WorldWideScience

Sample records for chemical coal cleaning

  1. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis;

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning....... Chemical cleaning can be optimized with regard to electricity, heat and methanol use for the hydrothermal washing step, and could have environmental impact comparable to that of physical cleaning if the overall resource intensiveness of chemical cleaning is reduced by a factor 5 to 10, depending...

  2. Analysis of chemical coal cleaning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  3. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  4. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  5. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  6. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  7. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  8. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  10. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  11. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  12. An assessment of cleaning amenability of salt range coal through physical cleaning methods

    International Nuclear Information System (INIS)

    Representative coal samples from the eastern salt range (Modern Engineering and Kishor coal mines, Pakistan) and the central salt range (Punjmin coal mine, Pakistan) were collected and examined for their chemical composition. The chemical characteristics indicate that the salt range coal belongs to sub-bituminous category. Washability analysis on selected coal samples (6.70 , 0.212 mm) using zinc chloride solution with a specific gravity from 1.3 to 1.7 were executed. The results classify the central salt range coal as easily washable while, the Eastern salt range coal as moderately difficult to wash. Jigging, shaking table and spiral techniques were applied to check the cleaning amenability of the salt range coal through these techniques. Among these techniques, shaking table revealed the most promising results for all the three coals. Punjmin coal showed the maximum rejection of ash of 55% and that of total sulphur of 74% with a recovery of 46%. (author)

  13. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  14. Chemicals from coal

    Energy Technology Data Exchange (ETDEWEB)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  15. Clean Coal Technology Programs: Program Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  16. Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion

    International Nuclear Information System (INIS)

    Highlights: • Integration of CO2/O2 based UCG, CLC and CCS for clean coal utilization. • Incorporation of CLC system reduces the ASU load of the power plant. • Use of CO enriched UCG gas in Ni based CLC reduces the difficulty of heat balance. • Coupling of the proposed UCG with IGCC and IGST for the efficient power generation. • Demonstration of reduced CCS energy penalty in the advanced coupled system. - Abstract: Underground coal gasification (UCG) is a clean coal technology to utilize deep coal resources effectively. In-situ CO2-oxy coal gasification may eliminate the operational difficulty of the steam gasification process and utilize CO2 (greenhouse gas) effectively. Furthermore, it is necessary to convert the clean gasified energy from the UCG into clean combustion energy for an end-use. In order to achieve efficient clean power production, the present work investigates the thermodynamic feasibility of integration of CO2 based UCG with power generating systems operating in a chemical looping combustion (CLC) of product gas. The use of CO enriched syngas from O2/CO2 based UCG reduces the difficulty of the heat balance between a fuel reactor and an air reactor in a nickel oxygen-carrier based CLC system. Thermodynamic analyses have been made for various routes of power generation systems such as subcritical, supercritical and ultra-supercritical boiler based steam turbines and gas turbines for the UCG integrated system. It is shown, based on mass and energy balance analysis, that the integration of CO2 based UCG with the CLC system reduces the energy penalty of carbon capture and storage (CCS) significantly. A net thermal efficiency of 29.42% is estimated for the CCS incorporated system, which operates in a subcritical condition based steam turbine power plant. Furthermore, it is found that the efficiency of the proposed steam turbine system increases to 35.40% for an ultra-supercritical operating condition. The effect of operating temperature of the

  17. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  18. Clean Processing and Utilization of Coal Energy

    Institute of Scientific and Technical Information of China (English)

    陈如清; 王海峰

    2006-01-01

    The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal, low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning, which is a highly efficient, clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.

  19. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  20. State perspectives on clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  1. Clean and Highly Efficient Utilization of Coal

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; YANG Li

    2011-01-01

    @@ Clean and highly efficient utilization of coal is an important scientific and technological issue.As the petroleum resource decreases but its consumption increases, all of the countries in the world have to face the big issue of sustainable development of energy and economy and protection of environment.Therefore, study on clean coal technology (CCT) has attracted much attention and become one of important themes of energy research.

  2. Challenges and opportunities for clean coal technology

    International Nuclear Information System (INIS)

    A report is given of some presentations and discussions at the Sixth Clean Coal Technology Conference held in Reno, Nevada, 28 April - 1 May 1998. Accomplishments in 18 projects in the US DOE's Clean Coal Technology Programme were reported upon. The CCT Program has provided a portfolio of technologies to deal effectively with acid rain concerns but challenges remain in achieving ozone standards (an NOx control issue), fine particulate control of PM2.5 and CO2 emission reduction per the Kyoto Protocol in the absence of trading between developed and developing countries under a proposed Clean Development Mechanism and/or sequestration. 9 photos

  3. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately

  4. Economic Feasibility Of Clean Coal Technologies

    OpenAIRE

    Marroquín, Miguel; Clemente Jul, María del Carmen

    2009-01-01

    Reéent developments in the energy sector prove that we are wítnessing a shift in the place of commodities withm global economy. Coal as a source of heat and power has kept and is meant to keep its hegemony in Europe and the USA; this along with recent encouraged fight against global warming and the factual lower yield of coal teclmologies claims for the review of these and the development of lesspollutant processes per uñií of useful energy, so-called Clean Coal Technologies. This document pr...

  5. Clean coal technology: Export finance programs

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  6. Prospects for coal and clean coal technologies in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Paul Baruya [IEA Clean Coal Centre, London (United Kingdom)

    2010-07-15

    Malaysia is a regular participant in world coal trade. Coal production is a modest 1 Mt/y but, as an importer, the country trades some 30 Mt/y. As one of ASEAN's most prosperous economies, the expected growth in electricity demand is inevitable. For many years the country has been dependent on gas-fired power, much of which is in the form of expensive single cycle gas turbines. However, coal-fired power has emerged as an important provider of power in a country desperate to improve its energy security. This report looks at how coal-fired power has developed, and examines the current technologies deployed in the country. It is the fourth in a series of reports by the lEA Clean Coal Centre on ASEAN countries, following Indonesia, Thailand and Vietnam. 35 refs., 14 figs., 4 tabs.

  7. Application of microorganisms in coal cleaning processes

    International Nuclear Information System (INIS)

    A secure energy supply is one of the basic pre-requisites for a sound economic system, sustained standard and quality of life and eventually for the social well-being of each individual. For a progressive country like Pakistan, it is obligatory that all energy options must be pursued vigorously including coal utilization, which given the relatively large resources available, is considered to be one of the major options for the next few hundred years. Bioprocessing of coal in an emerging technology which has started to receive considerable research attention. Recent research activities involving coal cleaning, direct coal conversion, and indirect conversion of coal-derived materials have generated a plethora of facts regarding biochemistry, chemistry, and thermodynamic behavior of coal, in that its bioprocessing is on the verge of becoming and acceptable means to great coals. In this research report, investigations pertaining to the various aspects of coal bio processing, including desulfurization and depyritization are discussed. Bituminous coals varying in total sulfur contents of 3-6% were depyritized more than 90% by mesophilic acidophiles like Thiobacillus ferroxidans and Thiobacillus thio oxidans and thermophilic Sulfolobus brierleyi. The archaebacterium, Sulfolobus brierleyi was found to desulfurize inorganic and organic sulfur components of the coal. Conditions were established under which it can remove more than 30% of the organic sulfur present in the coals. Heterotrophic microorganisms including oxenic and soil isolates were also employed for studying sulfurization. A soil isolate, Oil-2, was found to remove more than 70% dibenzothiophenic sulfur present in an oil-water emulsion (1:20 ratio). Pseudomonas putida and the bacterium oil-2 also remove 60-70% organic sulfur present in the shale-oil. Preliminary results indicate the presence of putatively known Kodama's pathway in the oil-2. The mass balance for sulfate indicated the possibility of the presence

  8. Fuel assemblies chemical cleaning

    International Nuclear Information System (INIS)

    NPP Paks found a thermal-hydraulic anomaly in the reactor core during cycle 14 that was caused by corrosion product deposits on fuel assemblies (FAs) that increased the hydraulic resistance of the FAs. Consequently, the coolant flow through the FAs was insufficient resulting in a temperature asymmetry inside the reactor core. Based on this fact NPP Paks performed differential pressure measurements of all fuel assemblies in order to determine the hydraulic resistance and subsequently the limit values for the hydraulic acceptance of FAs to be used. Based on the hydraulic investigations a total number of 170 FAs was selected for cleaning. The necessity for cleaning the FAs was explained by the fact that the FAs were subjected to a short term usage in the reactor core only maximum of 1,5 years and had still a capacity for additional 2 fuel cycles. (authors)

  9. Regional Effort to Deploy Clean Coal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  10. Clean coal: Global opportunities for small businesses

    International Nuclear Information System (INIS)

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world's most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market

  11. Clean coal: Global opportunities for small businesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  12. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y. [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  13. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  14. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  15. Prospects for coal and clean coal technologies in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P.

    2009-06-15

    Indonesia has become the largest exporter of steam coal in the world, but the long-term future of coal exports is being brought into question as domestic demand is projected to grow by a significant amount, from 40-50 Mt/y in 2007 to more than 100 Mt/y by 2013, and even higher beyond 2013. Exports reached 200-210 Mt in 2008, and is set to rise in the future. Import volumes are negligible, while indigenous production was estimated to be around 240-260 Mt in 2008. Illegal mining is being addressed and in the past could have accounted for at least 20 Mt/y of production, but obtaining reliable export and production figures as a result is therefore not straight forward. Indonesia is the fourth most populous country in the world. This fact coupled with robust GDP growth means there is more pressure on the state-controlled electricity industry to invest and build an adequate infrastructure to meet the rising demand for power. Part of this investment is being driven by government policy to build 10 GWe of coal-fired power by 2010 and a second tranche by 2013. However, the investment programme, commonly known as the 'crash programme' is more likely to be delayed by 2-3 years. Nevertheless, the likely 20-30 Mt/y or so of additional coal demand from the first tranche alone will put pressure on domestic coal producers to meet expanding demand both at home and abroad for low rank and exportable bituminous coals. This report covers four main topics, the Indonesian coal industry, the power generating sector and its use of clean coal technology, changes in coal demand and its impact on international trade, and finally a brief look at upgrading low rank coals within the country. 80 refs., 22 figs., 11 tabs.

  16. The Healy clean coal project: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.B.; McCrohan, D.V. [Alaska Industrial Development and Export Authority, Anchorage, AK (United States)

    1997-12-31

    The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.

  17. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  18. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  19. Adoption of clean coal technologies in India

    International Nuclear Information System (INIS)

    Coal is a major Indian energy resource. It is being utilized in conventional power stations now. Considerable coal resources are not located near load centers and therefore involve transport by rail. India is becoming more concerned with environmental matters and particularly with the health of its population. Clean coal electricity generation technologies are at the commercial demonstration stage in Europe and the USA in unit capacities appropriate to Indian needs. These technologies minimize environmental problems and promise 25% more efficiency. This competitive technology can be introduced to India in greenfield power stations, in repowering older power stations and in providing an enviable alternative for existing and new power stations presently depending on liquid or gas as fuel. (author)

  20. Need for Clean Coal Mining in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-04-01

    Full Text Available Coal mining contributes largely towards economic development of the nation although it has a great impact on the human health. It also has an impact on a socio-cultural aspect of workers and people residing in and around coal mining areas. Thus a holistic approach to taking up with mining activities, keeping in mind the concerns over adjoining habitats and ecosystem, is the need of the hour. This requires identification of various sites where minerals exist, of various factors ranging from an appropriate angle of the slope of overburden dumps to safe disposal drains, of safe techniques to various silt control structures etc. In India, coal companies are now working towards “clean coal” strategies which aim to reduce environmental impacts. The reduced ash contents of the washed coal increase thermal efficiency of combustion which, in turn, makes a direct impact on reducing emissions of pollutants. However, the coal washing requires extra water and it can turn towards a pollution free society.

  1. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  2. Chemical cleaning specification: few tube test model

    International Nuclear Information System (INIS)

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  3. Triboelectrostatic Separation-an Efficient Method of Producing Low Ash Clean Coal

    Institute of Scientific and Technical Information of China (English)

    章新喜; 边炳鑫; 段超红; 熊建军

    2002-01-01

    At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.

  4. Clean Coal Technology Programs: Completed Projects (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  5. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  7. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  8. Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

  9. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy's (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program's fourth solicitation.

  10. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  11. Cleaning of South African coal using a compound dry cleaning apparatus

    Institute of Scientific and Technical Information of China (English)

    Li Haibin; Luo Zhenfu; Zhao Yuemin; Wu Wanchang; Zhang Cuiyu; Dai Ningning

    2011-01-01

    The compound dry cleaning principle is briefly described. A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus. Excellent results were obtained and the optimum operating parameters were determined. They are: an amplitude of 3.0 ram, a motor frequency of 47.5 Hz, an air volume of 50%, a transverse angle of 7°, and a longitudinal angle of -2°. These conditions yield a clean coal containing 11% ash and a coal production of 75%. The organic efficiency, η, is 95.86%. These results show that the South African coal can be separated effectively by compound dry cleaning, which will popularize the compound dry cleaning method.

  12. METC Clean Coal Technology status -- 1995 update

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, L.K.

    1995-06-01

    The Department of Energy (DOE) Clean Coal Technology (CCT) Program is assisting the private sector by funding demonstration programs to validate that CCT technologies are a low-risk, environmentally attractive, cost-competitive option for utility and industrial users. Since 1987, DOE has awarded 45 CCT projects worth a total value of $7 billion (including more than $2.3 billion of DOE funding). Within the CCT Program, the Morgantown Energy Technology Center (METC) is responsible for 17 advanced power generation systems and major industrial applications. METC is an active partner in advancement of these technologies via direct CCT funding and via close cooperation and coordination of internal and external research and development activities. By their nature, METC projects are typically 6-10 years in duration and, in some cases, very complex in nature. However, as a result of strong commercial partnerships, progress in the development and commercialization of major utility and industrial projects has, and will continue to occur. It is believed that advanced power generation systems and industrial applications are on the brink of commercial deployment. A status of METC CCT activities will be presented. Two projects have completed their operational phase, operations are underway at one project (two others are in the latter stages of construction/shakedown), four projects are in construction, six restructured. Also, present a snapshot of development activities that are an integral part of the advancement of these CCT initiatives will be presented.

  13. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  14. Physical Cleaning of Lakhra Coal by Dense Medium Separation Method

    Directory of Open Access Journals (Sweden)

    Sikandar Ali Channa

    2015-07-01

    Full Text Available This research is an attempt to upgrade Lakhra Lignite Coal using ?Dense Medium Separation? technique, to make it techno-environmentally acceptable product for different industries. The air-dried samples of ROM (Run of Mine coal were crushed, screened, ground and subjected to initial analysis and specific gravity based sink-float tests. The initial analysis of air-dried samples shows the average values of moisture 19%, volatile matter 22.33%, ash 27.41%, fixed carbon 31.26% and sulphur 4.98%. The investigational results of sink-float analysis indicate that physical cleaning at particle size range from -5.6 to +0.3 mm and 75% clean coal recovery can potentially reduce the ash yield and sulphur content of Lakhra coal up to 41 and 42.4% respectively. This washed coal is techno-environmentally acceptable yield and simultaneously qualifies the quality parameters set by various industries of Pakistan

  15. DRY CLEANING OF COAL WITH AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    陈清如; 杨毅; 余智敏; 李建明

    1990-01-01

    This paper deals with the experimental study of dry cleaning of coal with air dense medium fluidized bed. This technique opens up an efficient way of coal separation for vast areas in the country where water resources are in short supply or coals tend to slime seriously in wet process. Tests show that it can separate any kind of coal (6--50mm) efficiently. The probable error E, can reach 0.05--0.08. The separating density can be adjusted in the range of 1.0--2.0 g/cm3. This technique brings about enormous economic benifits.

  16. Research on Clean Coal Clean Coal Technology of Computer Automatic Control%计算机自动控制洁煤净煤技术研究

    Institute of Scientific and Technical Information of China (English)

    杨荣光

    2013-01-01

      在煤利用的过程中,会产生大量有害气体、粉尘等污染物,尤其是在发展中国家,这种污染十分严重。而在当今社会,人们的环保意识逐渐增强,国际上对于煤炭利用带来的环境问题给予了越来越多的关注。广大科技工作者针对洁煤净煤,降低污染方面技术的研究愈加深入,大量新型净化方法和应用技术应运而生。利用计算机自动控制技术,发展煤化工新技术,一方面能更有效地提高经济效益,另一方面能有效地达到洁煤、净煤的效果,保护环境。%  The coal in the use process, will produce a large number of harmful gas, dust and other pollutants, especially in developing countries, this kind of pollution is very serious. In today's society, the people environmental protection consciousness strengthens gradually, the international environment problems caused by coal use to pay more and more attention. Broad Scientists and technologists for clean coal clean coal, reducing pollution technology research more deeply, a new purification method and application technology of emerge as the times require. Use of computer automatic control technology, the development of coal chemical industry new technology, one can more effectively improve the economic benefit, on the other hand, can effectively achieve the clean coal, clean coal, protect environment

  17. A clean coal: myth or reality?

    International Nuclear Information System (INIS)

    The first part of this report comments the evolution of coal demand which has doubled during the last 35 years for different reasons (increase of electricity production, development of China and India), but is still based on local production although coal international trade increased indeed quicker than coal demand. It notices that there is still a lot of coal available for the future, and that demand will keep on increasing. It outlines that coal will have to reduce its impacts on the environment, and presents the technologies which will allow this reduction. It also presents the technologies for CO2 capture and storage (CCS), and evokes its regulatory issues and its environmental impacts. Some research and development projects in CCS in different countries (Europe, Germany, United States, Australia) are presented. Finally, it stresses the importance of a global deployment of much less polluting technologies to limit greenhouse gas emissions

  18. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  19. Second annual clean coal technology conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  20. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  1. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  2. Geophysics and clean development mechanisms (CDM) - Applications to coal fires

    Science.gov (United States)

    Meyer, U.; Chen-Brauchler, D.; Schlömer, S.; Kus, J.; Lambrecht, A.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    The largest hard coal resources worldwide are found in the coal belt through Northern China and Inner Mongolia. Because of still existing technological problems and a steeply rising demand of coal in this region the most coal fires occur. Once established, coal fires are difficult to extinguish, destroy large amounts of coal and are major challenge to the environment. The Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" conducts field investigations, laboratory measurements and experiments as well as numerical modelling of coal fires in close co-operation with Chinese coal fire fighting departments. A special task within this project is to help the Chinese partners to develop methodologies and project designs to extinguish coal fires under the frame of the Kyoto protocol. In practise, this task requires a robust method to estimate the CO2 baseline of coal fires including fire detection and monitoring. In order to estimate the fire volume, fire propagation and the resulting CO2 exhaust gas volume, different types of geophysical measurements are necessary as near surface temperature and gas measurements, ground penetrating radar etc. Three different types of CO2 exhaust gas estimations from coal fires are discussed: the energy approach, the volume approach and the direct approach. The energy approach highly depends on accurate near surface and gas temperature plus the gas flux data. The volume approach is based on radar and near surface geomagnetic surveying and monitoring. The direct approach relies on the exact knowledge of gas fluxes and volumes. All approaches need reference data as regional to local weather data and petrological parameters of the burning coal. The approaches are evaluated for their use in CO2 baseline estimations and thus for clean development mechanisms.

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  4. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  5. Prospects for coal and clean coal technologies in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P. [IEA Clean Coal Centre, London (United Kingdom)

    2010-02-15

    Vietnam's energy economy is largely served by traditional biofuels and oil products. Within the power generating sector, hydropower and gas-fired power dominate. However, Vietnam still maintains a 40 Mt/y coal industry, parts of which have recently undergone a long overdue programme of renovation and expansion. Vietnam has been a successful exporter of anthracite, with more than half of the country's production being shipped or barged to steel mills in Japan or power stations in southern China, as well as most other Far Eastern coal importers. The industry is due to take a different form. Opencast mining has recently accounted for around 60% of production but this mining method could be phased out as reserves become more difficult and costly to extract. A shift to underground mining is expected, with a greater emphasis on more modern and mechanised production techniques. Coal is located mainly in the coalfields in Quang Ninh in the north easternmost province of Vietnam. The lower rank reserves located within the Red River coalfields, close to the existing anthracite operations, may yield many more millions of tonnes of coal for exploitation. Underground coal gasification could possibly be exploited in the deeper reserves of the Red River Basin. While coal production could rapidly change in future years, the power generation sector is also transforming with the country's 12,000 MWe development programme for new coal-fired power capacity. The economy suffers from a threat of power shortages due to a lack of generating and transmission capacity, while inefficiencies blight both energy production and end-users. Delivering power to the regions of growth remains difficult as the economy and the demand for power outpaces power generation. While hydroelectric power is being pursued, coal is therefore becoming a growing factor in the future prosperity of the Vietnamese economy. 111 refs., 33 figs., 11 tabs.

  6. Study on characteristics of pipeline transportation and sulfur fixing of cleaned coal logs

    Institute of Scientific and Technical Information of China (English)

    LIN Yu; LIN Qun; TANG Jun; LIU Tong-cheng

    2006-01-01

    As special cylindrical briquettes of coal for long distance pipeline transportation and directly cleaned combustion the cleaned coal logs should possess two characteristics of transportation in pipeline and cleaned combustion. In order to make cleaned coal logs a rational technology for manufacturing, cleaned coal logs was designed and compound sulfur fixing binders with high effects of binding and sulfur-fixing was selected and combined. In addition, by means of characteristic experiments of strength, wear, waterproof and sulfur-fixing five different cleaned coal logs made with different compound sulfur fixing binders in different compaction conditions was tested and measured. Experimental results indicated that the manufacturing technology of cleaned coal logs was reasonable and the combination of compound sulfur fixing binders was scientific. Cleaned coal logs made up with the fourth group of coal mixture had high strength, good waterproof property, efficient sulfur-fixing, good characteristic of transportation, and achieved the performance requirement for pipeline transportation and sulfur fixing.

  7. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  8. Development of clean coal technologies in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Electric Power Research Industry, Yokosuka (Japan). Central Research Inst.

    2013-07-01

    In Japan, we have to import almost of primary energy resources from all over the world. We depend on foreign countries for 96% of our primary energy supply. Following the two oil crises in the 1970s, Japan has diversified its energy resources through increased use of nuclear energy, natural gas and coal as well as the promotion of energy efficiency and conservation.

  9. Clean Coal Technology Demonstration Program: Program Update 2000

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2001-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  10. Clean Coal Technology Demonstration Program: Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  11. Clean Coal Technology Demonstration Program: Program Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  12. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  13. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  14. PFBC - Clean coal technology status and experience

    International Nuclear Information System (INIS)

    There are currently 4 PFBC (Pressurized Fluidized Bed Combustion) plants in operation (Sweden, Spain, US, Japan), utilizing five of ABB's P200 PFBC modules, with a total of 53,000 hours on coal. Results show that the PFBC process and its main specific components do function as intended over the full load range. Environmental performance has been as expected or better (sulfur and NOx emissions). Some technical problems have been found and corrected, such as a high cycle fatigue of blades for the variable speed low pressure turbine; the shape and the material of the blades have been modified, and resonance frequencies avoided. Other PFBC projects (Japan) are presented. 3 tabs

  15. Physical cleaning of lakhra coal by dense medium separation method

    International Nuclear Information System (INIS)

    This research is an attempt to upgrade Lakhra Lignite Coal using 'Dense Medium Separation' technique, to make it techno-environmentally acceptable product for different industries. The air-dried samples of ROM (Run of Mine) coal were crushed, screened, ground and subjected to initial analysis and specific gravity based sink-float tests. The initial analysis of air-dried samples shows the average values of moisture 19%, volatile matter 22.33%, ash 27.41 %, fixed carbon 31.26% and sulphur 4.98%. The investigational results of sink-float analysis indicate that physical cleaning at particle size range from-5.6 to +0.3 mm and 75% clean coal recovery can potentially reduce the ash yield and sulphur content of Lakhra coal up to 41 and 42.4 % respectively. This washed coal is techno-environmentally acceptable yield and simultaneously qualifies the quality parameters set by various industries of Pakistan. (author)

  16. Chemical cleaning restores metal filter performance

    International Nuclear Information System (INIS)

    Southern Metal Processing has developed a means of cleaning and recertifying metal filters used in condensate polishing, applications which yields pressure drop readings and on-stream run times that are virtually identical to new filters. Initially, a chemical cleaning process is carried out, designed to remove all ion exchange resin as well as iron oxide residue from the porosity of the filter media. This process is compatible with all stainless steel filters now available on the market. In addition, certain non-metallic filters previously used as disposables can also be cleaned using this process. Tests have shown that chemical cleaning designed to remove iron oxide only will result in high delta P readings, due to the continued presence of the various ion exchange resins. These resins are most effectively removed by a 1-2h dwell time in a 700-750oF environment. The remaining iron oxide can then be removed by a variety of non-corrosive acids and proper flushing techniques. After cleaning, each filter is subjected to a battery of tests to confirm the level of cleanliness and the integrity of the media at a given micron rating. While incidents of small pinholes or cracks in the media are very rare, such a problem can quickly worsen when the filter is exposed to the filtering and blowback cycles during a normal run. (author)

  17. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  18. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    I. Levitsky; R. Naim; A. Duek; V. Gitis

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning tim

  19. Clean energy from waste and coal

    International Nuclear Information System (INIS)

    Development of any new technology has traditionally been a controversial subject due to high expectations shared by proponents and results which many times fall short of these expectations. Solid and liquid waste management has been seen both success and failure in the implementation of new technology. For example, promises to commercially produce liquid or gaseous fuels and/or chemicals from municipal solid waste (MSW) or refuse derived fuel (RDF) have so far been unfulfilled after several attempts at demonstrating various technologies

  20. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  1. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  2. Clean coal technology: commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The report discusses the demonstration of Air Products and Chemical, Inc.`s Liquid Phase Methanol (LPMEOTH {trademark}) Process which is designed to convert synthesis gas derived from the gasification of coal into methanol for use as a chemical intermediate or as a low-sulfur dioxide and low-nitrogen oxides emitting alternative fuel. The project was selected for funding by the US Clean Coal Technology Program Round III in 1992. Construction of the Demonstration Project at Eastman Chemical Co`s Kingsport complex began in October 1995 and was completed in January 1997. Production rates of over 300 tons per day of methanol have been achieved and availability for the unit has exceeded 96% since startup. The LPMEOH{trademark} Process can enhance integrated gasification combined cycle (IGCC) power generation by converting part of the syngas from the gasifier to methanol which can be solid or used as a peak-sharing fuel. 50 refs., 5 figs., 7 photos.

  3. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  4. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  5. Regional trends in the take-up of clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  6. Clean coal technology deployment: From today into the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

    1997-12-31

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  7. KCCC: Coke and Coal Chemical Business Opens up Growth Space

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Kailuan Clean Coal Co., Ltd. (KCCC, SH: 600997) is located in Kailuan, Hebei province. Its main business includes the mining of coal and accompanying resources, the dressing and processing of raw coal, the sales of coal products and the production and sales ofcoking products.

  8. International prospects for clean coal technologies (Focus on Asia)

    Energy Technology Data Exchange (ETDEWEB)

    Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

    1997-12-31

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  9. US Department of Energy first annual clean coal technology conference

    International Nuclear Information System (INIS)

    The first public review of the US DOE/Industry co-funded program to demonstrate the commercial readiness of Clean Coal Technologies (CCT) was held at Cleveland, Ohio Sept. 22--24, 1992. The objectives were to provide electric utilities, independent power producers, and potential foreign users information on the DOE-supported CCT projects including status, results, and technology performance potential; to further understanding of the institutional, financial, and technical considerations in applying CCTs to Clean Air Act compliance strategies; to discuss to export market, financial and institutional assistance, and the roles of government and industry in pursuing exports of CCTs; and to facilitate meetings between domestic and international attendees to maximize export opportunities

  10. Gasification Studies Task 4 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Fletcher, Thomas [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Sutherland, James [Univ. of Utah, Salt Lake City, UT (United States); Thornock, Jeremy [Univ. of Utah, Salt Lake City, UT (United States); Hunsacker, Isaac [Univ. of Utah, Salt Lake City, UT (United States); Li, Suhui [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Puntai, Naveen [Univ. of Utah, Salt Lake City, UT (United States); Reid, Charles [Univ. of Utah, Salt Lake City, UT (United States); Schurtz, Randy [Univ. of Utah, Salt Lake City, UT (United States)

    2011-10-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical (Subtask 4.4) and physical (Subtask 4.5) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation.

  11. Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?

