in lower niobium steel with and without deformation suggests a stage mechanism, wherein there exists a linear relationship between the logarithms of holding time and ferrite volume fraction according to Avrami equation, whereas the isothermal transformation of austenite to ferrite in high niobium steel proceeds via a two stage mechanism according to micrographs, wherein, the nucleation rate of ferrite in the initial stage of transformation is low, and in the second stage,the rate of transformation is high and the transformation of residual austenite to ferrite is rapidly complete. Using carbon extraction replica TEM, niobium carbide precipitation for different holding time was investigated and the results suggested that NbC precipitation and the presence of solute niobium would influence the transformation of austenite to ferrite. The mechanism of the effect of niobium on the isothermal transformation was discussed.

  20. Anisotropy of chemical transformation from In2Se3 to CuInSe2 nanowires through solid state reaction.

    Science.gov (United States)

    Schoen, David T; Peng, Hailin; Cui, Yi

    2009-06-17

    In(2)Se(3) nanowires synthesized by the VLS technique are transformed by solid-state reaction with copper into high-quality single-crystalline CuInSe(2) nanowires. The process is studied by in situ transmission electron microscopy. The transformation temperature exhibits a surprising anisotropy, with In(2)Se(3) nanowires grown along their [0001] direction transforming at a surprisingly low temperature of 225 degrees C, while nanowires in a [11(2)0] orientation require a much higher temperature of 585 degrees C. These results offer a route to the synthesis of CuInSe(2) nanowires at a relatively low temperature as well as insight into the details of a transformation commonly used in the fabrication of thin-film solar cells.

  1. Uptake of chemicals from indoor air: Pathways and health effects

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2016-01-01

    Building occupants are exposed to manufactured chemicals. Exposure in the indoor environment can occur via non-dietary ingestion (e.g. indoor dust), inhalation and dermal absorption including dermal uptake directly from air. The extent of dermal uptake from air has been previously studied...... intake from inhalation. Further experiments have been conducted with nicotine and the results are similar. Some of the SVOCs present indoors may have adverse health effects or are categorized as potential endocrine-disrupting compounds. It has been suggested that the health effects of a chemical may...

  2. Effects of biochar application on transformation and chemical forms of C,N and P in soils with different pH%生物质炭对不同 pH 土壤中碳氮磷的转化与形态的影响

    Institute of Scientific and Technical Information of China (English)

    徐秋桐; 邱志腾; 章明奎

    2014-01-01

    clay content,rainfall,and temperature regimes.In recent years,there has been considerable interest in the use of biochar from pyrolysis of renewable biomass to sequester C and improve soil productivity.Much of the stimulus for this interest comes from research on the soils of the Amazon basin,known as Terra Preta de Indio,that contain variable quantities of organic black carbon considered to be of anthropogenic origin.Biochar can improve nutrient availability,cation exchange capacity,bulk density,and water-holding capacity,but these effects depend on the feedstock,prolysis conditions. It is important to evaluate the effects of biochar on soil fertility under different soil and climatic regimes to increase our understanding of potential interactions before widespread use of biochar in agricultural systems.Although biochar has been shown to increase soil fertility and productivity in the tropics,there is limited information about influences of biochar on transformation and chemical forms of C,N and P in soils.Therefore,an incubation experiment was conducted to study the effects of biochar application on transformation and chemical forms of C,N and P in soils with different pH. The experiment included four treatments,i.e.,control without application of any chemical fertilizers and biochar, conventional fertilization with application of chemical fertilizers,biochar treatment with application of biochar but without any chemical fertilizers,and conventional fertilization + biochar treatment with application of both biochar and chemical fertilizers.The treated soils were incubated at temperature of 20 35 ℃ for 12 months,and the incubated soils were characterized for different forms of C,N,and P and potential capacities of N leaching and volatilization loss. The results showed that application of biochar increased soil pH,particularly for acidic soil.Application of biochar increased significantly the accumulation of organic C,microbial biomass C and humic/fulvic acids(H/F)of

  3. The effects of nuclear structure on generalized parton distributions of 3He

    CERN Document Server

    Scopetta, S

    2005-01-01

    The effect of the nuclear medium on generalized parton distributions (GPDs) is studied for the 3He nucleus, through a realistic microscopic analysis. In Impulse Approximation, Fermi motion and binding effects, evaluated by modern potentials, are found to be larger than in the forward case and very sensitive to the details of nuclear structure at short distances.

  4. Cognitive effects of endocrine-disrupting chemicals in animals.

    Science.gov (United States)

    Schantz, S L; Widholm, J J

    2001-12-01

    A large number of chemical pollutants including phthalates, alkylphenolic compounds, polychlorinated biphenyls and polychlorinated dibenzodioxins, organochlorine pesticides, bisphenol A, and metals including lead, mercury, and cadmium have the ability to disrupt endocrine function in animals. Some of these same chemicals have been shown to alter cognitive function in animals and humans. Because hormonally mediated events play a central role in central nervous system development and function, a number of researchers have speculated that the changes in cognitive function are mediated by the endocrine-like actions of these chemicals. In this paper we review the evidence that cognitive effects of chemicals classified as environmental endocrine disruptors are mediated by changes in hormonal function. We begin by briefly reviewing the role of gonadal steroids, thyroid hormones, and glucocorticoids in brain development and brain function. We then review the endocrine changes and cognitive effects that have been reported for selected endocrine-disrupting chemicals, discuss the evidence for causal relationships between endocrine disruption and cognitive effects, and suggest directions for future research.

  5. Cleanup worker exposures to hazardous chemicals at a former nuclear weapons plant: piloting of an exposure surveillance system.

    Science.gov (United States)

    LaMontagne, A D; Van Dyke, M V; Martyny, J W; Ruttenber, A J

    2001-02-01

    Cleanup of former U.S. Department of Energy (DOE) nuclear weapons production facilities involves potential exposures to various hazardous chemicals. We have collaboratively developed and piloted an exposure database and surveillance system for cleanup worker hazardous chemical exposure data with a cleanup contractor at the Rocky Flats Environmental Technology Site (RFETS). A unique system feature is the incorporation of a 34-category work task-coding scheme. This report presents an overview of the data captured by this system during development and piloting from March 1995 through August 1998. All air samples collected were entered into the system. Of the 859 breathing zone samples collected, 103 unique employees and 39 unique compounds were represented. Breathing zone exposure levels were usually low (86% of breathing zone samples were below analytical limits of detection). The use of respirators and other exposure controls was high (87 and 88%, respectively). Occasional high-level excursions did occur. Detailed quantitative summaries are provided for the six most monitored compounds: asbestos, beryllium, carbon tetrachloride, chromium, lead, and methylene chloride. Task and job title data were successfully collected for most samples, and showed specific cleanup activities by pipe fitters to be the most commonly represented in the database. Importantly, these results demonstrate the feasibility of the implementation of integrated exposure database and surveillance systems by practicing industrial hygienists employed in industry as well as the preventive potential and research uses of such systems. This exposure database and surveillance system--the central features of which are applicable in any industrial work setting--has enabled one of the first systematic quantitative characterizations of DOE cleanup worker exposures to hazardous chemicals.