    International Nuclear Information System (INIS)

    China is a dominant energy consumer in global context and current energy forecasts emphasise that China's future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal product with higher thermal energy and less air pollutants. Coal cleaning capacity has so far not been developed in line with the market potential. In this paper an emerging market for cleaned coal is studied within a CGE model for China. The macro approach catches the repercussions of coal cleaning through increased energy efficiency, lower coal transportation costs and crowding out effect of investments in coal washing plants. Coal cleaning stimulates economic growth and reduces particle emissions, but total energy use, coal use and CO2 emissions increase through a rebound effect supported by the vast reserve of underemployed labourers. A carbon tax on fossil fuel combustion has a limited effect on total emissions. The reason is a coal leakage to tax exempted processing industries

  12. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  13. Applying environmental externalities to US Clean Coal Technologies for Asia

    International Nuclear Information System (INIS)

    The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions

  14. Design Fuels Corporation (DFC)-Apache, Inc. coal reclamation system for the plant of the future for processing clean coal

    International Nuclear Information System (INIS)

    The mechanical washing processing and drying portion of the DFC process offers an efficient method for cleaning of pyritic sulfur bearing compounds which represents 25% sulfur reduction from original run-of-mine coal quality. This reduction can be augmented with the use of calcium and sodium based compounds to reduce the sulfur in many coals to produce compliance quality coal. The use of mechanical/physical methods for the removal of the pyritic material found in coal is used by the DFC process as a first step to the final application of a complete coal refuse clean-up technology based on site specific conditions of the parent coal. The paper discusses the use of the DFC process to remediate slurry ponds and tailings piles and to improve coal cleaning by gravity separation methods, flotation, hydrocyclones and spiral separators, dense media separation, water only cyclones, and oil/solvent agglomeration. A typical DFC Project is the Rosa Coal Reclamation Project which involves the development of a bituminous coal waste impoundment reclamation and washery system. The plant would be located adjacent to a coal fines pond or tailings pond and refuse pile or gob pile at a former coal strip mine in Oneonta, Alabama. Design Fuels would provide a development program by which coal waste at the Rosa Mine could be reclaimed, cleaned and sold profitably. This feedstock could be furnished from recovered coal for direct use in blast furnaces, or as feedstock for coke ovens at 250,000 tons per year at an attractive price on a 10-year contract basis. The site has an old coal washing facility on the property that will be dismantled. Some equipment salvage has been considered; and removal of the existing plant would be the responsibility of Design Fuels. The paper briefly discusses the market potential of the process

  15. Research on the competitiveness and development strategy of china's modern coal chemical industry

    Science.gov (United States)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  16. Chemical cleaning of potable water membranes: A review

    OpenAIRE

    Porcelli, Nicandro; Judd, Simon J.

    2010-01-01

    The literature on chemical cleaning of polymeric hollow fibre ultrafiltration and microfiltration membranes used in the filtration of water for municipal water supply is reviewed. The review considers the chemical cleaning mechanism, and the perceived link between this and membrane fouling by natural organic matter (NOM)—the principal foulant in municipal potable water applications. Existing chemical cleaning agents used for this duty are considered individually and their cl...

  17. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  18. Clean coal combustion: development of clean combustion technologies for residual fuels

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, M.F. [Electric Research Institute, Cuernavaca (Mexico)

    2003-07-01

    Most of the large quantities of heavy fuel oil (about 4% sulphur-content) produced in Mexican refineries are burned in power plants. More natural gas is being used, and it is estimated that by 2010, about one-third of Mexico's electricity will be produced from natural gas. As petroleum and gas reserves are depleted, power plants will consume more imported coal. To continue combustion of dirty fuels, advanced clean combustion technologies must be developed. Two feasibility projects were conducted over the period 1989-1995 on combustion of Mexican fuels in a bubbling fluidized combustor and in IGCC power plants. More recent feasibility studies for cogeneration plants in refineries are outlined. Solid fuels for IGCC and CFB are among the most important developments. Over the period 2004-2008, projects to study clean combustion of Mexican fuels will be conducted in the following areas: operational problems in IGCC plants, construction of an entrained flow gasifier for synthesis gas production and for feeding of heavy fuels and coal emulsions, and development of CFD (computational fluid dynamics) models.

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial

  20. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  1. Chemical cleaning re-invented: clean, lean and green.

    Science.gov (United States)

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed. PMID:24858515

  2. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  3. Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Parekh, B.K.; Meloy, T.

    1997-12-31

    The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.

  4. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  5. Dilute chemical cleaning of PWR steam generators off-line cleaning process evaluation

    International Nuclear Information System (INIS)

    This project evaluated the feasibility of using a low-concentration (approx. 0.5 wt %) chemical cleaning process to remove corrosion product deposits from steam generator surfaces and magnetite from tube-to-support plate crevices of PWR steam generators. The primary objective was to develop a dilute process that could be safely applied at scheduled intervals, such as during normal refueling outages, to maintain a clean operating condition in the steam generator. The dilute chemical cleaning process developed in this project was demonstrated successfully on two model generators which were operated on faulted chemistry by DOE/CRC at Commonwealth's State Line Facility. Unit 5 was cleaned after 48 days of operation with 1% seawater fouling, and Unit 6 was cleaned after 112 days of operations with Lake Michigan water. This report describes work leading to the model generator cleaning demonstrations and provides details of the cleaning operation for each model steam generator

  6. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  7. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  8. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  9. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  10. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now

  13. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  14. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  15. Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants

    Institute of Scientific and Technical Information of China (English)

    LV Heng-lin; ZHAO Cheng-ming; SONG Lei; MA Ying; XU Chun-hua

    2009-01-01

    Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Da-tun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the spe-cial natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.

  16. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    International Nuclear Information System (INIS)

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project

  17. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  18. Regulating Greenhouse Gases from Coal Power Plants under the Clean Air Act

    OpenAIRE

    Joshua Linn; Erin Mastrangelo; Dallas Burtraw

    2014-01-01

    The Clean Air Act has assumed the central role in US climate policy, directing the development of regulations governing greenhouse gas emissions from existing coal-fired power plants. This paper uses a model of power plant operation and efficiency investments to compare the cost-effectiveness of alternative policies to reduce greenhouse gas emissions from coal plants. We empirically estimate the key model parameters from a data set of the operation of coal-fired generating units over 25 years...

  19. Report to the United States Congress clean coal technology export markets and financing mechanisms

    International Nuclear Information System (INIS)

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country's coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently

  20. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.; Placha, M.; Bethell, P. [and others

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  1. Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Lucero

    2005-04-01

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

  2. Clean electricity through advanced coal technologies handbook of pollution prevention and cleaner production

    CERN Document Server

    Cheremisinoff, Nicholas P

    2012-01-01

    Coal power is a major cause of air pollution and global warming and has resulted in the release of toxic heavy metals and radionuclides, which place communities at risk for long-term health problems. However, coal-fired power plants also currently fuel 41% of global electricity. Clean Electricity Through Advanced Coal Technologies discusses the environmental issues caused by coal power, such as air pollution, greenhouse gas emissions and toxic solid wastes. This volume focuses on increasingly prevalent newer generation technologies with smaller environmental footprints than the existing c

  3. Chemical analysis of Argonne premium coal samples. Bulletin

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C.A.

    1997-11-01

    Contents: The Chemical Analysis of Argonne Premium Coal Samples: An Introduction; Rehydration of Desiccated Argonne Premium Coal Samples; Determination of 62 Elements in 8 Argonne Premium Coal Ash Samples by Automated Semiquantitative Direct-Current Arc Atomic Emission Spectrography; Determination of 18 Elements in 5 Whole Argonne Premium Coal Samples by Quantitative Direct-Current Arc Atomic Emission Spectrography; Determination of Major and Trace Elements in Eight Argonne Premium Coal Samples (Ash and Whole Coal) by X-Ray Fluorescence Spectrometry; Determination of 29 Elements in 8 Argonne Premium Coal Samples by Instrumental Neutron Activation Analysis; Determination of Selected Elements in Coal Ash from Eight Argonne Premium Coal Samples by Atomic Absorption Spectrometry and Atomic Emission Spectrometry; Determination of 25 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Atomic Emission Spectrometry; Determination of 33 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Mass Spectrometry; Determination of Mercury and Selenium in Eight Argonne Premium Coal Samples by Cold-Vapor and Hydride-Generation Atomic Absorption Spectrometry; Determinaton of Carbon, Hydrogen, and Nitrogen in Eight Argonne Premium Coal Samples by Using a Gas Chromatographic Analyzer with a Thermal Conductivity Detector; and Compilation of Multitechnique Determinations of 51 Elements in 8 Argonne Premium Coal Samples.

  4. WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland

    2001-09-28

    In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial

  5. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    International Nuclear Information System (INIS)

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO2 emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  6. Comprehensive report to Congress Clean Coal Technology Program

    International Nuclear Information System (INIS)

    This project will provide a full-scale demonstration of Micronized Coal Reburn (MCR) technology for the control of NOx on a wall-fired steam generator. This demonstration is expected to reduce NOx emissions by 50 to 60%. Micronized coal is coal that has been very finely pulverized (80% less than 325 mesh). This micronized coal, which may comprise up to 30% of the total fuel fired in the furnace, is fired high in the furnace in a fuel-rich reburn zone at a stoichiometry of 0.8. Above the reburn zone, overfire air is injected into the burnout zone at high velocity for good mixing to ensure complete combustion. Overall excess air is 15%. MCR technology reduces NOx emissions with minimal furnace modifications, and the improved burning characteristics of micronized coal enhance boiler performance

  7. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  8. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

    OpenAIRE

    Abdulqadir M. Suleiman; Svendsen, Kristin V.H.

    2015-01-01

    Background Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Methods Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual...

  9. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  10. Chemical cleaning's role in tube failure prevention and correction

    International Nuclear Information System (INIS)

    Properly applied, chemical cleaning is a valuable tool used to prevent tube failures involving overheating and corrosion due to waterside deposits. In many cases, however, cleaning becomes yet an additional cost associated with correction of tube failure incidents. Discussion is focused on approaches taken to appraise tube waterside cleanliness and determine the need to clean, as typically practiced in conventional fossil plants. Also presented is an assessment of the suitability and limitations of these approaches to plants with heat recovery steam generator (HRSG) units. (orig.)

  11. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Tsang

    2004-03-26

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical

  13. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  14. Cleaning and Dewatering Fine Coal using Hydrophobic Displacement

    OpenAIRE

    Smith, Kara E.

    2008-01-01

    A new processing technique, known as hydrophobic displacement, was explored as a means of simultaneously removing both mineral matter and surface moisture from coal in a single process. Previous thermodynamic analysis suggests that coal moisture will be spontaneously displaced by any oil with a contact angle greater than ninety degrees in water. Based on these results, six methods of hydrophobic displacement were evaluated: hand shaking, screening, air classification, centrifugation, filtra...

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  16. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  17. Film loss-free cleaning chemicals for EUV mask lifetime elongation developed through combinatorial chemical screening

    Science.gov (United States)

    Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk

    2015-10-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.

  18. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  20. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  1. Coal chemical industry and its sustainable development in China

    International Nuclear Information System (INIS)

    China is rich in coal resource, which is vital for energy security in this country. In early 21st century, the coal chemical industry in China will be oriented to the development of high efficiency, safety, cleanliness, and optimum utilization. In this review, the authors present an introduction to the utilization status of primary energy production and consumption in China. Since 2005, fundamental research studies, supported by the Ministry of Science and Technology of Chinese National Basic Research Program, have been carried out at Taiyuan University of Technology. The Ministry stresses that the new coal chemical industry should be developed in a sustainable manner to realize effective utilization of energy. Moreover, upgrading the high technology to improve actively the recycling processes of coal chemical engineering is of strategic importance to realize the modern coal chemical engineering.

  2. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  3. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  4. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  5. Hybrid Cleaning Technology for Enhanced Post-Cu/Low-Dielectric Constant Chemical Mechanical Planarization Cleaning Performance

    Science.gov (United States)

    Ramachandran, Manivannan; Cho, Byoung-Jun; Kwon, Tae-Young; Park, Jin-Goo

    2013-05-01

    During chemical mechanical planarization (CMP), a copper/low-k surface is often contaminated by abrasive particles, organic materials and other additives. These contaminants need to be removed in the subsequent cleaning process with minimum material loss. In this study, a dilute amine-based alkaline cleaning solution is used along with physical force in the form of megasonic energy to remove particles and organic contaminants. Tetramethylammonium hydroxide (TMAH) and monoethanolamine (MEA) are used as an organic base and complexing agent, respectively, in the proposed solution. Ethanolamine acts as a corrosion inhibitor in the solution. Organic residue removal was confirmed through contact angle measurements and X-ray photoelectron spectroscopy analysis. Electrochemical studies showed that the proposed solution increases protection against corrosion, and that the hybrid cleaning technology resulted in higher particle removal efficiency from both the copper and low-k surfaces.

  6. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Institute of Scientific and Technical Information of China (English)

    WANG; Wenfeng; QIN; Yong; SONG; Dangyu; SANG; Shuxun; JIAN

    2005-01-01

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The conclusions are drawn as follows. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam, and that the kaolinite changes into illite and montmorillonite in the coal-sublayer near the roof. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolintie, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, Al, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  7. Steam Generator Chemical Cleaning Application: Korean Experience in PWR NPP

    International Nuclear Information System (INIS)

    Korea Hydro and Nuclear Power (KHNP) performed an EPRI/SGOG chemical cleaning of the secondary side of the steam generators at Ulchin Unit 3 (UCN3) in March 2011 and at Ulchin Unit 4 (UCN4) in September 2011. The steam generator chemical cleaning (SGCC) was performed with venting at the top-of-tube sheet (TTS) and at tube support plates (TSPs) 4, 5, 6, 7, 8, 9, and 10. A primary objective of this SGCC was to address outer diameter stress corrosion cracking (ODSCC), which has been observed at the TTS and TSPs in the UCN3 SGs. The EPRI/SGOG process has been shown to effectively reduce prevailing ODSCC rates at the TTS and TSPs, particularly when applied with periodic venting in this application. This was the first full-length SGCC campaign with venting performed in Korea. Ulchin Unit 3 commenced commercial operation in August 1998 and Ulchin Unit 4 commenced commercial operation in December 1999. UCN3 and UCN4 are a two-loop pressurized water reactor (PWR) of the Korea Standard Nuclear Plant (KSNP) design. The SGs contain high-temperature mill annealed (HTMA) Alloy 600 tubing and are similar in design to the Combustion Engineering CE-80. The KSNP SGs have been susceptible to outer diameter stress corrosion cracking (ODSCC), which is consistent with operating experience for other SGs containing Alloy 600HTMA tubing material. The UCN3/4 SGs have recently begun to experience ODSCC. Hankook Jungsoo Industries Co., Ltd (HaJI) was selected as the cleaning vendor by KHNP. To date, HaJI has completed five Advanced Scale Conditioning Agent (ASCA) cleaning applications and two EPRI/SGOG Steam Generator Chemical Cleaning (SGCC) campaigns for KHNP. The goal of total deposit removal of the applications were successfully achieved and the amounts are 3,579 kg at UCN3 and 3,786 kg at UCN4 which values were estimated before each cleaning by analysing ECT signal and liquid samples from the SGs. The deposits from the SGs were primarily composed of magnetite. There were no chemical

  8. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  9. Pure Air`s Advanced Flue Gas Desulfurization Clean Coal Project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generation Station. Included in this was a three year DOE demonstration period. The project was built by a joint venture company of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc., utilizing Mitsubishi`s wet limestone flue gas desulfurization technology. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced 936,000 metric tons of high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum. The AFGD system was designed, built, owned and operated by Pure Air and will continue to serve NIPSCO`s Bailly Station for at least another 15{1/2} years under an Own and Operate contract. The project enabled NIPSCO to cost effectively achieve full system wide compliance with the Phase 2 emission requirements for SO{sub 2} of the Clean Air Act Amendments (CAAA) of 1990 almost eight years before the target date. The project was the recipient of the Outstanding Engineering Achievement Award from the National Society of Professional Engineers in 1993 and the 1993 Powerplant Award from Power magazine. The data presented in this paper are based on performance during the first three years of operation.

  10. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  11. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO2), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  12. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  13. Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Musiol, W.F. Jr.; Czuczwa, J.M.

    1993-03-01

    The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

  14. Cluster model of chemical modification of sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V.; Kozlov, A.P.; Gruber, R.; Kucherenko, V.A.; Guet, J.-M. [Buryat State University, Ulan-Ude (Russian Federation)

    1999-07-01

    The possibility of active carbon preparation from sapropelitic coals was investigated. Chemical modification and structural alteration as well as thermolysis of modified sapropelite are described. 2 refs., 2 tabs.

  15. Chemical cleaning of Dresden Unit 1: Final report

    International Nuclear Information System (INIS)

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  16. Nuclear and clean coal technology options for sustainable development in India

    International Nuclear Information System (INIS)

    Due to the growing energy needs along with increasing concerns towards control of greenhouse gas emissions, most developing countries are under pressure to find alternative methods for energy conversion and policies to make these technologies economically viable. Most of the energy is produced from fossil fuel in India which is not a sustainable source of energy. In this paper Indian power sector has been examined by using MARKAL model for introduction of clean coal and advanced nuclear technologies with implementation of energy conservation potential. The result shows that application of clean technologies gives energy security but not significant reduction in carbon dioxide emissions. When clean technologies apply with energy conservation a huge amount of CO2 can be reduced and also economically viable. Three scenarios including base case scenario have been developed to estimate the resource allocations and CO2 mitigation. The clean technologies with maximum savings potential shows 70% CO2 reduction in the year 2045.

  17. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  18. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  19. Chemical cleaning of potable microfiltration and ultrafiltration membranes

    OpenAIRE

    Porcelli, Nicandro

    2009-01-01

    Concerns over possible waterborne disease forced drinking water supply companies in England and Wales to adopt microfiltration and ultrafiltration technologies rapidly. MF and UF membrane plants are designed to produce water of a consistent quality regardless of throughput and fluctuations in the feedwater quality. To operate well they need to maintain flux and balance the rate of fouling, and chemical cleaning performance is critical to this. Giant steps have been taken into characteriz...

  20. Chemical Cleaning Process for Porable Water Distrubution Pipe Systems

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Aging potable water distribution pipe systems are becoming a major concern throughout the world. Deterioration of water quality and service as a result of micro biological tuberculation and corrosion continues to increase. Major costs for replacement or rehabilitation of distribution systems are being faced by most communities. The chemical cleaning solution is an organic oxide scavenger which is mixed with a predetermined quantity of muriatic acid and circulated through an isolated section o...

  1. 7th clean coal technology conference. Proceedings, volume II, technical papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The theme of the conference was '21st century coal utilization: prospects for economic viability, global prosperity and a cleaner environment'. The papers discussed, combustion systems - how CCTs can meet the needs; gasification systems - how CCTs can meet the needs; and beyond 2010 - technology opportunities and R & D needs. They include: Wabash River, Polk Power Station IGCC project, Pinon Pine project, LPMEOH process, Healy clean coal project, Lakeland McIntosh Unit 4 circulating fluidized bed combustion cycle demonstration project, and JEA large-scale CFB combustion demonstration project.

  2. Chemical composition and structure of sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V. [Inst. of Carbon Material Chemistry, RAS, Kemerovo (Russian Federation); Guet, J.M. [Centre de Recherche sur la Matiere Divisee, Orleans (France); Gruber, R. [Lab. de Thermodynamique et d`Analyse Chimique, Univ. de Metz (France)

    1997-12-31

    Sapropelitic coals of low rank coalification stages were examined using solid state {sup 13}C n.m.r. with cross polarization and magic angle spinning techniques, FT-i.r. spectroscopy and X-ray diffraction (XRD) methods. The FT-i.r., and using solid state {sup 13}C n.m.r. spectra showed that the main constituents of low rank sapropelitic coals are aliphatic chains with carbonyl and carboxylic groups. The XRD analysis of low rank sapropelitic coals has shown very great differences from humic coals. The method of function of radial distribution of atoms (FRDA) was applied to low rank sapropelitic coals. The maxima at 0.5 and 1 nm of FRDA curves of these coals were established, indicating the parallel orientation of aliphatic chains in sapropelitic coals. The sapropelitic structure is probably determined by preservation of microorganisms and algal cell membranes, because it is known that the aliphatic parts of fatty acids of cell membranes have a parallel orientation. (orig.)

  3. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Center for Regulatory Studies, Normal, IL (United States); South, D.W. [Argonne National Lab., IL (United States)

    1991-12-31

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  4. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. (Center for Regulatory Studies, Normal, IL (United States)); South, D.W. (Argonne National Lab., IL (United States))

    1991-01-01

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  5. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  6. Optimization of a Multi Gravity Separator to produce clean coal from Turkish lignite fine coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Selcuk Ozgen; Ozkan Malkoc; Ceyda Dogancik; Eyup Sabah; Filiz Oruc Sapci [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2011-04-15

    In this study, the beneficiation of two lignite tailings by Multi Gravity Separator (MGS) was investigated. The tailings samples from the Tuncbilek/Kutahya and Soma/Manisa regions have ash contents of 66.21% and 52.65%, respectively. Significant operational parameters of MGS such as solid ratio, drum speed, tilt angle, shaking amplitude, wash water rate, and feed rate were varied. Empirical equations for recovery and ash content were derived by a least squares method using Minitab 15. The equations, which are second-order response functions, were expressed as functions of the six operating parameters of MGS. The results showed that it is possible to produce a coal concentrate containing 22.83% ash with a recovery of 49.32% from Tuncbilek coal tailings, and a coal concentrate containing 22.89% ash with a recovery of 60.01% from Soma coal tailings. 27 refs., 6 figs., 5 tabs.

  7. Pure Air`s advanced flue gas desulfurization clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1998-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generating Station. This project received a $60 million grant from the DOE Clean Coal II program. Included in this was a three year DOE demonstration period. The facility was designed, built and is owned and operated by Pure Air of Allentown, Pennsylvania, through its project company, Pure Air on the Lake, Limited Partnership. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum.

  8. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  9. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  10. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: CORROSION STUDIES RESULTS: FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-09-29

    Due to the need to close High Level Waste storage tanks, chemical cleaning methods are needed for the removal of sludge heel materials remaining at the completion of mechanical tank cleaning efforts. Oxalic acid is considered the preferred cleaning reagent for heel dissolution of iron-based sludge. However, the large quantity of chemical reagents added to the tank farm from oxalic acid based cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acidic systems may be required for specific waste components that have low solubility in oxalic acid, and as a means to reduce oxalic acid usage in general. Electrochemical corrosion studies were conducted with 1 wt. % oxalic acid at mineral acid concentrations above and below the optimal conditions for this oxalic acid concentration. Testing environments included pure reagents, pure iron and aluminum phases, and sludge simulants. Mineral acid concentrations greater than 0.2 M and temperatures greater than 50 C result in unacceptably high corrosion rates. Results showed that manageable corrosion rates of carbon steel can be achieved at dilute mineral acid concentrations (i.e. less than 0.2 M) and low temperatures based on the contact times involved. Therefore, it is recommended that future dissolution and corrosion testing be performed with a dilute mineral acid and a less concentrated oxalic acid (e.g., 0.5 wt.%) that still promotes optimal dissolution. This recommendation requires the processing of greater water volumes than those for the baseline process during heel dissolution, but allows for minimization of oxalic acid additions. The following conclusions can be drawn from the test results: (1) In both nitric and sulfuric acid based reagents, the low temperature and

  11. Environmental support to the clean coal technology program

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1996-06-01

    Work during this period focused on the preparation for DOE`s Morgantown Energy Technology Center (METC) of a final Environmental Assessment (EA) for the Externally Fired Combined Cycle (EFCC) Project in Warren, Pennsylvania. Proposed by the Pennsylvania Electric Company (Penelec) and selected by DOE in the fifth solicitation of the CCT Program, the project would be sited at one of the two units at Penelec`s Warren Station. The EFCC Project proposes to replace two existing boilers with a new {open_quotes}power island{close_quotes} consisting of a staged coal combustor, slag screen, heat exchanger, an indirectly fired gas turbine, and a heat recovery steam generator. Subsequently, Unit 2 would operate in combined-cycle mode using the new gas turbine and the existing steam turbine simultaneously. The gas turbine would generate 25 megawatts of electricity so that Unit 2 output would increase from the existing 48 megawatts generated by the steam turbine to a total of 73 megawatts. Operation of a conventional flue gas desulfurization dry scrubber as part of the EFCC technology is expected to decrease SO{sub 2} emissions by 90% per kilowatt-hour of electricity generated, and NO{sub x} emissions are anticipated to be 60% less per kilowatt-hour of electricity generated because of the staged combustor. Because the EFCC technology would be more efficient, less carbon dioxide (CO{sub 2}) would be emitted to the atmosphere per kilowatt-hour of electricity produced.

  12. The role of clean coal technologies in a deregulated rural utility market

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.W. [National Rural Electric Cooperative Association, Arlington, VA (United States)

    1997-12-31

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generation option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.

  13. Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets

    International Nuclear Information System (INIS)

    The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies

  14. Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets

    Energy Technology Data Exchange (ETDEWEB)

    Guziel, K.A.; Poch, L.A.; Gillette, J.L.; Buehring, W.A.

    1991-07-01

    The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies.

  15. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  16. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

    1998-12-31

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  17. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    International Nuclear Information System (INIS)

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO2 emissions by greater than 90% and limiting NOx emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today's conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated

  18. Chemical composition of coal and coke ash

    Energy Technology Data Exchange (ETDEWEB)

    Pluzhnikov, A.I.; Tsymbal, G.L.

    1983-05-01

    Karaganda Metals uses low sulphur coal from Karaganda and Kuzbass coalfields and is seeking ways of improving coke in terms of ash and its effect on blast furnace operations, chiefly coke rate reduction. Ash in coke has a critical effect on iron quality, slag composition and desulphurisation. The index used to demonstrate the change in coke consistency during incineration in the blast furnace is that of pyrolytic change: this closely reflects changes in coal charge composition. Control of coke ash content by suitably selecting the charge can be used to influence slag basicity and iron quality.

  19. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical

  20. Chemical cleaning agents and bonding to glass-fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Paula Rodrigues Gonçalves

    2013-02-01

    Full Text Available The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  1. Chemical cleaning agents and bonding to glass-fiber posts.

    Science.gov (United States)

    Gonçalves, Ana Paula Rodrigues; Ogliari, Aline de Oliveira; Jardim, Patrícia dos Santos; Moraes, Rafael Ratto de

    2013-01-01

    The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  2. Clean Coal Technology Demonstration Program: Program update 1991 (as of December 31, 1991)

    International Nuclear Information System (INIS)

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale ''showcase'' facilities built across the country. The program takes the most promising advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The CCT Program has been identified in the National Energy Strategy as major initiative supporting the strategy's overall goals to: increase efficiency of energy use; secure future energy supplies; enhance environmental quality; fortify foundations. The technologies being demonstrated under the CCT Program when commercially available will enable coal to reach its full potential as a source of energy for the nation and the international marketplace. The goal of the program is to furnish the US and international energy marketplaces with a number of advanced, highly efficient, and environmentally acceptable coal-using technologies

  3. Comprehensive report to Congress: Proposals received in response to the Clean Coal Technology V Program Opportunity Notice

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report is a comprehensive overview of all proposals received and the projects that were selected in response to the Program Opportunity Notice (PON) for the Clean Coal Technology V (CCT-V) Demonstration Projects (solicitation number DE-PS01-92FE62647). The Department of Energy (DOE) issued the solicitation on July 6, 1992. Through this PON, DOE solicited proposals to conduct cost-shared Clean Coal Technology (CCT) projects that advance significantly the efficiency and environmental performance of coal-using technologies and that are applicable to either new or existing facilities.

  4. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    Science.gov (United States)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  5. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  6. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  7. Insight conference reports : proceedings of the clean coal summit : business strategies, solutions and risk management in uncertain regulatory times

    International Nuclear Information System (INIS)

    This conference was held to examine business options and risk management solutions in clean coal technologies. The conference was attended by coal industry representatives as well as members of both governmental and non-governmental agencies, who examined recent energy regulations and policies as well as a variety of issues related to sustainable energy development. Issues related to the attrition of Canada's older power plants were discussed and new coal gasification technologies were reviewed. The conference also addressed issues concerning public opinion and First Nations people. Conventional coal energy options were discussed along with advancements in emissions control technologies with particular reference to the role of clean coal science and technology. The conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. GEOLOGIC CHARACTERISTICS OF SULFUR IN COALS AND DEVELOPMENT OF THE CLEAN COAL TECHNOLOGIES%煤中硫的地质特征和洁净煤技术的发展

    Institute of Scientific and Technical Information of China (English)

    周诚林

    1999-01-01

    The abundance of sulfur in coal is largely controlled by sedimentary environments during coal formation.It depends on whether the parent materials of coal were ever influenced by seawater during the history of coal formation and the intensity of seawater influence.The sulfur content in coal is important to effective coal utilization because coal combustion causes release of a substantial amount of sulfur dioxide to the atmosphere and ensuing environmentally hazardous caid rain.Therefore,the distribution of sulfur and its geologic characteristcs are important indicators in evaluating coal quality and in solving related environmental problems.The clean coal technologies are developed for effective utilization of coal resources with a minimum impact on the environment.Such technologies include procombustion techniques(physical,chemical,and microbial coal cleaning),flue gas desulfurization,sorbent injection,and various coal combustion technologies(fluidized-bed combustion,integrated gasification combined cycle,etc.)%煤中硫的含量大都由煤层的沉积环境控制,并取决于成煤物质是否曾受过海水影响及其受海水影响的程度.煤中硫的含量对于煤的有效利用甚为重要.这主要是因为燃煤时有相当量的二氧化硫释放到大气中造成对环境有害的酸雨.因此,煤层中硫的分布和地质特征是评估煤的品质及解决有关环境问题的一个重要参数.洁净煤技术是为了有效解决能源需求并减少用煤对环境的影响而发展起来的.它包括煤燃烧前的洁净方法(物理、化学和微生物的煤洁净法)、烟气脱硫、吸附剂喷撒和各种煤燃烧技术(流化床、气化联合循环等).

  9. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m3/h with a heating value of about 4.18 MJ/m3, while the output of water gas is 2000 m3/h with a heating value of over 11.00 MJ/m3, of which H2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  10. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  11. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  12. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  16. Life Cycle Assessment of Ultra-clean Micronized Coal Oil Water Slurry

    Institute of Scientific and Technical Information of China (English)

    Ji Ming; Xu Jing

    2009-01-01

    Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with Si-maPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion arc the two periods which have a bigger impact on eco-system and hu-man health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.

  17. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    International Nuclear Information System (INIS)

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts

  20. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  1. Nuclear and clean coal technology options for sustainable development in India

    Energy Technology Data Exchange (ETDEWEB)

    Mallah, Subhash; Bansal, N.K. [Shri Mata Vaishno Devi University, Katra -182320, Jammu and Kashmir (India)

    2010-07-15

    Due to the growing energy needs along with increasing concerns towards control of greenhouse gas emissions, most developing countries are under pressure to find alternative methods for energy conversion and policies to make these technologies economically viable. Most of the energy is produced from fossil fuel in India which is not a sustainable source of energy. In this paper Indian power sector has been examined by using MARKAL model for introduction of clean coal and advanced nuclear technologies with implementation of energy conservation potential. The result shows that application of clean technologies gives energy security but not significant reduction in carbon dioxide emissions. When clean technologies apply with energy conservation a huge amount of CO{sub 2} can be reduced and also economically viable. Three scenarios including base case scenario have been developed to estimate the resource allocations and CO{sub 2} mitigation. The clean technologies with maximum savings potential shows 70% CO{sub 2} reduction in the year 2045. (author)

  2. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  3. A chemical cleaning process with Cerium (IV)-sulfuric acid

    International Nuclear Information System (INIS)

    A chemical cleaning process with a high decontamination factor (DF) is requested for decommissioning. Usually, the process should be qualified with the features, such as the feasibility of treating large or complicated form waste, the minimization of secondary waste. Therefore, a powerful technique of redox decontamination process with Ce+4/Ce+3 has been studied at INER. First, the redox of cerium ion with electrolytic method was developed. Two kinds of home-made electrolyzer were used. One is with an ion-exchange membrane, and the other one is with a ceramic separator. Second, factors influencing the decontamination efficiency, such as the concentration of Ce+4, regeneration current density, temperature, acidity of solution were all studied experimentally, and the optimum conditions were specified too. Third, the liquid waste recycling and treatment were developed with electrodialysis and ion-exchange absorption methods. Finally, the hot test was proceeded with the contaminated metals from DCR of nuclear facility. (author)

  4. DEVELOPMENT OF HAZARDOUS SLUDGE SIMULANTS FOR ENHANCED CHEMICAL CLEANING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.

    2010-04-12

    An Enhanced Chemical Cleaning (ECC) process is being developed by Savannah River Remediation (SRR) to aid in Savannah River Site (SRS) High-Level Waste (HLW) tank closure. After bulk waste removal, the ECC process can be used to dissolve and remove much of the remaining sludge from HLW tanks. The ECC process uses dilute oxalic acid (1 wt %) with in-line pH monitoring and control. The resulting oxalate is decomposed through hydroxylation using an Advanced Oxidation Process (AOP). Minimizing the amount of oxalic acid used for dissolution and the subsequent oxidative destruction of oxalic acid will minimize the potential for downstream impacts. Initial efficacy tests by AREVA demonstrated that previous tank heel simulants could be dissolved using dilute oxalic acid. The oxalate could be decomposed by an AOP that utilized ozone and ultraviolet (UV) light, and the resultant metal oxides and hydroxides could be separated out of the process.

  5. A new theory of chemical method to prevent spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    LU Wei

    2009-01-01

    In order to prevent spontaneous combustion of coal from the source, based on the study on the mechanism of spontaneous combustion of coal, especially the process of coal to self-ignite and different activate structures have different activation for oxidization, the new theory and mechanism with chemical inhibition that can change the tendency of spontaneous combustion of coal and let the activate structures deactivate were brought forward. Therefore, coal was not self-ignited under a certain temperature when being chemically inhibited.

  6. Chemical cleaning of potable water membranes: The cost benefit of optimisation

    OpenAIRE

    Porcelli, Nicandro; Judd, Simon J.

    2010-01-01

    A study of the variability in chemical cleaning factors on permeability recovery for potable water microfiltration (MF) and ultrafiltration (UF) systems has been carried out employing a cost model simulating plant fouling and cleaning regimes. The impact of a range of operating and cleaning factors on operating cost variation was computed using algorithms describing operational and cleaning factor relationships with permeability recovery data measured from bench scale tests on fibres sampled ...

  7. Chemical cleaning of porous stainless steel cross-flow filter elements for nuclear waste applications

    International Nuclear Information System (INIS)

    The Waste Treatment and Immobilization Plant (WTP) currently under construction for treatment of High-Level Waste (HLW) at the Hanford Site will rely on cross-flow ultrafiltration to provide solids-liquid separation as a core part of the treatment process. To optimize process throughput, periodic chemical cleaning of the porous stainless steel filter elements has been incorporated into the design of the plant. It is currently specified that chemical cleaning with nitric acid will occur after significant irreversible membrane fouling is observed. Irreversible fouling is defined as fouling that cannot be removed by backpulsing the filter. PNNL has investigated chemical cleaning processes as part of integrated tests with HLW simulants and with actual Hanford tank wastes. To quantify the effectiveness of chemical cleaning, the residual membrane resistance after cleaning was compared against the initial membrane resistance for each test in a series of long-term fouling tests. The impact of the small amount of residual resistance in these tests could not be separated from other parameters and the historical benchmark of >1 GPM/ft2 for clean water flux was determined to be an adequate metric for chemical cleaning. Using the results from these tests, a process optimization strategy is presented suggesting that for the simulant material under test, the value of chemical cleaning may be suspect. The period of enhanced filtration may not be enough to offset the down time required for chemical cleaning, without respect to the other associated costs.

  8. Chemical cleaning of porous stainless steel cross-flow filter elements for nuclear waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.; Daniel, Richard C.; Hallen, Richard T.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2011-05-10

    The Waste Treatment and Immobilization Plant (WTP) currently under construction for treatment of High-Level Waste (HLW) at the Hanford Site will rely on cross-flow ultrafiltration to provide solids-liquid separation as a core part of the treatment process. To optimize process throughput, periodic chemical cleaning of the porous stainless steel filter elements has been incorporated into the design of the plant. It is currently specified that chemical cleaning with nitric acid will occur after significant irreversible membrane fouling is observed. Irreversible fouling is defined as fouling that cannot be removed by backpulsing the filter. PNNL has investigated chemical cleaning processes as part of integrated tests with HLW simulants and with actual Hanford tank wastes. To quantify the effectiveness of chemical cleaning, the residual membrane resistance after cleaning was compared against the initial membrane resistance for each test in a series of long-term fouling tests. The impact of the small amount of residual resistance in these tests could not be separated from other parameters and the historical benchmark of >1 GPM/ft2 for clean water flux was determined to be an adequate metric for chemical cleaning. Using the results from these tests, a process optimization strategy is presented suggesting that for the simulant material under test, the value of chemical cleaning may be suspect. The period of enhanced filtration may not be enough to offset the down time required for chemical cleaning, without respect to the other associated costs.

  9. Chemical cleaning of the condenser tubes of Baersebaeck 2 - Experiences

    International Nuclear Information System (INIS)

    During the summer of 1980 the condenser tubes of Barsebaeck 2 were acid cleaned due to the following reasons: 1) significant heat transfer losses 2) possible passivation of attacks filled with corrosion products 3) encouraging experiences from acid cleaning of Danish units 4) less encouraging experiences from mechanical cleaning. Prior to the acid cleaning some laboratory experiments were performed to investigate the effect of pH-value and temperature on the time required for cleaning. In spite of practical problems including loss of acid and cavitating pumps the acid cleaning was performed in less than 24 hours/condenser section. The result of the acid cleaning was better than the result of mechanical methods employed earlier. There was a significant increase in heat transfer efficiency. In two of the condenser sections the tubes were completely free of corrosion products after acid cleaning and cleaning with the Taprogge system. In the two remaining condenser sections some corrosion products were observed in a few deep attacks. This is due to a higher pH-value suring the cleaning of these two sections than during the cleaning of the two first sections. There were no indications of any acid leaking to the steam side of the condenser. (Author)

  10. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  11. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  12. Research in cleaning water-walls of the TP-45 boiler with water during combustion of Angren brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Zagrutdinov, R.Sh.; Shpakovich, E.Ya.; Guzenko, S.I.; Timofeev, A.P.; Perevezentsev, V.P.; Vasil' ev, V.V.

    1982-08-01

    With the growth of the electric power industry, great significance is placed on combustion of low-grade coals in large deposits with infavorable properties. Angren brown coal is an inexpensive low-grade fuel with 20-22% dry ash. During its combustion in steam generators with a radiant heat surface associated deposits are formed. Research on the problem of preventing slag formation on heating surfaces during the combustion of Angren brown coal is discussed. The use of water to clean these surfaces is also discussed.

  13. Analysis of solids remaining following chemical cleaning in tank 6F

    International Nuclear Information System (INIS)

    Following chemical cleaning, a solid sample was collected and submitted to Savannah River National Laboratory (SRNL) for analysis. SRNL analyzed this sample by X-ray Diffraction (XRD) and scanning electron microscopy (SEM) to determine the composition of the solids remaining in Tank 6F and to assess the effectiveness of the chemical cleaning process.

  14. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  15. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    International Nuclear Information System (INIS)

    It is the objective of the project to further develop the triboelectrostatic separation (TES) process developed at the Federal Energy Technology Center (FETC) and to test the process at a proof-of-concept (POC) scale. This process has a distinct advantage over other coal cleaning processes in that it does not entail costly steps of dewatering. The POC-scale unit is to be developed based on (i) the charging characteristics of coal and mineral matter that can be determined using the novel on-line tribocharge measuring device developed at Virginia Tech and (ii) the results obtained from bench-scale TES tests conducted on three different coals. During the past quarter, most of the personnel assigned to this project have been performing work elements associated with the engineering design (Task 3) of the TES process. This activity has been subdivided into three subtasks, i.e., Charger Tests (Subtask 3.1), Separator Tests (Subtask 3.2), and Final POC Design (Subtask 3.3). In Subtask 3.1, several different tribocharging devices have been constructed using materials of various work functions. They are currently being tested to establish the best materials to be used for designing and manufacturing the optimum tribochargers that can maximum charge differences between coal and mineral matter. In Subtask 3.2, bench-scale cleaning tests have been conducted to study the effects of the various operating and design parameters on the performance of the electrostatic separator. Two different TES units have been tested to date. One uses drum-type electrodes to separate charged particles, while the other uses plate-type electrodes for the separation. The test results showed that a major improvement in separation efficiency can be achieved by recycling the middlings back to the feed stream. It has also been established that the major source of inefficiency arises from the difficulty in separating ultrafine particles. Understanding the behavior of the ultrafine particles and finding

  16. Two dimensional solid state NMR methods applied to whole coals and chemically modified coals

    Energy Technology Data Exchange (ETDEWEB)

    Zilm, K.W.; Webb, G.G.; Millar, J.M.

    1987-04-01

    Two dimensional NMR methods have been shown to provide a much finer accounting of the functional types present in coals than by CPMAS spectroscopy alone. The ADIPSHIFT method has been shown to be at least as quantitative as CPMAS both in theory and experimentally. The method gives reliable distributions of carbons with differing multiplicities which is useful in identifying different functionalities that overlap in chemical shift. Recent studies of a model system indicate that the connectivity of the different groups in chemically modified coals should be obtainable from solid state COSY and NOESY experiments. This type of information will provide a very accurate picture of the structure of the alkylated sites and the substitution patterns surrounding them.

  17. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane☆

    Institute of Scientific and Technical Information of China (English)

    Caihong Wang; Aishu Wei; Hao Wu; Fangshu Qu; Weixiong Chen; Heng Liang; Guibai Li

    2016-01-01

    A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo-ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur-face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium hypochlorite concentration (NaClO), citric acid concentration and cleaning duration. The interactions between the factors were investigated with the numerical model. Humic acid (20 mg·L−1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim-ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%–0.3%, 100–300 mg·L−1, 1%–3%and 0.5–1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura-tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80%to 100%cleaning efficiency were observed with the RSM model after calibration.

  18. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  19. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    Energy Technology Data Exchange (ETDEWEB)

    Burford, D.P. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  20. Recovery of reagent in a process for producing ultra clean coal

    Energy Technology Data Exchange (ETDEWEB)

    K.M. Steel; J.W. Patrick [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2003-07-01

    A technique for selectively separating approximately 65 wt% of the Si(IV) in coal has been developed. The technique first uses aqueous HF to react with aluminosilicates and quartz to form fluoride complexed Al and Si species in solution. Aluminium cations, in the form of Al(NO{sub 3}){sub 3}, are then added to the solution to complex fluoride as AlF{sub 2}{sup +} and hydrolyse the silicon fluoride species to silicon hydroxide, which precipitates as pure silica gel and is removed by filtration. The solution is then distilled to recover a water stream, a nitric acid stream and a solid residue. The water stream is used to pyrohydrolyse the solid residue at temperatures in excess of 500{sup o}C to liberate HF for recycling. To complete the circuit, the solid remaining after pyrohydrolysis is treated with the nitric acid stream to produce Al(NO{sub 3}){sub 3} for recycling. The application of this work is primarily as part of a process for producing ultra-clean coal. As it is a technique for the selective separation of Al and Si from aluminosilicates, it may have application in other areas of mineral processing. 10 refs., 3 figs., 2 tabs.

  1. Comparative analyses for selected clean coal technologies in the international marketplace

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  2. Clean Coal Technology Program: Completing the mission. Comprehensive report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    With its roots in the acid rain debate of the 1980`s, the Clean Coal Technology Demonstration Program initially emphasized acid rain abatement technologies in its early phases. With the subsequent passage of the Clean Air Act Amendments and growing concern with global climate change, the emphasis of the Program shifted in the later rounds to highly efficient technologies. This report is divided into six chapters. Chapter 1 introduces the report. Chapter 2 provides a background of the CCT Program including the legislative history, the projects currently in the program, and the lessons that have been learned from the five rounds to date. Chapter 3 discusses the commercial potential of the technologies represented in the program and is based on a continuing series of interviews that have been conducted by the Department of Energy to solicit the views of senior management in those companies and organizations that will be making or affecting commercial decisions on the use of these technologies. Chapter 4 provides an accounting of the funds that have been appropriated for the CCT Program. Chapter 5 presents the options available for the Government to further assist in the commercial implementation of these technologies. Chapter 6 presents a discussion of these options with recommendations.

  3. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    Science.gov (United States)

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  4. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  5. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  6. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  7. Effect of chemical additives on flow characteristics of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Mosa; A.-H. M. Saleh; T.A. Taha; A.M. El-Molla [Al-Azhar University, Cairo (Egypt). Mining & Petroleum Engineering Department

    2008-07-01

    In the present paper, the effect of chemical additives or reagents on rheological characteristics of coal water slurry (CWS) was investigated. The power-law model was applied to determine the non-Newtonian properties of coal slurries. Three types of dispersants namely, sulphonic acid, sodium tripolyphosphate and sodium carbonate were studied and tested at different concentrations ranging from 0.5 to 1.5% by weight from total solids. Sodium salt of carboxymethyl cellulose (Na-CMC) and xanthan gum were tested as stabilizers at concentrations in the range of 0.05 to 0.25% by weight from total solids. It was found that apparent viscosity and flow properties of CWS are sensitive to the use of chemical additives (dispersants and stabilizers). Among studied dispersing agents, sulphonic acid recorded the best performance in modification and reducing CWS viscosity. The best dosage of all tested dispersants was found to be 0.75% by wt of solids. With regard to studied stabilizers, Na-CMC recorded better performance than xanthan gum. The best dosage of investigated stabilizers was found to be as 0.1 % by wt. from total solids. 13 refs., 9 figs., 1 tab.

  8. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-11-04

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

  10. Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

  11. Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness

    International Nuclear Information System (INIS)

    In this paper we investigate the value of capture-readiness by modeling the cost effectiveness of various alternative technological options and focusing on different clean-coal technology pathways. The modeling framework developed is based on stochastic net present value calculations. It allows for consideration of path-dependent and technology-specific risk combinations inherent in the input and output commodities that are relevant for operating the plant. We find that capture-readiness competes with alternative options of power plant replacements and that capture-readiness is not necessarily preferable from an economic perspective. - Highlights: ► An NPV model with technology- and path-dependent risk-adjusted discount rates is developed. ► The relative value of CCS retrofits compared to new power plants is examined. ► The projects, risk structure is important to consider while discounting cash flows. ► CCS retrofits are found to be less attractive compared to new-build power plants. ► The merit of capture-readiness is questionable due to competing other technologies

  12. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  13. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  14. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  15. Combined Removal of Surface Moisture and Dust from Feed Coal for Coal Dry Cleaning with an Air-solid Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-hua; ZHAO Yue-min; CHEN Qing-ru

    2005-01-01

    A demonstration plant and a commercial plant employing coal dry cleaning technology with an air-solid fluidized bed were built in China. The operation practice of these two plants shows that the surface moisture and the fines or dust of feed coal must be well controlled as low as possible. For this purpose, a new process of combined removal of surface moisture and dust from feed coal using a vibrated fluidized bed dryer was investigated in a batch test apparatus and a pilot test system. A mathematical model on drying kinetics of coal surface moisture was developed and three empirical formulas of the model coefficient involving the main operating variables were determined based on the test results from the batch test apparatus. The mathematical model shows that the surface moisture retained in coal during drying decreases exponentially with drying time. According to this model, a new divisional heat supply mode, in which the inlet gas of higher temperature was introduced into the fore part of the dryer and the inlet gas of lower temperature into the rear part of the dryer, was employed in the pilot test system. The pilot tests show that 1) the new divisional heat supply mode is effective for lowering down the average temperature and reducing the total heat loss of the outlet gas off the dryer, 2) the moist coal of about 60 g/kg surface moisture contentcan be dried to about 10 g/kg, and simultaneously the fines (<1mm in diameter) adhering to the surface of coarse coal particles are completely washed off by the gas flow.

  16. A novel process for preparation of ultra-clean micronized coal by high pressure water jet comminution technique

    Energy Technology Data Exchange (ETDEWEB)

    Longlian Cui; Liqian An; Weili Gong; Hejin Jiang [China University of Mining and Technology, Beijing (China). School of Mechanics, Architecture and Civil Engineering

    2007-03-15

    A novel process for the preparation of ultra-clean micronized coal is presented in this paper. High pressure water jet mill replacing the ball mill is employed for coal comminution in the new preparation process, which is the essential difference from the traditional one. To compare the new preparation process with the traditional one, the comparison experiments were performed, with froth flotation tests of the fine particles ground by both mills using diesel oil and n-dodecane as collector, 2-octanol as frother, and sink-float separation tests using mixtures of carbon tetrachloride-benzene and carbon tetrachloride-bromoform as dense liquid. Different parameters including combustible recovery, ash content of the clean coal, separation efficiency, and energy consumption were investigated based on the two different preparation processes. The results show that the new preparation process has high combustible recovery, low ash content of the product, high separation efficiency, and low energy consumption compared with the traditional one. The comminution mechanism of high pressure water jet mill is introduced in this paper. The high pressure water jet comminution technique has great potential in coal pulverization, having the advantages of low energy consumption, low iron content, and low equipment wear. 35 refs., 4 figs., 7 tabs.

  17. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  18. Coal cleaning: A viable strategy for reduced carbon emissions and improved environment in China?

    OpenAIRE

    Glomsrød, Solveig; Taoyuan, Wei

    2003-01-01

    Abstract: China is a dominant energy consumer in a global context and current energy forecasts emphasise that China’s future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal pr...

  19. China’s Coal Chemical Industry: In the View of Governance Challenges

    OpenAIRE

    Xu, Xiaoran; Wang, Dong

    2013-01-01

    This paper examines the China’s coal chemical strategy. As a part of national energy strategy, China’s coal chemical industry induces conflicts on technical level, economic level and policy level. The analysis of this paper is under the policy framework and discusses the causes and effects of these conflicts and also proposes some possible solutions.

  20. The AREVA customized chemical cleaning C3-concept as part of the steam generator asset management

    International Nuclear Information System (INIS)

    In pressurized water reactors corrosion products and impurities are transported into the steam generators by feed water. Corrosion products and impurities are accumulated in the SGs as deposits and scales on the tubes, the tube support structures and the tube sheet. Depending on the location, the composition and the morphology such deposits may negatively affect the performance of the steam generators by reducing the thermal performance, changing the flow patterns and producing localized corrosion promoting conditions. Accordingly removal of deposits or deposit minimization strategies are an essential part of the asset management program of the steam generators in Nuclear Power Plants. It is evident that such a program is plant specific, depending on the individual condition prevailing. Parameters to be considered are for example: - Steam generator and balance of plant design; - Secondary side water chemistry treatment; - Deposit amount and constitution; - Deposit distribution in the steam generator; - Existing or expected corrosion problems. After evaluation of the steam generator condition a strategy for deposit minimization has to be developed. Depending on the individual situation such strategies may span from curative full scale cleanings which are capable of removing the entire sludge inventory in the range of several 1000 kg per SG to preventive cleanings that remove only a portion of the deposits in the range of several 100 kg per SG. But also other goals depending on the specific plant situation, like tube sheet sludge piles or hard scale removal, may be considered. Beside the chemical cleaning process itself also the integration of the process into the outage schedule and considerations about its impact on other maintenance activities is of great importance. It is obvious that all these requirements cannot be met easily by a standardized cleaning method, thus a customisable chemical cleaning technology is required. Based on its comprehensive experience

  1. Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

    1998-07-01

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  2. Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

    1998-04-01

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  3. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  4. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  5. SCIENTIFIC AND PRACTICAL ASPECTS OF WATER BASIN CLEANING FROM CHEMICAL WARFARE AGENTS

    OpenAIRE

    T. M. Tiavlovskaya; V. F. Tamelo

    2011-01-01

    The paper contains an analysis of reasons that explain pollution of World Ocean waters by chemical warfare agents and ecological dangers which can arise due to their emission. Possible methods for liquidation of chemical warfare agents and water basin cleaning from them have been considered in the paper.

  6. The implementation analysis of Panyi coal mine clean production%潘一矿清洁生产的实施分析

    Institute of Scientific and Technical Information of China (English)

    周庆红

    2014-01-01

    该文以潘一矿清洁生产的实施为例,分析了潘一矿推行清洁生产审核的关键步骤和产生的经济、环境效益,促进潘一煤矿的可持续发展。%This text based on the implementation of Panyi coal mine clean production, Analysis of Panyi coal mine carry out key steps of clean production audit and the economic, environmental benefits, promote the sustainable development of Panyi coal mine.

  7. CHEMICAL AND ENERGETIC CONTENT OF CORN BEFORE AND AFTER PRE-CLEANING

    OpenAIRE

    Sandra Iara Furtado Costa Rodrigues; José Henrique Stringhini; Márcio Ceccantini; Antonio Mário Penz Júnior; Andrea Machado Leal Ribeiro; Vanessa Peripolli; Concepta Margaret McManus Pimentel

    2015-01-01

    The poultry industry normally has little control over the raw material that arrives at the processing plant. This experiment aimed to evaluate chemical and energetic quality of corn obtained in a feed mill before and after pre-cleaning. Twenty samples of 30 kg of corn each were taken from trucks delivering corn to the mill. The trucks were then unloaded and the material passed through a pre-cleaning process when another sample was taken. Samples were graded and physical properties evaluated: ...

  8. Treatment and disposal of steam generator and heat exchanger chemical cleaning wastes

    International Nuclear Information System (INIS)

    Wet air oxidation was effective in reducing the organic loading of Ontario Hydro's EDTA-based steam generator cleaning wastes and the organic acid formulation used for heat exchanger chemical cleaning. Destruction of the complexing agents resulted in direct precipitation of iron from the waste steam generator magnetite solvent and from the heat exchanger cleaning waste. The oxidized liquors contain lower molecular weight organic acids, ammonia and amines, suitable for secondary biological treatment. The oxidized copper waste requires further treatment to reduce dissolved copper levels prior to biological digestion. A preliminary evaluation of UV and ozone degradation of these wastes showed less promise than wet air oxidation. 24 refs., 1 fig., 4 tabs

  9. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  10. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  11. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  12. PWR steam generator chemical cleaning process testing in model steam generators

    International Nuclear Information System (INIS)

    Corrosion related problems in PWR power plant steam generators have caused high maintenance costs, increased radiation exposure to plant personnel, and reduced unit availability. Two cleaning methods were investigated for their ability to clean deposits from steam generators thereby increasing the integrity of the steam generators and reducing personnel radiation exposure, due to reduced maintenance. First, an on-line chemical cleaning process (Chelant Addition) was tested for its ability to prevent corrosion product buildup in a steam generator. Second, an off-line dilute chemical cleaning process was tested to evaluate its ability to remove corrosion product deposits and leave minimal waste for disposal. These two processes were tested in model steam generators which simulated the operating conditions of a typical full size steam generator. Six model steam generators (MSG) were fabricated and qualified for their ability to reproduce denting at tube support plates. The results of six chemical cleaning tests and the post-cleaning destructive metallurgical evaluation of two of the model steam generators are reported

  13. Temperature effects on chemical structure and motion in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  14. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  16. Low-carbon economy development trend and clean and effective utilization of coal%低碳经济与煤的清洁高效利用

    Institute of Scientific and Technical Information of China (English)

    杨明

    2011-01-01

    煤炭是中国的主要能源,实现低碳经济的关键是煤的清洁高效利用.提出煤炭洗选、煤制合成天然气和煤基多联产作为短、中、长期的对策建议.%Coal is the main source of energy in China, clean and effective utilization of coal determines the development trend of low-carbon economy. Provide coal washing, synthetic natural gas (SNG) production from coal, coalbased co-production respectively serving as short-term, mid-term,long-term developmental tasks.

  17. Preliminary discussion about clean and efficient utilization of coal%煤炭的清洁高效利用初探

    Institute of Scientific and Technical Information of China (English)

    樊亚明

    2012-01-01

    煤炭的大量使用带来了环境污染、资源枯竭等问题,因此煤炭资源的清洁高效利用,将成为我国能源技术创新和能源结构调整的战略性选择。从煤炭消费带来的环境问题入手,通过综合分析的方法,从提高原煤入洗率、煤炭高效洁净燃烧技术、燃煤烟气净化、改变煤炭利用方式、加大煤炭提质和分质利用等方面,对煤炭高效清洁利用的措施进行探讨,旨在最大限度地控制燃煤烟气主要污染物的排放,达到促进煤炭清洁高效利用的目的。%The extensive use of coal brought environmental pollution, resource depletion and other issues, so the clean and efficient utilization of coal resources will become our strategic choice about the innovation of energy technology and the adjustment of energy structure. From the perspective about environmental problems caused by coal consumption, through the comprehensive analysis method, from the aspect of improving the washing rate of raw coal, high efficiency and clean combustion technology of coal, flue gas purification,change of coal utilization,increasing coal quality and dual using etc, the measures about efficient and clean use of coal is discussed, in order to maximize control of coal-fired flue gas emissions of major pollutants to achieve the goal of promoting clean and efficient utilization of coal.

  18. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  19. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  20. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    Institute of Scientific and Technical Information of China (English)

    ZHONG Min; SONG Zhi-Tang; LIU Bo; FENG Song-Lin; CHEN Bomy

    2008-01-01

    In order to improve nano-scale phase change memory performance,a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge2Sb2Te5 phase change films.We use reactive ion etching (RIE) as the cleaning method.The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer.The results show that particle residue on the surface has been removed.Meanwhile,Ge2 Sb2 Te5 material stoichiometric content ratios are unchanged.After the top electrode is deposited,currentvoltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1 mA to 0.025 mA.Furthermore,we analyse the RIE cleaning principle and compare it with the ultrasonic method.

  1. Chemical coal conversion yesterday, today, and tomorrow; Der Chemierohstoff Kohle: gestern, heute und morgen

    Energy Technology Data Exchange (ETDEWEB)

    Talbiersky, J. [UCP Chemicals AG, Wien (Austria)

    2007-01-15

    Shortage in mineral oil and gas as well as a high price level have caused a renaissance in coal conversion technologies, at the end of the 70's. Today we have a similar situation. Now coal coversion technologies will be in the focus again but hopefully as a longterm strategy. The most important coal conversion technologies as liquefaction, gasification, coking and calcium carbide synthesis are discussed regarding their use for the production of chemicals. The most important source for aromatic chemicals from coal is till now coal tar with an availability of 22 Mio. t/a. The manufacturing of coal tar is discussed as an example for making aromatic products from a complex feed stock that you get by the fixed bed gasification, coal liquefaction and coking. Also the special marketing strategy that is necessary to be competitive against products from the petroindustry. It can be expected, that coal gasification as a source for synthesis gas will become more and more important. Synthesis gas is the access to aliphatic hydrocarbons by Fischer Tropsch synthesis and to methanol, a chemical with a high synthetic potential. Also the new hydrothermal carbonization of biomass to synthetic coal is mentioned. (orig.)