  6. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    Science.gov (United States)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  7. Nonlinear model of a distribution transformer appropriate for evaluating the effects of unbalanced loads

    Science.gov (United States)

    Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago

    Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.

  8. pH-sensitive transformation of the peptidic bolaamphiphile self-assembly: exploitation for the pH-triggered chemical reaction.

    Science.gov (United States)

    Kwak, Jinyoung; Lee, Sang-Yup

    2014-03-01

    Control of the macroscopic self-assembled structure of the amphiphilic molecule has been a challenging issue in micro/nanotechnologies. In this study, the microtubular self-assembly of a novel peptidic bolaamphiphile, bis(N-α-amido-glycylglycine)-1,10-decene dicarboxylate, which undergoes reversible structural transformation between microtubes and precipitates as a function of pH, was exploited for pH-triggered chemical release. At neutral and basic conditions above a pH of 6, the peptidic bolaamphiphilic molecule self-assembled to form tubular structures several hundreds of micrometers in length. When the solution became acidic below a pH of 4, the tubular assembly disintegrated to form aggregated precipitates. The reversible transformation of precipitate to microtube was achieved by raising the pH above 6. From the Raman spectroscopy results, it was revealed that the hydrogen bonds of the amide group and carboxylate were enhanced under the acidic conditions. These variation of the hydrogen bonds resulted in precipitation of peptidic bolaamphiphilic molecules while rupturing the microtubular structure. The pH-sensitive microscopic structural transformation was exploited for release of a chemical in which the pH-triggered release of a model chemical, a fluorescence dye of ANS, was demonstrated. The ANS dye was released gradually with decreasing pH, which suggests gradual disintegration of the microtubular self-assembly. Furthermore, this pH-triggered release of a chemical was exploited for the chemical reaction of gold ion reduction to produce solid clusters. This study demonstrated the reversible transformation of peptidic bolaamphiphile and its application as a pH-sensitive host matrix.

  9. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Ralph R C [Los Alamos National Laboratory; Plesko, Catherine S [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory

    2009-01-01

    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with

  10. The Varying Effects of Uniaxial Compressive Stress on the Bainitic Transformation under Different Austenitization Temperatures

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2016-05-01

    Full Text Available In this study, thermal simulation experiments under different austenitization temperatures and different stress states were conducted. High-temperature laser scanning confocal microscopy (LSCM, thermal dilatometry, and scanning electron microscope (SEM were used to quantitatively investigate the effects of the uniaxial compressive stress on bainitic transformation at 330 °C following different austenitization temperatures. The transformation plasticity was also analyzed. It was found that the promotion degree of stress on bainitic transformation increases with the austenitization temperature due to larger prior austenite grain size as well as stronger promoting effect of mechanical driving force on selected variant growth at higher austenitization temperatures. The grain size and the yield strength of prior austenite are other important factors which influence the promotion degree of stress on bainitic transformation, besides the mechanical driving force provided by the stress. Moreover, the transformation plasticity increases with the austenitization temperature.

  11. The effects of chemical propulsion on the environment

    Science.gov (United States)

    Bennett, R. R.; Hinshaw, J. C.; Barnes, M. W.

    This paper seeks to quantify the effects of chemical propulsion exhaust on both the local launch site and the global environments. Four major areas of concern are discussed: the stratospheric ozone, acid rain, toxicity, and the greenhouse effect. The environmental impacts of both solid and liquid rocket propulsion systems are evaluated. The exhaust species and launch profile of the Space Shuttle, which injects the greatest mass of exhaust products into the atmosphere of any current system, are discussed in some detail. Model calculations predict a global stratospheric ozone reduction of about 0.01% due to chemical propulsion. Acid rain due to the HCl in solid rocket exhaust has a small measurable impact on the local environment, with the mortalities of some plants and small fish very near (<2500 ft) the launch site having been documented. Based on history, the handling of potentially toxic species from the use of chemical propulsion systems is manageable. The relative contribution of chemical propulsion to the global CO 2 burden, the increase of which may lead to global warming, is insignificant. It appears that the perturbation to the natural environment caused by chemical propulsion exhaust is very small and manageable, even for the most optimistic projections of future launch rates.

  12. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  13. Relations of FMmlet Transform to Some Integral Transforms

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; DAIQionghai; WANGDianjun; LIYanda

    2004-01-01

    In this paper, we explore the relationships between FMmlet transform and some of the existing integral transforms, namely, the chirplet transform, dispersion transform, wavelet transform, chirp-Fourier transform, Short-time fourier transform (STFT), Gabor transform, Fourier transform, cosine transform, sine transform,Hartley transform, Laplace transform, z-transform, Mellintransform, Hilbert transform, autocorrelation function,cross-correlation function, energy, and the mean value.It is shown that all of these transforms are subspaces of FMmlet transform with specific parameters.

  14. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  15. Effect of silicon and prior deformation of austenite on isothermal transformation in low carbon steels

    Institute of Scientific and Technical Information of China (English)

    Minghui CAI; Hun DING; Jiansu ZHANG; Long LI

    2009-01-01

    Isothermal transformation (TTT) behavior of the low carbon steels with two Si con-tents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more ho-mogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calcu-lation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.

  16. The gene transformer-2 of Sciara (Diptera, Nematocera and its effect on Drosophila sexual development

    Directory of Open Access Journals (Sweden)

    Ruiz María F

    2011-03-01

    able to form a complex with the endogenous Drosophila Transformer protein that controls the female-specific splicing of the Drosophila doublesex pre-mRNA. However, it appears that the complex formed between the Drosophila Transformer protein and the Sciara Transformer-2 protein is less effective at inducing the female-specific splicing of the endogenous Drosophila doublesex pre-mRNA than the DrosophilaTransformer-Transformer2 complex. This suggests the existence of species-specific co-evolution of the Transformer and Transformer-2 proteins.

  17. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    Science.gov (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  18. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  19. EFFECTS OF INTERSTITIAL IMPURITIES ON PHASE TRANSFORMATION OF Ti-Al ALLOYS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    According to the Average Lattice and Atom Models of the Empirical Electron Theory of Solids and Molecules(EET), effects of interstitial impurities on valence electron structures and phase transformation of Ti-Al alloys are analyzed, and descendant degree of bond energy, melting point and liquidus temperatures affected by interstitial impurities are calculated by the bond energy formula of the EET, and then the main experimental results which are not confirmed about phase transformation in Ti-Al alloys are explained.The results are that, because of the effects of interstitial impurities, atom states increase, bond structures are seriously anisotropic, β→α transformation is hindered, and the phase transformation in an intermediate content is very complex. Also, the melting point and liquidus temperatures decrease, and average decreased degree is estimated through approximation by the EET.

  20. Effect of the interactions and environment on nuclear activity

    CERN Document Server

    Sabater, J; Argudo-Fernández, M

    2012-01-01

    We present a study of the prevalence of optical and radio nuclear activity with respect to the environment and interactions in a sample of SDSS galaxies. We defined a local density parameter and a tidal forces estimator and used a cluster richness estimator from the literature. The possible correlations between these parameters were removed using a principal component analysis. We applied a stratified statistical method that takes into account the effect of possible confounding factors like the galaxy mass. We found that the prevalence of optical AGN is a factor 2-3 lower in the densest environments, but increases by a factor of ~2 in the presence of strong one-on-one interactions. The importance of galaxy interactions decreases from star-forming nuclei (SFN) to Seyferts to LINERs to passive galaxies, in accordance with previous suggestions of an evolutionary time-sequence. The fraction of radio AGN increases strongly towards denser environments, and is enhanced by galaxy interactions. Overall, the results ag...