  2. Chemical kinetics of flue gas cleaning by electron beam

    International Nuclear Information System (INIS)

    By electron beam treatment of flue gases, NOx and SO2 are converted to nitric and sulfuric acids simultaneously. Upon ammonia addition, the corresponding salts are collected in solid state and can be sold as fertilizer. Both homogeneous gas phase reactions and physico-chemical aerosol dynamics are involved in product formation. These processes have been analyzed by model calculations. In part 1, the present report summarizes the model results and gives an account of the theoretical understanding of the EBDS process and its performance characteristics. Part 2 of this report gives a complete listing of the reactions used in the AGATE code. (orig.)

  3. Coal-water fuel - a new type of clean energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Dobrokhotov, V.I.; Zaidenvarg, V.E.; Trubetskoy, K.N.; Nekhoroshy, I.Kh.; Korochkin, G.N. [Ministry of Science and Technologies (Russian Federation)

    1997-12-31

    An increased number of pipelines for coal transport are being used in the Russian Federation for environmental and cost reasons. Research has been performed both on the characteristics of the pipeline itself, and on the coal-water slurry it carriers. Improved preparation of the slurry leads to a better quality fuel for sale, and lower transport costs. 7 refs., 3 figs.

  4. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.

  5. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes. PMID:26433006

  6. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes.

  7. CHEMICAL AND ENERGETIC CONTENT OF CORN BEFORE AND AFTER PRE-CLEANING

    Directory of Open Access Journals (Sweden)

    Sandra Iara Furtado Costa Rodrigues

    2015-04-01

    Full Text Available The poultry industry normally has little control over the raw material that arrives at the processing plant. This experiment aimed to evaluate chemical and energetic quality of corn obtained in a feed mill before and after pre-cleaning. Twenty samples of 30 kg of corn each were taken from trucks delivering corn to the mill. The trucks were then unloaded and the material passed through a pre-cleaning process when another sample was taken. Samples were graded and physical properties evaluated: density (g/L, grain percentages of foreign material, impurities, fragments, broken, soft, insect damaged, fire-burnt, fermented, damaged, cracked and fine particles, as well as chemical composition analysis: Apparent metabolizable energy for poultry (AME, ether extract (EE, crude fiber (CF, starch (STA, water activity (WA, crude protein (CP, digestible and total lysine, methionine, cystine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine and arginine. The experiment was a randomized design with two treatments (before and after pre-cleaning and twenty replications. Data was analyzed using SAS ® and treatment differences obtained using F test. Correlations and principal components were calculated. There was a decrease in density after the pre-cleaning process, which was probably due to the removal of earth and stones rather than grain and its fractions. Significant increases were found for insect damage, fermented and damaged grain while fire-burn was significantly reduced after the pre-cleaning process. Starch increased after pre-cleaning which is a result of contaminants that normally are poor in this carbohydrate, but fiber levels increased too. Apparent metabolizable energy, aminoacids, digestible (P<0.05 and total (P<0.05 histidine, total lysine and methionine (P<0.1 levels were reduced after pre-cleaning. Density was higher when there were fewer impurities such as straw, husk or small grains. Broken corn was positively

  8. Re-generation of hydrofluoric acid and selective separation of Si(IV) in a process for producing ultra-clean coal

    Energy Technology Data Exchange (ETDEWEB)

    Steel, Karen M.; Patrick, John W. [Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering, Nottingham University, Nottingham NG7 2RD (United Kingdom)

    2004-11-25

    A technique for selectively separating approximately 65 wt.% of the Si(IV) in coal has been developed. The technique first uses aqueous hydrofluoric acid (HF) to react with aluminosilicates and quartz to form fluoride complexed Al and Si species in solution. Aluminium cations, in the form of Al(NO{sub 3}){sub 3}, are then added to the solution to complex fluoride as AlF{sub 2+} and hydrolyse the silicon fluoride species to silicon hydroxide, which precipitates as a gel and is removed by filtration. The solution is then distilled to recover a water stream, a nitric acid stream and a solid residue. The water stream is used to pyrohydrolyse the solid residue at temperatures in excess of 500C to liberate HF for recycling. To complete the circuit, the solid remaining after pyrohydrolysis is treated with the nitric acid stream to produce Al(NO{sub 3}){sub 3} for recycling. The technique satisfies the objective of not requiring on-going purchase of chemicals. The application of this work is primarily as part of a process for producing ultra-clean coal. As it is a technique for the selective separation of Al and Si from aluminosilicates, it may have application in other areas of mineral processing.

  9. 煤泥分选超净煤的药剂研究∗%Research on reagent for coal slime separation of ultra-clean coal

    Institute of Scientific and Technical Information of China (English)

    王婕; 付晓恒; 李珞铭; 杨磊; 潘悦怡; 舒元峰

    2016-01-01

    选取动力煤选煤厂煤泥为研究对象,利用傅里叶红外光谱(FTIR)仪和接触角测量仪对比了超细粉碎后的煤泥以及和乳化柴油作用后的煤泥的官能团和润湿性的变化,分析了在絮团浮选中乳化柴油的作用机理.在此基础上,研究了乳化柴油的种类和用量以及分散剂或起泡剂的添加对煤泥絮团分选超净煤的影响.试验结果表明,乳化柴油中的非离子型表面活性剂极性基与煤表面的含氧官能团发生氢键吸附,使煤表面含氧官能团含量减少,接触角增大,疏水性增强;1#乳化柴油的浮选效果优于2#乳化柴油;1#乳化药剂的最佳药剂用量为57.96 kg/t;在分选过程中添加分散剂后得到的超净煤灰分减小,产率也减小;添加起泡剂后分选效果优于单独使用乳化柴油的分选效果.%The authors took coal slime of steam coal preparation plant as object of study, used FTIR and contact angle goniometer to compare the changes of functional groups and wetta-bility of coal slime with or without adding the emulsified diesel oil after ultrafine grinding,ana-lyzed functional mechanism of emulsified diesel during flocculation flotation,and based upon the experiment,studied the influences of types,dosages of emulsified diesel and addition of disper-sant or frother on coal slime flocculation separating ultra-clean coal. The results showed that the hydrogen bonding adsorption occurred between the nonionic surfactant polar groups in emulsified diesel oil and the oxygen-containing functional groups on surface of coal,which leaded reducing on content of oxygen containing functional groups on the surface of coal and increasing of the con-tact angle and wettability,therefore,the flotation results of 1 # emulsified diesel was better than the 2 # emulsified diesel,the optimum dosage of 1 # emulsified diesel was 57.96 kg/t,the ash of the ultra-clean coal with dispersants reduced during separation and

  10. The efficacy of chemical agents in cleaning and disinfection programs

    Directory of Open Access Journals (Sweden)

    Silva Martins Alzira

    2001-09-01

    Full Text Available Abstract Background Due to the growing number of outbreaks of infection in hospital nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. Method For the purpose of evaluating the efficacy of a chemical agent, the minimum inhibitory concentration (MIC was reached by the classic method of successive broth dilutions. The reference bacteria utilized were Bacillus subtilis var. globigii ATCC 9372, Bacillus stearothermophilus ATCC 7953, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923. The strains of Enterobacter cloacae IAL 1976 (Adolfo Lutz Institute, Serratia marcescens IAL 1478 and Acinetobactev calcoaceticus IAL 124 (ATCC 19606, were isolated from material collected from babies involved in outbreaks of infection in hospital nurseries. Results The MIC intervals, which reduced bacteria populations over 08 log10, were: 59 to 156 mg/L of quaternarium ammonium compounds (QACs; 63 to 10000 mg/L of chlorhexidine digluconate; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of isopropanol or ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs; 469 to 2500 mg/L of hydrogen peroxide; and, 2310 to 18500 mg/L of peracetic acid. Conclusions Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus, was observed to show resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens.

  11. Synthetic oil and chemicals from coal: use of a thermogravimetric analyser for proximate analysis of coal and for characterisation of coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, P.W. (ACIRL)

    1978-06-01

    The work described in this report forms part of ACIRL's investigations into the production of synthetic oil and chemicals from Australian coals. Techniques based on thermal analysis provide a range of useful experimental data to assist a better understanding of the fundamentals of various reaction systems. Thermogravimetric analysis in particular has special relevance to coal processing studies since it enables the weight change of a substance to be measured as the substance is heated under different environmental conditions. Describes the use of a thermo gravimetric analyser to determine moisture percent, ash percent, and volatile matter percent (i.e. proximate analysis) of coal, and to analyse various coal derived products. The usefulness of this technique as an aid in operational and quality control in the bench scale studies is indicated.

  12. Chemical composition of ash in coal and coke

    Energy Technology Data Exchange (ETDEWEB)

    Pluzhnikov, A.I.; Tsymbal, G.L.

    1983-05-01

    Ash content in coke influences coke consumption rate by blast furnaces. In the Karaganda steelworks a 1% ash content decrease in coke reduces coke consumption by a blast furnace by 1 to 1.6%. Ash content in coke depends on ash content in a coal mixture and ash content in a coal mixture depends on ash content and washability of coal components. Not all ash components are of identical importance for blast furnace coke production. Investigations show that silica and aluminium oxides are only slightly influenced by thermal degradation and reduction reactions which take place during coking. Coal pyrolysis decisively influences content of sodium oxides, potassium oxides or iron oxides. Sodium and potassium carbonates are also unstable and undergo degradation. Taking into consideration that silica and aluminium oxides are not influenced by thermal degradation during coking an increase in the two oxides in a coal mixture used for coking causes an ash content increase in coke. Examples of coal from the Kuzbass and the Vorkuta mines are given. Replacing 5% of the KZh and K coal from Karaganda with G6 coal from the Kuzbass characterized by the identical ash content but by higher content of silica and aluminium oxides causes an increase in ash content in coke ranging from 1.6 to 1.8%. (8 refs.)

  13. Chemical structures and reactivities of coal as an organic natural product

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C J; Hombach, H P; Benjamin, B M; Roark, W H; Maxwell, B; Raaen, V F

    1979-01-01

    Some chemical reactions involved in coal liquefaction have been studied using carbon 14 labelled compounds and nuclear magnetic resonance. On the basis of these studies it is concluded that the role of tetralin during coal conversion is (1) to act as a dispersion vehicle; (2) to supply hydrogen radicals, when needed, to trap coal radicals, and (3) in a very minor way to undergo intermolecular reaction with the coal through making and breaking of C--C (and possibly other) bonds. As a result of other experiments it is concluded that to the methods previously employed for breaking bonds in coal molecules and thereby lowering their molecular weights, must now be added the use of solvated-electrons for breaking -CH/sub 2/--CH/sub 2/- linkages. A possible mechanism for the cleavage of bibenzyl (used as a model compound for coal) is given. (LTN)

  14. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NOx emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NOx removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  15. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A (Part 2). Coal preparation and cleaning assessment study appendix

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report presents the results of integrating coal washability and coal reserves data obtained from the U.S. Bureau of Mines. Two computer programs were developed to match the appropriate entries in each data set and then merge the data into the form presented in this report. Approximately 18% of the total demonstrated coal reserves were matched with washability data. However, about 35% of the reserves that account for 80% of current production were successfully matched. Each computer printout specifies the location and size of the reserve, and then describes the coal with data on selected physical and chemical characteristics. Washability data are presented for three crush sizes (1.5 in., /sup 3///sub 8/ in., and 14 mesh) and several specific gravities. In each case, the percent recovery, Btu/lb, percent ash, percent sulfur, lb SO/sub 2//10/sup 6/ Btu, and reserves available at 1.2 lb SO/sub 2//10/sup 6/ Btu are given. The sources of the original data and the methods used in the integration are discussed briefly.

  16. Utilisation of coal and natural gas for the production of synfuels and chemicals in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.H.; Marriott, J.N.; Stones, J.D.A. (Department of Mineral and Energy Affairs, Lynwood Ridge (South Africa). Energy Branch)

    1992-01-01

    Initially, the paper discusses coal, natural gas, condensate and crude-oil resources in South Africa. Aspects of the utilisation of coal for synfuels and chemicals manufacture discussed include: background; strategic and economic considerations; and technological developments. Aspects of the utilisation of natural gas and condensate for synfuels manufacture discussed include: continuation of synfuels programme in the eighties; financing principles and economic viability. Other aspects of synfuels manufacture in general covered are: macro-economics of the synfuels programme; chemicals production from coal; environmental considerations and future prospects. 7 refs., 4 figs.

  17. Evaluation of on-line chelant addition dilute chemical cleaning. Final report

    International Nuclear Information System (INIS)

    The on-line addition of chelants (EDTA, HEDTA) was evaluated based on thermostability of the metal chelate at steam generator operating conditions and based upon material compatibility. Testing under prototypical operating conditions in a model steam generator demonstrated the feasibility of this process under various fouling conditions (seawater and freshwater). Application of dilute chemical cleaning to steam generators was also evaluated. Feasibility of this process was demonstrated by its ability to clean packed crevices. However, application times are long and corrosion rates, while acceptable, require additional development of non-sulfur containing inhibitors

  18. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  19. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    OpenAIRE

    Belošević Srđan V.; Tomanović Ivan D.; Crnomarković Nenad Đ.; Milićević Aleksandar R.; Tucaković Dragan R.

    2016-01-01

    Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by c...

  20. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  1. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; Finkelman, R.B. [NYU, New York, NY (United States). School of Medicine

    2008-07-01

    The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal - such as chemical forms of the organic materials, structure, compositions of minerals - vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining - a dynamic process - significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS{sub 2}) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO{sub 3}) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.

  2. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  3. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  4. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  5. Prospect of Coal Based IGCC to Meet the Clean Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md. Kamruzzaman

    2014-12-01

    Full Text Available The development of a country is nearly proportional to the average per person energy consumption rate, which is very low in our country. However, the rate of average energy consumption is increasing day by day throughout the world. With increasing the production of energy, the problem of environment pollution from the power generation sources and energy efficiency becomes more imperative. Coal is the major source of primary energy of the world, however, the energy efficiency of coal based power plant is low, and also it significantly polluted the environment. Therefore, to improve the energy efficiency and reduce the pollution from coal based power plant is an important issue to discuss. In this paper, the primary reserves of energy throughout the world are discussed. Integrated gasification combined cycle (IGCC is a latest technology used to improve the performance of coal based power plant. The process of IGCC and the present condition of IGCC throughout the world is discussed. Finally the advantages of IGCC and necessity of moving towards IGCC from convention coal based power plant is discussed in terms of cost, efficiency and environmental issues.

  6. Mathematical modelling of flux recovery during chemical cleaning of tubular membrane fouled with whey proteins

    Directory of Open Access Journals (Sweden)

    Marković Jelena Đ.

    2009-01-01

    Full Text Available Membrane process efficiency in the dairy industry is impaired by the formation of deposits during filtration processes. This work describes cleaning procedures for ceramic tubular membrane (50 nm fouled with whey proteins. Also, mathematical modelling was performed to obtain models which allow deeper insight into the mechanisms involved during cleaning procedures. The caustic solutions (0.2%w/w, 0.4%w/w and 1.0%w/w NaOH and the mixture of two commercial detergents (0.8%w/w P3-ultrasil 69+0.5% w/w P3-ultrasil 67 and 1.2% P3-ultrasil 69+0.75 P3-ultrasil 67 were used as chemical cleaning agents. The results showed that the best flux recovery was achieved with 0.4%w/w NaOH solution. After analyzing the experimental data, five parameter and six parameter kinetic models were suggested for alkali and detergent cleaning, respectively. The changes of total and specific resistances, as well as the change of the effective pore diameter and deposit thickness during cleaning are estimated by applying these models.

  7. The effect of wash cleaning and demagnetization process on the fly ash physico-chemical properties

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2007-04-01

    Full Text Available Problems related in this study concern the possibility of improving the physico-chemical properties of fly ash used as a base granular material in moulding mixtures. The investigations were carried out mainly to evaluate the process of the fly ash modification performed in order to stabilize its mineralogical and chemical composition. Changes in chemical composition, specific surface and helium density of fly ash after the process of its wash cleaning and demagnetization were examined. The analysis of the data has proved that the process of wash cleaning considerably reduces the content of sodium and potassium. Calcium and magnesium are washed out, too. The wash cleaning process of fly ash reduces also its true density. This fact can be due to the washing out of illite as well as some fractions of haematite (the grains weakly bonded to the glassy phase. The process of demagnetization allows removing about 25.7% of the magnetic phase calculated in terms of Fe2O3. The process of demagnetization is accompanied by a decrease in the content of aluminium, sodium, potassium and calcium, and a reduction in the size of the specific surface by over one half. The possible processes of transformation have also been discussed.

  8. Effectiveness of bone cleaning process using chemical and entomology approaches: time and cost.

    Science.gov (United States)

    Lai, Poh Soon; Khoo, Lay See; Mohd Hilmi, Saidin; Ahmad Hafizam, Hasmi; Mohd Shah, Mahmood; Nurliza, Abdullah; Nazni, Wasi Ahmad

    2015-08-01

    Skeletal examination is an important aspect of forensic pathology practice, requiring effective bone cleaning with minimal artefact. This study was conducted to compare between chemical and entomology methods of bone cleaning. Ten subjects between 20 and 40 years old who underwent uncomplicated medico-legal autopsies at the Institute of Forensic Medicine Malaysia were randomly chosen for this descriptive cross sectional study. The sternum bone was divided into 4 parts, each part subjected to a different cleaning method, being two chemical approaches i.e. laundry detergent and a combination of 6% hydrogen peroxide and powder sodium bicarbonate and two entomology approaches using 2nd instar maggots of Chrysomyia rufifacies and Ophyra spinigera. A scoring system for grading the outcome of cleaning was used. The effectiveness of the methods was evaluated based on average weight reduction per day and median number of days to achieve the average score of less than 1.5 within 12 days of the bone cleaning process. Using maggots was the most time-effective and costeffective method, achieving an average weight reduction of 1.4 gm per day, a median of 11.3 days to achieve the desired score and an average cost of MYR 4.10 per case to reach the desired score within 12 days. This conclusion was supported by blind validation by forensic specialists achieving a 77.8% preference for maggots. Emission scanning electron microscopy evaluation also revealed that maggots especially Chrysomyia rufifacies preserved the original condition of the bones better allowing improved elucidation of bone injuries in future real cases.

  9. Fuel reactor modelling in chemical-looping combustion of coal: 2. simulation and optimization

    OpenAIRE

    García Labiano, Francisco; Diego Poza, Luis F. de; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan

    2013-01-01

    Chemical-Looping Combustion of coal (CLCC) is a promising process to carry out coal combustion with carbon capture. The process should be optimized in order to maximize the carbon capture and the combustion efficiency in the fuel reactor, which will depend on the reactor design and the operational conditions. In this work, a mathematical model of the fuel reactor is used to make predictions about the performance of the CLCC process and simulate the behaviour of the system ...

  10. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani [U.S. Department of Energy/NETL; Riley, Jarrett [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Tian, Hanjing [West Virginia Univ., Morgantown, WV (United States); Richards, George [U.S. Department of Energy/NETL

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  11. 我国煤化工发展分析%China Coal Chemical Industry Development Analysis

    Institute of Scientific and Technical Information of China (English)

    李志龙; 陈明

    2011-01-01

    The paper stated the characteristics of the coal chemical and analyzed the challenges and opportunities of the coal chemical development in China.The coal chemical must stick to the principle of being in proportion and in order.We need pay close attenton to international markets of crude oil and chemical products and analyse carefully the market competitiveness of coal-base products.Actively promote coal production enterprises and chemical enterprise power-and-power union.%文章阐述了新型煤化工的特点,分析了中国发展煤化工面临的挑战和机遇。发展煤化工必须坚持适度、有序的原则,综合考虑社会投入,高度关注国际油价和石化产品市场,认真分析市场竞争力,积极推动煤炭生产企业与煤化工企业强强联合。

  12. Final status report in preparation for the chemical cleaning of Dresden-1, DNS-D1-034

    International Nuclear Information System (INIS)

    This report discusses the status of all of the activities conducted in preparation for the chemical cleaning of the Dresden-1 Nuclear Power Plant of Commonwealth Edison of Illinois. The metallurgical testing of a solvent and its ability to remove radioactivity are reviewed. Included are all engineering details relating to the modifications to the primary system to be able to perform the chemical cleaning and to rinse the cleaning solvent out of the equipment. A facility to store and process spent cleaning solutions is described in detail. Construction activities and preoperational activities are recounted. Licensing activities, quality assurance, safety, and radiation protection are discussed. The report includes recommendations for future actions for restarting the project when approval is received. All of the efforts discussed in this Final Status Report led to the conclusion that the chemical cleaning, as planned, was feasible. All of the necessary modifications and new equipment are in place and are operational

  13. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].

    Science.gov (United States)

    Wang, Yu-xiu; Peng, Lin; Wang, Yan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    The ashes under dust catcher of typical power plants in Yangquan was collected and the contents of elements, irons, EC (elemental carbon) and OC (organic carbon) were measured in PM₂. The characteristics of its chemical composition was studied and the degree of similarity of coal dust's source profiles of PM₂.₅ between Yangquan and other cities were compared using the coefficient of divergence method. The result indicated that the main chemical components of PM₂.₅ from the coal dust were SO₄²⁻,Ca, NO₃⁻, OC, EC, Al, Si, Na, Fe, Mg and Cl⁻, accounting for 57.22% of the total mass. The enrichment factor of Pb in PM₂.₅ of coal dust was the largest with a significant enrichment condition, reaching 10.66-15.91. The coefficient of divergence of source profiles of PM₂.₅ between blind coal and fault coal was 0.072, so it was believed that they must be similar. Compared with other cities, the chemical composition of coal dust in Yangquan had specificity, in particular, the content of Ca was obviously higher than those in other domestic cities. PMID:27078941

  14. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  15. Corrosion deposits removal from Kozloduy NPP VVER-440 steam generator tubing by chemical cleaning

    International Nuclear Information System (INIS)

    A strict control of primary and secondary circuits metal equipment corrosion of VVER-440 Kozloduy NPP units has been performed for the whole period of operation. This is carried out following a specific program including visual inspection and chemical analysis of equipment corrosion deposits. During their migration, the corrosion products deposit on the metal surface in the so-called standstill zones. One of these is the steam generator. The process results in: deterioration of thermal exchange; deterioration of corrosion conditions under deposits corrosion, pitting corrosion, etc. Using quantity deposits data and deposits chemical consistence, chemical cleaning of steam generator surfaces is performed. Decision for such chemical treatment of secondary circuit equipment is taken when the amount of deposits on the steam generator tubing is greater than 150 g/m2. This limit is based on operational experience and manufacturer requirements. (R.P.)

  16. U.S. Near-Zero Emissions Program: CCS - Clean Coal R&D, FutureGen, & Demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    K Der, Victor [Department of Energy (United States)

    2008-07-15

    In this paper a projection of the CO{sub 2} emissions in the United States is shown; the technical challenges in the capture and sequestration of the CO{sub 2}; what is understood by carbon sequestration; the three elements of the capture and CO{sub 2} storage that are: capture, transport, and storage; the FutureGen project; plants of coal combustion with sequestration, and at the end an initiative for the generation with clean coal is presented. [Spanish] En esta ponencia se muestra una proyeccion de las emisiones de CO{sub 2} en los Estados Unidos; los retos tecnicos en la captura y secuestro de CO{sub 2}; que entendemos por secuestro de carbono; los tres elementos de la captura y almacenamiento de CO{sub 2} que son captura, transporte y almacenamiento; el proyecto FutureGen; plantas de combustion de carbon con secuestro, y al final se presenta una iniciativa para la generacion con carbon limpio.

  17. Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Jiayu Tian; Heng Liang; Jun Nan; Zhonglin Chen; Guibai Li

    2011-01-01

    Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with different chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 100 mg/L NaClO exhibited the best performance (88.4% ± 1.1%) in removing the irreversible fouling resistance. This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as confirmed by Fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5% ± 1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH for 1.0 hr, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electronic microscopy and atomic force microscopy analyses demonstrated that 500 mg/L NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning. On the other hand, the microscopic analyses reflected that NaClO could effectively remove the foulants accumulated on the membrane surface.

  18. Lead markets for clean coal technologies: A case study for China, Germany, Japan and the USA

    OpenAIRE

    Horbach, Jens; Chen, Qian; Rennings, Klaus; Vögele, Stefan

    2012-01-01

    Despite the high CO2 emission intensity of fossil and especially coal fired energy production, these energy carriers will play an important role during the coming decades. The case study identifies the main technological trajectories concerning more efficient fossil fuel combustion and explores the potentials for lead markets for these technologies in China, Germany, Japan and the USA taking into account the different regulation schemes in these countries. We concentrate on technologies that ...

  19. Fossil fuels and clean, plentiful energy in the 21st century: the example of coal

    OpenAIRE

    Jaccard, Mark

    2007-01-01

    Many people believe we must quickly wean ourselves from fossil fuels to save the planet from environmental catastrophe, wars and economic collapse. However, we have the technological capability to use fossil fuels without emitting climate-threatening greenhouse gases or other pollutants. The natural transition from conventional oil and gas to unconventional oil, unconventional gas and coal for producing electricity, hydrogen and cleaner-burning fuels will decrease energy dependence on politic...

  20. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  1. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  2. Valuation of clean energy investments: The case of the Zero Emission Coal (ZEC) technology

    Science.gov (United States)

    Yeboah, Frank Ernest

    Today, coal-fired power plants produce about 55% of the electrical energy output in the U.S. Demand for electricity is expected to grow in future. Coal can and will continue to play a substantial role in the future global energy supply, despite its high emission of greenhouse gases (e.g. CO2 etc.) and low thermal energy conversion efficiency of about 37%. This is due to the fact that, it is inexpensive and global reserves are abundant. Furthermore, cost competitive and environmentally acceptable energy alternatives are lacking. New technologies could also make coal-fired plants more efficient and environmentally benign. One such technology is the Zero Emission Carbon (ZEC) power plant, which is currently being proposed by the ZECA Corporation. How much will such a technology cost? How competitive will it be in the electric energy market when used as a technology for mitigating CO2 emission? If there were regulatory mechanisms, such as carbon tax to regulate CO2 emission, what would be the minimum carbon tax that should be imposed? How will changes in energy policy affect the implementation of the ZEC technology? How will the cost of the ZEC technology be affected, if a switch from coal (high emission-intensive fuel) to natural gas (low emission-intensive fuel) were to be made? This work introduces a model that can be used to analyze and assess the economic value of a ZEC investment using valuation techniques employed in the electric energy industry such as revenue requirement (e.g. cost-of-service). The study concludes that the cost of service for ZEC technology will be about 95/MWh at the current baseline scenario of using fuel cell as the power generation system and coal as the primary fuel, and hence will not be competitive in the energy markets. For the technology to be competitive, fuel cell capital cost should be as low as 500/kW with a lifetime of 20 years or more, the cost of capital should be around 10%, and a carbon tax of 30/t of CO2 should be in place

  3. New Coke Oven Facilities at Linhuan Coal Chemical Company Adopt LyondellBasell's Aromatics Extraction Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The new 80 kt/a coal chemical unit at the Linhuan Coal Chemical Company in Anhui province will adopt the aro-matics extraction process licensed by LyondellBasell Company. This unit is expected to come on stream by 2009.This technology is suitable for manufacture of high-purity aromatics with broad adaptability and large scale produc-tion capability. In the previous year LyondellBasell was awarded six patents on aromatics extraction process. It is told that the achievements to be adopted by the Linhuan Coal Chemical Company are partly a series of aromatics extrac-tion processes for recovery of coke oven light oil performed by LyondellBasell.

  4. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  5. Gasification Coupled Chemical Looping Combustion of Coal: A Thermodynamic Process Design Study

    OpenAIRE

    Sonali A. Borkhade; Shriwas, Preksha A.; Ganesh R. Kale

    2013-01-01

    A thermodynamic investigation of gasification coupled chemical looping combustion (CLC) of carbon (coal) is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200°C. Chemical equilibrium model was considered for the gasifier and CLC fuel reactor. The trends in product compositions and energy requirements of the gasifier, fuel reactor, and air reactor were determined. Coal (carbon) gasification using 1.5 mol H2O and 1.5 mol CO2 per mole c...

  6. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network

    International Nuclear Information System (INIS)

    Coal ash fusion temperature is important to boiler designers and operators of power plants. Fusion temperature is determined by the chemical composition of coal ash, however, their relationships are not precisely known. A novel neural network, ACO-BP neural network, is used to model coal ash fusion temperature based on its chemical composition. Ant colony optimization (ACO) is an ecological system algorithm, which draws its inspiration from the foraging behavior of real ants. A three-layer network is designed with 10 hidden nodes. The oxide contents consist of the inputs of the network and the fusion temperature is the output. Data on 80 typical Chinese coal ash samples were used for training and testing. Results show that ACO-BP neural network can obtain better performance compared with empirical formulas and BP neural network. The well-trained neural network can be used as a useful tool to predict coal ash fusion temperature according to the oxide contents of the coal ash

  7. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  8. Development of an on-line process for steam generator chemical cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, J.; Guzonas, D.A.; Rousseau, S.C.; Snaglewski, A.P.; Chenier, M.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    An on-line, preventative chemical cleaning process for the removal of secondary side oxides from steam generators is being developed. An on-line chemical cleaning process uses a low concentration of a chelant ({approx}1-10 mg L{sup -1}) to partially dissolve and dislodge the secondary side oxides while the steam generator is in operation. The dissolved and dislodged oxides can then be removed by blowdown. Feasibility tests were carried out in which the operating conditions of a CANDU steam generator were simulated in an autoclave containing either loose powdered magnetite or sintered magnetite on Alloy 800 (I-800) steam generator tube surfaces. The extent of magnetite dissolution in on-line solvent formulations containing either ethylenediaminetetraacetic acid (EDTA) or N-(2-hydroxyethyl)ethylenedinitrilo-N,N',N'-triacetic acid (HEDTA) at temperatures of 256 and 263 degrees C were measured. Powdered magnetite dissolved faster than sintered magnetite using both types of chelant. Dissolution continued as fresh chelant was added. The half-life (t{sup 1/2}) of Fe-EDTA complexes at 256 degrees C was approximately 3 h, sufficient to allow removal by blowdown. Hydrazine and morpholine were equally effective as oxygen scavengers. Increased dissolved oxygen concentration was found to result in chelant decomposition, reduced solvent capacity and increased carbon steel corrosion. Total corrosion of several materials relevant to CANDU stations were measured in 96-h tests. To minimize corrosion, low concentration of chelant and a high concentration of an oxygen scavenger should be used. The results from these feasibility tests are currently being used to define the application conditions for large-scale tests of on-line chemical cleaning in a model steam generator. (author)

  9. Development of an on-line process for steam generator chemical cleaning

    International Nuclear Information System (INIS)

    An on-line, preventative chemical cleaning process for the removal of secondary side oxides from steam generators is being developed. An on-line chemical cleaning process uses a low concentration of a chelant (∼1-10 mg L-1) to partially dissolve and dislodge the secondary side oxides while the steam generator is in operation. The dissolved and dislodged oxides can then be removed by blowdown. Feasibility tests were carried out in which the operating conditions of a CANDU steam generator were simulated in an autoclave containing either loose powdered magnetite or sintered magnetite on Alloy 800 (I-800) steam generator tube surfaces. The extent of magnetite dissolution in on-line solvent formulations containing either ethylenediaminetetraacetic acid (EDTA) or N-(2-hydroxyethyl)ethylenedinitrilo-N,N',N'-triacetic acid (HEDTA) at temperatures of 256 and 263 degrees C were measured. Powdered magnetite dissolved faster than sintered magnetite using both types of chelant. Dissolution continued as fresh chelant was added. The half-life (t1/2) of Fe-EDTA complexes at 256 degrees C was approximately 3 h, sufficient to allow removal by blowdown. Hydrazine and morpholine were equally effective as oxygen scavengers. Increased dissolved oxygen concentration was found to result in chelant decomposition, reduced solvent capacity and increased carbon steel corrosion. Total corrosion of several materials relevant to CANDU stations were measured in 96-h tests. To minimize corrosion, low concentration of chelant and a high concentration of an oxygen scavenger should be used. The results from these feasibility tests are currently being used to define the application conditions for large-scale tests of on-line chemical cleaning in a model steam generator. (author)

  10. Decreasing Beam Auto Tuning Interruption Events with In-Situ Chemical Cleaning on Axcelis GSD

    International Nuclear Information System (INIS)

    Ion beam auto tuning time and success rate are often major factors in the utilization and productivity of ion implanters. Tuning software frequently fails to meet specified setup times or recipe parameters, causing production stoppages and requiring manual intervention. Build-up of conductive deposits in the arc chamber and extraction gap can be one of the main causes of auto tuning problems. The deposits cause glitching and ion beam instabilities, which lead to errors in the software optimization routines. Infineon Regensburg has been testing use of XeF2, an in-situ chemical cleaning reagent, with positive results in reducing auto tuning interruption events.

  11. Clean Power Generation Techniques for Coal-fired Power Plants%火电厂燃煤清洁发电技术综述

    Institute of Scientific and Technical Information of China (English)

    姜胜; 肖家荣; 王涛; 黄娜

    2016-01-01

    从雾霾出发,分析了当前燃煤电厂所处的环保困境和已经取得的治理成就,展望了未来的严峻形势,重点推介了几种电厂燃煤清洁发电技术上的应对之道。%Environmental problems such as haze induced by coal-fired power plants and its current governance situation and progress are introduced .Then, several clean power generation techniques that could be adopted in coal-fired power plants are presented .

  12. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  13. 我国煤炭高效洁净利用新技术%New Technology of Coal High Efficient and Cleaning Utilization in China

    Institute of Scientific and Technical Information of China (English)

    王金华

    2012-01-01

    The high efficient and clean utilization of coal is the effective access to realize the energy saving and emission reduction.Based on the circumstances,the paper introduced the technical principle,innovations,technical advantage and promotion conditions of the three new technologies of the coal high efficient and clean utilization,including the high efficient pulverized coal industrial boiler technology,the coal water mixture preparation and new technology application and the dry flue gas cleaning technology of the active coke.In combination with the present actual conditions,the development orientation of the high efficient pulverized coal industrial boiler technology as pointed would be finally to set up the high efficient pulverized coal industrial boiler technology system with the deep systematic study on the clean pulverized coal preparation technology,the pulverized coal logistic and distribution technology,the pulverized coal boiler combustion and cleaning technology as well as the commercialized operation mode.The gasification coal water mixture prepared with the mine water and the long distance pipeline transportation would be the development orientation of the gasification coal water mixture.The dry flue gas cleaning technology of active coke would be suitable applied to the zone lacking of water resources and the development direction in the near future would be to improve the performances of the active coke,to reduce the technique cost,to improve the de-nitre capacity,to simplify the technique procedure and to have the removing and regeneration completed in a device.%煤炭的高效洁净利用是实现节能减排的有效途径,基于此,对我国目前煤炭高效洁净利用3项新技术(高效煤粉工业锅炉技术、水煤浆制备和应用新技术、活性焦干法烟气净化技术)的技术原理、创新点、技术优点及推广情况进行了介绍。结合当前实际,指出高效煤粉工业锅炉技术的发展方向是通过对

  14. Effect of 20 % EDTA Aqueous Solution on Defective Tubes (Alloy600) in High Temperature Chemical Cleaning Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Chul [KHNP-CRI, Daejeon (Korea, Republic of)

    2016-04-15

    The transport and deposition of corrosion products in pressurized water nuclear reactor (PWR) steam generators have led to corrosion (SCC, denting etc.) problems. Lancing, mechanical cleaning and chemical cleaning have been used to reduce these problems. The methods of lancing and mechanical cleaning have limitations in removing corrosion products due to the structure of steam generator tubes. But high temperature chemical cleaning (HTCC) with EDTA is the most effective method to remove corrosion products regardless of the structure. However, EDTA in chemical cleaning aqueous solution and chemical cleaning environments affects the integrity of materials used in steam generators. The nuclear power plants have to perform the pre-test (also called as qualification test (QT)) that confirms the effect on the integrity of materials after HTCC. This is one of the series studies that assess the effect, and this study determines the effects of 20 % EDTA aqueous solution on defective tubes in high temperature chemical cleaning environments. The depth and magnitude of defects in steam generator (SG) tubes were measured by eddy current test (ECT) signals. Surface analysis and magnitude of defects were performed by using SEM/EDS. Corrosion rate was assessed by weight loss of specimens. The ECT signals (potential and depth %) of defective tubes increased marginally. But the lengths of defects, oxides on the surface and weights of specimens did not change. The average corrosion rate of standard corrosion specimens was negligible. But the surfaces on specimens showed traces of etching. The depth of etching showed a range on the nanometer. After comprehensive evaluation of all the results, it is concluded that 20 % EDTA aqueous solution in high temperature chemical cleaning environments does not have a negative effect on defective tubes.

  15. Clean coal technology III (CCT III): 10 MW demonstration of gas suspension absorption

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This project will be the first North American demonstration of the Gas Suspension Absorption (GSA) System in its application for flue gas desulfurization. The purpose of this project is to demonstrate the high sulfur dioxide (SO{sub 2}) removal efficiency as well as the cost effectiveness of the GSA system. GSA is a novel concept for flue gas desulfurization developed by F.L. Smidth miljo (FLS miljo). The GSA system is distinguished in the European market by its low capital cost, high SO{sub 2} removal efficiency and low operating cost. The specific technical objectives of the GSA demonstration project are to: effectively demonstrate SO{sub 2} removal in excess of 90% using high sulfur US coal. Optimize recycle and design parameters to increase efficiencies of lime reagent utilization and SO{sub 2} removal. Compare removal efficiency and cost with existing Spray Dryer/Electrostatic Precipitator technology.

  16. IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

  17. The calculation of the chemical exergies of coal-based fuels by using the higher heating values

    International Nuclear Information System (INIS)

    This paper demonstrates the application of exergy to gain a better understanding of coal properties, especially chemical exergy and specific chemical exergy. In this study, a BASIC computer program was used to calculation of the chemical exergies of the coal-based fuels. Calculations showed that the chemical composition of the coal influences strongly the values of the chemical exergy. The exergy value of a coal is closely related to the H:C and O:C ratios. High proportions of hydrogen and/or oxygen, compared to carbon, generally reduce the exergy value of the coal. High contents of the moisture and/or the ash cause to low values of the chemical exergy. The aim of this paper is to calculate the chemical exergy of coals by using equations given in the literature and to detect and to evaluate quantitatively the effect of irreversible phenomena increased the thermodynamic imperfection of the processes. In this paper, the calculated exergy values of the fuels will be useful for energy experts studied in the coal mining area and coal-fired powerplants

  18. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  19. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  20. Chemical changes in different types of coal ash during prolonged, large scale, contact with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Shoham-Frider, E.; Shelef, G.; Kress, N. [Nationall Institute of Oceanography, Haifa (Israel)

    2003-07-01

    The chemical changes occurring in coal ash exposed to prolonged (300 days), large scale, contact with running seawater were followed. Four major components (Al, Ca, Mg, Fe) and seven minor and trace elements (Cd, Cr, Cu, Mn, Zn, Pb, Hg) were measured in four coal ash types: fly and bottom ash freshly obtained from coal-fired power plant, and old ash (crushed and blocks) recovered from the sea after 3-5 years contact with seawater. Changes occurred in the chemical composition of the coal ash along the experiment: Fe increased in fresh ash, Al increased in old ash and Ca increased in all ash types except old ash blocks. Cu and Hg decreased in fresh fly ash while Cr increased, Cd decreased in all ash types except bottom ash, and Mn decreased in bottom ash. Most of the changes occurred in the fresh fly ash, and not in the old ash, indicating equilibrium after prior exposure to seawater. In addition, more changes occurred in fresh fly ash than in bottom ash, emphasizing the differences between the two ash types. While the changes in the concentrations of the major elements may be an indication of the integrity of the ash matrix, the only elements of environmental significance released to the environment were Hg and Cd. However, calculated seawater concentrations were much lower than seawater quality criteria and therefore the coal ash was considered suitable for marine applications concerning seawater quality.

  1. Status of EPRI SGOG steam generators chemical cleaning program in France

    International Nuclear Information System (INIS)

    Sludge loading, which is a consequence of the normal working of the plants, has some important effects regarding the way the steam generators are working. First of all, flow induced vibration due to the blockage of the quatrefoils that induce water level variations in the secondary side of the steam generators. This phenomenon is a potential root cause for tubes crack initiation due to mechanical fatigue. In addition the sludge accumulation leads to plant power loss that could heavily affect the efficiency ratio of the plant. Specifically this kind of situation has been encountered in France, in 2006, and has led to implement a significant chemical cleaning program proposed by Westinghouse: the EPRI SGOG process, in order to remove the deposits present in the secondary side of the steam generators and recover their normal operations conditions. The results presented in this paper come from EDF reviews, done before and after process implementation. The results of EPRI SGOG chemical cleanings show a very high efficiency of the process in terms of blockage removal, wide range level recovery, SG pressure recovery and recirculation ratio recovery, in parallel with a very low corrosion level that ensures SG integrity over their full lifetime

  2. AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells. FINAL REPORT

    OpenAIRE

    Di Donato, Antonello; Puigjaner Corbella, Lluís; Velo García, Enrique; Nougués, José María; Pérez Fortes, María del Mar; Bojarski, Aarón David

    2010-01-01

    Informe Final del Projecte ECSC RFC-CR-04006: AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells

  3. The behaviour of chemically altered coals in ZnCl{sub 2}-catalysed reaction with hydrogen and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Bimer, J.; Salbut, P.D.; Gruber, R.; Djega-Mariadassou, G.; Brodzki, D.; Korniyets, E.; Kuznetsova, L.; Krzton, A. [Institute of Chemistry and Chemico-Metallurgical Processes, Krasnoyarsk (Russian Federation)

    1996-08-01

    A series of chemically altered coals was investigated in the reaction with methanol and hydrogen in the presence of ZnCl{sub 2} as a catalyst. Significant beneficial effects were observed when high-rank coals were altered by reductive and radioactively methylating pretreatments. The behaviour of altered low-rank brown and subbituminous coals was affected by both the mode of chemical pretreatment and the reaction conditions. The benefit can be explained by partial depolymerization of the coal matter through the disruption of cross-links and the passivation of hydroxyl groups by methylation. 33 refs., 7 figs., 3 tabs.

  4. Fuel reactor modelling in chemical-looping combustion of coal: 1. model formulation

    OpenAIRE

    Abad Secades, Alberto; Gayán Sanz, Pilar; Diego Poza, Luis F. de; García Labiano, Francisco; Adánez Elorza, Juan

    2013-01-01

    A fundamental part of the reliability of the Chemical-Looping Combution system when a 13 solid fuel, such as coal, is fed to the reactor is based on the behaviour of the fuel reactor, which determines the conversion of the solid fuel. The objective of this work is to develop a model describing the fuel reactor in the Chemical–Looping Combustion with coal (CLCC) process. The model is used to simulate the performance of the 1 MWth CLCC rig built in the Technology University of Darmsta...

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  6. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    Science.gov (United States)

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  7. Re-use of clean coal technology by-products in construction of low permeability liners

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, W.E.; Butalia, T.S.; Whitlatch, E.E.; Mitsch, W.

    2000-12-01

    This final project report presents the results of a research program conducted at The Ohio State University from October 1, 1996 to March 31, 2000 to investigate the use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners. The small scale laboratory tests, medium scale mesocosm wetland experiments, and construction and monitoring of a full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds, and constructed wetlands for wastewater treatment. Actual permeability coefficients in the range of 10{sup -7} cm/sec (3 x 10{sup -9} ft/sec) can be obtained in the field by properly compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio's non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. Construction FGD-lined wetlands offer the opportunity for increased phosphorus retention giving rise to the potential use of these materials as a liners for wastewater treatment wetlands. While plant growth was observed to be less vigorous for FGD lined wetland mesocosms compared to the control, the above and below ground biomass were not significantly different. Cost estimates for FGD liners compared favourably with clay liners for varying haul distances.

  8. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  9. Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Guerrero-Castilla, Angelica; Johnson-Restrepo, Boris; de la Rosa, Jesus; Olivero-Verbel, Jesus

    2015-11-01

    Extraction, transport and utilization of coal spread out coal dust. Nowadays, Colombia is an important producer of this mineral in South America, being the Santa Marta area one of the largest coal exporting ports in the country. The aim of this work was to assess the pollutants levels and toxicity of shoreline sediments from this place. 16 PAHs and 46 elements were measured in nine locations during dry and rainy seasons. HepG2 cells were exposed to 1% sediment extracts and mRNA expression evaluated for selected genes. PAHs levels were greater during the rainy season. The highest ∑PAHs (89.9 ng g(-1)) appeared at a site located around 300 m far from the coast line at close proximity to the area where coal is loaded into cargo vessels for international shipments, being naphthalene the most abundant PAH. At Santa Marta Bay port, ∑PAHs were 62.8 ng g(-1) and 72.8 ng g(-1) for dry and rainy seasons, respectively, with greatest levels for fluoranthene. Based on sediment standards, most stations have poor condition regarding Cr, but moderate contamination on Cu, Pb and Zn. Sediments from the port and coal transport sites, the most polluted by PAHs and metals, induced CYP1A1 and NQO1 during the dry season. Data showed the sediments from this shoreline have bioactive chemicals that determine their toxicological profile. PMID:26298075

  10. The chemical transformation of calcium in Shenhua coal during combustion in a muffle furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sida [North China Electric Power Univ., Beijing (China). School of Energy, Power and Mechanical Engineering; Ministry of Education, Beijing (China). Key Lab. of Condition Monitoring and Control for Power Plant Equipment; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering; Shu, Xinqian [China Univ. of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2013-07-01

    The chemical reaction characteristics of calcium in three samples of Shenhua coal, i.e. raw sample, hydrochloric acid washed sample and hydrochloric acid washed light fraction, during combustion in a muffle furnace have been investigated in this paper. Ca is bound by calcite and organic matter in Shenhua coal. X ray diffraction (XRD) phase analysis has been conducted to these samples' combustion products obtained by heating at different temperatures. It has been found that the organically-bound calcium could easily react with clays and transform into gehlenite and anorthite partially if combusted under 815 C, whilst the excluded minerals promoted the conversion of gehlenite to anorthite. Calcite in Shenhua coal decomposed into calcium oxide and partially transformed into calcium sulfate under 815 C, and formed gehlenite and anorthite under 1,050 C. Calcite and other HCl-dissolved minerals in Shenhua coal were responsible mainly for the characteristic that the clay minerals in Shenhua coal hardly became mullite during combustion.

  11. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  12. The simulation of the hot boiler chemical clean (Siemens Process) in Pickering NGS 'B'

    International Nuclear Information System (INIS)

    A great insight of the most critical evolutions of the Hot Boiler Chemical Clean process prior to its application in PNGS 'B' was obtained with a number of models of the Heat Transport System. The simulated evolutions included the HTS warm up to a temperature of 170oC, HTS temperature and pressure control at 170oC and 4.1 MPa(a), respectively, with the Shutdown Cooling System operating in Warm Up Mode in conjunction with high Feed and Bleed flows and the Bleed Cooler, and the HTS pressure and temperature transients during the ASRVs venting of the Iron Step. Excellent agreement was obtained amongst the different numerical predictions and the data gathered during the actual HBCC of the Steam Generators of Unit 5. (author)

  13. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    Energy Technology Data Exchange (ETDEWEB)

    Verma, K.; MacNeil, C. [New Brunswick Power Corp., Lepreau (Canada); Odar, S.; Kuhnke, K. [Siemens AG, Erlangen (Germany)

    1997-02-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.

  14. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  15. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  16. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  17. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  18. 清洁煤技术与CO2地质封存%Clean coal technology and CO2 geological storage

    Institute of Scientific and Technical Information of China (English)

    柳迎红; 马丽

    2014-01-01

    To improve the utilization rate of coal and speed up clean,efficiency and low carbonization of coal industry,provide that the tra-ditional coal conversion technologies should be replaced by efficient and clean technologies.Investigate the clean coal technologies and CO2 geological storage technologies,especially the technologies of CO2 storage in saline formation.The way stores large quantities of CO2 safely and stably.The method also solves the problems of CO2 emissions due to China̓s energy structure.%中国能源资源特点决定现在以煤为主的消费结构,但煤炭在消费过程中存在高污染和低效率的问题,因此为提高资源利用率,煤炭行业面临结构调整。煤炭行业的清洁化、高效化、低碳化将是产业发展方向,煤炭高效洁净转化将取代传统的转化技术,如何解决煤炭利用过程中产生的CO2是清洁煤技术面临的新问题。通过研究清洁煤技术与CO2地质封存技术,特别是深部盐水层封存技术,为煤炭利用中产生的CO2排放提供了一种大规模、安全、稳定的存储方式,从而解决目前中国能源结构造成的CO2排放问题。

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  20. Sorption and chemical transformation of PAHs on coal fly ash. Technical progress report No. 1, [October--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Mamantov, G.; Wehry, E.L.

    1991-12-31

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Studies to be carried out in this project include: (1) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (2) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (3) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (4) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of ``surface roughness`` of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles; (5) Identification of the major products of chemical transformation of PAHs on coal ash particles, and examination of any effects that may exist of the nature of the coal ash surface on the identities of PAH transformation products; and (6) Studies of the influence of other sorbed species on the chemical behavior of PAHs and PAH derivatives on fly ash surfaces. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  1. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  2. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  3. On-line chemical cleaning of pipelines; Limpieza quimica de ductos en linea

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Michael Brent [Brenntag Stinnes Logistics, Muelheim/Ruhr (Germany)

    2003-07-01

    The concern of efficiency and maintenance in the pipeline industry, due to fluids and sediments, has led the development of new methods of cleaning. Some methods of cleaning are described in this work with their advantages and disadvantages.

  4. Consideration of clean coal energy strategy in China%中国清洁煤炭能源战略思考

    Institute of Scientific and Technical Information of China (English)

    陈清如

    2012-01-01

    根据中国能源资源的国情,阐述煤炭能源的高效清洁利用仍然是我国能源研究领域的重中之重。以矿物加工工程和化学工程学科为基础,论述我国清洁煤炭能源的特点以及煤炭的加工和转化技术,指出高效煤炭加工利用的新技术、新工艺必须纳入新能源规划的考虑范围之内。传统的煤加工与煤转化理论和技术面临着严峻的挑战。煤基多联产是符合我国国情的煤炭清洁高效利用新技术系统,是最经济有效的方法。建设大型坑口电站是当前资源配置最优化、最经济、最洁净能源的战略。二段干法选煤的灰分〈8%,硫分〈5%,该技术既可用于新建电厂也适用于老厂改造。%The clean and efficient utilization of coal energy remains the most important in energy research field,as is determined by the energy resources conditions of China.The new energy plan is dominated by novel process and technology designed for clean and efficient utilization of coal.As the traditional theory and technology of coal processing and coal conversion are confronted with serious challenges,coal-based poly-production represents the new technical system of the efficient and clean use of coal,which applies to China's conditions.It follows that the construction of the pithead power plant forms the optimized,most cost-effective and cleanest energy strategy.The two-stage dry separation capable of ash of less than 8% and sulfur of less than 5% is suited to newly built power plants and to upgrading the old ones.

  5. Genesis of some tertiary Indian coals from the chemical composition of ash - a statistical approach: Part 1

    Science.gov (United States)

    Sharma, Arpita; Saikia, Ananya; Khare, Puja; Baruah, B. P.

    2014-10-01

    In the present investigation, 37 numbers of high sulphur tertiary coal samples from Meghalaya, India have been studied on the basis of proximate and ash analysis. Various statistical tools like Bivariant Analysis, Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), and also the geochemical indicators were applied to determine the dominant detrital or authigenic affinity of the ash forming elements in these coals. The genetic interpretation of coal as well as the coal ash has been carried out based on chemical compositions of high temperature ash (HTA) by using Detrital/Authigenic Index. X-Ray Diffraction (XRD) analysis was also carried out to study the mineralogy of the studied coal ashes. Both statistical tools and geochemical indicators have confirmed the detrital nature of these coals as well as the ash forming elements.

  6. Genesis of some tertiary Indian coals from the chemical composition of ash – a statistical approach: Part 1

    Indian Academy of Sciences (India)

    Arpita Sharma; Ananya Saikia; Puja Khare; B P Baruah

    2014-10-01

    In the present investigation, 37 numbers of high sulphur tertiary coal samples from Meghalaya, India have been studied on the basis of proximate and ash analysis. Various statistical tools like Bivariant Analysis, Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), and also the geochemical indicators were applied to determine the dominant detrital or authigenic affinity of the ash forming elements in these coals. The genetic interpretation of coal as well as the coal ash has been carried out based on chemical compositions of high temperature ash (HTA) by using Detrital/Authigenic Index. X-Ray Diffraction (XRD) analysis was also carried out to study the mineralogy of the studied coal ashes. Both statistical tools and geochemical indicators have confirmed the detrital nature of these coals as well as the ash forming elements.

  7. Minimization of water and chemical usage in the cleaning in place process of a milk pasteurization plant

    Directory of Open Access Journals (Sweden)

    Sathit Niamsuwan

    2011-08-01

    Full Text Available Cleaning in place (CIP is a method of cleaning inner surfaces of piping, vessel, equipment, and associated fitting withdisassembly. Although, the CIP processes have been studied continually to improve efficiency for chemical and water consumption,the real conventional plant operations of this process still have been considered as a large amount of consumption.The objectives of this work are to study process behaviors and to find out the optimal draining ratio of the CIP cleaningchemicals in a pasteurized milk plant. To achieve these, mathematical models of the CIP process have been developed andvalidated by the actual process data. With these models, simulation study has been carried out to describe the dynamicbehaviors of the process with respect to the concentrations and contaminations in CIP cleaning chemicals. The optimizationproblem has been formulated and solved using written programs based on MATLAB application program.

  8. Clean Coal: myth or reality? At the heart of the energy-climate equation, capturing and storing CO2 - Proceedings of the 2007 Le Havre's international meetings

    International Nuclear Information System (INIS)

    This document comprises the French and English versions of the executive summary of the RIH 2007 meetings, followed by the available presentations (slides). Content: - Symposium Opening: Government and the Coal Issue; 1 - First Session - Energy, Climate, Coal: - Scenarios for energy technologies and CO2 emissions: Energy outlooks, CO2 emissions, Technologies (Kamel BENNACEUR); - The global situation of coal: The situation of the international steam coal market, Change in this market, Total's position in this business, Major challenges for the future (Ablaziz ESSEID); - Coal markets: availability, competitiveness, and growing maturity (Stephane LEMOINE); - Coal in the geopolitics of greenhouse gases (Henri PREVOT); - Questions; 2 - Second Session - Coal Economy: - Opportunities and challenges for coal in the European energy mix: the Commission's energy package: The European situation, The European energy mix, The role of EURACOAL (Thorsten DIERCKS); - The development of a coal bed in Lucenay-les-Aix and Cossaye in the Massif Central (Francois JACLOT); - The Russian view of coal's place in the energy mix (Dominique FACHE); - Coal, a key to development in Niger (Pierre-Jean COULON); - The energy and environmental efficiency of coal-fired power plants associated with heating networks (Renaud CAPRIS); - The Valorca project: efficient and immediate use of coal, and strong outlooks for the future (Jean-Pascal TRANIE); - Questions; 3 - Third and Forth Sessions - Clean Power Plants: - CO2 capture systems (Pierre LE THIEZ); - CO2 geological capture and storage in the Lacq basin (Luc de MARLIAVE); - Clean coal: Air Liquide technology developments and industrial solutions (Nicolas PERRIN); - Clean combustion and CO2 (Philippe PAELINCK); - CO2 capture by freezing/defrosting at low temperatures (Denis CLODIC); - Questions; - Using the experience of a large corporation (ENDESA), to develop clean energy: coal (Laurent THABUSSOT); - Pathways to reduce CO2 emissions

  9. Coal gasification and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Bell, D.; Towler, B.

    2010-07-01

    This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes. The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups. Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Emphasizes the importance of the coal types fed to the gasifier and desired end products - Covers gasification kinetics.

  10. 减压蒸馏塔的化学清洗%Chemical cleaning of a vacuum distillation tower

    Institute of Scientific and Technical Information of China (English)

    李庆梅; 王帝; 陈清玉; 王星明

    2012-01-01

    研究了炼油厂加工含硫原油蒸馏装置减压塔硫化亚铁的形成,装置停工检修时硫化亚铁自燃机理及其对装置的危害。介绍了减压蒸馏塔垢样的组成;清洗此种垢样,采用的碱洗方法,清洗机理,化学清洗剂的组成;采用塔器级联循环清洗方案,有效地吸收硫化氢,确保清洗过程安全环保,清洗效果良好,无二次浮锈生成。%To research on oil refinery processing high sulfur crude oil distillation tower of ferrous sulfide formation, unit overhaul ferrous sulfide spontaneous combustion mechanism and harm of device. To introduces the vacuum distillation tower scale sample composition, cleaning the scale sample, using safety alkali washing method, cleaning mechanism, chemical cleaning agent composition. The tower to use cascade cycle cleaning solutions, effective absorption of hydrogen sulfide, ensure the cleaning process safety and environmental protection. The cleaning effect is good, no two floating rust.