  1. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  2. Laboratory simulations of the transformation of peas as a result of heat treatment: changes of the physical and chemical properties

    NARCIS (Netherlands)

    Braadbaart, F.; Boon, J.J.; Veld, H.; David, P.; Bergen, P.F. van

    2004-01-01

    The residues of heated organic remains, usually called carbonized or charred remains, are ubiquitous in the archaeological record and are often used to interpret certain aspects of past ways of living. This study focuses on the physical and chemical alterations, both as a function of temperature and

  3. Endocrine disrupting chemicals – probability of adverse environmental effect

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2015-03-01

    Full Text Available The paper presents some information about current state of knowledge of the risk due to exposure to endocrine disrupting chemicals (EDCs. Endocrine disruptors are defined as chemicals substances with either agonist or antagonist endocrine effects in human and wildlife. Exposure to EDCs in animals models correlate positively with an increased incidence of malformations of genital tract, on neoplasmas, obesity, alternations on male and female reproduction and changes in neuroendocrinology and behavior. Results from animal models, human clinical observations and epidemiological studies converge to implicate EDCs as a significant risk to public health.

  4. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases.

    Science.gov (United States)

    Sosnovsky, Denis V; Jeschke, Gunnar; Matysik, Jörg; Vieth, Hans-Martin; Ivanov, Konstantin L

    2016-04-14

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  5. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    Science.gov (United States)

    Sosnovsky, Denis V.; Jeschke, Gunnar; Matysik, Jörg; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-04-01

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  6. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  7. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  8. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    Science.gov (United States)

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  9. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge

    KAUST Repository

    Alidina, Mazahirali

    2014-06-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each receiving a different primary substrate, were utilized to simulate the dominant bulk organic carbon present in MAR systems receiving wastewater effluent of varying quality and having undergone different degrees of pre-treatment, as well as organic carbon prevalent at different stages of subsurface travel. Each pair of columns consisted of duplicate set-ups receiving the same feed solution with only one pre-exposed to a suite of eight TOrCs for approximately ten months. Following the pre-exposure period, a spiking experiment was conducted in which the non-exposed columns also received the same suite of TOrCs. TOrC attenuation was quantified for the pre- and non-exposed columns of each pair during the spiking experiment. The microbial community structure and function of these systems were characterized by pyrosequencing of 16S rRNA gene and metagenomics, respectively. Biotransformation rather than sorption was identified as the dominant removal mechanism for almost all the TOrCs (except triclocarban). Similar removal efficiencies were observed between pre-exposed and non-exposed columns for most TOrCs. No obvious differences in microbial community structure were revealed between pre- and non-exposed columns. Using metagenomics, biotransformation capacity potentials of the microbial community present were also similar between pre- and non-exposed columns of each pair. Overall, the pre-exposure of MAR systems to TOrCs at ng/L levels did not affect their attenuation and had no obvious influence on the resulting microbial community structure and function. Thus, other factors such as bioavailability of the primary substrate play a greater role regarding biotransformation of TOrCs. These results indicate that MAR systems adapted to a

  10. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  11. Effective conductivity of chemically deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Robles, M. [Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca (Mexico). Fac. de Ciencias; Tagueena-Martinez, J. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar; Del Rio, J.A. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar

    1997-01-30

    Chemically deposited thin films have multiple applications. However, as a result of their complex structure, their physical properties are very difficult to predict. In this paper, we use an effective medium approach to model these heterogeneous systems. We extend Thorpe`s formula for the effective electrical conductivity of elliptical holes randomly distributed in a matrix to a system composed of conducting ellipses in a conducting matrix. This extension is used to calculate the effective electrical conductivity of polycrystalline chemically deposited ZnO thin films. We compare experimental results obtained by two different deposition methods: spray pyrolysis and successive ion layer adsorption and reaction (SILAR) reported here. We select the elliptical geometric parameters from microstructural data. Good agreement between the experimental measurements and our calculation is obtained. In addition, we present a new proof of the reciprocity theorem used to derive the theoretical relation. (orig.)

  12. Effect of Lanthanum on Nitrification, Phosphorus Transformation and Phenol Decomposition in Red Soil

    Institute of Scientific and Technical Information of China (English)

    褚海燕; 朱建国; 谢祖彬; 李振高; 曹志洪; 曾青

    2002-01-01

    The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and P transformation while its high concentration has inhibitory effects, and the inhibition is strengthened with increasing concentration of La. La has strongly inhibitory effect on soil phenol decomposition and the inhibition is strengthened with increasing concentration of La. When the incubation time is prolonged, the inhibitory effect of La on soil nitrification and phenol decomposition tends to decrease.

  13. Towards an improved description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations

    Directory of Open Access Journals (Sweden)

    J.-M. Brankart

    2011-10-01

    Full Text Available The objective of this paper is to investigate if the description of ocean uncertainties can be significantly improved by applying a local anamorphic transformation to each model variable, and by making the assumption of joint Gaussianity for the transformed variables, rather than for the original variables. For that purpose, it is first argued that a significant improvement can already be obtained by deriving the local transformations from a simple histogram description of the marginal distributions. Two distinctive advantages of this solution for large size applications are the conciseness and the numerical efficiency of the description. Second, various oceanographic examples are used to evaluate the effect of the resulting piecewise linear local anamorphic transformations on the spatial correlation structure. These examples include (i stochastic ensemble descriptions of the effect of atmospheric uncertainties on the ocean mixed layer, and of wind uncertainties or parameter uncertainties on the ecosystem, and (ii non-stochastic ensemble descriptions of forecast uncertainties in current sea ice and ecosystem pre-operational developments. The results indicate that (i the transformation is accurate enough to faithfully preserve the correlation structure if the joint distribution is already close to Gaussian, and (ii the transformation has the general tendency of increasing the correlation radius as soon as the spatial dependence between random variables becomes nonlinear, with the important consequence of reducing the number of degrees of freedom in the uncertainties, and thus increasing the benefit that can be expected from a given observation network.

  14. Towards an improved description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations

    Directory of Open Access Journals (Sweden)

    J.-M. Brankart

    2012-03-01

    Full Text Available The objective of this paper is to investigate if the description of ocean uncertainties can be significantly improved by applying a local anamorphic transformation to each model variable, and by making the assumption of joint Gaussianity for the transformed variables, rather than for the original variables. For that purpose, it is first argued that a significant improvement can already be obtained by deriving the local transformations from a simple histogram description of the marginal distributions. Two distinctive advantages of this solution for large size applications are the conciseness and the numerical efficiency of the description. Second, various oceanographic examples are used to evaluate the effect of the resulting piecewise linear local anamorphic transformations on the spatial correlation structure. These examples include (i stochastic ensemble descriptions of the effect of atmospheric uncertainties on the ocean mixed layer, and of wind uncertainties or parameter uncertainties on the ecosystem, and (ii non-stochastic ensemble descriptions of forecast uncertainties in current sea ice and ecosystem pre-operational developments. The results indicate that (i the transformation is accurate enough to faithfully preserve the correlation structure if the joint distribution is already close to Gaussian, and (ii the transformation has the general tendency of increasing the correlation radius as soon as the spatial dependence between random variables becomes nonlinear, with the important consequence of reducing the number of degrees of freedom in the uncertainties, and thus increasing the benefit that can be expected from a given observation network.