  11. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  12. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  13. Physico-chemical phenomena during mechanical thermal expression of water in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Alan L. Chaffee; Yuli Aranto; Christian Bergins; Janine Hulston; Marc Marshall; Haruo Kumagai [Monash University, Vic. (Australia). School of Chemistry

    2007-07-01

    Mechanical thermal expression (MTE) is a non-evaporative method for water removal from low rank coal with typical processing conditions in the range 150-220{sup o}C and 10-20 MPa of applied mechanical pressure. Using a range of analytical methods, this study probes physico-chemical changes in the coal structure that occur as a result of MTE processing and, also, molecular dynamic behaviour under MTE conditions. Mercury intrusion porosimetry (MIP), after appropriately compensating for the coal's compressibility, showed that progressively harsher MTE conditions led to a reduction in the concentration of macropores and a concomitant increase in the concentration of mesopores. However, since MIP requires the use of dried samples, it does not facilitate the examination of 'as-received' samples. Using small angle X-ray scattering (SAXS) it was possible to examine the MTE products in both their wet and dry states enabling the pore volume reduction upon drying to be observed. Also, consideration of the SAXS and MIP results in combination, suggests that the abundance of 'closed' (meso)pores is reduced at higher MTE processing temperatures. The dynamic nature of coal molecular structure under MTE processing conditions has been probed for the first time using {sup 1}H-NMR transverse relaxation rate (T2) measurements. The data suggest that water exerts a 'plasticising' effect, enhancing the mobility of the coal structure at elevated temperature. This enhanced mobility (softening) presumably facilitates the reorganization of molecular structure, enabling the changes in porosity identified by MIP and SAXS. 22 refs., 8 figs., 1 tab.

  14. Pretreatment of highly turbid coal mine drainage by a chemical agent free filtration system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunhui; He Xiong; Li Kaihe; Wu Dongsheng; Guo Yanrong; Wang Can

    2012-01-01

    A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.

  15. Research of the Institute of Chemical Processing of Coal on hot briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Malczyk, R.; Rychly, J.; Sekula, M.; Zakrzewski, Z. (Instytut Chemicznej Przerobki Wegla, Zabrze (Poland))

    1992-04-01

    Reviews research work carried out for the past 40 years by the Institute of Chemical Processing of Coal in Zabrze, Poland in the field of coal briquetting. The first task faced by the Institute in the mid 1950s was briquetting of semicoke. General briquetting parameters for semicoke are discussed. The history and achievements of the Institute's research and development from the early 60s up to today is outlined. In addition to economic aspects, environmental problems became more and more the focus of study. Production of smokeless fuel is the subject of recent studies. Future activities to be performed in this field and perspectives for their implementation in industry are pointed out. 26 refs.

  16. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Terence J. McManus, Ph.D.

    1999-06-30

    Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc

  17. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  18. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  19. EM-21 ALTERNATIVE ENHANCED CHEMICAL CLEANING PROGRAM FOR SLUDGE HEEL REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M; King, W; Martino, C

    2009-12-18

    Preliminary studies in the EM-21 Alternative Chemical Cleaning Program have focused on understanding the dissolution of Hematite (a primary sludge heel phase) in oxalic acid, with a focus on minimizing oxalic acid usage. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control, preferably using a supplemental proton source, is critical to oxalate minimization. With pH control, iron concentrations as high as 0.103 M have been obtained in 0.11 M oxalic acid. This is consistent with the formation of a 1:1 (iron:oxalate) complex. The solubility of Hematite in oxalic acid has been confirmed to increase by a factor of 3 when the final solution pH decreases from 5 to below 1. This is consistent with literature predictions of a shift in speciation from a 1:3 to 1:1 as the pH is lowered. Above a solution pH of 6, little Hematite dissolves. These results emphasize the importance of pH control in optimizing Hematite dissolution in oxalic acid.

  20. Fine Clean Coal Dewatering Remould to NO.2 Surrly Treatment of Jining Coal Preparation Plant%济宁二号煤矿选煤厂末精煤脱水改造

    Institute of Scientific and Technical Information of China (English)

    张宏松

    2013-01-01

    该文主要讨论了物料性质对脱水作业的影响及WL1400离心脱水机和VC56离心脱水机的优缺点,介绍了济宁二号煤矿选煤厂末精煤脱水的改造情况。%Mainly discussed material property effect to dewatering process,discussed the merits and demerits of WL1400 centrifuge and VC56 centrifuge, introduced the situation of fine clean dewatering remould to NO.2 Surrly Treatment of Jining Coal Preparation Plant.

  1. Technological roadmap for production, clean and efficient use of Brazilian mineral coal: 2012 to 2035; Roadmap tecnologico para producao, uso limpo e eficiente do carvao mineral nacional: 2012 a 2035

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Brazil has one of the largest coal reserves in the world, but it is not among the largest producers in the world. Coal in Brazil, has two main applications: use as fuel for power generation, including industrial energy use, and in the iron and steel industry for production of coke, pig iron and steel. In the updated rates of use, the coal reserves can provide coal for more than 500 years. A public policy to better take advantage of the mineral coal, with horizons in 2022 and 2035 and the guidelines and strategies proposed for the country to reach the production, clean and efficient use of the expressive quantity of the mineral national coal are presented.

  2. Performance of water-based foams affected by chemical inhibitors to retard spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    Chen Peng; Huang Fujun; Fu Yue

    2016-01-01

    The micelle generating process of the sodium dodecyl sulfate (SDS) solution with the addition of chemical inhibitors was elucidated using phase separation model, and the descending order of the capacity for the selected chemical inhibitors to reduce the critical micelle concentrations of the solution are MgCl2, CaCl2, NH4HCO3 and NH4Cl. The data to quantitatively describe the foam decay process, including foaming ratio, foam life and decay behaviors, was obtained by pressure measuring system. The results indicate that chemical inhibitors can improve the solution foamability. The capacity of the inhibitors to enhance the solution foamability is sorted as NH4Cl, NH4HCO3, MgCl2 and CaCl2 which can distinctly improve the foam stability as well. The capacity of the inhibitors to enhance the SDS foam stability can be arranged as MgCl2, NH4Cl, NH4HCO3 and CaCl2. It is observed that the gravity drainage plays a leading role in the increase of proportion of diffusion drainage. The oxidation dynamic parameters of the coal samples trea-ted by inhibition foams were investigated using thermal analysis technique, and their synergistic effects on inhibiting coal oxidation were explored.

  3. Bioremediation treatment for cleaning up toxic chemical contaminated soil in field trials

    Energy Technology Data Exchange (ETDEWEB)

    Dang Thi Cam Ha; Nguyen Ba Huu; Pham Thi Quynh Vam; Nguyen Thi De; Nguyen Quoc Viet; Nguyen Duong Nha; La Thamh Phuong; Tran Nhu Hoa; Mai Anh Tuan; Pham Huu Ly; Nguyen Van Minh; Le van Hong; Do quang Huy; Dang Vu Minh; Nguyen Duc Hue

    2002-07-01

    At present, in South and Midle of Vietnam there are some US old military bases were contaminated by toxic chemicals (Orange/Dioxins). These soils were heavily contaminated by exposure of toxic chemicals for a long time (30-40 years). Recently several groups of researches working on detoxination by one or other ways and they obtained promissing results. However, up to now there are no single and promisin solutions that help government to select effective projects to cleapu these contaminated areas. In order to find down complex of cleaning methods for remediation of these heavy dioxin contaminated sites based on the results of distribution of native microbial populations in toxic chemical contaminated sites and laboratory detoxination experiments that were performed we carried out field trial in different scales directly in the site of Central Vietnam. Polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs) are recognized as toxic pollutants and persists in an environment. These compounds are unintentionally formed in the process of producing chlorine-containing herbicides, and in other industrial processes such as bleaching of paper pulp, combustion of domestic and industrial waste etc. These kinds of contaminants have been found in many environmental matrices such as air, soil and plant. In recent years, there are more and more reports on capacity of microorganisms that are capable of degrading PCDDs, PCDFs and PCBs. Particularly, research of German scientists showed that there are many genes that encoded for enzymes involved in PCDDs, PCDFs and PCBs degrading pathways were found in bacteria and in several fungal genera etc. Enzymes were involved in oxidation, dechlorination, catalysis or direct ring cleavage, PCDDs, PCDFs and PCBs degrading pathways in microorganisms are providing knowledge and experiments for us study of cleaningup these contamiants in Vietnam. Several representative microbial generas are capable degrade dioxin such as

  4. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal

    International Nuclear Information System (INIS)

    Highlights: • Integrated, moving bed chemical looping reactor with iron-oxide based oxygen carrier. • Coal carbon conversion from 84.8% to 99.9%, thermal capacity 7.4 to 27.7 kWth, O2 demand less than 1.3%. • Dynamic temperature of moving bed reducer is established and tracked during coal injection. • CH4 and CO present at initial coal injection, eliminated after oxygen carrier activated. • Lower coal injection had higher volatiles residence time and conversion. - Abstract: The iron-based Coal-Direct Chemical Looping (CDCL) combustion process is an alternative to conventional oxy-combustion technologies, where the oxygen used for fuel conversion in the CDCL process is provided by an iron-oxide based oxygen carrier instead of an air separation unit. The iron oxide is reduced using coal in the reducer reactor, producing highly-pure CO2 in the flue gas, and the reduced iron oxide is regenerated in a separate combustor reactor using air. The CDCL process at Ohio State has been developed and demonstrated in a 25 kWth sub-pilot unit, and it is the first chemical looping demonstration unit with a circulating moving bed reactor for solid fuel conversion. To date, the CDCL sub-pilot unit at OSU has been operated for more than 680 h, with a 200-h continuous operation, providing important data on long term operability as well as parametric optimization. This paper discusses recent parametric operational experience with sub-bituminous coal as the fuel, where dynamic changes in variables were performed to observe the effects on the unit itself. Measurements included temperature, pressure, and gas concentrations from the reducer and combustor. Furthermore, effects of different variables, such as flue gas recycle ratios (enhancer gas flow rates), feed port injection, and temperature, were observed. Tests confirmed high coal conversions with high purity of CO2 achieved in the flue gas. Overall, the moving bed design of the reducer results in nearly full coal conversion

  5. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  6. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  7. Hydrofluoric acid chemical cleaning for running boiler WU Lierong, SHENG Peng%直流锅炉氢氟酸化学清洗

    Institute of Scientific and Technical Information of China (English)

    吴列荣; 盛鹏

    2012-01-01

    本文介绍了运行直流锅炉采用氢氟酸半闭半循环化学清洗方法的工艺特点、控制方法等,详细叙述了化学清洗过程,通过清洗效果比较,说明了半闭半循环化学清洗方法的优势,炎同类型锅炉进行氢氟酸化学清洗提供了经验借鉴。%This article described the run Boiler process characteristics of hydrofluoric acid semi-closed cycle chemical cleaning method, the control method described in detail the chemical cleaning process, cleaning effect, indicating that the advantages of semi-closed cycle chemical cleaning method, for the HF chemical cleaning of the same type of boiler to provide the experience.

  8. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  9. Coal Liquefaction characteristics and chemical structure of product oil; Sekitan ekika hanno tokusei to seiseibutsu no kagaku kozo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.; Sato, M.; Chiba, T.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Sasaki, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Through the hydrogenolysis of Wandoan coal and Tanito Harum coal which are used for the NEDOL process, differences of liquefaction characteristics between them were found. The purpose of this study is to grasp these differences as differences of chemical structures of oil fractions. The compound type analysis was conducted for oil fractions obtained at varied reaction temperature for varied reaction time. Coal liquefaction characteristics of these coals were discussed by relating oil yields and chemical structures. For Tanito Harum coal, yields of gas and oil were considered to be lower than those for Wandoan coal, which reflected that the contents of partially hydrogenated hydroaromatics in oil fraction from the former were lower than those from the latter, and that the remarkable change of composition did not occur with the progress of the reaction. For both the coals, the remarkable changes in the average molecular weight of oil fraction were not observed with the progress of the reaction. While, the content of methane gradually increased with the progress of the reaction, which suggested that oil was gradually dealkylated. 5 figs.

  10. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  11. Application of Rank(S-r), a maturity index based on chemical analyses of coals

    Energy Technology Data Exchange (ETDEWEB)

    Suggate, R.P. [Inst. for Geology & Nuclear Science, Lower Hutt (New Zealand)

    2002-09-01

    The Rank{sub S} classification of Suggate, which uses data from standard coal industry chemical analyses, is illustrated on interdependent diagrams with axes of atomic O/C and H/C and of calorific value and volatile matter. The Rank{sub S-r} scale, which is compensated for coal type, is linear with depth under conditions of linear geothermal gradients, so that the depth value for each unit increase in rank depends on the geothermal gradient at the time of maximum temperature. A general relation is established between Rank(Sr) and the temperature of attainment of rank: Temp.{sup o}C = 10 x Rank{sub S-r} + 15. Significant oil generation begins at Rank({sub S-r}) 9-10 and expulsion at Rank{sub S-r} 11.5-12.5. A clear general relation exists between Rank{sub S-r} and vitrinite reflectance, but Rank{sub S-r} is somewhat more accurate over the range from peat to the end of the oil window. In the Paleogene Buller Coalfield, New Zealand, the use of Rank{sub S-r} is an aid to interpeting geological history. Coals in the Carboniferous Nottinghamshire-Yorkshire Coalfield in England probably contributed hydrocarbons, including oil, to the adjoining East Midlands hydrocarbon fields. Vertical and lateral variations in Rank{sub S-r} in the coalfield, and the Rank{sub S-r} values in coal measures at the base of the Permian, require a thick Mesozoic-Tertiary cover. In the oilfields of the Mahakam Delta, Indonesia, and the Taranaki Basin, New Zealand, Rank{sub S-r}/depth gradients imply surface values that are close to zero where little or no cover has been eroded from above the wells, and inferred temperatures that are reasonably close to present temperatures.

  12. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    OpenAIRE

    Yager, J W; Hicks, J B; FABIANOVA, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic a...

  13. Evaluation of the effect of coal cleaning of fugitive elements. Part II. Analytical methods. Final report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, R.E.; Price, A.A.; Ford, C.T.

    1980-03-01

    This report contains the analytical and test methods which were used routinely at Bituminous Coal Research, Inc. during the project. The procedures contained herein should aid coal industry laboratories and others, including commercial laboratories, who might be required to determine trace elements in coal. Some of the procedures have been presented in previous BCR reports; however, this report includes additional procedures which are described in greater detail. Also presented are many as the more basic coal methods which have been in use at BCR for many years, or which have been adapted or refined from other standard reference sources for coal and water. The basis for choosing specific analytical procedures for trace elements in coal is somewhat complex. At BCR, atomic absorption was selected as the basic method in the development of these procedures. The choice was based on sensitivity, selectivity, accuracy, precision, practicability, and economy. Whenever possible, the methods developed had to be both adequate and amenable for use by coal industry laboratories by virtue of relative simplicity and cost. This is not to imply that the methods described are simple or inexpensive; however, atomic abosrption techniques do meet these criteria in relation to more complex and costly methods such as neutron activation, mass spectrometry, and x-ray fluorescence, some of which require highly specialized personnel as well as access to sophisticated nuclear and computational facilities. Many of the analytical procedures for trace elements in coal have been developed or adapted specifically for the BCR studies. Their presentation is the principal purpose of this report.

  14. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Second quarterly technical progress report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.-H.; Luttrell, G.H.; Adel, G.T.

    1996-08-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. All required documents associated with project planning were completed and submitted to DOE for approval during the second quarter of this project. Approval of the project work plan is still pending at this time subject to additional review by DOE of requested modifications to the statement of work. Accomplishments during this reporting period include the set-up of an apparatus for assessing tribocharger performance, continued construction of the bench-scale (1 kg/hr) triboelectrostatic separator and initial development of a fundamental model for predicting the motion of charged particles in a non-uniform electrostatic field.

  15. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  16. Synfuels from coal - an environmentally sound approach

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.N. (Sasol Technology Ltd (South Africa))

    1991-01-01

    The Sasol oil from coal process is a two stage process in which indirect liquefaction is used to convert coal to synthesis gas which is then reacted in a second stage to produce hydrocarbon liquids. The process has been used for over 35 years, and has been advanced and modernized to provide almost the same degree of environmental friendliness as some of the new clean coal technologies. A further advantage of the production of transport fuels from coal is that all sulphur is removed prior to processing and the product petrol and diesel fuels are fully sulphur free. Sasol has now diversified into added value products, and today's coal refineries co-produce power, steam, fuel and chemicals from coal. 2 tabs.

  17. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  18. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    International Nuclear Information System (INIS)

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered

  19. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  20. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun

    Science.gov (United States)

    Hower, J.C.; Suarez-Ruiz, I.; Mastalerz, Maria; Cook, A.C.

    2007-01-01

    A recent paper by Sun [X. Sun, Spectrochim. Acta A 62 (1-3) (2005) 557] attempts to characterize a variety of liptinite, termed "barkinite", from Chinese Permian coals. The component identified does not appear to fundamentally differ from previously-described liptinite macerals included in the International Committee for Coal and Organic Petrology's system of maceral nomenclature. Further, chemical comparisons made with macerals from coals of different rank and age are flawed because the author did not account for changes in chemistry with rank or for the chemical changes associated with botanical changes through geologic time. The author has not satisfactorily proved his hypothesis that the component differs morphologically or chemically from known liptinite-group macerals. ?? 2006 Elsevier B.V. All rights reserved.

  1. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  2. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  3. A novel power generation system based on moderate conversion of chemical energy of coal and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Wei Han; Hongguang Jin; Rumou Lin [Chinese Academy of Sciences, Beijing (China). Institute of Engineering Thermophysics

    2011-01-15

    This paper proposes a novel power generation system that implements mutually beneficial use of natural gas and coal. In conventional power plants fossil fuels are usually directly burned with air to convert the chemical energy to thermal energy for power generation. In combustion processes, about 30% of exergy of fuels is destructed, and the decrease in the irreversibility of combustion processes has large potential to improve the performance of power plants. The new system attempts to use chemical exergy of fuels before combustion through coordinated use of coal and natural gas. First approximate 60% of coal is gasified in a gasifier with air and steam as oxidant, then, the unconverted residuals (char) and natural gas are utilized synthetically based on the method of char-fired reforming to generate syngas, in which the combustion of char will drive the methane/steam-reforming reaction. The fuel gas from the partial gasification of coal and syngas from char-fired reforming are mixed together and fed into a combined cycle for power generation. As a result, the overall thermal efficiency of the new system is about 51.5% based on the current turbine technologies and the net thermal efficiency of coal to electricity of the new system can reach near 48.6%. The results obtained here may provide a new way of using coal and natural gas more efficiently and economically. 28 refs., 6 figs., 6 tabs., 1 app.

  4. Comparative Chemical and Mineral Characterization of Paleocene Coal of Sonda Coalfield, Sindh, Pakistan

    OpenAIRE

    Imdadullah Siddiqui; Abdul Salam Soomro; Muhammad Hassan Agheem

    2013-01-01

    The Sonda coalfield is located in the 125 km east of Karachi covering an area of about 1400 sq. km. Sonda coal was deposited in the Bara Formation, this Formation contains two main coal-bearing horizons; one is in the upper part and the second is lower part, which is recognized as Jheruck coal zone. In the Bara Formation, coal at Sonda was deposited in three main horizons, named as Daduri, Sonda and Jherruck coal zone. The coal was deposited in in Paleocene age. Sonda coal is enriched with Zn...

  5. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  6. Public meetings for views and comments on the conduct of the 1992 Clean Coal Technology Solicitation---Cheyenne, Wyoming, October 30, 1991 and Louisville, Kentucky, November 12, 1991

    International Nuclear Information System (INIS)

    Two public meetings were convened by the Department of Energy (DOE) in October and November 1991 in order to obtain views, comments, and recommendations with regard to the forthcoming Clean Coal Technology V solicitation. In the sections that follow, brief descriptions are provided on the background to the CCT solicitation and the public meetings, and how the meetings were conducted. Subsequent chapters of this report present the discussions that ensued at teach of the meetings, and the views, recommendations, and concerns that were expressed by attendees. The report also includes a compilation of the written comments that were received. Finally, an appendix contains attendee registration data and transcripts for opening and closing plenary sessions. (VC)

  7. Chemical analysis of soil and leachate from experimental wetland mesocosms lined with coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Mitsch, W.J. [Ohio State University, Columbus, OH (USA). Environmental Science Graduate Program and School of Natural Resources

    2001-08-01

    Small-scale (1 m{sup 2}) wetland mesocosm experiments were conducted over two consecutive growing seasons to investigate the effects on soil and leachate chemistry of using a recycled coal combustion product as a liner. The coal combustion product used as a liner consisted of flue gas desulfurization (FGD) by-products and fly ash. This paper provides the chemical characteristics of mesocosm soil and leachate after 2 yr of experimentation. Arsenic, Ca and pH were higher in FGD-lined mesocosm surface soil relative to unlined mesocosms. Aluminium was higher in the soils of unlined mesocosms relative to FGD-lined mesocosms. No significant difference of potentially phytotoxic B was observed between lined and unlined mesocosms in the soil. Higher pH, conductivity and concentrations of Al, B, Ca, K and S (SO{sub 4}-S) were observed in leachate from lined mesocosms compared with unlined controls while Fe, Mg and Mn were higher in leachate from unlined mesocosms. Concentrations of most elements analyzed in the leachate were below national primary and secondary drinking water standards after 2 yr of experimentation. Initially high pH and soluble salt concentrations measured in the leachate from the lined mesocosms may indicate the reason for early effects noted on the development of wetland vegetation in the mesocosms. 32 refs., 2 figs., 3 tabs.

  8. Formamide adsorption at 80 K on clean and chemically modified Ru(001) surfaces

    OpenAIRE

    Parmeter, J. E.; Schwalke, U.; Weinberg, W. H.

    1988-01-01

    As part of a continuing investigation of the chemistry of various organic functional groups on the hexagonally close-packed Ru(001) surface, we have studied recently the adsorption of formamide on clean Ru(001) (Ref. 1) and on Ru(001) with an ordered p(1X2) overlayer of oxygen adatoms (θ_0 = 0.5).

  9. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, W.J.W.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Delft (Netherlands)

    2003-12-15

    A high capacity, monolith or particle shaped, regenerable sorbent has been developed for the desulfurization of a dry type coal gas. It consists of crystalline MnAl{sub 2}O{sub 4}, a small amount of disperse MnO, and an amorphous Mn-Al-O phase. Elemental sulfur is the only observed regeneration product during regeneration with SO{sub 2}. The sorbent can be used in the temperature range between 673 and 1273 K but the optimum capacity is utilized between 1100 and 1200 K. For regeneration with SO{sub 2} the regeneration temperature should be > 873 K to avoid sulfate formation. The sulfur uptake capacity is high and amounts up to 20 wt.% S and the sorbent performance appears to be stable during at least 110 sulfiding and regeneration cycles at 1123 K. For temperatures above 1100 K thermodynamic calculations are in accordance with the observed (solid) phases after sulfiding and regeneration, indicating the predictive potential for high temperatures. The performance of the surface sites that play an important role during desulfurization can, however, not be predicted. The regenerative removal of H{sub 2}S, COS, HCl and HF can possibly take place simultaneously with the same sorbent. A new conceptual process configuration for high temperature coal gas cleaning and sorbent regeneration is proposed. Compared to other processes, less heat exchange equipment is required and no Claus unit is necessary to convert the regeneration product to sulfur.

  10. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    Science.gov (United States)

    Yager, J W; Hicks, J B; Fabianova, E

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. PMID:9347899

  11. Comparative Chemical and Mineral Characterization of Paleocene Coal of Sonda Coalfield, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Imdadullah Siddiqui

    2013-10-01

    Full Text Available The Sonda coalfield is located in the 125 km east of Karachi covering an area of about 1400 sq. km. Sonda coal was deposited in the Bara Formation, this Formation contains two main coal-bearing horizons; one is in the upper part and the second is lower part, which is recognized as Jheruck coal zone. In the Bara Formation, coal at Sonda was deposited in three main horizons, named as Daduri, Sonda and Jherruck coal zone. The coal was deposited in in Paleocene age. Sonda coal is enriched with Zn, Ni and Pb. Present mineralogical study shows that Sonda coal contains calcite, dolomite, kaolinite and quartz. The comparison with US and Chinese coal values indicates that among all the analyzed elements, only Ni has high geometric values in Sonda than Chinese coal. GM (Geometric Mean concentration for Al is higher in Sonda coal than US and Chinese coal values. Clarke values comparison shows that according to Zoller formula all elements in Sonda coal are depleting.

  12. New progress in the processing and efficient utilization of coal

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuemin; Liu Jiongtian; Wei Xianyong; Luo Zhenfu; Chen Qingru; Song Shulei

    2011-01-01

    Coal accounts for about 70% of the primary energy sources in China.The environmental pollution and resources waste involved with coal processing and utilization are serious.It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge.Based on our long-term basic research and technology development,the progress in beneficiation,cleaning,and transformation of coal,which includes dense phase fluidized bed dry beneficiation,deep screening of wet fine coal,micro-bubble flotation column separation,molecular coal chemistry,and transformation and separation of coal and its derivatives into value-added chemicals under mild conditions,is discussed.

  13. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-21

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

  14. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-21

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

  15. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  16. Addition to the Lewis Chemical Equilibrium Program to allow computation from coal composition data

    Science.gov (United States)

    Sevigny, R.

    1980-01-01

    Changes made to the Coal Gasification Project are reported. The program was developed by equilibrium combustion in rocket engines. It can be applied directly to the entrained flow coal gasification process. The particular problem addressed is the reduction of the coal data into a form suitable to the program, since the manual process is involved and error prone. A similar problem in relating the normal output of the program to parameters meaningful to the coal gasification process is also addressed.

  17. Chemical evolution of coal mine drainage in a non-acid producing environment, Wasatch Plateau, Utah, USA

    Science.gov (United States)

    Mayo, A. L.; Petersen, E. C.; Kravits, C.

    2000-09-01

    The causes and problems of coal mine drainage, particularly acid mine drainage, in the Eastern and Interior Coal Provinces of the United States are well documented. West of the Mississippi River, where coal mines account for about 45% of total US coal production and where acid mine drainage is rare, the chemical evolution of coal mine drainage is less well documented and understood. In this investigation, we have used solute and isotopic compositions of non-evolved inflow groundwater and evolved mine discharge water to quantify the chemical evolution of mine discharge water in a western underground coal mine. Water enters the mine from fractures and roof bolt holes, which intercept groundwater in the overlying rock. Carbon-14, and 3H data indicate that these waters recharged between 12,000 and 19,500 years ago. The TDS and solute compositions of roof drip waters are spatially zoned and TDS concentrations range from about 300 to 550 mg l -1. After the water encounters minerals and other substances in the mine, the chemical differences between various mine regions become more pronounced and the TDS of mine drainage water increases to about 850 mg l -1. The TDS of mine drainage is related to water-rock ratios. Mine drainage issuing from the older mined areas, where water-rock ratios are low, has the greatest TDS. Geochemical and isotopic mass balance calculations were performed to quantify chemical reactions in the mine, and to identify sources contributing to the TDS of mine drainage. Chemical reaction pathways evaluated include pyrite oxidation, dissolution of native and rock dust gypsum, dissolution of calcite and dolomite, precipitation of calcite, ion exchange, precipitation of iron hydroxide, and organic decomposition of mining machine emulsion fluid. Solute and isotopic mass transfer reaction calculations demonstrate that the oxidation of pyrite triggers a series of cascading in-mine chemical reactions that are the primary cause of the elevated TDS of mine

  18. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, M.N.

    1994-12-31

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  19. Post-combustion CO2 capture : energetic evaluation of chemical absorption processes in coal-fired steam power plants

    OpenAIRE

    Oexmann, Jochen

    2011-01-01

    In this work, a semi-empirical column model is developed to represent absorber and desorber columns of post-combustion CO2 capture processes in coal-fired steam power plants. The chemical solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and ...

  20. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  1. The Development and Application of Coal Chemical Technology in the Iron and Steel Industry%煤化工技术在钢铁行业的发展与应用

    Institute of Scientific and Technical Information of China (English)

    苏亚杰; 梁文阁; 田波; 王建杰; 周国富

    2013-01-01

    The application of coal chemical technology in the iron and steel industry can achieve efficient and high value added utilization of the hydrocarbon resources,for instance,recycling the hydrocarbon resources from the coke oven,the blast furnace and converter to produce chemical products; the technology of coal-to-reducing gas has been applied in the non-blast furnace ironmaking,which is used for reducing iron or that which can produce direct reduction iron or molten iron.The author summarizes on the basis of the long-term study that the reducing gas produced from coal for ironmaking can replace part of the blast furnace gas and the chemical products produced therefrom by adopting the coal chemical technology can improve energy efficiency and implement clean production in the iron and steel industry.%从钢铁行业的转炉煤气、焦炉煤气生产甲醇出发,总结了部分煤化工技术在钢铁领域的发展和应用.具体分析了固定床煤制气与气基法直接还原铁工艺、煤制气流化床与FINEX熔融还原铁技术、固定床与流化床结合的COREX熔融还原炼铁工艺、粗煤气余热冶炼直接还原铁工艺等,指出借助煤化工技术,可以提高能源利用效率,推动钢铁工业清洁生产.

  2. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  3. Testing Of Enhanced Chemical Cleaning Of SRS Actual Waste Tank 5F And Tank 12H Sludges

    International Nuclear Information System (INIS)

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  4. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  5. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe2O3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO2 compression and the SOFC. (4) Compared with the CLC Fe2O3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first analysis

  6. Influence of flue gas cleaning system on characteristics of PM2.5 emission from coal-fired power plants

    Institute of Scientific and Technical Information of China (English)

    Ao Wang; Qiang Song; Gongming Tu; Hui Wang; Yong Yue; Qiang Yao

    2014-01-01

    This study investigated the influence of precipitators and wet flue gas desulfurization equipment on charac-teristics of PM2.5 emission from coal-fired power stations. We measured size distribution and removal efficiencies, including hybrid electrostatic precipitator/bag filters (ESP/BAGs) which have rarely been studied. A bimodal distribution of particle concentrations was observed at the inlet of each precipitator. After the precipitators, particle concentrations were significantly reduced. Although a bimodal distribution was still observed, all peak positions shifted to the smaller end. The removal efficiencies of hybrid ESP/BAGs reached 99%for PM2.5, which is considerably higher than those for other types of precipitators. In particular, the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored. The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down. The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices. The results showed diverse removal efficiencies for different desulfurization towers. The reason for the difference requires further research. We estimated the influence of removal technology for particulate matter on total emissions in China. Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons, with 47.48 thousand tons of PM2.5.

  7. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    utilisation of coals with low sulphur concentrations (typically < 1 wt %, the removal of cleaning prior to utilisation. The methods for the removal of sulphur from coal can be divided into: physical, chemical and microbiological. The mineral sulphur components can be removed or reduced by commercial methods of coal washing, flotation and agglomeration. A number of chemical desulphurization for the removal of, both, pyritic and organic sulphur have been advocated. The chemical desulphurization methods however, have two major drawbacks. Namely, they are often expensive and they destroy the caking properties of coal. Certain microorganisms have been used to consume or convert selectively most of the pyritic sulphur as well as some of the organic sulphur in coal. The process is also cheaper than chemical desulphurization and does not affect the caking properties of coking coal.

  8. Modes of occurrence and cleaning potential of hazardous trace elements in Huanglong coal%黄陇煤中微量有害元素的赋存与洗选洁净潜势

    Institute of Scientific and Technical Information of China (English)

    么秋香; 杜美利; 王水利; 刘静; 杨建利; 上海涛

    2012-01-01

    The abundance of hazardous trace elements in coal collected at main active mines in Huan-glong Jurassic Period coal field were investigated by inductively coupled plasma optical emission spectrometer and chemical method. Correlation and symbiotic relationship between hazardous trace elements, parameters of proximate analysis, and total sulfur was examined by correlation analysis and cluster analysis. Analysis results snow that the abundance of F, Mn, Sr, Ba, Se, P and Cl are markedly higher than average values of Chinese coals, and the abundance of U, Cr, Cu, V and Zn gets close to the average values. Cl, F and Se show organic affinity and Cr, Mn, Gu, V, Zn, Sr, P, Ba and U show inorganic affinity. Se, Cl and F mainly occur in bound-organic. Cr, V, Cu, Sr and Zn are mainly associated with clay minerals. Mn, U and Hg may possibly be existed in pyrite or phosphate minerals. Ba is significantly correlated with barite. Inorganic bound elements have some cleaning potential, but organic bound elements have been enriched by washing.%采用电感耦合等离子体发射光谱和化学分析法对黄陇煤田侏罗纪煤中多种微量有害元素进行了分析,探讨了其在煤中的富集特征.运用相关分析和聚类分析法研究了煤中微量有害元素与工业分析参数、全硫,以及微量有害元素间的相关性和共生组合关系.研究发现:F,Mn,Sr,Ba,Se,P,Cl含量较全国水平明显偏高,U,Cr,Cu,V,Zn等元素含量与全国水平相当.Cl,F,Se具有较强的有机亲和力,Cr,Mn,Cu,V,Zn,Sr,P,Ba,U为亲无机元素.Se,Cl,F主要以有机态存在.Cr,V,Cu,Sr,Zn吸附于粘土矿物.Mn,U,Hg赋存于黄铁矿或磷酸盐矿物中.Ba以重晶石形态存在.洗选可以减弱以无机态赋存元素的环境影响,但对以有机态赋存元素起反作用.

  9. The partition behavior and the chemical speciation of selected trace elements in a typical coal sample during pyrolysis / Tivo Bafana Hlatshwayo

    OpenAIRE

    Hlatshwayo, Tivo Bafana

    2008-01-01

    Sasol is by far the world's leading company in upgrading of low-grade coal into high value chemicals and fuels. Such plants also utilise fine particles or pulverised coal in the combustion process to generate steam and electricity for their processes. Certain trace elements released from coal during utilisation may be of environmental concern. From the literature findings it appears that the elements of interest are mercury, arsenic and selenium due to their potential health hazard and as...

  10. To investigate the reverse osmosis system online chemical cleaning%反渗透系统在线化学清洗的探讨

    Institute of Scientific and Technical Information of China (English)

    李虹

    2014-01-01

    By optimizing and improving the formula and the cleaning solution of reverse osmosis system online chemical cleaning of the second soft water station of Han dan Iron and Steel Company's east area,we have the chemical cleaning experiment to explore a set of reverse osmosis system cleaning technology suitable for the use of Han dan Iron and Steel Company's present double membrane technology positions.%通过对邯钢东区第二软水站的反渗透系统在线化学清洗配方及清洗方案进行优化、改进,进行化学清洗试验,摸索出一套适合目前邯钢双膜法岗位的反渗透系统清洗技术。

  11. Standard Test Method for Effects of Cleaning and Chemical Maintenance Materials on Painted Aircraft Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers determination of the effects of cleaning solutions and liquid cleaner concentrates on painted aircraft surfaces (Note 1). Streaking, discoloration, and blistering may be determined visually. Softening is determined with a series of specially prepared pencils wherein determination of the softest pencil to rupture the paint film is made. Note 1—This test method is applicable to any paint film that is exposed to cleaning materials. MIL-PRF-85285 has been selected as a basic example. When other paint finishes are used, refer to the applicable material specification for panel preparation and system curing prior to testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user ...

  12. How to make the production of methanol/DME "GREENER"-Integration of wind power with modern coal chemical industry

    Institute of Scientific and Technical Information of China (English)

    Weidou NI; Jian GAO; Zhen CHEN; Zheng LI

    2009-01-01

    The urgency and necessity of alternative fuels give an impetus to the development of modern coal chemical industry. Coal-based methanol/DME is the key element of this industry. Wind power, whose installed capacity increased at a rate of more than 100% in recent years, has the most developed technologies in renewable energy. However, there still exist many unsolved problems in wind power for on-grid utilization. A new integrated system which combines coal-based methanol/DME production with wind power is proposed in this paper. In this system, wind power is used to electrolyze water to produce H2 and O2. The O2 is fed to the gasifier as gasification agent. The H2 is mixed with the CO-rich gas to adjust the H2/CO to an appropriate ratio for methanol synthesis. In comparison with conventional coal-based methanol/DME system, the proposed system omits the expensive and energy-consuming ASU and greatly reduces the water gas shift process, which brings both advantages in the utilization of all raw materials and significant mitigation of CO2 emission. This system will be attractive in the regions of China which have abundant wind and coal resources.

  13. The chemical composition of tertiary Indian coal ash and its combustion behaviour - a statistical approach: Part 2

    Science.gov (United States)

    Sharma, Arpita; Saikia, Ananya; Khare, Puja; Dutta, D. K.; Baruah, B. P.

    2014-08-01

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.

  14. The chemical composition of tertiary Indian coal ash and its combustion behaviour – a statistical approach: Part 2

    Indian Academy of Sciences (India)

    Arpita Sharma; Ananya Saikia; Puja Khare; D K Dutta; B P Baruah

    2014-08-01

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.

  15. Coal gasification: A multiple talent

    Energy Technology Data Exchange (ETDEWEB)

    Schreurs, H.

    1996-12-31

    Coal Gasification is on a pressurized route to commercial application. Ground breaking was performed by the Cool Water, Tennessee Eastman and UBE plants. Now several technical and commercial demonstrations are underway not only to show the readiness of the technology for commercial application. Another goal is further developed to reduce costs and to rise efficiency. The main feature of coal gasification is that it transforms a difficult-to-handle fuel into an easy-to-handle one. Through a high efficient gas-turbine cycle-power production becomes easy, efficient and clean. Between gasification and power production several more or less difficult hurdles have to be taken. In the past several studies and R and D work have been performed by Novem as by others to get insight in these steps. Goals were to develop easier, more efficient and less costly performance of the total combination for power production. This paper will give an overview of these studies and developments to be expected. Subjects will be fuel diversification, gas treating and the combination of Integrated Coal Gasification Combined Cycle with several cycle and production of chemical products. As a conclusion a guide will be given on the way to a clean, efficient and commercial acceptable application of coal gasification. A relation to other emerging technologies for power production with coal will be presented.

  16. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    Science.gov (United States)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  17. Preparation for upgrading western subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  18. IN-SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B; John Mickalonis, J; Michael Poirier, M; John Pareizs, J; David Herman, D; David Beam, D; Samuel Fink, S; Fernando Fondeur, F

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS used oxalic acid to accomplish this task. To better understand the conditions of oxalic acid cleaning of the carbon steel waste tanks, laboratory simulations of the process were conducted to determine the corrosion rate of carbon steel and the generation of gases such as hydrogen and carbon dioxide. Open circuit potential measurements, linear polarization measurements, and coupon immersion tests were performed in-situ to determine the corrosion behavior of carbon steel during the demonstration. Vapor samples were analyzed continuously to determine the constituents of the phase. The combined results from these measurements indicated that in aerated environments, such as the tank, that the corrosion rates are manageable for short contact times and will facilitate prediction and control of the hydrogen generation rate during operations.

  19. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  20. Fate and aqueous transport of mercury in light of the Clean Air Mercury Rule for coal-fired electric power plants

    Science.gov (United States)

    Arzuman, Anry

    Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm

  1. Chemical, aerosol and optical measurements in the plumes of three midwestern coal-fired power plants

    Science.gov (United States)

    Richards, L. W.; Anderson, J. A.; Blumenthal, D. L.; Mcdonald, J. A.; Macias, E. S.; Hering, S. V.; Wilson, W. E.

    Airborne measurements were made in and near the plumes of the following mid western coal-fired power plants in 1981: Kincaid in central Illinois in February, La Cygne near Kansas City in March and Labadie near St. Louis in August and September. One objective of these measurements was to obtain data (reported elsewhere) to be used for the evaluation of plume visibility models. The results of the chemical and aerosol measurements are reported here. Good agreement was obtained from different measurement methods for SO 2 and sulfate, but not for two different nitrate measurement methods. No more than a few per cent of the NO x emitted by these plants was NO 2, and NO 2 formation in the plumes could be accounted for by the ozone loss at the observed distances (up to 100 km in winter and 40 km in summer). Sulfate formation rates were in agreement with prior data, and there was no evidence of increased sulfate formation rates in a scrubbed plume (La Cygne). Both aerosol size distributions and sulfur particle size distributions were measured and showed reasonable agreement. The amount of light scattering by particles in the plume was quite variable, in pan because of variations in their mean particle size. The summer measurements were conducted during a rainy and hazy period when the Labadie plume typically could be seen from the ground only within a few km of the source. During this time, the visual impact of the plume was minimal.

  2. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  3. 膜的化学清洗及综合效应评价%MEMBRANE CHEMICAL CLEANING AND ASSESSMENT OF ITS COMPREHENSIVE EFFECTS

    Institute of Scientific and Technical Information of China (English)

    聂晶; 王龙; 孙理密; 王明晖

    2012-01-01

    The type and cause of membrane fouling were summarized in this paper, mechanism and cleaning agents species of chemical cleaning were also introduced, an assessment method of chemical cleaning comprehensive effects was proposed by analytic hierarchies process, the method involved effects .costs and environmental impact of chemical cleaning; then a microfiltration membrane system was taken for example which was used for sewage treatment, empirical research of two options was carried out, the results showed that, Option Ⅱ was better than Option Ⅰ. The method performed good operationality and the assessment results can be used for opting reasonable membrane chemical cleaning option.%概述了膜污染的类型与成因、化学清洗机理及清洗剂的类型,从清洗效果、清洗成本、环境影响3方面,利用层次分析法构建了膜化学清洗综合效应的评价方法;并以某生活污水处理系统的微滤膜为例,进行了两个方案的实证研究,结果表明,方案2要优于方案1.该评价方法可操作性强,评价结果能为选择科学合理的膜化学清洗方案提供依据.

  4. Copper dissolution and electrochemical behavior in EDTA- and EDA-based solutions for steam generator chemical cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Do Haeng E-mail: dhhur@kaeri.re.kr; Choi, Myung Sik; Lee, Eun Hee; Kim, Uh Chul

    2003-09-01

    Copper dissolution and electrochemical behavior have been investigated in order to find out which parameters are critical and important during the two major copper removal processes for chemical cleaning of nuclear steam generator and to evaluate safety aspects and effectiveness of these processes. Hydrogen peroxide was very effective for the process using EDTA-based solution at 38 deg. C to control the corrosion potential of copper into an optimum potential range from -0.3 to +0.2 V for copper sludge dissolution. Corrosion rates of carbon steel SA 285 Gr.C and Alloy 600 were very small in this potential range. The process using EDA-based solution at 60 deg. C was effective to dissolve copper sludge if the corrosion potential of copper could be controlled above -0.3 V. However, it was very difficult under the laboratory conditions to raise its corrosion potential to this range by air blowing and stirring.

  5. Copper dissolution and electrochemical behavior in EDTA- and EDA-based solutions for steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Copper dissolution and electrochemical behavior have been investigated in order to find out which parameters are critical and important during the two major copper removal processes for chemical cleaning of nuclear steam generator and to evaluate safety aspects and effectiveness of these processes. Hydrogen peroxide was very effective for the process using EDTA-based solution at 38 deg. C to control the corrosion potential of copper into an optimum potential range from -0.3 to +0.2 V for copper sludge dissolution. Corrosion rates of carbon steel SA 285 Gr.C and Alloy 600 were very small in this potential range. The process using EDA-based solution at 60 deg. C was effective to dissolve copper sludge if the corrosion potential of copper could be controlled above -0.3 V. However, it was very difficult under the laboratory conditions to raise its corrosion potential to this range by air blowing and stirring

  6. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  7. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  8. The importance of chemical components in cleaning agents for the indoor environment

    DEFF Research Database (Denmark)

    Vejrup, Karl Ventzel

    VOCs. In one experiment, the concentration of nonpolar VOCs in the breathing zone of a person who treated the floor in a large climate chamber (45 m3) using a water based polish product was found to be 3,9 mg/m3. Use of scented cleaning agents usually means that odour thresholds of some compounds...... with polish treatment of the floor in a large climate chamber (45 m3) concentrations of up to 20 mg/m3 og 2-(2-ethoxyethoxy)ethanol were measured after 2 hours and it took more than 10 hours before the concentration was below the odour threshold (4 mg/m3).The amount of non-volatile compounds introduced......, an increase of the content of LAS in the dust was found after floor wash compared to the contents before floor wash. However, the most important source of LAS in the indoor environment is residues of detergent in clothes, thus a newly washed shirt contained 2960 ppm LAS. Other circumstances like transport...

  9. Spin-mapping of coal structures with ESE and ENDOR

    Energy Technology Data Exchange (ETDEWEB)

    Belford, R.L.; Clarkson, R.B.

    1989-09-01

    The broad goals of this project are to determine by nondestructive means -- magnetic resonance techniques -- aspects of chemical and physical structures of organic parts of native and treated coals. We also hope to use related methods to follow the course of certain coal cleaning processes with microscopic spatial resolution. Specific goals include: the nondestructive determination of atomic and molecular structure of sulfur-containing organic species in coal both in its natural state and at various stages during desulfurization; determination of interatomic distances, numbers, and orientations in individual macerals with differing sulfur content by pulsed EPR microscopy; development of nondestructive high-resolution microscopic images of internal structure in coal, including chemical information on the location and distribution of sulfur-containing compounds; determination of sulfur compound chemical structure from highly localized regions in a whole coal sample; by means of the techniques used to accomplish the above goals, to measure the effects of various coal cleaning methods on the molecular forms and spatial distribution of organic sulfur, and on internal structural characteristics like pore size and maceral density; following by these microscopic methods the rate and extent of solvent intrusion into the pores and matrix of whole coals and separated macerals. The work carried out this year mainly addressed goals 1, 2, 3, and 6. 24 refs., 18 figs.

  10. China's post-coal growth

    Science.gov (United States)

    Qi, Ye; Stern, Nicholas; Wu, Tong; Lu, Jiaqi; Green, Fergus

    2016-08-01

    Slowing GDP growth, a structural shift away from heavy industry, and more proactive policies on air pollution and clean energy have caused China's coal use to peak. It seems that economic growth has decoupled from growth in coal consumption.

  11. Coal and public perceptions

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  12. Coal gasification technology. 1979-March, 1980 (citations from the American Petroleum Institute data base). Report for 1979-Mar 80. [416 abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    Studies on coal gasification are cited. Topics include design, performance, cost analysis, and equipment used. Coal desulfurization, cleaning, or preparation, which do not involve conversion to fuels or chemicals are not covered. (This updated bibliography contains 416 abstracts, all of which are new entries to the previous edition.)

  13. Coal gasification technology. 1977-1978 (citations from the American Petroleum Institute data base). Report for 1977-78. [174 abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    This bibliography cites studies relating to the coal gasification processes. Topics include design, equipment used, performance, and cost analysis. Coal desulfurization, cleaning, or preparation, which do not involve conversion to fuels or chemicals, are not covered. (This updated bibliography contains 174 abstracts, none of which are new entries to the previous edition.)

  14. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier☆

    Institute of Scientific and Technical Information of China (English)

    Yongzhuo Liu; Weihua Jia; Qingjie Guo; Hojung Ryu

    2014-01-01

    The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temper-ature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the begin-ning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.

  15. Chemical Pollution and Evolution of Massive Starbursts: Cleaning up the Environment in Star-Forming Galaxies

    Science.gov (United States)

    Kobulnicky, C.

    1996-12-01

    I present the results of a research program seeking to characterize the impact of massive star-clusters on the chemical and dynamical evolution of metal-poor, irregular and blue compact galaxies. The evolution of high mass stars is thought to contribute the bulk of heavy element enrichment in the interstellar medium, especially alpha -process elements like O, Si, etc. Yet, in actively star-forming galaxies, localized chemical inhomogeneities are seldom observed. Spatially-resolved optical and ultraviolet spectroscopy from the Hubble Space Telescope and ground-based observatories is used to search for chemical enrichment in the vicinity of young star clusters in nearby galaxies. VLA aperture synthesis maps are used to examine the neutral hydrogen content, dynamics, and local environment of the sample galaxies. Despite the spread in evolutionary state of the starbursts determined by the EW of Balmer emission lines and the radio continuum spectral index, few instances of localized enrichment are found. In light of these data, the ``instantaneous enrichment'' scenario for extragalactic HII regions appears less probable than one which operates on long timescales and global spatial scales. The results are consistent with the idea that starburst driven winds expel freshly synthesized metals in a hot 10(6) K phase into the halos of galaxies where they cool, condense into globules, and mix homogeneously with the rest of the galaxy on long (dynamical) timescales. The C/O and N/O ratios of the galaxies are used as new tools for measuring the recent star formation history. Implications for chemical evolution of galaxies both locally and cosmologically are developed.

  16. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals

    Science.gov (United States)

    Harris, Stephen H.; Smith, Richard L.; Barker, Charles E.

    2008-01-01

    Lignite and subbituminous coals were investigated for their ability to support microbial methane production in laboratory incubations. Results show that naturally-occurring microorganisms associated with the coals produced substantial quantities of methane, although the factors influencing this process were variable among different samples tested. Methanogenic microbes in two coals from the Powder River Basin, Wyoming, USA, produced 140.5-374.6 mL CH4/kg ((4.5-12.0 standard cubic feet (scf)/ton) in response to an amendment of H2/CO2. The addition of high concentrations (5-10 mM) of acetate did not support substantive methane production under the laboratory conditions. However, acetate accumulated in control incubations where methanogenesis was inhibited, indicating that acetate was produced and consumed during the course of methane production. Acetogenesis from H2/CO2 was evident in these incubations and may serve as a competing metabolic mode influencing the cumulative amount of methane produced in coal. Two low-rank (lignite A) coals from Fort Yukon, Alaska, USA, demonstrated a comparable level of methane production (131.1-284.0 mL CH4/kg (4.2-9.1 scf/ton)) in the presence of an inorganic nutrient amendment, indicating that the source of energy and organic carbon was derived from the coal. The concentration of chloroform-extractable organic matter varied by almost three orders of magnitude among all the coals tested, and appeared to be related to methane production potential. These results indicate that substrate availability within the coal matrix and competition between different groups of microorganisms are two factors that may exert a profound influence on methanogenesis in subsurface coal beds.

  17. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Walker, Harold [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2005-07-15

    This final project report presents the results of a research program conducted at The Ohio State University from January 3, 2000 to June 30, 2005 to investigate the long-term use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners for ponds and wetlands. The objective of the research program was to establish long-term field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD byproducts generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small-scale laboratory specimens under controlled conditions, mediumscale wetland experiments, and monitoring of a full-scale FGD-lined pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications especially in the design of daily covers and liners for landfills, seepage cutoff walls and trenches, and for nutrient retention and pollution mitigation wetlands. The small-scale laboratory tests and monitoring of the full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds. Actual long-term permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. The FGD wetland experiments indicated no significant differences in phosphorus retention between the clay and FGD

  18. Comparative study of oxalic and malonic acid behaviour in the chemical cleaning of alloy 800 surfaces

    International Nuclear Information System (INIS)

    This work consisted, in a first stage, on a basic study of the dissolution mechanism of nickel ferrite in aqueous malonic acid. Powdered oxides (NixFe3-xO4) were synthesized by wet procedures and heated at 750 C degrees. These oxides were characterized by conventional methods and dissolved under different experimental conditions (pH, reagent concentration, temperature, etc.) in order to determine the dissolution rates. Optimal dissolution conditions were explored and compared to the corresponding oxalic acid ones. In a second stage, these conditions were applied to oxides grown on Alloy 800 coupons. Before oxidation, all coupons were ground polished and then were exposed to hydrothermal conditions (350 C degrees, pH25Cdegrees≅ 10.4 -LiOH-, 20-22 days) in static autoclaves. Finally, oxidized and unoxidized coupons were treated with chemical solutions containing oxalic or malonic acid at conditions optimized in the first stage. These results were also compared to those obtained on coupons exposed to a commercial formulation, APAC (Alkaline Permanganate Ammonium Citrate), as a reference. The results on coupon descaling using APMAL (AP + Malonic), APOX (AP + oxalic) and the comparison with APAC leads to conclude that malonic acid is a reagent whose chemical behavior is much better than oxalic acid and comparable to commercial formulations. (author)

  19. Coal conversion. 1978 technical report. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Division of Fossil Fuel Processing - US Department of Energy is conducting a research, development and demonstration program to provide technology that will permit rapid commercialization of processes for converting coal into products that substitute for those derived from oil and natural gas. These substitute fuels include crude oil, fuel oil and distillates; chemical feedstocks; pipeline quality and fuel gas; and other products such as char that may be useful in energy production.

  20. Chemical challenges to structural materials in oxyfuel-cofiring of coal and biomass

    Directory of Open Access Journals (Sweden)

    M.C. Mayoral

    2013-01-01

    Full Text Available Oxy-firing of solid fuels is one of the most relevant technological alternatives aiming at the CO2 capture in large-scale power plants. If oxy-firing is carried out in a fluidized bed reactor, the possibilities for application are extended to low-rank coals, difficult wastes, or biomass. The oxy-co-combustion of coal and biomass in circulating fluidized bed (CFB reactors would result in a negative balance for the CO2 emissions.

  1. Characterization and Recovery of Rare Earths from Coal and By-Products

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Roth, Elliot [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Alvin, Mary Anne [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-03-25

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activated carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a

  2. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIDE AS ENCOUNTERED IN THE NUCLEAR WASTE CLEANING PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.

    2011-10-20

    Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 16 years of gamma irradiation and several months of exposures to caustic solution, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, PPS is remarkably stable to the new solvent.

  3. The Chemical And Radiation Resistance Of Polyphenylene Sulfide As Encountered In The Nuclear Waste Cleaning Processes

    International Nuclear Information System (INIS)

    Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 16 years of gamma irradiation and several months of exposures to caustic solution, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, PPS is remarkably stable to the new solvent.

  4. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  5. Physical, chemical and mineralogical characterisation of hydraulically disposed fine coal ash from SASOL Synfuels

    Energy Technology Data Exchange (ETDEWEB)

    Jabulani S. Mahlaba; Elsabe P. Kearsley; Richard A. Kruger [University of Pretoria, Pretoria (South Africa). Civil Engineering

    2011-07-15

    Coal serves as the primary energy source in most parts of the world. It is a fact that coal combustion yields enormous quantities of fly ash some of which are either hydraulically placed or dry dumped. The current study attempts to provide a comprehensive characterisation of a disused alkaline fine coal ash dam (FCAD) towards assessing environmental impact, rehabilitation and utilisation potential. Fine coal ash refers to a combination of approximately 83% power station fly ash and 17% gasification and bottom ash fines (particles {lt}250 {mu}m) at SASOL Synfuels. The hydration products found in Weathered Fine Coal Ash (WFCA) using X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) are analcime, calcite, C-S-H gel, ettringite, hydrated gehlenite (Strtlingite), magnetite, periclase, pyrrhotite and sillimanite. High resolution Scanning Electron Microscope (SEM) results provide additional proof that hydration products are present in WFCA. No indication of appreciable leaching was given by X-ray Fluorescence (XRF) results except calcium and silicon. Thus evidence exists that pollutants from saline brines are immobilised in WFCA and an insight of reaction kinetics was obtained. High content of amorphous phase and lack of alteration in some geotechnical properties suggest that WFCA can be reutilised with lime addition to increase alkalinity and activate pozzolanic reactions. 48 refs., 18 figs., 4 tabs.

  6. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  7. 化学机械抛光后板刷撩洗清洗%Post CMP Cleaning Using Chemically Enhanced Brush Scrubbing

    Institute of Scientific and Technical Information of China (English)

    赵岳星

    2004-01-01

    板刷擦洗是一种在化学机械抛光后清洗中常用的方法.它可以非常有效地把研磨剂颗粒从已抛光的晶圆表面去除掉.在氧化硅化学机械抛光的清洗工艺中,去离子水(或者稀释的氢氧化氨)是刷洗过程中常用的化学品起到的作用及刷洗的机械力对去除氧化硅研磨剂颗粒时所起的作用.%Brush scrubbing is widely used in post-CMP cleaning applications. It is highly effective in removing slurry abrasive particles from the polished wafer surfaces. In oxide CMP cleaning, DIW is commonly used during brush scrubbing. The role of mechanic force from the brushes in removing oxide slurry particles is studied in this work.The rest of this paper focuses on the effects of chemicals used in-situ with mechanical brush scrubbing. The chemical requirement for various post-CMP cleaning applications will be detailed in this paper.It is shown that the combined mechanical and chemical actions often give the best cleaning performance.

  8. Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant

    CERN Document Server

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01

    The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

  9. Thermalhydraulic assessment of the Pickering NGS 'B' feed and bleed system for the hot boiler chemical clean (Siemens Process)

    International Nuclear Information System (INIS)

    The Hot Boiler Chemical Clean (HBCC) process from Siemens, to be used in PNGS, requires that the Heat Transport System (HTS) temperature be maintained in the range 160 to 170 oC for several days. To achieve these thermalhydraulic condition, the core decay power and the pump power of the main circulating pumps in a 3-3 configuration are employed to warm up the HTS from approximately 38 oC to 170 oC. At this point, high Bleed bias is applied to the signal of the HTS pressure controller to provide high Feed and Bleed flows, which are used to control the HTS temperature by means of the Bleed Cooler. To address any concern posed by these infrequently used HTS thermalhydraulic conditions, a detailed thermalhydraulic model of the Feed and Bleed System, that also includes the Gland Supply, Gland Return and Purification systems, was developed for the TUF code to determine the suitability of the Feed and Bleed System to conduct the HBCC. The model was then used to estimate the parameters such as Feed and Bleed flows, valve openings, pressure and temperature distributions throughout the Feed and Bleed System required for the application of HBCC. (author)

  10. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    CERN Document Server

    Ledenyov, Oleg P

    2013-01-01

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  11. Task 1.13 -- Data collection and database development for clean coal technology by-product characteristics and management practices. Semi-annual report, July 1--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Pflughoeft-Hassett, D.F.

    1997-08-01

    Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant to the EPA evaluation criteria for the Phase 2 decision.

  12. A new power station with clean combustion of coal residues financed by the Commission wins an international prize. Una nueva central electrica de combustion limpia de residuos de carbon financiada por la Comision gana un premio internacional

    Energy Technology Data Exchange (ETDEWEB)

    Furfari, S. (Commission of the European Communities, Brussels (Belgium). Directorate General for Energy, Energy Technology Unit)

    1993-07-01

    Between 1987 and 1989 10,55 million ecus were given by the European Commission's Demonstration Programme for the construction of the Emile Huchet power station using circulating fluidized bed combustion technology. The power station was constructed jointly by Charbonnages de France, COREAL, Stein Industrie and Lurgi. An important feature was its ability to burn coal preparation wastes cleanly. Despite burning poor quality fuel its emissions are well below the maximum standards. Other stations of this type are now planned in France.