  15. Passive permeability and effective pore size of HeLa cell nuclear membranes.

    Science.gov (United States)

    Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K

    2016-09-01

    Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors.

  16. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    CERN Document Server

    Sagun, V V; Ivanytskyi, A I; Oliinychenko, D R; Mishustin, I N

    2016-01-01

    Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  17. Similarity transformation for equilibrium flows, including effects of blowing and suction

    CERN Document Server

    Chen, Xi

    2016-01-01

    A similarity transformation for the mean velocity profiles is obtained in sink flow turbulent boundary layers (TBL), including effects of blowing and suction. It is based on symmetry analysis which transforms the governing partial differential equations (for mean mass and momentum) into an ordinary differential equation and yields a new result including an exact, linear relation between the mean normal ($V$) and streamwise ($U$) velocities. A characteristic length is further introduced which, under a first order expansion in wall blowing/suction velocity, leads to the similarity transformation for $U$. This transformation is shown to be a group invariant under a generalized symmetry analysis and maps different $U$ profiles under different blowing/suction conditions into a (universal) profile under no blowing/suction. Its inverse transformation enables predictions of all mean quantities in the mean mass and momentum equations - $U$, $V$ and the Reynolds shear stress - in good agreement with direct numerical si...

  18. Coordination chemistry of the {sup 212}Pb/{sup 212}Bi nuclear transformation: Alpha-emitting radiopharmaceuticals. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  19. Regulatory focus and burnout in nurses: The mediating effect of perception of transformational leadership.

    Science.gov (United States)

    Shi, Rui; Zhang, Shilei; Xu, Hang; Liu, Xufeng; Miao, Danmin

    2015-12-01

    This correlation study investigated the relationship between nurses' regulatory focus and burnout, as mediated by their perceptions of transformational leadership, using a cross-sectional research design with anonymous questionnaires. In July-August 2012, data were collected from 378 nurses from three hospitals in Shaanxi Province, China, using self-report questionnaires for measuring the nurses' regulatory focus, their level of burnout and their perception of whether the leadership of their supervisor was transformational. Structural equation modelling and bootstrapping procedures were used to identify the mediating effect of their perceptions of transformational leadership. The results supported our hypothesized model. The type of regulatory focus emerged as a significant predictor of burnout. Having a perception of transformational leadership partially mediated the relationship between regulatory focus and burnout. Having a promotion focus reduced burnout when the participants perceived transformational leadership, whereas having a prevention focus exhibited the opposite pattern. The mediating effect of the perception of transformational leadership suggests that a promotion focus may help diminish burnout, directly and indirectly. Nurse managers must be aware of the role of a regulatory focus and cultivate promotion focus in their followers.

  20. [Effect of He-Ne-laser irradiation on plasmid transformation of Escherichia coli bacteria].

    Science.gov (United States)

    Tiflova, O A; Leonov, P G; Karbysheva, E A; Shakhnabatian, L G

    1997-01-01

    The influence of the of radiation a He-Ne laser (632.8 nm, 30 W/m2, 5-20 J/m2) on the transformation of Escherichia coli cells with plasmid DNA was studied. The irradiation of a mixture of bacterial cells and plasmid DNA increased the transformation efficiency 2.5-3 times, thus offering an alternative to the heat treatment commonly used. In contrast to the standard techniques, the laser-induced increase in the transformation efficiency was accompanied by a 1.7- to 2-fold increase in cell survival. The effect of the 632.8-nm light, know to be absorbed by membrane porphyrin components, is supposed to be mediated via a modification in the replication and transformation DNA-membrane complexes in E. coli cells.

  1. Effects of HSHPT on the martensitic transformation behaviour of an NiTi alloy

    Directory of Open Access Journals (Sweden)

    Gurau Carmela

    2015-01-01

    Full Text Available High speed high pressure torsion (HSHPT is a novel severe plastic deformation technique that is used to produce bulk ultrafine-grained nickel-titanium shape memory alloys. In this study, the effect of grain refinement on phase transformation was investigated in a near equiatomic NiTi shape memory alloy subjected to processing by this technique. Phase transformations involving different degrees of deformation and stability of thermally-induced phase transformations were analyzed by differential scanning calorimetry (DSC. The measurements suggest that the martensitic transformation occurred even when the highest degree of deformation was applied. Optical microscopy (OM, scanning electron microscopy (SEM and transmission electron microscopy (TEM investigations bring to light that the true strain applied controls the evolution of the microstructure. The results are presented and discussed in detail in this paper.

  2. Chemical and structural effects of base modifications in messenger RNA

    Science.gov (United States)

    Harcourt, Emily M.; Kietrys, Anna M.; Kool, Eric T.

    2017-01-01

    A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification -- the epitranscriptome -- is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles.

  3. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    WANG Kang; ZHANG RenDuo; SHENG Feng

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development.In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment.Field dye staining experiments were conducted at different soils with various irrigation amount.Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency.Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage effi-ciency, and uniformity.Under the same irrigation condition, soil chemical distributions were more het-erogeneous than soil water distributions.The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount.Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount.Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uni-formity, which resulted in high environmental risks of groundwater pollution.

  4. The DNA binding property of PML/RARA but not the integrity of PML nuclear bodies is indispensable for leukemic transformation.

    Directory of Open Access Journals (Sweden)

    Xi Liu

    Full Text Available PML/RARA is the oncoprotein driving acute promyelocytic leukemia (APL. It suppresses genes expression by recruitment of a number of transcriptional repressors, resulting in differentiation block and malignant transformation of hematopoietic cells. Here, we found that mice primary hematopoietic progenitor cells (HPCs, transduced by DNA-binding-defective PML/RARA mutants, were deficient in colony formation. Further experiments showed that DNA-binding-defective PML/RARA mutants could not repress the transcription of retinoic acid regulated genes. Intriguingly, there were no significant differences of the micro-speckled intracellular distribution between the mutants and wild-type PML/RARA. Some retinoic acid target genes regulated by PML/RARA are involved in not only differentiation block but also hematopoietic cell self-renewal. Altogether, our data demonstrate that direct DNA-binding is essential for PML/RARA to immortalize hematopoietic cells, while disruption of PML-nuclear body does not seem to be a prerequisite for hematopoietic cell transformation.

  5. Theoretical Analysis of Lattice Parameter Effect on Order-Disorder Transformation Based on Pair Potential

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on pair potential, the Bragg Williams (B-W) model is modified to take into account the effect of the lattice parameter on theoretical order-disorder transformation analysis. The main purpose of this work is to understand the basic aspects of this effect and related reasonable model on order-disorder transformation. In the present approach, the configuration free energy is chosen as function of the lattice parameter and the long-range order. This energy is calculated through Taylor's expansion, starting from the disordered state. It was found that the configuration free energy has been strongly modified when the lattice parameter is taken into account. It was also found only one type of order-disorder transformation exists in AB alloy and three kinds of order-disorder transformations for non-equiatomic alloy system such as A3B alloy. This result is in agreement with experiments.