  13. Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas

    International Nuclear Information System (INIS)

    Highlights: • Fly-ash based oxygen carriers were synthesised for chemical looping combustion of synthesis gas. • Using fly-ash as the support of the oxygen carrier enhanced the thermal stability and oxidant transfer for fuel oxidation. • Fly-ash based nickel oxide reformed hydrocarbons into carbon monoxide with the presence of carbon dioxide. - Abstract: The performance of coal fly-ash based oxygen carriers for chemical looping combustion of synthesis gas has been investigated using both a thermogravimetric analyser and a packed bed reactor. Oxygen carriers with 50 wt% active metal compounds, including copper, nickel and iron oxides, supported on coal fly-ash were synthesised using the deposition–precipitation method. Copper oxide and nickel oxide supported on fly-ash showed high oxygen transfer efficiency and oxygen carrying capacity at 800 °C. The fly-ash based nickel oxide was effective in reforming hydrocarbons and for the conversion of carbon dioxide into carbon monoxide; a nickel complex with silicate was identified as a minor phase following the reduction reaction. The fly-ash based iron oxide showed various reduction steps and resulted in an extended reduction time. The carbon emission at the oxidation stage was avoided by reducing the length of the exposure to the reduction gas

  14. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    Science.gov (United States)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  15. Research report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Clean coal technology model project seminar held in Thailand; 1997 nendo seika hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Tai ni okeru clean coal technology model jigyo seminar no kaisai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    To reduce SOx with coal utilization, the desulfurization seminar diffusing the demonstration project of simplified desulfurizer introduction was held at the site in Thailand. The purpose is to reduce the environmental pollutants and contribute to the effective utilization of energy with coal utilization in Thailand. Invitation letters were sent to users of coal and heavy oil boilers through the Department of Factories, Ministry of Industry, Thailand, to call participation in the seminar. Inspection of the desulfurizer introduced in the factory of Thai Union Paper Public was included in the seminar for diffusing the project. The inspection site is in the demonstration project site of simplified desulfurizer introduction. There were a lot of participants from Thai users and from Japan. The seminar included the presentations from NEDO, JETRO, FTI, and MOSTE, introduction of general technology for processes of ENAA desulfurizer, introduction of demonstration unit plan by IHI, and introduction of operation of demonstration unit by TUP. 31 figs., 6 tabs.

  16. 煤化工项目后评价体系研究与设计%Research and Design of Post Project Evaluation System in Coal Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    蒙彦琼; 李光琳

    2011-01-01

    In this paper, the post project evaluation practice of 250000 t/a methanol project of Shenhua Ningxia Coal Industry Group is taken as an example. Based on the focus of post project evaluation in coal chemical industry, this paper discusses the research and design of post project evaluation in coal chemical industry from the a~pects of evaluation process, method, evaluation index and standard, evaluation scope and main content, and successful degree of project construction. It is hoped that this paper can be of important reference value for carrying out post project evaluation in coal chemical industry. Coal chemical industry; Project; Post evaluation; Research; Design%以神宁煤业集团25万t/a甲醇项目后评价实践为例,围绕煤化工项目后评价的重点,从后评价工作流程、方法、评价指标与标准、评价范围与主要内容、项目建设成功度等方面,对煤化工项目后评价进行了研究与设计,对开展煤化工项目后评价工作有参考价值。

  17. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  18. Coal in a hole?

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    1998-05-01

    The editor of World Mining Equipment discusses the tangled position of the European coal industry, affected by concerns over acid rain and carbon dioxide emissions, and by subsidies. He outlines the debate in the UK about gas versus coal and about coal subsidies in Germany (which could affect mines in other European countries). The requirement to reduce CO{sub 2} emissions and to minimise the problem of acid rain will have a direct bearing on coal mining firms and equipment manufacturers so it is possible that the only future for the industry lies with clean coal technologies. Even here, there is no easy answer as it is not clear how developing nations will be able to pay for these more expensive clean coal systems. 2 photos.

  19. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area.

    Science.gov (United States)

    Menezes, Ana Paula S; da Silva, Juliana; Fisher, Camila; da Silva, Fernanda R; Reyes, Juliana M; Picada, Jaqueline N; Ferraz, Alice G; Corrêa, Dione S; Premoli, Suziane M; Dias, Johnny F; de Souza, Claudia T; Ferraz, Alexandre de B F

    2016-03-01

    The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells. PMID:26741544

  20. 煤泥水处理药剂的探索与实践%Study on flocculation chemicals of coal slime

    Institute of Scientific and Technical Information of China (English)

    王佳雁; 龚伦

    2011-01-01

    Introduce disposing process of coal slime in Jinjiyan coal washery, find that bad quality of coal slime make it hard for flocculating. After laboratory and practical research of flocculation chemicals of coal slime , confirm the best flocculanting combination which apply to current coal slime quality. This chemicals combination could quickly dispose high-ash fine coal slime. The results show that with less flocculanting can get higher recovery efficiency.%介绍了金鸡岩洗选厂工艺流程.通过对原煤性质的分析,说明入洗煤质极度恶化,为煤泥水处理带来困难.通过对煤泥水处理药剂的实验室及工业试验研究,确定了适合煤质现状的药剂组合,使高灰细粒煤泥得到快速有效沉降,达到了降低药剂用量和提高煤泥回收率的目的.

  1. Study on the association between environmental chemical elements and fluorosis caused by coal-fire pollution

    Institute of Scientific and Technical Information of China (English)

    焦永卓

    2013-01-01

    Objective To understand the distribution of chemical elements in soil,to investigate the differences between patients under different state of fluorosis and normal population after preventive measurement was implemented to get rid of some chemical elements and to lower

  2. Optical fiber chemical sensors with sol-gel derived nanomaterials for monitoring high temperature/high pressure reactions in clean energy technologies

    Science.gov (United States)

    Tao, Shiquan

    2010-04-01

    The development of sensor technologies for in situ, real time monitoring the high temperature/high pressure (HTP) chemical processes used in clean energy technologies is a tough challenge, due to the HTP, high dust and corrosive chemical environment of the reaction systems. A silica optical fiber is corrosive resistance, and can work in HTP conditions. This paper presents our effort in developing fiber optic sensors for in situ, real time monitoring the concentration of trace ammonia and hydrogen in high temperature gas samples. Preliminary test results illustrate the feasibility of using fiber optic sensor technologies for monitoring HTP processes for next generation energy industry.

  3. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  4. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  5. Analysis and evaluation methods for chemical contaminants in clean room air; Kagaku osen no bunseki hyokaho clean room kukichu no kagaku osen busshitsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T.

    1998-07-31

    As for, chemical contamination in a cleanroom air has taken up as a important problem. As the main source is building materials, after construction the execution of countermeasures is difficult. Out-gas evaluation and selection in building materials, chemical filters for removing specific organic matter and so on, are a large technical theme in the future and analytical techniques corresponding them become necessary. In this paper, analytical methods of airborne molecular contaminants (AMCs) are introduced. Main samples are AMCs in cleanroom atmosphere, on silicon wafer surface and out-gas from raw materials for cleanroom construction materials such as sealant, plastics and so on. Analytical methods consist of quantification of inorganic compounds, organic compounds and identification of abnormal spot with local/surface analysis. Various interesting findings with analytical data are obtained and investigated. 22 refs., 6 figs., 5 tabs.

  6. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; David Behel

    2001-09-30

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

  7. Advanced systems for producing superclean coal

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1990-08-01

    The purpose of this project was to develop several advanced separation processes for producing superclean coal containing 0.4--2.0% ash and very little pyritic sulfur. Three physical and physico-chemical processes were studied: microbubble flotation, selective hydrophobic coagulation, and electrochemical coal cleaning. Information has been collected from bench-scale experiments in order to determine the basic mechanisms of all three processes. Additionally, because microbubble flotation has already been proven on a bench scale, preliminary scale-up models have been developed for this process. A fundamental study of the electrochemistry of coal pyrite has also been conducted in conjunction with this scale-up effort in order to provide information useful for improving sulfur rejection. The effects of additives (NaCl and kerosene) were also investigated. 94 refs., 167 figs., 25 tabs.

  8. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  9. 煤焦油喹啉不溶物压滤脱除和超净沥青制备%Pressure Filtration Removal of QI and Preparation of Ultra-clean Pitch from Coal Tar

    Institute of Scientific and Technical Information of China (English)

    王芳杰; 王永刚; 任浩华; 马伟光; 陈航; 郭相坤; 许德平

    2011-01-01

    以高温煤焦油为原料,在自制小型压滤装置上脱除喹啉不溶物(QI),并对滤后煤焦油进行超临界流体萃取分馏制备超净沥青.结果表明,当滤布孔径1250目、温度125℃、压力0.5MPa时,煤焦油中的QI质量分数可降低到0.037%.对压滤后的焦油进行超临界萃取,所制沥青的QI和甲苯不溶物质量分数分别达到0.10%和20.31%,可满足制备高性能炭素材料前驱体的要求.%Quinoline insolubles (QI) of high temperature coal tar sampled from a coking plant of Shanxi province was removed by a self-made pressure filtration device. Ultra-clean pitch was prepared from the filtered coal tar by utilizing supercritical fluid extraction and fractionation (SFEF). Results indicated that the QI content of the filtered coal tar decreased to 0.037% at the conditions of 1 250 mesh filter cloth, 125℃ and 0.5MPa. And the QI and toluene insoluble (TI) level of ultra-clean pitch from SFEF reached 0.1% and 20.31%, which indicated that the pitch could be used as a premium precursor for high-performance carbon material, especially the needle-coke.

  10. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    Science.gov (United States)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; pmine drainage and those that were unexposed (NMDS ordination R2 =0.86; PERMANOVA; p=0.029). Bacterial diversity (OTU richness defined at 3% sequence difference) peaked at intermediate conductivities (600 μS cm-1). Environmental data that

  11. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China.

    Science.gov (United States)

    Song, Xiaoyan; Yang, Shushen; Shao, Longyi; Fan, Jingsen; Liu, Yanfei

    2016-11-15

    The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting. PMID:27450962

  12. Air/water oxidative desulfurization of coal and sulfur-containing compounds

    Science.gov (United States)

    Warzinski, R. P.; Freidman, S.; LaCount, R. B.

    1981-02-01

    Air/water Oxydesulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major U. S. coal basins. The applicability at present of this treatment for producing an environmentally acceptable coal has been restricted by recently proposed SO2 emission standards for utility boilers. The product would, however, be attractive to the many smaller industrial coal users who cannot afford to operate and maintain flue gas desulfurization systems. It is also possible that the utility industry could realize a benefit by using chemically cleaned coal with partial flue gas scrubbing. The higher cost of the cleaned coal would be offset by the reduction in capital and operating costs resulting from decreased FGD requirements. The susceptibility of sulfur in coal to oxidative removal varies with the nature of the sulfur-containing species. The inorganic sulfur compounds, primarily pyrite, marcasite, and iron sulfate, are more amenable to treatment than the organically bound sulfur which exhibits varying degrees of resistance depending on its chemical environment. Air/water Oxydesulfurization consistently removes in excess of 90 percent of the pyritic sulfur; the extent and efficiency of organic sulfur removal however, depends on the type of coal and severity of treatment used. In general, the organic sulfur of the higher rank coals exhibits more resistance to treatment than that of the lower rank coals; however, the accompanying heating value is greater for the latter. Similar treatment of sulfur-containing model compounds further illustrates the relative susceptibilities of different chemical species to oxidation. Application of these data to the understanding of the complex chemistry involved in the treatment of coal is a preliminary step toward improving the efficiency of Oxydesulfurization.

  13. Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash.

    Science.gov (United States)

    Bukhari, Syed Salman; Rohani, Sohrab; Kazemian, Hossein

    2016-01-01

    This paper investigates the effects of ultrasound (UTS) energy at different temperatures on the zeolitization of aluminosilicate constituents of coal fly ash. UTS energy irradiated directly into the reaction mixture utilizing a probe immersed into the reaction mixture, unlike previously reported works that have used UTS baths. Controlled synthesis was also conducted at constant stirring and at the same temperatures using conventional heating. The precursor reaction solution was obtained by first fusing the coal fly ash with sodium hydroxide at 550°C followed by dissolution in water and filtration. The synthesized samples were characterized by XRF, XRD, SEM and TGA. The crystallinity of crystals produced with UTS assisted conversion compared to conventional conversion at 85°C was twice as high. UTS energy also reduced the induction time from 60 min to 40 min and from 80 min to 60 min for reaction temperatures of 95°C and 85°C, respectively. Prolonging the UTS irradiation at 95°C resulted in the conversion of zeolite-A crystals to hydroxysodalite, which is a more stable zeolitic phase. It was found that at 85°C coupled with ultrasound energy produced the best crystalline structure with a pure single phase of zeolite-A. It has been shown that crystallization using UTS energy can produce zeolitic crystals at lower temperatures and within 1h, dramatically cutting the synthesis time of zeolite. PMID:26384882

  14. Chemical activation of bituminous coal for hampering oligomerization of organic contaminants.

    Science.gov (United States)

    Yan, Liang; Sorial, George A

    2011-12-15

    Activated carbons prepared by KOH activation of bituminous coal were studied for hampering oligomerization of phenolic compounds on its surface. A total of 24 activated carbons with different microporosity and BET surface area were created. The effect of the different variables of the activation process (KOH/bituminous coal ratio, heating temperature, activation time, and flow rate of nitrogen gas) on critical carbon parameters was analyzed. The impact of activated carbon on oligomerization was examined by conducting isotherm experiments at a neutral pH on Carbon(exp) produced with optimal characteristics and granular activated carbon (GAC) F400 for phenol, 2-methylphenol and 2-ethylphenol. These isotherms were collected under anoxic (absence of molecular oxygen) and oxic (presence of molecular oxygen) conditions. The single solute adsorption of phenol, 2-methylphenol and 2-ethylphenol on Carbon(exp) showed no obvious differences between oxic and anoxic environment, which indicated that the Carbon(exp) sample is very effective in hampering the oligomerization of phenolic compounds under oxic conditions. On the other hand, F400, which have lower micropore percentage and BET surface area, significant increases in the adsorptive capacity had been observed when molecular oxygen was present. PMID:22004832

  15. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  16. Effect of burn-off on physical and chemical properties of coal char; Gas ka shinko ni tomonau sekitan char no tokusei henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Tamura, K.; Hashimoto, H.; Funaki, M.; Suzuki, T. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-28

    For high-efficiency coal gasification, investigations were given on effect of coal chars with different conversion rates on coal gasification reactivity. In coal gasification, reactivity of char after pyrolysis governs the efficiency. The reference char conversion in CO2 gasification of coal (weight loss) changes linearly in the initial stage of the reaction, but the reactivity declines as the end point is approached. Char surface area is as large as 400 m{sup 2}/g in the initial stage with the conversion at 20%, but it decreases in the final stage. This phenomenon relates closely with changes in pore size and crystalline structure. Change in the Raman value R which shows incompleteness of char graphite structure and amorphous carbon ratio suggests that an active portion with high reactivity is oxidized preferentially, and a portion with low reactivity remains finally. Minerals in coal are known to accelerate the gasification. However, their catalytic effect is related with chemical forms, and complex as they may change into inactive sulfides and silicates under severe reaction conditions. Change in forms of calcium compounds may also be involved in decline of the reactivity in the latter stage. 8 refs., 4 figs.

  17. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  18. Cleaning chemical and mechanical of heat exchangers in french nuclear plants; Limpieza mecanica y quimica de intercambiadores de calor en centrales nucleares francesas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J. t.; Guerra, P.; Carreres, C.

    2013-03-01

    This project was carried out under the frame of the approval of LAINSA as a supplier of EDF in France. The inspection performed on systems called the moisture separator reheaters (GSS) of CPO series reactor of EDF nuclear power plants has shown evidence of significant clogging due to deposits of magnetite inside the tubes of tube bundle. The pressure drop between inlet and outlet of the heating was close to maximum design criterion. This effect could result in equipment damage and loss of plant productivity. The aim of the work was the design, development, approval and implementation of a procedure for un blocking the tubes of the GSS respecting the integrity of materials and ensuring the harmlessness of cleaning procedures. The procedure used was to completely remove magnetite deposits in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. The achieve these objectives we have developed a procedure that is basically a mechanical pre-cleaning of all tubes of the GSS in order to unblock tem, followed by a chemical cleaning where magnetite is dissolved and crawled out of the tube bundle. The main results were: -Corrosion less than 10 microns. 100-110 Kg of magnetite removed by heat exchanger. -Final pressure drop similar to that of new equipment. -Waste water: 70 m{sup 3} per exchanger, which were managed by an authorized waste management company. This procedure has been applied successfully in 14 GSS type heat exchangers in Fessenheim and Bugey nuclear power plants in France between 2009 and 2011. This project demonstrates that the long experience of LAINSA in the Spanish nuclear industry along with the knowledge and experience in chemical cleaning of SOLARCA, have served to successfully work demanding and mature markets such as the French nuclear market, solving the problem of deposits of magnetite with an effective and safe method for the treated

  19. A method and device for cleaning air

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a method and device for cleaning pollution from air wherin the air to be cleaned is subjected to a sequence of physical and chemical treatments.......The present invention relates to a method and device for cleaning pollution from air wherin the air to be cleaned is subjected to a sequence of physical and chemical treatments....

  20. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  1. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  2. Pressurised fluidised bed combustion: an alternative clean coal technology. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarollo

    Energy Technology Data Exchange (ETDEWEB)

    Bencomo Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    The primary aim of thistechnology is to reduce emissions of sulphur and nitrous oxides. Pilot plant tests have achieved a sulphur fixing rate of over 95%. Pressurised fluidised bed combustion also has advantages with regard to the emission of contaminants. Halogens, fluorine and chlorine, which in conventional combustion methods are released in the gases, to a large degree remain in the ash as do trace elements, such as arsenic, which usually vapourise at high temperatures in pulverised coal combustors. This technology also has a high output of between 38 and 40% net according to the type of coal used. 10 figs., 10 tabs.

  3. Spin-mapping of Coal Structures with ESE and ENDOR

    Science.gov (United States)

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  4. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  5. Discussion of Wastewater Dephenolization Technology of Coal Chemical Plant%煤化工废水脱酚技术探讨

    Institute of Scientific and Technical Information of China (English)

    毕可军; 王瑞; 孟鹏; 闫杰栋; 张庆; 李振东

    2015-01-01

    This paper introduces 3 phenol-contained wastewaters of coal chemical plants, such as coal gasification wastewater, coking wastewater and semi coke production wastewater. And it discusses the application feasibility of steam dephenolization, active coke adsorption dephenolization, ion ex-change method, extraction dephenolization, emulsion membrane method and biochemical method etc. in the phenol-contained wastewater treatment of coal chemical plants. From the technical and economic perspective, this paper summarizes the advantaged dephenolization technology, which could promote the harmless treatment and recycle of the phenol-contained wastewater of coal chemical plants.%介绍了煤气化废水、焦化废水、兰炭生产废水等3种煤化工含酚废水;探讨水蒸气脱酚、活性焦吸附脱酚、离子交换法、萃取脱酚、乳状液膜法、生化法等在煤化工含酚废水中应用可行性;总结了在技术和经济上具有优势的脱酚技术,该技术可推动煤化工含酚废水的无害化和资源化。

  6. 100t/h反渗透膜化学清洗总结%A summary of 100 t/h chemical cleaning of reverse osmosis membrane

    Institute of Scientific and Technical Information of China (English)

    毛建新

    2012-01-01

    针对脱盐水装置反渗透膜运行一段时间后出现的因细菌繁殖、结垢造成浓水侧堵塞,产水量下降,进水压力升高等问题,对反渗透膜进行了化学清洗。%This paper focuses on chemical cleaning reverse osmosis membrane, to deal with the problems such as water production decreased, inlet pressure due to bacterial reproduction, fouling caused by concentrated water side plug for a period after the process of water desalination unit operation of reverse osmosis.

  7. Chemical characterization and genotoxic potential related to boiling point for fractionally distilled SRC-I coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Mahlum, D.D.

    1982-07-01

    This report summarizes selected research efforts oriented toward ameliorating the genotoxic potential of direct coal liquefaction materials through modification or optimization of process conditions. The studies described were conducted to evaluate the utility of optimized distillation for coal liquids from the SRC-I process. SRC-I process solvent was distilled into 50/sup 0/F-range boiling point (bp) cuts. Analysis of amino-PAH (APAH) showed that mutagenic APAHs containing 3 or more rings were found primarily in fractions boiling above 750/sup 0/F. Three microbial tester strains were used to screen for genetically active agents in the SRC-I distillate bp cuts. Reverse mutation with the Ames tester strain TA98 demonstrated that mutagens were concentrated in the bp cuts boiling above 700/sup 0/F. For this tester strain most of the genetic activity in these distillates was attributable to chemical fractions enriched in APAH having 3 or more rings. Mutagenicity data obtained with TA98 was in good agreement with sk in carcinogenesis results from the mouse-skin initiation/promotion (in vivo) test system. The strongest response in the forward mutation assay did not occur in the most carcinogenically active fractions. Results of initiation/promotion experiments used to measure the relative potency of bp cuts as initiators of mouse skin carcinogenesis again showed that fractions boiling above 750/sup 0/F. Compounds reaching their highest concentrations in the highest boiling and most carcinogenically active cut included known carcinogens such as benzo(a)pyrene and dimethyl benzanthracene. Thus, all biomedical test results indicate that consideration should be given to conducting distillation so as to minimize, in the distillate product, the concentrations of those biologically active compounds found in cuts boiling above 700/sup 0/C.

  8. Chemical Cleaning Analysis of Concentrated Water Reverse Osmosis Membrane%浓水反渗透膜元件化学清洗分析

    Institute of Scientific and Technical Information of China (English)

    冀美萍; 沈洪洋; 郭伟

    2011-01-01

    RO membrane fouling can cause system performance degradation, component of pressure difference between inlet and outlet, the increase of membrane components replacement. Periodic cleaning for the membrane is effective way to ensure the normal system operation and extend service life of elements of. Through analysis to the reason of concentrated reverse osmosis water system pollution, this article introduces the cleaning of reverse osmosis membrane method, and through two chemical cleaning data of dense water reverse osmosis system, it puts forward the optimal operation measures for concentrated water reverse osmosis system.%反渗透膜的污染会造成系统性能的下降、组件进出口压差的升高、膜元件的更换等。对膜进行定期的清洗是保证反渗透系统的正常运行、延长膜元件使用寿命的有效途径。通过对浓水反渗透系统污染原因的解读分析,讨论了反渗透膜清洗的方法,通过对浓水反渗透系统两次化学清洗数据进行对比分析,提出浓水反渗透系统优化运行的相关措施。

  9. Energizing America with coal. Proceedings of the 88th regular meeting of The Rocky Mountain Coal Mining Institute

    International Nuclear Information System (INIS)

    Topics discussed at the meeting include: American coal technology; electric supply and demand; opportunities in power generation; the Clean Coal Technology Program; coal mining; the coal market; total quality management in the mining industry; mining productivity; mine rescue performance evaluation; and data on coal production. Papers have been processed separately for inclusion on the data base

  10. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.

    Science.gov (United States)

    Xue, Chao-Hua; Li, Ya-Ru; Zhang, Ping; Ma, Jian-Zhong; Jia, Shun-Tian

    2014-07-01

    Superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces with a self-cleaning property were fabricated by treating the microscale fibers with alkali followed by coating with polydimethylsiloxane (PDMS). Scanning electron microscopy analysis showed that alkali treatment etched the PET and resulted in nanoscale pits on the fiber surfaces, making the textiles have hierarchical structures. Coating of PDMS on the etched fibers affected little the roughening structures while lowered the surface energy of the fibers, thus making the textiles show slippery superhydrophobicity with a self-cleaning effect. Wettability tests showed that the superhydrophobic textiles were robust to acid/alkaline etching, UV irradiation, and long-time laundering. Importantly, the textiles maintained superhydrophobicity even when the textiles are ruptured by severe abrasion. Also colorful images could be imparted to the superhydrophobic textiles by a conventional transfer printing without affecting the superhydrophobicity. PMID:24942304

  11. Geology, coal resources, and chemical analyses of coal from the Fruitland Formation, Kimbeto EMRIA study site, San Juan County, New Mexico

    Science.gov (United States)

    Schneider, Gary B.; Hildebrand, Rick T.; Affolter, Ronald H.

    1979-01-01

    The Kimbeto EMRIA study site, an area of about 20 square miles (52 km2), is located on the south margin of the San Juan Basin on the gently northward-dipping strata of the Upper Cretaceous Fruitland Formation and the Kirtland Shale. The coal beds are mainly in the lower 150 feet (45 m) of the Fruitland Format ion. Coal resources--measured, indicated, and inferred--with less than 400 feet (120 m) of overburden in the site are 69,085,000 short tons (62,660,100 metric tons), 369,078,000 short tons (334,754,000 metric tons), and 177,803,000 short tons (161,267,000 metric tons) respectively. About 68 percent of these resources are overlain by 200 feet (60 m) or less of overburden. The apparent rank of the coal ranges from subbituminous B to subbituminous A. The average Btu/lb value of 14 core samples from the site on the as-received basis is 8,240 (4580 Kcal/kg), average ash content is 23.4 percent, and average sulfur content is 0.5 percent. Analyses of coal from the Kimbeto EMRIA study site show significantly higher ash content and significantly lower contents of volatile matter, fixed carbon, carbon, and a significantly lower heat of combustion when compared with other coal analyses from the Rocky Mountain province.

  12. General Evaluation of Clean Coal-fired Power Generating System with Gray System Correlation Model%用灰色系统关联模式综合评价洁净燃煤发电系统

    Institute of Scientific and Technical Information of China (English)

    黄飞

    2001-01-01

    在综合洁净燃煤发电系统影响因素的基础上,用灰色系统关联模式进行讨论和分析,以排除人为的主观任意性,可取得满意的结果。该结果与其它文献综合评判结果完全一致。%Presents the general evaluation of clean coal-fired power generating system with gray system correlation model with the effect of various factors taken into consideration, and the satisfactory results achieved without the effect of human factor in full agreement with those contained in other literatures.

  13. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  14. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  15. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  16. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  17. Study on occurrence of sulfur in different group components of Xinyu clean coking coal%新峪焦精煤中硫在族组分间的赋存规律研究

    Institute of Scientific and Technical Information of China (English)

    秦志宏; 张豪非; 戴冬瑾; 赵翠翠; 张丽芳

    2014-01-01

    This paper illustrates the occurrence and distribution of sulfur in coal from the perspective of composition and structure of the coal body.With the organic sulfur-rich Xinyu clean coking coal as the sample, and the method of separating all group components from coal through extraction and stripping process as well as X-ray photoelectron spectroscopy ( XPS ) and gas chromatogrpa hy/masss pectrometer ( GC/MS) analysis techniques, the content of inorganic sulfur and organic slu fur of diffre ent forms in raw cola and various group components isstudied andt he occurrence of organic sulfur in organic matter of coal is carefully observed.The results show the distribution of inorganic sulfur is mainly dependent upon its particle siez and density in coal and has less relationship wti h the structure of group components of coal.Thiophene sulfur ist he major form fo o rganic sufl ur either in raw cola or group components.The ext ernal envri onment of molecules dominated by conjugated structure can derc ease the elector n binding energy of ogr anic sulfur in conjugated structru e, whiel incrae se that of us lfur in aliphatic structure.Th e distribution of organic sulfuri n coal si balanc ed as a whole and will not be signifiac ntly infleu nced by ts rucut ral differne ces of group components. Howve er, the occurrence of organic sulfur compounds is assocai ted with the structure of group components, showing relatively small difference.And there is only one type of small molce ule orag nic sulfur compounds in light component, with small abundance.%为从煤的本体组成结构方面来阐述煤中硫的赋存与分布规律,以高含有机硫的新峪焦精煤为对象,采用萃取反萃取的煤全组分分离方法和XPS、GC/MS等分析技术,对原煤和各族组分中的不同形态无机硫和有机硫含量进行了研究,重点考察了有机硫在煤有机质本体中的赋存规律。结果表明,无机硫的分布主要依赖于其自身在煤主体中

  18. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  19. Quantitative Modelling of Trace Elements in Hard Coal.

    Science.gov (United States)

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  20. 12th international conference on coal science. Coal - contributing to sustainable world development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The theme of the conference was: coal - contributing to sustainable world. Papers dealt with combustion, coal cleaning, surface analysis, coal sustainability and research, metallurgical coke, structural studies, ash utilization, SEM analysis, liquefaction, pulverized coal injection, power plant emissions, analytical techniques, gasification, thermal analysis, weathering, self-heating and dust explosion, low rank coal gasification, geochemistry and trace elements, petrographic studies, CO{sub 2} mitigation, low rank coal pyrolysis, gas sorption, pyrolysis, synthesis gas, low rank coal drying, biomass pyrolysis, gas cleaning, underground gasification, activated carbon, pyrolysis and char reactivity, gasification model studies, agglomerated and slurry fuels, co-pyrolysis, and tar products and effluents. The poster papers are also included. The papers have been abstracted separately on the IEA Clean Coal Centre Coal Abstracts database.