  6. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Toman, G.; Gazdzinski, R. [Sandia National Labs., Albuquerque, NM (United States)

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  7. Effect of chromosome tethering on nuclear organization in yeast.

    Directory of Open Access Journals (Sweden)

    Barış Avşaroğlu

    Full Text Available Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.

  8. Empowerment and Trust as Mediators of the Relationship between Transformational Leadership and Organizational Effectiveness

    OpenAIRE

    Agron HOXHA

    2016-01-01

    The purpose of this study was to examine the mediating role of trust and empowerment on the relationships between transformational leadership and organizational effectiveness. A total of 457 employees participated, 193 of whom were males, with ages ranged from 20 to 56 years. Participants were sampled from senior, middle and lower positions in the organizational structure. Significant positive relationships were observed between transformational leadership, trust, empowerment and organi...

  9. The effect of realistic nuclear charge distributions on isotope shifts and towards the extraction of higher order nuclear radial moments

    CERN Document Server

    Papoulia, A; Ekman, J

    2016-01-01

    Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...

  10. [Stressful effects of chemical toxins at low concentrations].

    Science.gov (United States)

    Parfeniuk, S B; Khrenov, M O; Novoselova, T V; Glushkova, O V; Lunin, S M; Fesenko, E E; Novoselova, E G

    2010-01-01

    Effects of three chemical compounds: ammonia, diethyl ether, and acetic acid, known as common environmental contaminants in technogenic accidents, were investigated in vivo and in vitro in low concentrations. When added in cultivation media, each of the chemicals has affected peritoneal macrophages and spleen lymphocytes isolated from male NMRI mice and led to a rise in the production of several cytokines, particularly the tumor necrosis factor-alpha and interferon-gamma, as well as the expression of the inducible form of heat shock proteins (HSP72 and HSP90-alpha) and in the activation of signal cascades NF-kappaB and SAPK/JNK. The increase of the nitric oxide (NO) production in macrophages has been observed only when ammonia was added in cultivation media. Also, low concentrations of all compounds investigated led to the activation of the expression of receptor protein TLR4. When mice were exposed to airborne toxic contaminants in a hermetically sealed experimental chamber, an increase in the concentrations of cytokines, heat shock proteins, and signal proteins in immune cells was also observed in response to low concentrations of all chemicals investigated. Similarly to in vitro experiments, the NO production was augmented only in the presence of the airborne ammonia. The results indicate the environmental hazard of chemical contaminants even in rather low concentrations, which nevertheless lead to the stress response.

  11. Nuclear effects hardened shelters

    Science.gov (United States)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  12. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    Science.gov (United States)

    Das, R.; Odom, A. L.

    2007-12-01

    .3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.

  13. The Effect of Transformational Leadership Behavior on Organizational Culture: An Application in Pharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Sinem Aydogdu

    2011-01-01

    Full Text Available In this study, conducted on 96 employees from production sector in a pharmaceutical company, the effect of transformational leadership behavior on organizational culture is investigated to determine statistically significant relations. The results of the study support the hypotheses. Transformational leadership behavior has a positive and significant correlation between the components of organizational culture such as long / short term orientation, masculinity / feminity, power distance, individualism / collectivisim and uncertainity avoidance.

  14. Health and environmental effects of nuclear weapons; Helse- og miljoevirkninger av atomvaapen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Since 1981 WHO has been studying and reporting on the effects of nuclear war on health and health services. This report provides information on the subject and refers to earlier related work of WHO. It forms the basis for a request from WHO to the International Court of Justice regarding the legality of the use of nuclear weapons. 15 refs.

  15. EFFECTS OF TRANSFORMATIONAL LEADERSHIP, PERSONAL VALUE, JOB SATISFACTION ON LECTURER PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Kuswandi,

    2015-04-01

    Full Text Available This paper aims to examine and analyze about the influence of transformational leadership on personal values, job satisfaction on lecturer performance in South Kalimantan. The sample used is a number of 145 respondents in South Kalimantan, Indonesia. The technique of sampling is stratified random sampling. Statistical analysis techniques used is Structural Equation Modeling (SEM with AMOS 18 program. Results of the hypothesis in this study: (1 Transformational leadership has significant effect on the Personal Value. (2 Transformational leadership do not have significant effect on job satisfaction. (3 Personal Value has significant effect on job satisfaction (4 Job satisfaction has significant effect on the performance of the lecturer and (5 Personal values has significant effect on performance lecturer.

  16. Diversion of Nuclear, Biological, and Chemical Weapons Expertise from the Former Soviet Union: Understanding an Evolving Problem

    Science.gov (United States)

    2005-01-01

    Chemical cases - Syria and Gen. Kuntsevich - Aum RAND 3. DEMAND FOR PROLIFERATION-CRITICAL KNOWLEDGE This section examines the scope and nature of...prominent example of demand for chemical weapons knowledge is Syria, where General Anatoly Kuntsevich , head of Russia’s chemical weapons program, built a

  17. Study of wavelet transform type high-current transformer

    Institute of Scientific and Technical Information of China (English)

    卢文科; 朱长纯; 刘君华; 张建军

    2002-01-01

    The wavelet transformation is applied to the high-current transformer.The high-current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high-current.The principle of the transformer is the Hall direct-measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be-cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.

  18. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  19. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process.

    Science.gov (United States)

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.

  20. Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jianbo; Sun, Suqin; Zhou, Qun

    2013-11-01

    Fourier transform infrared microspectroscopy is a powerful tool to obtain knowledge about the spatial and/or temporal distributions of the chemical compositions of plants for better understanding of their biological properties. However, the chemical morphologies of plant leaves in the plane of the blade are barely studied, because sections in this plane for mid-infrared transmission measurements are difficult to obtain. Besides, native compositions may be changed by chemical reagents used when plant samples are microtomed. To improve methods for direct infrared microspectroscopic imaging of plant leaves in the plane of the blade, the bulk and surface chemical morphologies of nonmicrotomed Ginkgo biloba leaves were characterized by near-infrared transmission and mid-infrared attenuated total reflection microspectroscopic imaging. A new self-modeling curve resolution procedure was proposed to extract the spectral and concentration information of pure compounds. Primary and secondary metabolites of secretory cavities, veins, and mesophylls of Ginkgo biloba leaf blades were analyzed, and the distributions of cuticle, protein, calcium oxalate, cellulose, and ginkgolic acids on the adaxial surface were determined. By the integration of multiple infrared microspectroscopic imaging and chemometrics methods, it is possible to analyze nonmicrotomed leaves and other plant samples directly to understand their native chemical morphologies in detail.

  1. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  2. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    Science.gov (United States)

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  3. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  4. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  5. Effect of calcination temperature on phase transformation of HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Center of Nanoscience and Nanotechnology, Panjab University, Chandigarh-160 014 (India); Kaur, Charanpreet [Center of Nanoscience and Nanotechnology, Panjab University, Chandigarh-160 014 (India); Kaur, Ramneek; Kaur, Jagdish [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2015-08-28

    Oxides nanomaterials exhibit unique physical, chemical and structural properties and motivated a big research that focus in the integration of these materials for various optoelectronic device applications. In present work, hafnium oxide (HfO{sub 2}) nanoparticles (NPs) have been synthesized using precipitation method. Hafnium tetrachloride and sodium hydroxide has been used as starting precursors. Prepared oxide material has been characterized by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and UV-Vis spectroscopy. The phase transformation from amorphous to monoclinic is observed with the increase in calcination temperature from 500 °C and 800 °C. In FTIR spectra, the characteristic bands at ν ∼ 758.53 and 509.57 cm{sup −1} reveals the monoclinic phase of prepared HfO{sub 2} NPs. UV-Vis spectroscopy shows an absorption peak at 204 nm and the bandgap calculated is 6.07 eV.

  6. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  7. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tobias, E-mail: tobias.schulze@ufz.d [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Sara [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Fraunhofer Institute of Toxicology and Experimental Medicine, Department of Chemical Risk Assessment, Nikolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Schymanski, Emma; Ohe, Peter Carsten von der [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Schmitt-Jansen, Mechthild; Altenburger, Rolf [UFZ Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig (Germany); Streck, Georg; Brack, Werner [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-05-15

    The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC{sub 50} of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log K{sub ow} = 3.62) compared with DCF (log D{sub ow} = 2.04) at pH 7.0. - Effect-directed analysis of irradiated diclofenac results in the identification of one photo-transformation product responsible for the enhanced toxicity to Scenedesmus vacuolatus.

  8. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  9. The effects of transformational and change leadership on employees' commitment to a change: a multilevel study.

    Science.gov (United States)

    Herold, David M; Fedor, Donald B; Caldwell, Steven; Liu, Yi

    2008-03-01

    The effects of transformational leadership on the outcomes of specific change initiatives are not well understood. Conversely, organizational change studies have examined leader behaviors during specific change implementations yet have failed to link these to broader leadership theories. In this study, the authors investigate the relationship between transformational and change leadership and followers' commitment to a particular change initiative as a function of the personal impact of the changes. Transformational leadership was found to be more strongly related to followers' change commitment than change-specific leadership practices, especially when the change had significant personal impact. For leaders who were not viewed as transformational, good change-management practices were found to be associated with higher levels of change commitment.

  10. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...

  11. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, R.G.; Meier, C.A. (eds.)

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  12. Antifoaming effect of chemical compounds in manure biogas reactors.

    Science.gov (United States)

    Kougias, P G; Tsapekos, P; Boe, K; Angelidaki, I

    2013-10-15

    A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam reduction was evaluated at concentration of 0.05%, 0.1% and 0.5% v/v(sample), in raw and digested manure. Moreover, two antifoam injection methods were compared for foam reduction efficiency. Natural oils (rapeseed and sunflower oil), fatty acids (oleic, octanoic and derivative of natural fatty acids), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor.

  13. Relations and effects of transformational leadership: a comparative analysis with traditional leadership styles.

    Science.gov (United States)

    Molero, Fernando; Cuadrado, Isabel; Navas, Marisol; Morales, J Francisco

    2007-11-01

    This study has two main goals: (a) to compare the relationship between transformational leadership and other important leadership styles (i.e., democratic versus autocratic or relations- and task-oriented leadership) and (b) to compare the effects of transformational leadership and the other styles on some important organizational outcomes such as employees' satisfaction and performance. For this purpose, a sample of 147 participants, working in 35 various work-teams, was used. Results show high correlations between transformational leadership, relations-oriented, democratic, and task-oriented leadership. On the other hand, according to the literature, transformational leadership, especially high levels, significantly increases the percentage of variance accounted for by other leadership styles in relevant organizational outcome variables (subordinates' performance, satisfaction and extra effort).

  14. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    Science.gov (United States)

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  15. Effect of gamma-strength on nuclear reaction calculations

    CERN Document Server

    Kadenko, Igor; Bondar, Borys; Gorbachenko, Oleksandr; Leshchenko, Borys; Solodovnyk, Kateryna; Tkach, Oleksandr; Zheltonozhskyi, Viktor

    2016-01-01

    The results of the study of gamma-transition description in fast neutron capture and photofission are presented. Recent experimental data were used, namely, the spectrum of prompt gamma-rays in the energy range 2{\\div}18 MeV from 14-MeV neutron capture in natural Ni and isomeric ratios in primary fragments of photofission of the isotopes of U, Np and Pu by bremsstrahlung with end-point energies $E_e$= 10.5, 12 and 18 MeV. The data are compared with the theoretical calculations performed within EMPIRE 3.2 and TALYS 1.6 codes. The mean value of angular momenta and their distributions were determined in the primary fragments $^{84}$Br, $^{97}$Nb, $^{90}$Rb, $^{131,133}$Te, $^{132}$Sb, $^{132,134}$I, $^{135}$Xe of photofissions. An impact of the characteristics of nuclear excited states on the calculation results is studied using different models for photon strength function and nuclear level density.

  16. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I, E-mail: saiful@mail.ucf.edu [Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)

    2010-04-23

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm{sup 2} V{sup -1} s{sup -1} respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  17. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2016-12-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm—Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  18. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  19. Effect of Circuit Breaker Shunt Resistance on Chaotic Ferroresonance in Voltage Transformer

    Directory of Open Access Journals (Sweden)

    RADMANESH, H.

    2010-08-01

    Full Text Available Ferroresonance or nonlinear resonance is a complex electrical phenomenon, which may cause over voltages and over currents in the electrical power system which endangers the system reliability and continuous safe operating. This paper studies the effect of circuit breaker shunt resistance on the control of chaotic ferroresonance in a voltage transformer. It is expected that this resistance generally can cause ferroresonance dropout. For confirmation this aspect Simulation has been done on a one phase voltage transformer rated 100VA, 275kV. The magnetization characteristic of the transformer is modeled by a single-value two-term polynomial with q=7. The simulation results reveal that considering the shunt resistance on the circuit breaker, exhibits a great mitigating effect on ferroresonance over voltages. Significant effect on the onset of chaos, the range of parameter values that may lead to chaos along with ferroresonance voltages has been obtained and presented.

  20. Department of Defense Chemical, Biological, Radiological, and Nuclear Defense Program. FY2003-2005 Performance Plan

    Science.gov (United States)

    2004-05-01

    Pathogenic Orthopox Viruses (DTO CB54) Determined the optimum dose of cidofovir in the appropriate non- human primate model using both the lethal...efficacy studies) required for a supplemental New Drug Application for cidofovir and provide technical data and support to the drug license holder...efficacy rule. Initiate development of an oral prodrug of cidofovir . Diagnostic Technologies, Methodology to Facilitate Development of Biological

  1. Effect of Stable Magnetic Field on the Phase Transformation of Sr3 Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-an; LIAO Dai-qiang; WU Zhan-jun

    2004-01-01

    The experimental equipment designed by the author was used to carry out quenching treatments on Sr3 steel,with and without magnet it field in different quenching mediums. The effect of steady magnetic field on the phase transformation of Sr3 steel was studied by metallographic microscope and scanning electron microscope. The result shows: the application of magnetic field can obviously increase the volume fraction of ferrite during the austenite to ferrite transformation of Sr3 steel, promote the ferrite grains refining and homogenization, and get the pearlite beam much homogeneously and much compact, when Sr3 steel is quenched in the water.

  2. The effect of urea fertiliser formulations on gross nitrogen transformations in a permanent grassland soil.

    Science.gov (United States)

    Harty, Mary; Mueller, Christoph; Laughlin, Ronnie; Watson, Catherine; Richards, Karl; Lanigan, Gary; Forrestal, Patrick; McGeough, Karen

    2015-04-01

    Introduction By 2050, the current food production rate will need to increase by 70 % in order to meet the needs of the projected world population (FAO, 2014). Under the climate change response bill, Ireland has a target to reduce GHG emissions by 20% by 2020. Agriculture was responsible for almost one third of Ireland's overall Greenhouse Gas (GHG) emissions in 2012, with 39% of these emissions arising from chemical/organic fertilisers in the form of nitrous oxide (N2O). N2O losses represent environmental damage through ozone depletion and global warming as well as acidification, eutrophication, surface and groundwater contamination and it also represents financial loss to the farmer (Cameron 2013). The contradictory aims of increasing food production while reducing GHG emissions will require an adjustment to the current system of agricultural production. As part of a larger study evaluating the switching of nitrogen (N) fertiliser formulation to minimise N2O emissions, (from calcium ammonium nitrate (CAN) to urea based formulations), this experiment examined the effect of urea based fertiliser formulations on gross N transformations in a permanent pasture soil at Hillsborough, Co. Down, Northern Ireland. Study Design/Methodology A laboratory incubation study was undertaken, to examine the effect of urea in various combinations with two types of inhibitors on soil N dynamics and N2O and N2 emissions. The inhibitors examined were the urease inhibitor N-(butyl) thiophosphoric triamide (nBTPT) and the nitrification inhibitor dicyandiamide (DCD). The fertiliser products were labelled with 15N and the soil was incubated at 15 ° C at a water filled pore space of 65%. Soil mineral N (urea, NH4+, NO2- and NO3-) concentrations, gaseous losses (N2O and N2) and the 15N enrichments of NH4+, NO2-, NO3-, N2O and N2were analysed on 8 separate occasions over 25 days. An adapted numerical 15N tracing model (Müller et al., 2007) was used to quantify the effect of the inhibitors on

  3. Department of Defense Chemical, Biological, Radiological, and Nuclear Defense Program, Annual Report to Congress, 2004

    Science.gov (United States)

    2004-05-01

    Strain Rsa493 Bacillus cereus Completed (4/2003) Strain Atcc 14579 Franciscella tularensis Completed (10/2003) Unpublished Burkholderia mallei...was demonstrated to protect CBRN Defense Requirements and Programs 63 higher animal models from fever and bacteremia following a conjunctival dose... Bacillus anthracis), description of the vaccine, explanation of U.S. DoD policies regarding biological defense vaccines, U.S. DoD policies regarding

  4. Predicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR).

    Science.gov (United States)

    Zendehdel, Rezvan; Khodakarim, Soheila; H Shirazi, Farshad

    2015-01-01

    Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to result cell mortality in the range of one to one hundred percent. Fourier Transform Infrared spectroscopy (FTIR) has been used in this study to analyze the chemical alterations on HepG2 cell line by cisplatin. Partial least square regression (PLS) analysis was then applied to the FTIR spectrum results to search for a biomarker peak and present the desire cellular effects of cisplatin. The comparison of cellular FTIR spectra after exposure to different concentrations of cisplatin confirmed the binding of cisplatin to DNA through direct interaction of platinum to guanine and thymine bases of DNA. Biochemical Index Spectra (BIS) were defined based on the differences between of normal and cisplatin exposed cells. Information from the BIS was subjected to PLS analysis to trigger any particular relationship between the toxicity spectral response and cisplatin concentration. This approach was capable of predicting the concentration of cisplatin for any particular effects observed in the cellular FTIR spectrum (R(2) = 0.968 ± 0.037). Our work supports the promises that, FTIR can demonstrate the trace of toxicity before the cells dies. Finally, PLS of FTIR data directly predicts the effective concentration of chemicals in particular cellular components.

  5. Effect of chemical additives on flow characteristics of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Mosa; A.-H. M. Saleh; T.A. Taha; A.M. El-Molla [Al-Azhar University, Cairo (Egypt). Mining & Petroleum Engineering Department

    2008-07-01

    In the present paper, the effect of chemical additives or reagents on rheological characteristics of coal water slurry (CWS) was investigated. The power-law model was applied to determine the non-Newtonian properties of coal slurries. Three types of dispersants namely, sulphonic acid, sodium tripolyphosphate and sodium carbonate were studied and tested at different concentrations ranging from 0.5 to 1.5% by weight from total solids. Sodium salt of carboxymethyl cellulose (Na-CMC) and xanthan gum were tested as stabilizers at concentrations in the range of 0.05 to 0.25% by weight from total solids. It was found that apparent viscosity and flow properties of CWS are sensitive to the use of chemical additives (dispersants and stabilizers). Among studied dispersing agents, sulphonic acid recorded the best performance in modification and reducing CWS viscosity. The best dosage of all tested dispersants was found to be 0.75% by wt of solids. With regard to studied stabilizers, Na-CMC recorded better performance than xanthan gum. The best dosage of investigated stabilizers was found to be as 0.1 % by wt. from total solids. 13 refs., 9 figs., 1 tab.

  6. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  7. EFFECT OF SCREW EXTRUSION PRETREATMENT ON PULPS FROM CHEMICAL PULPING

    Directory of Open Access Journals (Sweden)

    Cuihua Dong,

    2012-07-01

    Full Text Available The effect of compressive pretreatment before chemical pulping on the properties of poplar kraft and soda-AQ pulp was evaluated. Compressive pretreatment not only resulted in the dissolution of hemicellulose, but also leached extractives. Pulps made from compressive pretreated wood chips required lower beating energy than the untreated pulps to achieve the same beating degree of 45°SR, and the brightness of the handsheets was improved by 2% ISO. Compressive pretreatment allowed for efficient delignification and saved about 6% alkali consumption to achieve similar pulp screen yield. Furthermore, a higher content of fines and slightly lower mechanical properties were observed after the compressive treatment.

  8. Effect of Agrobacterium Induced Necrosis, Antibiotic Induced Phytotoxicity and Other Factors in Successful Plant Transformation

    Directory of Open Access Journals (Sweden)

    Sandip S. Magdum

    2013-08-01

    Full Text Available Agrobacterium tumefaciens infection and antibiotic wash are the critical steps of Agrobacterium mediated plant transformation procedure, most time responsible for lower transformation efficiency due to necrosis and phytotoxicity caused by biotic stress of Agrobacterium and abiotic stress by antibiotics respectively. Ammi majus Egyptian origin medicinal plant and Pearl millet cereal grain crop were studied for their stress responses to Agrobacterium mediated transformation (AMT. Agrobacterium strains LBA4404 (O.D.=0.6-0.8 and EHA105 (O.D.=0.2-0.4 were used for transformation experiments to infect calli of Ammi majus and embryogenic calli of Pearl millet respectively. Incase of antibiotic wash, Cefotaxime 500 mg L-1 was used for LBA4404 infected Ammi majus calli and Timentin 300 mg L-1 was used for EHA105 infected embryogenic calli of Pearl millet. Effects of Agrobacterium infection, antibiotic and NaOCl washes on Agrobacterium removal and both explants physiological changes during transformation experimental procedures were studied. At the end of the experiments explants survival efficiency of Ammi majus and pearl millet were 8% and 5% respectively. Biotic and abiotic stress factors responsible for lower efficiency were investigated with various other factors and strategies were discussed which are need to be considered for higher transformation events and target tissue survival.

  9. Protective effect of silymarin against chemical-induced cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Bibi Marjan Razavi

    2016-09-01

    Full Text Available Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity.

  10. Nuclear shell effect and collinear tripartition of nuclei

    CERN Document Server

    Nasirov, A K; Tashkhodjaev, R B

    2014-01-01

    A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\\rm th}$,fff). The potential energy surface for the ternary system forming a collinear nuclear chain is calculated for the wide range of mass and charge numbers of constituent nuclei. The results of the PES for the tripartition of $^{252}$Cf(sf,fff) shows, that we have favorable dynamical conditions for the formation of fragments with mass combinations of clusters $^{68-70}$Ni with $^{130-132}$Sn and with missing cluster $^{48-52}$Ca.

  11. Effect of Multiple Martensitic Transformations on Structure of Fe-Ni Alloys

    Institute of Scientific and Technical Information of China (English)

    V.Danilchenko; Ie.Dzevin; V.Sagaradze

    2013-01-01

    Effect of multiple direct and reverse martensitic transformations on fragmentation of austenitic grains in Fe-Ni alloys have been studied by X-ray diffraction and scanning electron microscopy.An ultra-fine structure was formed by fragmentation inside austenitic grains due to progressing misorientation of austenitic sub-grains during multiple γ-α-γ-martensitic phase transitions.An increase in the number of γ-α-γ-transformations increases misorientation angle between austenitic sub-grains and leads to transformation of an austenitic single crystal into a textured polycrystal.It has been shown that multiple γ-α-γ-martensitic phase transitions change the mechanism of internal stress relaxation from dislocation-based to deformation twinning.

  12. Effects of plate thickness on reverse martensitic transformation of prestrained NiTi/NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Lishan; ZHENG Yanjun

    2007-01-01

    In this Paper, differential scanning calorimeter (DSC)was used to study the effects of predeformation and plate thickness on the reverse martensitic transformation of explosively welded NiTi/NiTi alloy.Results showed that there was a constraint between Ni50.4Ti(NiTi-1)and Ni49.8Ti (NiTi-2),which led to that the thickness of NiTi-1 or NiTi-2 strongly affected the reverse martensitic transformation behavior because residual stress variations in thickness wound enable bias force to be built inside the composite.The DSC measurements showed that after deformation,the reverse martensitic transformation temperature of the composite was increased with the increasing thickness of NiTi-2.Also.the XRD results revealed that the microstructure of NiTi/NiTi alloy changed from B2 phase to B19'phase along the thickness direction.

  13. Nuclear shell effect and collinear tripartition of nuclei

    Indian Academy of Sciences (India)

    Avazbek K Nasirov; Wolfram von Oertzen; Rustam B Tashkhodjaev

    2015-08-01

    A possibility for the formation of three reaction products having comparable masses at the spontaneous fission of 252Cf is theoretically explored. This work is aimed to study the mechanism leading to the observation of the reaction products with masses $M_{1}$ = 136–140 and $M_{2}$ = 68–72 in coincidence with the FOBOS group in JINR. The same type of ternary fission decay has been observed in the 235U(nth, fff) reaction. The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge numbers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of fragments with mass combinations of clusters 68−70Ni with 130−132Sn and with the missing cluster 48−52Ca.

  14. Effect of the Remelting on Transformations in Co-Cr-Mo Prosthetics Alloy

    Directory of Open Access Journals (Sweden)

    B. Kacprzyk

    2013-07-01

    Full Text Available In the article we were studing the impact of the remelting on transformations in Co-Cr-Mo prosthetics alloy. The TDA curves were analyzed, the microstructure was examined, the analysis of the chemical composition and hardness using the Brinell method was made. It was found that the obtained microstructure of the alloys that we studied do not differ significantly. In all four samples, microscopic images were similar to each other. The volume, size and distribution of the phases remain similar. Analysis of the chemical composition showed that all the samples fall within the compositions provided for the test alloy. Further to this the hardness of the samples, regardless of the number of remeltings did not show any significant fluctuations and remained within the error limit.After analyzing all the results, it can be concluded that the remeltings of the alloys should not have a significant impact on their properties. Secondarily melted alloys can be used for prosthetics works.

  15. Effects of Deformation on Bainite Transformation During Continuous Cooling of Low Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that the deformation accelerated the bainite transformation when the deformation was carried out at high temperature and no or little ferrite was precipitated before bainite transformation; when the deformation was carried out at low temperature, the deformation hindered the bainite transformation because a lot of ferrite precipitated before bainite transformation.

  16. Effect of nuclear power generation on the electricity price in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Kee; Song, Kee Dong; Kim, Seung Soo; Kim, Sung Kee; Lee, Yung Kun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The main purpose of this study is to estimate the effect of nuclear power generation on the electricity price by analysing electricity supply sector. The effects on electricity price changes are estimated in terms of following respects: - Restriction on the additional introduction of nuclear power plant. - CO{sub 2} emission quantity control and carbon tax. A computer model by using Linear Programming optimization technique was also developed for these analyses. 10 figs, 12 tabs, 32 refs. (Author).

  17. Investigation on Crack Tip Transformation in NiTi Alloys: Effect of the Temperature

    Science.gov (United States)

    Sgambitterra, Emanuele; Maletta, Carmine; Furgiuele, Franco

    2015-06-01

    The effect of the temperature on crack tip transformation in Nickel-Titanium (NiTi) shape memory alloys was analyzed in this work by means of experimental and analytical approaches. In particular, single edge crack specimens were analyzed for two different values of the testing temperature in the pseudoelastic regime of the alloy, i.e., T = 298 K and T = 338 K. The thermal-dependent phase transition mechanisms occurring at the crack tip region were studied by analyzing data obtained from digital image correlation as well as by nanoindentation experiments performed near the crack tip. Finally, experimental results were compared with predictions of a recent analytical model. Results revealed that an increase in temperature causes a decrease of the phase transformation zone and that both the techniques are well suitable in capturing the thermal effect on the phase transformation mechanisms near the crack tip.

  18. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  19. Nuclear Dynamics with Effective Field Theories

    CERN Document Server

    Epelbaum, Evgeny

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  20. Effects of Chemical Treatments on Microbiologically Influenced Corrosion

    Science.gov (United States)

    Friedman, E. S.; Strom, M.; Dexter, S. C.

    2008-12-01

    Biofilms are known to have